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Abstract: The imperfect effectiveness of seasonal influenza vaccines is often blamed on antigenic
mismatch, but even when the match appears good, effectiveness can be surprisingly low. Seasonal
influenza vaccines also stand out for their variable effectiveness by age group from year to year and
by recent vaccination status. These patterns suggest a role for immune history in influenza vaccine
effectiveness, but inference is complicated by uncertainty about the contributions of bias to the
estimates themselves. In this review, we describe unexpected patterns in the effectiveness of seasonal
influenza vaccination and explain how these patterns might arise as consequences of study design,
the dynamics of immune memory, or both. Resolving this uncertainty could lead to improvements
in vaccination strategy, including the use of universal vaccines in experienced populations, and the
evaluation of vaccine efficacy against influenza and other antigenically variable pathogens.

Keywords: vaccine effectiveness; repeat vaccination; original antigenic sin; test-negative design;
seasonal influenza vaccine; universal influenza vaccine; imprinting

1. Introduction

Inactivated and live attenuated vaccines are the key public health tools against influenza.
Since vaccines must be re-formulated semi-annually to counteract antigenic changes in influenza
viruses, the low effectiveness of influenza vaccines has traditionally been attributed to mismatch
between vaccine strains and circulating strains [1–4]. The sometimes complicated task of predicting
antigenic match can be exacerbated by mutations acquired during manufacture. This can lead to
another form of mismatch and is a clear cause of reduced effectiveness [5].

However, even when the match between the vaccine and circulating strains is good, vaccines
may not be perfectly protective in healthy, non-aged subjects. Even for pathogens that do not rapidly
evolve to escape immunity, vaccines rarely confer complete protection from infection in all people,
potentially due to variation in vaccine immunogenicity and variation in individuals’ responsiveness [6].
The temporal and demographic patterns underlying estimates of influenza vaccine effectiveness
suggest a more complicated story, albeit one that has proven difficult to untangle in the presence
of both scientific uncertainties and limitations to the epidemiological methods used to measure
influenza vaccine performance. These patterns, coupled with increasing insight into the immunology
of the response, suggest that improvements to influenza vaccines may be constrained without
a better understanding of the effect of past influenza exposures on host responses to vaccination.
This understanding could improve not just seasonal vaccine effectiveness but also predictions of
season severity, viral evolution, and the design of universal vaccines for populations with prior
influenza exposure.
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2. What Do We Expect, and What Do We See?

The effectiveness of influenza vaccines is unusual in three ways: it appears to vary (1) from
season to season, (2) by age group from season to season, and (3) with vaccination history. Patterns in
vaccine effectiveness are not consistent among H1N1, H3N2, and influenza B over time, and are
rarely ascertained from “gold-standard” randomized, placebo-controlled trials. Variation in vaccine
effectiveness by season, age, and vaccination history have each been observed in multiple years and
populations (Figure 1) [1,7–10].

These patterns depart from traditional expectations for vaccines. If influenza did not evolve
antigenically, vaccine-induced protection did not vary among age groups or wane in time, and coverage
were constant and unassociated with individual risk factors, effectiveness would stay the same
from year to year. It also would not vary by age. Influenza, of course, evolves antigenically over
time, leading to variable vaccine effectiveness by year. In general, we would expect that even with
this relaxed assumption, “null” variation expected to arise in age-stratified estimates of vaccine
effectiveness should not be systematically associated with other factors.

We see instead that effectiveness varies not just over time, but also by age over time and between
more and less frequent vaccinees in some seasons (Figure 1) [10]. The latter two observations are
hard to explain. In at least one instance, differences in effectiveness between age groups have varied
from one season to the next. This is clearest for the 2015–2016 season, which was dominated by H1N1,
wherein stark differences in vaccine protection were noted for older middle-aged adults. The pattern
was observed not just in the United States [11] but also in Canada [12]. For H3N2, the story is unclear,
but interim vaccine effectiveness estimates from the past two seasons hint at variation (Figure 1
and [13,14]). In some seasons, vaccine effectiveness was lower in people immunized in both the
current and previous season compared to people immunized in the current season only (Figure 1) [10].
Analyses spanning multiple seasons have also found a negative relationship between vaccination
frequency and effectiveness, e.g., in patients at least nine years old in Marshfield, Wisconsin, from the
2004–2005 to 2012–2013 seasons [15], and in children 9–18 years old on Kamigoto Island, Japan,
from the 2010–2011 to 2013–2014 seasons [16]. Infamously, vaccine effectiveness estimates from Canada
have sometimes appeared negative in the most heavily vaccinated groups [17], and in Hong Kong
and Canada, negative vaccine effectiveness was reported for the trivalent seasonal vaccine against
pandemic H1N1 in 2009 [18,19], a pattern not found elsewhere [20,21]. Certainly, understanding what
causes the vaccine to appear to lose effectiveness in some age groups and some seasons, and to lose
effectiveness in the same people over time, is an important challenge.
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Figure 1. Vaccine effectiveness from the U.S. and Canada (A) overall and by age group and (B) by
recent vaccination history. Comparisons must be made with caution due to differences in study design
and study population. Please see Table A1 in the Appendix A for details.
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3. Are Our Measures of Vaccine Effectiveness Part of the Problem?

A first consideration when accounting for variation in estimates of vaccine effectiveness is
whether observed differences in influenza endpoints between vaccinated and unvaccinated persons
necessarily measure the immunizing effect of a vaccine. What we often want to know is the reduction
a vaccine confers to an individual’s susceptibility to influenza infection or influenza-caused illness,
measured relative to the same individual’s susceptibility had he or she not received the vaccine.
Epidemiologists often refer to this as “vaccine efficacy” (in the context of randomized studies), “vaccine
effectiveness” (in observational studies of individual outcomes), or the vaccine “direct effect” [22],
and varyingly measure it as one minus the risk ratio, hazard ratio, or odds ratio of an influenza clinical
endpoint given vaccination depending upon study design (Appendix B). Because the effect of interest
is usually the same for all three terms [23], we will use the term “VE” (referring to vaccine effectiveness)
throughout. As discussed, the protective effect of influenza vaccines can reasonably be expected to
vary within and between populations. Thus, we may be interested in estimates that are stratified by
susceptibility or responsiveness class. To obtain an average VE for any population, we could vaccinate
randomly and compare the rate at which influenza infections occur in the vaccinated and unvaccinated
groups, or the cumulative incidence of infections among vaccinated and unvaccinated persons.

Most VE estimates, however, do not come from randomized trials, nor do they closely track
the rate of influenza infection in vaccinated and unvaccinated people; trials cannot practically be
undertaken in advance of the influenza season for vaccines that are updated semi-annually, and trials
pose ethical challenges in settings such as the U.S., Canada, and Australia, where annual vaccination
is recommended for all individuals over six months old. Since 2004, the most common method
for estimating the effectiveness of seasonal influenza vaccines has been the test-negative design
(TND). In contrast to randomized trials and observational cohort studies that follow vaccinated
and unvaccinated individuals prospectively to compare influenza outcomes, the TND compares
the prevalence of prior vaccination among individuals who seek care for influenza-like illness and
receive a positive or negative outcome of a laboratory test for influenza infection. In this way,
the TND resembles a “retrospective cohort” design [24] or a case-control study enrolling controls with
an “imitation” disease [25]. By conditioning on the healthcare-seeking behavior of individuals, the TND
thus tries to adjust for bias imposed by the fact that individuals who seek influenza vaccination may
differ from those who do not seek influenza vaccination in their likelihood of seeking medical attention
for acute respiratory infection [23].

The ability of TND studies to recover reliable VE estimates under a set of ideal assumptions
led to enthusiasm about uses of the TND as a basis for policy-making [23,26,27]. However,
both historically-recognized [24,28,29] and newly-appreciated biases arising under the TND have
received increasing attention in recent years [30–33]. One recent evaluation illustrates that VE estimates
from the TND may be biased to the point that vaccines that are actually protective can appear to
facilitate infection [34]. This increasing scrutiny of the TND has been reflected in debate about its
validity as a basis for causal inference [35,36], and about the appropriateness of decisions premised on
TND studies [37,38]. In 2018, a determination was made not to update the Cochrane Reviews database
on influenza vaccine effectiveness with results from TND studies [39–41]. The potential for biases
draws into question whether variation in VE estimates is necessarily attributable to factors like immune
history, or can instead be explained by confounding associations between individuals’ susceptibility
and likelihood to seek vaccination, as well as more fundamental biases affecting TND studies.

Perhaps the most important limitation of the TND arises from its observational nature, insofar
as individuals’ decisions to vaccinate may be associated with other factors influencing their
exposure or susceptibility to influenza. For instance, older individuals who vaccinate may be
generally healthier [42], and vaccination is strongly encouraged among many high-risk groups,
including educators and healthcare workers. Studies usually have limited ability to resolve these
differences in susceptibility and exposure risk; whereas, test-negative studies of influenza vaccine
effectiveness have not traditionally included extensive covariate information, the availability of such
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data in recent test-negative studies of rotavirus vaccine effectiveness (e.g., [43]) has provided added
insight. Although the functional forms of bias under the TND are not universally amenable to correction
by controlling for covariates, odds ratio (OR) estimates stratified by risk status may recover VE
estimates closer to the true effect, albeit at the expense of statistical power [34]. Because VE estimates
under the TND are measured relative to the association of vaccination with a test-negative control
endpoint, bias relating to this source of confounding occurs if factors associated with vaccination status
have a specific impact on risk for influenza or on other chronic or infectious causes of acute respiratory
symptoms. This topic has received attention in previous assessments of the theoretical basis of the TND
for influenza vaccine effectiveness [30,31,33,34]. Other uses of the TND—for instance, to distinguish
VE against vaccine-serotype pneumococcal infection via comparisons against non-vaccine serotype
infection [24]—may more reasonably satisfy this condition than influenza studies, given the diverse
etiologies that may be represented among test-negative individuals.

These concerns about confounding determinants of both susceptibility and individuals’ likelihood
to vaccinate have particularly acute implications in studies of the effect of repeated vaccination.
People who choose to be vaccinated tend to be vaccinated in other seasons, opening the possibility
for confounding by previous vaccination as well as infection history in the relationship between
current-season vaccination and influenza. Stratifying VE based on vaccination history can partially
adjust for such differences [34]; however, unmeasured confounding variables between individuals’
histories of vaccination and previous influenza infection will limit the transportability of VE estimates
for populations with differing past influenza exposures. An ideal study would stratify VE according
to past vaccination, exposure, and infection history in order to isolate the effect of vaccination on
susceptibility to infection within the same season. However, the reliance on retrospectively collected
data under the TND makes it difficult to define such counterfactual comparisons.

A second and more fundamental class of biases, which affects the TND as well as randomized
controlled trials [44–46], arises because measures of statistical association may not capture the vaccine
effect on susceptibility to infection or disease. Under an ideal scenario of randomized vaccine uptake,
the odds ratio of vaccination among test-positive versus test-negative subjects recovers the proportion
of individuals protected by an “all-or-nothing” vaccine effect [28,34]. That is, some fraction of recipients
respond to the vaccine and are perfectly protected from infection, while the susceptibility of other
recipients is unaffected by vaccination. In contrast, the odds ratio will not accurately recover a “leaky”
vaccine effect, under which vaccine responders have incomplete protection. For influenza, vaccine
protection is arguably leaky, in that people who exhibit at least a four-fold increase in titer from
vaccination, the traditional marker of vaccine immunogenicity and “responder” status, can still be
infected. The magnitude of biases that result from this condition depends on individuals’ total risk
of having acquired influenza by the time they enter the study—for instance, due to high rates of
transmission in the population, or the assessment of VE either early or late in the season. Thus, findings
of variation across populations and over time in VE estimates may not necessarily indicate differences
in vaccine performance, drawing into question whether observations of reduced protection by the end
of an influenza season [47] necessarily indicate vaccine waning.

The potential for design-level sources of epidemiological bias to contribute to variation in VE
estimates underscores the need for improved methods to understand factors influencing differential
protection among individuals. Because there are few head-to-head comparisons between estimates
from the TND and other studies within the same population [48], and because biases affecting the
TND may also affect other studies of influenza vaccines, the magnitude of bias in current studies
remains unknown. Nonetheless, several lines of evidence discussed below suggest that the distinctive
patterns of VE in populations over time could also arise from genuine differences in the ability of the
vaccine to protect different subpopulations from medically attended influenza infections. Although
these findings do not exclude flaws in epidemiological study designs, agreement between these lines of
experimental evidence and VE estimates lends support to the hypothesis that immune history shapes
the vaccine response.
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4. Biological Explanations: Original Antigenic Sin

One of the oldest theories in influenza has recently re-emerged as a potential explanation for low
vaccine effectiveness, differences in vaccine effectiveness between age groups over time, and also for
reduced effectiveness in repeat vaccinees. Both immunological and epidemiological research lend
credibility to the hypothesis.

The theory of original antigenic sin (OAS) holds that the antigens on influenza strains encountered
in childhood permanently shape the antibody response, such that antibodies recognizing conserved
antigens are boosted upon exposure to related strains, and often at the expense of responses to novel
antigens. Early studies demonstrated that, after immunization with H1N1, people produced antibodies
that cross-reacted with historic strains, but only if subjects were old enough to have been infected
with these strains in childhood [49,50]. Thus, although subjects from all age groups responded to the
vaccine strain, the quality or cross-reactivity of their response depended on their presumed infection
history. Adults and children today still show different patterns of cross-reactivity after influenza
vaccination [51]. There is also strong evidence in humans [52–60] and animal models [61,62] that
memory B cells, presumably specific to conserved epitopes, are commonly reactivated in later influenza
exposures. One implication is that cohorts differ in which sites are targeted by protective antibodies,
and these sites are partly determined by past exposures; thus, as the virus mutates its epitopes,
different subpopulations—defined directly by their antibody specificities, and indirectly by exposure
histories—might lose protection at different times [63]. OAS might be involved in susceptibility on
another scale. Gostic et al. observed protection from severe disease and death caused by avian
subtypes whose hemagglutinin surface proteins are more related to the seasonal influenza subtypes
from childhood [64]. Gagnon et al. found that individuals born during the H2N2 pandemic had
increased susceptibility to mortality from pandemic H1N1 in 2009 and 2013–2014 [65].

Like natural infection, vaccination could interact with OAS and affect protection. Twenty years
ago, Smith et al. proposed that variable vaccine efficacy arises from the relationships between
the cross-reactivities of the past vaccine strain, current vaccine strain, and circulating strain [66].
In their model, when the past and current vaccine strains are similar, the current vaccine boosts
responses that cross-react with the previous vaccine strain. If few of these antibodies react well with
circulating strains, vaccine effectiveness will be low. In contrast, in people who were not previously
vaccinated, or if the previous vaccine strain cross-reacts minimally with the current vaccine strain, the
effectiveness of the current vaccine (even if not a great match to the circulating strain) will be higher.
This “negative interference” between vaccines arises from reactivation of the memory responses that
are conserved between vaccine strains at the expense of responses to new antigen. Although the
model uses an abstracted shape space to represent antigenic relationships between strains, its form is
consistent with the basic—albeit slightly ambiguous—dynamics of OAS. Here, however, the sin is not
strictly “original” and can arise from recent vaccination.

The detail of recent VE studies suggests observations that are consistent with this model,
which might explain variable VE from year to year and perhaps reduced VE in repeat vaccinees.
Skowronski et al. have suggested that negative interference could explain low vaccine effectiveness in
two recent H3N2 seasons [67]. In Canada in 2012–2013, VE trended higher in people vaccinated only
in that season compared to people vaccinated in the current and previous season. This trend was not
apparent in the US, but in partial support of the negative interference model, an analysis of responses in
a heavily immunized adult cohort suggested that the vaccine boosted only cross-reactive epitopes [68].
However, the boosted titers also appeared to cross-react just as strongly with circulating strains,
which leaves open the question of why VE was so low. In 2014–2015, the addition of a glycosylation
site in circulating viruses led to very low vaccine effectiveness [69]. Due to mutations in manufacturing,
the H3N2 component of the egg-grown vaccine has remained unglycosylated at this site since then.
Tellingly, adults immunized in the 2016–2017 season with the unglycosylated, egg-adapted strain
mounted responses that were focused on the unglycosylated site, which should confer little protection
against infection [5]. Responses to the unglycosylated site were especially high in adults who had been
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immunized in each of the past two seasons with the unglycosylated strain, suggesting again that the
vaccine mostly boosts pre-existing responses.

The dynamics of OAS might also explain differences in estimates of VE by age over time.
The strength of the response to the unglycosylated site on recent H3N2 varied by age in adults,
and was generally higher in adults who had seen a similar unglycosylated site in childhood [68].
This suggests the vaccine boosted not only responses from past vaccines, but also responses whose
specificity was shaped by early exposures. More dramatic evidence comes from the 2015–2016 season,
which was dominated by H1N1. In the U.S. and Canada, VE against H1N1 dropped noticeably
in older and middle-aged adults (Figure 1). In Canada, it was also shown to be lower in repeat
vaccinees [12]. Two studies suggested that the strong age-associated reduction in VE was consistent
with OAS-like effects. In that season, circulating H1N1 acquired a glycosylation site [11,12], there were
strong correlations between birth year and specificity to this site, and previous work had shown this
specificity arose by OAS [70]. Although the possible influence of other age-related factors has yet
to be conclusively ruled out, these studies collectively suggest that even in adults, the response to
vaccination might interact with memory established decades earlier to generate age-dependent patterns
in protection. Such cohort-specific differences in protection provide a natural discontinuity design for
causal inference, isolating early influenza antigenic exposures as a potential factor underlying sharp
differences in protection between age groups.

The influence of OAS on response to vaccination, strength of protection, and VE estimates
remains complicated, however. It is unclear how much negative interference between old and new
responses there really is. Early work on OAS showed that, regardless of age and immune history,
vaccine recipients could develop high titers to any historic immunizing strain [49,50]. Furthermore,
vaccination did not always merely boost antibody responses that cross-reacted with childhood strains
but could sometimes induce responses unique to the immunizing strain [49,50]. Vaccination could
also eventually lead to a persistent shift in the cross-reactivity profile (or “antibody landscape” [59])
to a given vaccine strain [50]. In contrast, the negative interference model and recent studies of the
vaccine response in adults hint at less tendency to target new sites [5,11,12,68]. Adjuvants are known
to attenuate the effects of OAS [71,72], and this may explain potential discrepancies between recent
patterns and early studies, which relied on adjuvants [50] or multiple immunizations in a short
period [49,50]. Another missing piece is that for OAS to explain changes in VE by age over time,
antibodies of different specificities should vary in their protectiveness. This is plausible. Cross-reactive
antibodies to influenza are extremely common [52,73,74], but not all cross-reactive responses are equally
protective [75]. Although there has been extensive work correlating hemagglutinin and neuraminidase
titers to protection (e.g., [76]), the relationships between fine-scale specificity to particular epitopes,
antibody concentration, antibody isotype, antibody avidity, and protection are not well understood.

5. Other Biological Explanations

Another curiosity of the influenza vaccine is that some people appear not to respond to it.
This is suggested partly and indirectly by the low vaccine effectiveness, but it also appears in
standard tests of the vaccine response. For instance, less than 20% of children and adults had at
least a four-fold titer rise against H3N2 and influenza B after immunization [77]. Although there
is evidence for a ceiling effect, whereby people with initially high titers have smaller boosts [78],
many non-responders start with low or moderate titers [68,79]. One possibility is that people are
responding, but these responses are simply not being measured (e.g., if most antibodies target the
neuraminidase [57]). Another is that there are significant differences in individual capacities to
respond [6]. Reduced responsiveness has been associated with age-associated thymic involution [80],
obesity [81], statin use [82,83] (but see [84]), lack of cytomegalovirus infection (in the young) [85],
presence of cytomegalovirus infection (in the old) [86], male sex [87], and other factors, especially ones
related to baseline levels of inflammation [6,88].
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These factors might explain differences in VE between older and younger individuals. It is less
obvious how they could explain substantial interannual variation in VE by themselves, although some
suggest opportunities for other pathogens to affect VE. It is also not obvious how these factors would
create variation in the relative VE by age over time.

6. Future Directions

A recent theoretical study showed that, if antigenic mismatch from evolution were the only cause
of reduced vaccine effectiveness, it should not be hard to prevent transmission at coverages below
those of the U.S. [89]. Improving the effectiveness of seasonal influenza vaccines remains a tantalizing
prospect, but it requires overcoming two main challenges: assessing the contributions of bias and
biology to estimates of effectiveness.

Understanding the basis of low VE will be easier if VE itself is measured accurately. A head-to-head
comparison of VE estimates from TND and a randomized trial in a representative population could
provide insight into the magnitude of bias and reliability of past estimates. Identifying the bias’s
source might require further investigation, such as a prospective study. Although it is now common
to stratify subjects by vaccination history, it would also be useful to measure associations between
voluntary vaccination and infection risk, symptom severity, and propensity to seek medical attention
or testing, and to identify immunological signatures of infection history. These data would also greatly
inform knowledge of basic influenza epidemiology, including estimates of incidence.

Several approaches could help untangle the role of immune history in vaccine effectiveness.
One of the simplest would be to evaluate the antigenicity of candidate vaccine strains using not
only ferret antisera, as most often practiced, but also representative human sera, which may provide
early clues into cross-sectional differences in responsiveness. Differences between human and ferret
cross-reactivity profiles were used to argue for covert antigenic mismatch in 2013–2014 [70] and
against reported mismatch in 2012–2013 [68]. It would be useful to know if antigenicity inferred
from human sera better predicts vaccine effectiveness than antigenicity inferred from ferret sera.
At the other end of the spectrum of difficulty, understanding in fine detail the immune correlates of
vaccine responsiveness and protection could illuminate the roles of OAS and other mechanisms in
vaccine effectiveness. Data from virtually any observational longitudinal studies could be valuable.
More comprehensive measures of anti-influenza antibody responses could show if there are true
non-responders, or if some studies are simply failing to detect immunodominant responses to sites
farther from the hemagglutinin’s receptor binding domain. Because the hypothesized mechanisms of
low vaccine effectiveness involve complex interactions between infections, vaccinations, competing
B and T cell populations specific to different epitopes, waxing and waning titers, and age-related
changes in infection risk, interpretation of the data will not be straightforward. Dynamical hidden
Markov models are especially useful for identifying interactions involving time lags, nonlinearities,
and unobserved states (e.g., [60]). These less traditional epidemiological approaches would be
complemented by recent breakthroughs in experimental immunology, including high-throughput
single-cell methods that can deconstruct the components of affinity maturation and immune response
in detail. Effectively, identifying the role of immune history in vaccine effectiveness requires modeling
processes across several scales.

7. Conclusions

Davenport et al. cautioned in 1957 that strong memory to childhood strains would make it
difficult to immunize against the “virus of the year” with all its “minor antigenic caprice”, but noted
that adjuvanted polyvalent vaccines at multiannual intervals might recapitulate the broad responses
and protection eventually acquired with age [50]. The aim of universal vaccines is to induce broad
responses, typically to a few conserved epitopes on the stalk. It remains unclear how history will
modulate the short- and long-term effectiveness of these vaccines: the animal models on which the
promising results are based have no prior immunity to influenza. It is plausible that adults immunized
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with universal vaccines might sometimes target familiar non-stalk epitopes, such as the neuraminidase,
and some of these antibodies may be less broadly protective. Diverse exposure histories could lead once
again to variation in vaccine effectiveness between populations, which could invite escape mutations.

The challenges associated with influenza vaccines are exciting because they have the potential
to reveal fundamental features of immune memory against antigenically variable pathogens,
which remain a large source of morbidity and mortality and prime targets for vaccine development.
This immune memory is a powerful selective force, and understanding the ways in which vaccination
shapes it could also improve forecasting. Furthermore, understanding the strengths and limitations of
current study design will be vital not just for influenza vaccines but also for vaccines against other
antigenically complex pathogens, for which efficacy must be assessed in a dynamic background of
immune history [90].
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The following abbreviations are used in this manuscript:

OAS Original antigenic sin
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VE Vaccine efficacy or effectiveness (defined here as the vaccine direct effect on susceptibility to infection

and/or disease)

Appendix A

Table A1. Sources of data for Figure 1. Except where noted below, vaccine effectiveness is shown only
for the dominant circulating subtype each season.

Season VE Type Notes Source

2011–2012 Age All ages Canada [91]
Vaccination history ≥9 years, all flu U.S. [92]

≥2 years Canada [91]

2012–2013 Age All ages U.S. [93]
Vaccination history ≥9 years U.S. [93]

≥9 years Canada [67]

2013-2014 Age ≥6 months U.S. [94]
Vaccination history ≥9 years U.S. [95]

≥2 years Canada [96]

2014–2015 Age ≥6 months U.S. [97]
Vaccination history ≥18 years U.S. [98]

≥2 years Canada [17]

2015–2016 Age ≥6 months U.S. [97]
Vaccination history ≥9 years Canada [12]
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Appendix B. Measuring VE against Influenza

Several different approaches are commonly taken to measure the extent to which vaccination
protects recipients against infection and disease. When participants are enrolled in a study before
an influenza season begins—as might be possible in a trial or a prospective cohort study—VE can be
measured via the reduction in the hazard ratio (HR) or risk ratio (RR) of influenza over the study period:

V̂EHR = 1 − HR = 1 −

(
Cases among the vaccinated

Vaccinated person-years at risk

)
(

Cases among the unvaccinated
Unvaccinated person-years at risk

) ,

or

V̂ERR = 1 − RR = 1 −

(
Cases among the vaccinated
Vaccinated persons at risk

)
(

Cases among the unvaccinated
Unvaccinated persons at risk

) .

If individuals’ decision to get vaccinated is unassociated with their risk of influenza exposure
or susceptibility to infection and disease, V̂EHR will recover unbiased estimates of either “leaky” or
“all-or-nothing” protection, whereas V̂ERR may underestimate “leaky” protection when evaluated late
in the season or in a population exposed to high transmission rates [28].

However, most influenza VE estimates are generated under study designs where the total
population of vaccinated and unvaccinated persons is not known. In such instances, case-control or
test-negative study designs may be undertaken to estimate VE from the exposure odds ratio (OR) of
vaccination associated with influenza case status. In a case-control study selecting control individuals
from the community not known to have experienced influenza,

V̂EOR = 1 − OR = 1 −

(
Vaccinated influenza cases

Unvaccinated influenza cases

)
(

Vaccinated community controls
Unvaccinated community controls

) .

For the assumptions under which case-control and test-negative study estimates are interpreted
to measure vaccine effectiveness, V̂EOR = V̂ERR [23,26]. However, measures from the OR will only
provide valid estimates of “leaky” protection early in the influenza season or in low-transmission
settings [28,34]. In addition, it is possible that estimates from a case-control or prospective cohort
study may be biased by the fact that healthcare-seeking behavior drives certain individuals to receive
the influenza vaccine as well as to receive treatment when infected. Under the test-negative design
(TND), V̂ETND is calculated by comparing the exposure odds ratio of vaccination among individuals
seeking care for acute respiratory infection who receive a positive or negative outcome of an influenza
diagnostic test:

V̂ETND = 1 − ORTND = 1 −

(
Vaccinated influenza-positive cases

Unvaccinated influenza cases

)
(

Vaccinated influenza-negative cases
Unvaccinated influenza-negative cases

) .
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