
UC San Diego
Technical Reports

Title
Proxy Caching with Hash Functions

Permalink
https://escholarship.org/uc/item/30n6n8gj

Author
Baboescu, Florin

Publication Date
2001-06-03

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/30n6n8gj
https://escholarship.org
http://www.cdlib.org/

1

Proxy Caching with Hash Functions
Florin Baboescu

Abstract— Internet traffic doubles every three

months, with web traffic accounting for more than

75% of the total traffic between major ISP providers.

Web caching at proxies can reduce this traffic as well

as web user latencies. One way to increase the hit rate

of caches is to have caches cooperate using the Internet

Cache Protocol or using hash functions. This paper

provides an experimental and theoretical analysis of

two well known hash based caching schemes. Our pa-

per also proposes a new allocation scheme which im-

proves the performance of one of the analyzed tech-

niques. It reduces the standard deviation of the URLs

distribution on caches by a factor greater than two.

I. INTRODUCTION

With web traffic accounting for more than 75%

of the total traffic between major ISP providers [3],

proxy caching to reduce web traffic and latency is

of great interest. Unfortunately, the hit rate of indi-

vidual proxy caches is small; studies have shown that

cache hit rate grows logarithmically with the number

of users [6] , [14]. One way to improve the hit rate is

to have caches cooperate. For example, [14] shows

40% of documents were accessed by more than one

user in different departments but only by one user in

each department. This number is three times more

than the number of documents that are accessed by

more than one user from the same department. This

implies that cache hit rates are low without coopera-

tion between caches maintained by different admin-

istrative units.

The Harvest [1] system implements cooperative

caching using a hierarchy of cooperative caches.

Each cache is configured a list of neighboring peer

caches (e.g., department caches for a campus) and

a parent cache (e.g., cache for the region). When a

cache gets a request it cannot serve, it first sends a

query (using a lightweight protocol called ICP [12])

to all its neighbor caches; if all neighbors reply with

a miss, the request is sent to the parent. If the server

F. Baboescu is with the Department of Computer Science

and Engineering, Univ. of California, San Diego. Email:

baboescu@cs.ucsd.edu

is local, the cache queries the server directly.

Despite its simplicity, cooperative caching using

ICP has some major drawbacks:

� An ICP cache must query all its neighbors to de-

termine the location of cached information; the pro-

cess is inefficient and generates extra traffic due to

the ICP messages which are exchanged. For the

NLANR cache system, we found using a whole

week of traces, that the ratio between the ICP re-

quests and HTTP requests has values between 3 and

9.

� The number of queries is directly proportional

with the number of cache siblings.

� Popular objects end up being located in all the

caches. An increase of up to 30% in the number of

objects which are replicated on the caches might be

due to the popular objects.

In order to address this problem a new coopera-

tive cache architecture scheme was introduced [7],

[4], [9]. It uses one or more hash functions applied

both to the URL and to the set of caches in order

to identify the single cache which should hold the

object from a specific URL. This reduces traffic (as

only a single neighbor cache is queried) and prevents

replication of popular documents. An important goal

for this type of architecture is to have a uniform dis-

tribution of URLs to caches.

Our paper compares two hash based coopera-

tive caching schemes (which we will call the MIT

scheme [7] and the Microsoft scheme [4]. The Mi-

crosoft scheme called CARP is implemented in the

Microsoft Proxy Server; the MIT scheme is pro-

posed in a set of papers from MIT and may have pro-

vided some motivation for the (secret) scheme used

by AKAMAI. We show both by simulation and the-

oretical proof that the algorithm proposed by [7] can

at most reach the performance in terms of URLs dis-

tribution at caches of [4]. We also show how a small

modification on the assignment policy of URLs to

caches described in [7], can reduce the standard de-

viation of the URL distribution by more than a factor

of two.

2

This paper is organized as follows. Section III in-

troduces hash based caching and shows its imple-

mentation in both the MIT and Microsoft propos-

als. Section V describes our simulation method-

ology, while sectionVI examines the performance

of the two hash based schemes in relation with the

URLs distribution to the proxies. It shows the high

impact in the URLs distribution caused by a small

modification of the allocation policies of URLs to

caches. It also shows that the algorithm implemented

in [7] can at most reach the performance in terms of

URLs distribution at caches of [4]. Our results are

summarized in VII.

II. RELATED WORK

A first proxy cache implementation is the one

from CERN [8]. Several recent studies of proxy

cache traffic show a direct dependence between the

hit ratio for a web proxy and both the client popula-

tion and the number of requests at the proxy ([2], [6],

[14]). This observation strongly motivates an exten-

sive work on cooperative Web caching as a way to

improve the latency perceived by the end users and

to reduce the bandwidth utilization.

A very first scheme for cooperative Web caching

is based on ICP and it is implemented in Squid [13].

When a cache gets a request it can not resolve, it

first sends an ICP query to all its neighbor caches; if

all neighbors reply with a miss or they do not reply

during an interval of timeout the request is sent to the

a parent cache or directly to the server.

Cache Digests [10] and Summary Cache [5] are

two cooperative web caching scheme which are

trying to efficiently locate objects in neighboring

caches. A cache digest is a lossy compression of

all cache keys with a lookup capability. Digests are

made available using HTTP, and a cache downloads

its neighbor’s digests at startup. A cache is able to

know if a neighbor holds a particular object by look-

ing into its digest. Summary Cache implements a

similar ideea.

A third category of cooperative Web caching

scheme is represented by the hash based schemes.

The Cache Array Routing Protocol (CARP) [11] has

been designed by the University of Pennsylvania and

Microsoft and it is implemented in the Microsoft

Proxy Server [4]. A client may requests documents

from a farm of proxy servers. The requests are deter-

ministically forwarded to the proxy server in charge

with handling the request. The selection of the proxy

server is done using a hash function which takes as

arguments both the URL from the request and the

name of proxy server. A similar scheme is proposed

in a set of papers from MIT [7].

This paper expands previous research done in co-

operative Web caching scheme based on hash func-

tion. It compares both schemes nominated above and

show how the scheme proposed by MIT [7] may be

improved to gain a better load distribution without

introducing additional computation.

III. HASH BASED COOPERATIVE CACHING

A solution to the ICP based cache scheme’s draw-

backs is to use a “queryless” cooperative caching,

based on hash functions. A hash based distributed

cache hierarchy avoids the drawbacks of the Harvest

caching model by:

� eliminating multiple queries. Only the cache

which should have the copy is interrogated by a chil-

dren;

� avoiding popular copy duplication in all the sib-

lings; each URL is stored at exactly one cache.

� automatically adjusting to addition/deletion of a

cache sibling without causing high disruption in

URL location assignment.

In a hash routing model an URL is assigned only

to one cache. All users can determine the URL-to-

Cache mapping in a unique way using hash func-

tions.

Let’s consider a naive way to allocate URLs at two

caches in which one would first map an infinite space

of URLs seen as ASCII strings to a hash space, say

1..100 (figure 1). The hash space is partitioned in

two intervals: 1-50, 51-100. The URLs which are

mapped to values in 1-50 are assigned to the first

cache while the ones mapped in 51-100 are assigned

to the 2nd cache. If the hash function which is used

to do the mapping from the URL space to the 1-100

interval has a uniform distribution then URLs will be

uniformly distributed between the two caches.

Despite the simplicity, this naive implementation

has a major drawback: its lack of robustness. In

[9] the author shows that when a new cache is in-

troduced in the system about half of the objects are

now located in a wrong sibling. The size of a cache

system which provides good cache performance is

3

URL1 URL2 URL3 URLk

1 2 3 4 ... 50 51 52 53 ... 100

Proxy 1 Proxy2

{ }{ }

URL

Space

Hash

Space

Cache

Farm

hash
function

Fig. 1. Naive Allocation of URLs to Caches using Hash

Routing

usually about 10-100 Gigabyte; it takes some weeks

following its startup until it stabilizes. Therefore a

high disruption caused by a new cache introduced in

the system should be avoided as much as possible.

There are two proposed techniques for implement-

ing robust hash functions. The first is the Cache

Array Routing Protocol (CARP), a protocol which

is implemented in the Microsoft Proxy Server [11];

the second was developed by a group from MIT [7],

some variant of which may be deployed in the Aka-

mai global cache hierarchy.

Before we describe the CARP and MIT schemes,

we note that (despite the benefits of hash based

schemes) there are situations when the Harvest/ICP

approach is better. Hash based schemes should not

be used for large systems in which the round trip

times seen by users to different caches are largely

changing. The reason is that the latency perceived by

the users is linearly dependent on the round trip time

between the user and the cache. TableI shows some

sample measurements we did tabulating the round

trip times perceived by users from different points in

the US accessing the caches in the NLANR system.

The names in the first column are cache names in the

NLANR system.

The large variability in round trip times implies

that such caches should not be used with a hash

based scheme. The hash may result in a user pick-

ing a cache that is “far” away because it has no con-

cept of locality. Hash based schemes thus seems best

confined to cooperation between caches that are in a

single domain or area. Of course, the two schemes

can be combined with hash based caching used at

the sibling level, and the ICP scheme used to contact

parents in the cache hierarchy (if the assigned sibling

does not have the page).

A. Hash Routing in CARP

CARP uses a hash function that takes two param-

eters, a URL and a cache name, and hashes some

combination of its two parameters to a single integer.

Thus if the system has N caches, how does a client

know which cache to query for the data in URL x?

The client does so by computing N different hash

values for x with each of the N cache names, and

picking the cache whose hash value is numerically

the highest.

It can easily be shown by symmetry (if the hash

values are uniformly distributed, it is equally likely

that any of the values will be the highest) that URLs

are uniformly distributed among caches. [9] shows

that for a cache farm made up of N caches, if one

cache fails then all URLs earlier assigned to caches

that are still alive still stay assigned to the same cache

after failure. However, roughly 1

N

URLs (which

were assigned to the cache that failed) will be re-

assigned to other caches. Similarly, if a new cache

is added only about 1

N+1

(the disruption coefficient)

of the total number of URLs need to be reassigned,

which is again the best possible. Naive hashing

schemes (based on simply hashing the URLs and

then assigning caches to ranges of hash values) have,

by contrast, much larger disruption coefficients.

B. MIT Hash Routing

The MIT method uses two hash functions. One

maps an URL address from the URL space to the

interval [0; 1) while the other maps a Proxy name

into the same interval. The interval [0; 1) is closed,

all the operations being done modulo the size of the

interval. The cache in charge of serving a request for

an URL is the one from which the hash value of the

URL is closest, clockwise, to the hash value of the

cache name.

4

TABLE I

ROUND TRIP TIMES TO PROXY CACHES IN THE NLANR CACHE HIERARCHY

Proxy U. of Chicago UCSD MIT Cornell Wash. U.

bo1 26.8 41 57 53 95

bo2 26.2 43 55 54 110

pa 59.2 154 91 103 76

pb 12.4 84 27 20 42

rtp 75.7 205 74 29 110

sd 66.7 1 92 92 109

sv 52.1 109 78 73 96

uc 5.8 77 33 32 -

IV. THEORETICAL COMPARISON OF MIT

SCHEME VS. MICROSOFT SCHEME

[7] states the major requirements a cache system

should satisfy:

� balance : documents should be evenly distributed

to the caches;

� monotonicity : when a new cache is added, and

the range of the hash function is changed, the map-

ping of documents to caches should not be com-

pletely reshuffeled. Normally when a new cache is

introduced in the system an object should move from

an old cache to a new cache but it should never move

from an old cache to another old cache;

� spread : the number of different caches that are

assigned responsibility for a document when there

exist multiple views about the number of caches in

the system, should be low,

� load : the number of URLs a cache is responsible

for in the presence of multiple views.

We also suggest that another parameter worth con-

sidering is the resistance of a scheme to an adversary

attack. [7] contains a detailed theoretical description

of the properties of the MIT hash function. How-

ever, no such theoretical characterization has been

done for the Microsoft scheme, making it appear that

the Microsoft scheme does not satisfy some of the

pleasing theoretical properties enjoyed by the MIT

scheme. To remedy this, we have proved the follow-

ing theorems that show that the Microsoft hashing

scheme has exactly the same theoretical properties

as the MIT scheme. The reader should compare our

theorems with the corresponding theorems in [7] for

the MIT scheme.

We consider the two schemes discussed above and

we use the following notation:

� MIT (h

1

; h

2

) = the algorithm implemented by

MIT in which h

1

and h

2

are the two hash functions

which are used to distributed the cache names and

URLs to the domain [0; 1);

� MS(h) = the algorithm implemented by Mi-

crosoft in which h is a hash function having as ar-

guments both the URL and the cache name.

Let consider the following definitions:

� Let B denote all the caches in the system;

� Let V = denote a view of the system (V 2 B);

� Let f
V

(i) = the cache on which the item i is allo-

cated under the view V 2 B;

Theorem 1: For any view V of the cache system

and any item u, the probability that the item u to be

allocated to an element b 2 V is 1

jV j

in the Microsoft

scheme.

Proof: The symmetry of the Microsoft hash

function guarantees that for any view V of the cache

system and any item u, the probability that the item

u to be allocated to an element b 2 V is 1

jV j

Theorem 2: The Microsoft hash function is

monotone: 8viewsV
1

� V

2

� B; f

V

1

(i) 2 V

1

)

f

V

1

(i) = f

V

2

(i).

Proof: Let (V

1

� V

2

� B) ^ (f

V

2

(i) 2

V

1

)) 9v 2 V

1

such that f
V

2

= v) 8p 2

V

2

; p 6= v; hash

MS

(p; i) < hash

MS

(v; i) Also,

V

1

� V

2

) 8p 2 V

1

; p 6= v; hash

MS

(p; i) <

hash

MS

(v; i)) f

V

1

(i) = v which completes the

proof that f
V

2

(i) = f

V

1

(i).

Theorem 3: (8h
1

; h

2

)(9h)MIT (h

1

; h

2

) = MS(h)

Proof: For any hash functions h

1

(url) and

h

2

(proxy) used in the MIT algorithm choose a hash

5

function h for the Microsoft’s algorithm such that

h(url; proxy) = 1� k h

1

(url)� h

2

(proxy) k

Our theorem shows that for any hash function

that might be chosen to be used in the MIT scheme

the scheme implemented by Microsoft can at least

choose another hash function to get at least the same

performances in terms of URLs distribution at prox-

ies. [7] shows a detailed analysis of their algorithm

but we believe that its limitation resides in the fact

that it uses two hash functions which maps the URL

and cache name domain to a finite one dimensional

interval after which it takes the decision of which

cache to be chosen. Since the hash functions of the

caches can be precomputed, all we have to do to lo-

cate a cache for a given URL, is to hash the URL

and to search for the hash with the closest clockwise

value. This can be done using a simple modifica-

tion of a priority queue in logN time, where N is

the number of caches. The Microsoft algorithm has

to determine N values for each request and select

the one which is maximum which theoretically takes

O(N) time. However the values of N are small (typ-

ically less than 20), thus this does not seem to be an

important factor.

However, the MIT scheme is susceptible to the

single hash of the individual cache names; if this is

not uniform, then the distribution of URLs is poor.

The Microsoft scheme is less susceptible to this lack

of uniformity because (in some sense), for each URL

considered, the cache names are hashed indepen-

dently. Thus when averaged over all the URLs con-

sidered, the lack of uniformity of any one hash is

not a big factor. We will see this in the experi-

mental results below. One intuitive way to make

the MIT scheme less susceptible to uniformity is to

use multiple hash points for each cache (using dif-

ferent numbers of points for each cache even allows

a form of prioritization of caches). Intuitively, again,

by hashing a cache name multiple times we can re-

duce the possibility of uneven distributions of URLs

to caches.

The theorems above do not say anything about the

behavior over changing views. Different views may

appear when a cache changes its status. The clients

in the system will have an inconsistent view about

the new version for a while. The natural question

is how much is this going to affect the performance

of the system? There are two cases. If an active

cache, let’s say C goes down and a user A makes a

request for a page u which should be served by C.

For this situation the user in both systems (MIT and

Microsoft) will not be served by the cache A. It will

make a second request to the next valid cache se-

lected through the algorithm (which represents the

right behavior in case of failure). The second case

represents the one in which a new cache is intro-

duced into the system and it takes a while until all

the clients get to know about it. The MIT scheme

suggests using a modified DNS implementation to

solve the mappings of requests to servers.

Caching at the DNS level may contribute to in-

consistent views. A client with an old view may

make requests to old caches even if in the new view it

should ask for at the new introduced one. In this case

it takes about one day to propagate the data about

the new cache through the DNS system. In the Mi-

crosoft Proxy Server implementation a client during

the startup of a session loads an html file containing

the description of the cache system. Inconsistencies

may occur because of sessions which may be opened

for a long time without noticing the new modifica-

tion in the cache system description file.

A different case is represented by a possible adver-

sary attack on the cache system. An adversary may

create unnecessary redundancies in the cache sys-

tem by directly requesting a document from a cache

which should not be in charge with the respective

document. Both systems are not protected against

this kind of attack at this moment. A simple solu-

tion to avoid it will be that for each request a cache

should check if it is the one which should serve the

request. If yes than it serves the request; otherwise,

it can reply with a status code Moved:::. This new

behavior has other benefits, too. A cache may notice

that it has an invalid view about the system if there

are a number of clients (above a setup limit) which

asks for documents which should not be served by it.

In this case it can do an update of its view. A second

benefit is that by getting a reply “Server Moved...” a

client may initiate an update of its own view of the

system.

V. EVALUATION METHODS

In next coming section, we show results from

trace-driven simulations of both the MIT and Mi-

crosoft schemes. We consider as inputs a set of

6

Fig. 2. Access distribution to caches in Microsoft scheme

traces provided by NLANR for the NLANR cooper-

ative cache systems. The traces contain user accesses

to several caches. An entry contains the access time,

the URL which was accessed, the size and type of

access, etc.

Our simulations study the URL distribution on the

caches for both algorithms using the traces described

above. We would like to answer several questions.

� Which of the algorithms offers a better distribution

of the accesses to the proxies?

� How many number of points should be associated

with a cache on the hash domain in order to guaran-

tee a relatively even distribution for the MIT algo-

rithm?

� What can be done in order to achieve a more even

distribution of the accesses to caches in the MIT

scheme?

VI. RESULTS

Our first comparison is between the distribution

of URLs in the trace as hashed by the MIT and Mi-

crosoft scheme to caches, for different numbers For

the MIT system we assume that each cache has only

one point associated on the hash domain.

From Figure 2, we can see that the URL distribu-

tion to caches in the Microsoft implementation is ex-

tremely even, with a very small deviation. This fol-

lows from the theorem in Section III. For example,

when the number of caches is equal to two we can

see an almost equal distribution of URLs to caches.

Increasing the number to 3 we get about 33% of the

total number of URLs distributed to each cache. It

continues with about 25% of URLs if the total num-

100

1000

10000

0 5000 10000 15000 20000 25000 30000 35000

N
um

be
r

of
 a

cc
es

se
s/

N
um

be
r

of
 U

R
Ls

(S
ite

s)

Hash Domain

Access and name distribution over the hash domain

URL Name
URL access
Site access

Site name

Fig. 3. Access and name distribution over the hash do-

main

Fig. 4. URL distribution to caches in MIT scheme

ber of caches is 4 and so on.

On the other hand, the MIT algorithm computes

for each request the hash value associated with the

requested URL. The cache which is responsible for

answering the request is the one having the hash

value of its name closest clockwise to the hash value

of the hash value of the URL.

In figure 3 we show the distribution of both ac-

cesses and names in the hash domain for our set of

traces. Several conclusions can be drawn from this

figure. Both the names of the sites which are ac-

cessed and the URLs (in the trace) are uniformly

distributed over the hash domain. The number of ac-

cesses are also uniformly distributed over the hash

domain with some spikes related with the popularity

of the documents or sites which are accessed. This

suggests that the cache hash function for an URL

should be computed only based on the site name.

7

There is no gain in terms of a better load distribution

or access distribution by computing the hash value

based on the full URL.

The results in figure 3 show also that an uniform

distribution of the URLs/accesses to caches can be

gained only by having an uniform distribution of the

hash values for the cache names over the hash do-

main.

Figure 4 shows an uneven distribution of the

distances between the hash values computed for

the caches using the trace on the MIT scheme.

This uneven distribution of the distances between

caches is the cause of an unbalanced distribution

of URLs/accesses to the caches in the system. In

a real system, this would lead to poor load balanc-

ing among caches as some caches get assigned more

URLs than others. Figure 6 shows that a first ap-

proach to making the hash domain distribution to

proxies more even is by increasing the number of

points associated with each proxy. Our results show

that the number of pints to be used should be about

log(No. of Proxies). We now suggest a modification

of the MIT scheme to make the distance distribution

more uniform. We call it ModMIT.

A. A New URL to Cache Allocation Scheme

(ModMIT)

We propose a simple modification of the MIT

scheme in which a URL is allocated to the cache for

which the hash value of the cache is the closest one to

the hash value of the URL, regardless of the direc-

tion (unlike the MIT scheme which considers only

clockwise nearness). Intuitively, for the case N = 2

this will provide perfect fairness even if the two hash

values happen to hash to nearby points; on the other

hand, the MIT scheme will do very badly for the case

of N = 2 (and a single hash point per cache) if the

two hash values do not evenly break up the number

line(figure 5).

We simulate our new implementation versus the

MIT implementation. If we consider the variance of

the hash domain distribution to the caches for both

allocation schemes as it is shown in Figure 6, one

can easily notice that our allocation scheme outper-

forms the MIT scheme in all the cases which are con-

sidered. The figure also reveals how many points

should be allocated for each cache inside of the hash

domain. A number of 3 points associated for each

0.6

0.9

0.6

0.75 0.25

0.9

Proxy 2: hash(Proxy2) =0.9

Proxy 2

Proxy 1

MIT Scheme ModMIT Scheme

Proxy 1: hash(Proxy 1)=0.6

Hash Domain Distribution - 2 proxies

hash(Proxy 1) = 0.6
hash(Proxy 2) = 0.9

MIT Scheme:
Proxy 1 domain length = 0.7
Proxy 2 domain length = 0.3

ModMIT Scheme:
Proxy 1 domain length = 0.5
Proxy 2 domain length = 0.5

Fig. 5. Hash Domain Distribution to Proxies in MIT and

ModMIT Scheme

100000

1e+06

1e+07

0 1 2 3 4 5

V
ar

ia
nc

e

Number of points associated with a proxy

MIT implementation vs. ModMIT Implementation - Variance of the hash domain allocated to each proxy

MIT - 8 caches
MIT - 16 caches
MIT - 32 caches

ModMIT - 8 caches
ModMIT - 16 caches
ModMIT - 32 caches

Fig. 6. The variance of the distribution of the hash do-

mains which are allocated to caches

cache is a minimum to be used in both MIT algo-

rithm and our modification. The variance drops by a

factor of 2�3 when we change from an implementa-

tion with only one hash value per cache to an imple-

mentation with 3 values per cache. Our implementa-

tion does not increase the complexity of the MIT al-

gorithm because all the hash values for the caches are

computed in advance. The complexity of the search

process is O(log(numberOfPointsPerCache �

NoCaches)) in both cases.

VII. SUMMARY

In this paper we analyzed cooperative caching

mechanism and compared two major proposals for

hash-based cooperative caching. Hash based cache

systems should be used as a way to implement coop-

erative caching mostly in local environments like an

ISP domain, where the round trip time to access the

8

caches in the systems are similar.

Our comparisons of the MIT and Microsoft

schemes using real traces show that:

� The hash value associated with an URL may be

computed only based on the site name part from the

URL. In this way all the requests addressed for a par-

ticular site will be handled by the same cache sys-

tem. Our traces indicate that this does not contribute

to an unbalanced load of the caches in the system. In

fact, it may be beneficial for improving the efficiency

of the connection between the cache and the content

server using persistent HTTP.

� The MIT scheme in the best case can at most reach

the performances of the Microsoft scheme in terms

of balancing URL assignments to caches.

� Microsoft scheme has an even distribution of both

URL names and accesses to caches based on the

symmetry characteristics of the algorithm that it

uses.

� The MIT scheme has an uneven distribution of

URLs to caches because of an uneven distribution

of the hash domain to caches. An even distribution

can be reached by increasing the number of points

in the hash domain which are associated with each

cache.

We also introduced a modification of the MIT

scheme that reduces the variance of the distribu-

tion of URLs to caches. Our modification reduces

the variance of the MIT scheme without increasing

the complexity of the search process of determining

which cache should handle a request.

VIII. ACKNOWLEDGEMENTS

We would particularly like to thank Duane Wes-

sels from NLANR for the inside-full discussion

about the NLANR cache system. We would also like

to thank the people from NLANR who are making

the traces we use available for study. We would also

like to thank George Varghese for the fruitful discus-

sion on this topic and Lili Qiu, Adriana Iamnitchi

and Grigore Rosu for their suggestions.

REFERENCES

[1] C. Bowman, P.B. Danzig, M. F. Scwartz, and al. Har-

vest: A scalable customizable discovery and access sys-

tem. Technical Report CU-CS-732-94, University of Col-

orado at Boulder, CU-CS-732-94, 1994.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.

Web caching and zipf-like distributions: Evidence and im-

plications. In the Proc. of IEEE INFOCOM’99, pages

126–134, march 1999.

[3] K. Claffy. Internet measurement and data analy-

sis:topology, workload, performance and routing statistics.

In NAE’99 workshop, 1999.

[4] Microsoft Corp. Cache array routing protocol and mi-

crosoft proxy server 2.0. In White Paper, 1999.

[5] L. Fan, P. Cao, J. Almeida, and A.Z. Broder. Summary

cache: A scalable wide-area web cache sharing protocol.

In the Proc. of ACM SIGCOMM’98, august 1998.

[6] Steven D. Gribble and Eric A. Brewer. System design is-

sues for internet middleware services: Deductions from a

large client trace. In Usenix Symposium on Internet Tech-

nologies and Systems, august 1997.

[7] David Karger and al. Web caching with consistent hashing.

In WWW8 conference.

[8] A. Lutonen, H. F. Nielsen, and T. Berners-Lee. Cern httpd.

In http://www.w3.org/pub/WWW/Daemon/Status.html,

july 1996.

[9] K.W. Ross. Hash-routing for collections of shared web

caches. In IEEE Network Magazine, nov-dec 1997.

[10] Alex Rousskov and Duane Wessels. Cache digests. In

Proceedings of the Third International Web Caching Work-

shop.

[11] V. Valloppillil and K. W. Ross. Cache array routing proto-

col v1.0. In Internet Expired Draft, february 1998.

[12] D. Wessels and K. Claffy. Application of internet cache

protocol(icp) version 2. In RFC 2186 - Informational RFC,

september 1997.

[13] D. Wessels and K. Claffy. Icp and the squid web cache. In

IEEE Journal on Selected Areas in Communication, Vol.

16,#3, april 1998.

[14] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,

A. Karlin, and H. M. Levy. On the scale and perfor-

mance of cooperative web proxy caching. In the 17th ACM

Symposium on Operating Systems Principles (SOSP ’99),

pages 16–31, december 1999.

