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ORIGINAL ARTICLE
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Abstract
Background/Aims Acute hyperglycemia is known to worsen ischemia/reperfusion (I/R) injury following myocardial
infarction and stroke. We investigated whether acute hyperglycemia worsens injury and amplifies the inflammatory
response evoked by hepatic I/R.
Methods Rats were pretreated with an intraperitoneal injection of 25% glucose or 0.9% sodium chloride (10 ml/kg BW).
Subsequently, rats underwent partial (70%) hepatic ischemia for 45 min. After 4 h of reperfusion, hepatic injury, oxidative
stress, inflammation, and heat shock protein expression were assessed.
Results Liver injury was increased in the hyperglycemic group with alanine aminotransferase (ALT) and aspartate
aminotransferease (AST) serum concentrations of 7,832±3,374 and 10,677±4,110 U/L compared to 3,245±2,009 and
5,386±3,393 U/L (p<0.05 vs. control). Hyperglycemic I/R was associated with increased liver nitrotyrosine concentrations
and increased neutrophil infiltration. I/R upregulated the protective heat shock proteins HSP32 and HSP70 in control
animals, but this protective mechanism was inhibited by hyperglycemia: HSP32 expression decreased from 1.97±0.89
(control) to 0.46±0.13 (hyperglycemia), HSP70 expression decreased from 18.99±11.55 (control) to 3.22±0.56
(hyperglycemia), (expression normalized to sham, both p<0.05 vs. control I/R).
Conclusions Acute hyperglycemia worsens hepatic I/R injury by amplifying oxidative stress and the inflammatory response
to I/R. The increase in injury is associated with a downregulation of the protective heat shock proteins HSP32 and HSP70.

Keywords Liver . Surgery . Inflammatory response .

Neutrophils . Metabolism
Introduction

Acute hyperglycemia is frequently seen in hospitalized
patients and induced by stressors such as acute illness and
surgical trauma. Such transient increases in blood glucose
concentrations may put patients at risk for adverse out-
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comes. Hyperglycemia independent of preexisting diabetes
mellitus is an established risk factor for increased mortality
and morbidity after cardiac surgery.1 Patients without a
history of diabetes who were hyperglycemic at admission to
the hospital had higher mortality and lower functional
outcomes than normoglycemic and even hyperglycemic
diabetic patients.2 Van den Berghe et al.3 showed that
intensive insulin therapy (IIT) reduces in-hospital mortality
in surgical intensive care unit patients by 34% with
subsequent investigations confirming that maintaining
normoglycemia rather than glycemia-independent effects
of insulin is responsible for the beneficial effects of IIT.4,5

These findings emphasize the potential hazards of poor
glucose control on patient outcome.

The detrimental effects of hyperglycemia do not require
chronic exposure or preexisting diabetes. Animal models of
acute hyperglycemia confirm the deleterious effects of even
short episodes of hyperglycemia on cerebral6 and renal
ischemia/reperfusion (I/R) injury.7 Proposed mechanisms
for the detrimental effects of acute hyperglycemia are
increased oxidative stress, an enhanced inflammatory
response with cytokine activation8,9 and impaired blood
flow with reperfusion.10

Diabetic mice have been shown to be more susceptible
to liver ischemia,11,12 but so far, the effects of acute
hyperglycemia on liver I/R injury have not been addressed.
We therefore used a rat model of acute hyperglycemia to
investigate its effects on hepatic I/R injury.

Material and Methods

Animal Model

All animal experiments were carried out with approval by
the local committee on animal research. Animal care was in
agreement with the National Institutes of Health guidelines
for ethical research (NIH publication no. 80-123, revised
1985). Inbred male Lewis rats (Harlan, Indianapolis, IN,
USA) were used for this study. Animals’ weights on arrival
at our facility were 250–300 g. Animals had access to
standard laboratory diet and were maintained on a light–
dark cycle. They were fasted 12 h prior to the start of the
experiments. Prior to the study, animals spent several days
in the animal care facility for acclimatization.

The rats were divided into hyperglycemic and control
group. In the hyperglycemic group (HG, n=8), 2.5 g/kg
glucose (25% solution) was injected intraperitoneally
following the assessment of the baseline glucose serum
concentration. The control group (CON, n=8) received
10 ml/kg 0.9% saline instead. Thirty minutes later, rats
were anesthetized with isoflurane. Following liver exposure
through a midline incision and collection of blood samples,

hepatic ischemia was induced. Applying a 70% liver
ischemia model, the liver was mobilized, and vascular
structures to the left and median lobe were identified and
clamped for 45 min using a bulldog clamp. The unoccluded
right and caudate lobe allow outflow from the splanchnic
circulation, thus avoiding venous congestion. For the
duration of hepatic ischemia, the abdominal cavity was
closed with clamps. Rectal temperature was continuously
assessed using an electronic thermometer (RSP TM-200D,
Respiratory Support Products Inc., Santa Ana, CA, USA
using a Mallinckrodt probe, cat no. 502-0401, Mallinckrodt
Inc., St. Louis, MO, USA) and held constant at 37°C using
a heating lamp.

Following reperfusion, the animals received 5 ml of normal
saline intraperitoneally, and the incision was closed in two
layers. Animals were killed following a 4 h observation
period. Blood and tissue were harvested. All tissue was
immediately frozen in liquid nitrogen and stored at −80°C
until further processing.

Sham experiments (Sham, n=5) served as reference for
subsequent analysis. Sham experiments were identical to
control I/R experiments except that hepatic vessels were not
clamped. Hyperglycemic sham experiments (HG Sham,
n=4) were added to the protocol to identify the effects of
hyperglycemia alone.

Biochemical Markers of Liver Injury

Serum levels of aspartate aminotransferease (AST) and
alanine aminotransferase (ALT) were determined at base-
line and following 4 h of reperfusion. The analysis was
done in the General Laboratory, San Francisco General
Hospital, University of California, San Francisco.

Histology

Liver samples were fixed in 10% buffered formalin and
processed for routine histology. Five-micron paraffin-
embedded tissue sections were stained with hematoxylin
and eosin and examined using standard light microscopy by
a pathologist (R.R.) who was blinded to the experimental
condition of the animals. Sections were scored from 0–4 for
sinusoidal congestion, vacuolization of hepatocyte cyto-
plasm, and parenchymal necrosis as described by Suzuki et
al. (Table 1).13

Intrahepatic Neutrophil Accumulation Assessment

Activity of myeloperoxidase (MPO), an enzyme stored in
the azurophilic granules of neutrophils, was used to
measure tissue neutrophil sequestration. We used a spec-
trophotometric method to assay tissue MPO activity. Frozen
livers were thawed and extracted for MPO following
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homogenization and sonication. The assay is based on the
oxidation of 3,3′,5,5′-tetramethyl benzydine by MPO in the
presence of H2O2. Units of MPO activity were calculated
using a standard curve derived from a MPO standard
sample (Calbiochem, EMD Bioscience, La Jolla, CA,
USA). MPO data are expressed as microunits per milligram
of tissue per minute.

Protein Isolation and Western Blots

All steps for protein isolation were conducted at 4°C. Snap-
frozen liver sections were homogenized in Tissue Protein
Extraction Reagent (Pierce Biotechnology, Rockford, IL)
containing 1 mm EDTA and 1:100 Protease Cocktail Inhibitor
(Sigma, St. Louis, MO) and were centrifuged at 10,000×g for
5 min. The supernatant was aliquoted, snap-frozen, and
stored at −80°C. Protein concentrations of liver homogenates
were measured by the Pierce bicinchoninic acid protein
assay with bovine serum albumin as the standard. Fifty
micrograms of liver homogenates was separated on a Novex-
NuPAGE 10% Bis-Tris sodium dodecyl sulfate polyacryl-
amide gel electrophoresis gel (Invitrogen) and transferred to
nitrocellulose membrane using the XCell SureLock system

(Invitrogen). A mouse anti-heat shock protein 70 (HSP70)
monoclonal antibody (SC-24) and a goat anti-actin antibody
(SC-1616) from Santa Cruz Biotechnology (Santa Cruz, CA)
were used. In addition, a mouse anti-heat shock protein 32
(HSP32) monoclonal antibody from Stressgen (Ann Arbor,
MI), a mouse anti-nitrotyrosine antibody from Abcam Inc.
(Cambridge, MA), and a rabbit anti-cleaved caspase-3
monoclonal antibody (CST 9661) from Cell Signaling
Technology (Danvers, MA) were used for the Western blots.
The membranes were incubated with a 1:100 or 1:1,000
dilution of the primary antibody followed by a 1:10,000-fold
dilution of a secondary anti-mouse or anti-goat immuno-
globulin G from Santa Cruz Biotechnology. Immunoreactive
proteins were developed using SuperSignal West Dura
(Pierce Biotechnology) and visualized on the FluorChem
5500 Imaging system from Alpha Innotech (San Leandro,
CA). Band intensities were quantified via spot densitometry.

Statistical Analysis

All data are presented as mean±SD. Comparison between
study groups was performed using analysis of variance with
post hoc Dunnett correction, with normoglycemic sham
animals serving as controls. Comparison of the two
ischemic groups alone was done using a two-tailed
unpaired t test. p values<0.05 were considered as being
statistically significant.

Results

Intraperitoneal injection and surgery alone resulted in an
increase in serum glucose concentrations from 89±19
baseline to 182±32 mg/dL in the saline pre-treated group. In

Table 1 Suzuki Score for the Assessment of Liver Damage Following
Hepatic Ischemia/Reperfusion

Score Congestion Vacuolization Necrosis

0 None None None

1 Minimal Minimal Single cell necrosis

2 Mild Mild −30%
3 Moderate Moderate −60%
4 Severe Severe >60%
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Figure 1 Intraperitoneal injec-
tion of saline and surgery alone
increased serum glucose con-
centrations in control animals.
Intraperitoneal injection of 2.5 g
glucose/kg resulted in signifi-
cantly higher serum glucose
concentrations. After 4 h of
reperfusion, glucose concentra-
tions were still significantly
higher in hyperglycemic ani-
mals. *p<0.05 vs. control.
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the glucose-pretreated group, three animals were not consid-
ered for subsequent analysis due to an only moderate increase
in serum glucose concentrations (<250 mg/dL, 30 min after
treatment). In the five remaining animals, serum glucose
concentrations before ischemia increased from 107±32 to
360±32 mg/dL. At the end of the 4-h reperfusion period,
serum glucose concentrations remained higher in the glucose
pretreated group (Fig. 1).

Serum Marker of Liver Injury Serum transaminase concen-
trations following I/R were higher in the glucose-pretreated
animals: 7,832±3,374 vs. 3,245±2,009 U/L (ALT, p<0.05)
and 10,677±4,119 vs. 5,385±3,393 U/L (AST, p<0.05).
Transaminase concentrations after 4 h of reperfusion were
correlated with glucose concentrations before ischemia of
all animals that entered the study (Fig. 2).

Histology Both experimental groups showed liver damage
including vacuolization and at least minimal congestion and
single-cell necrosis (Fig. 3). Damage was graded using the
Suzuki score. There was no statistical difference between
hyperglycemic animals and control animals in Suzuki scores
(6.0±2.2 vs. 6.1±1.8) or necrosis scores (2.0±0.8 vs. 2.0±
0.8). Whether individual cell death after 4 h of reperfusion
was attributable to necrosis or apoptosis could not be
determined by histology. Using nuclear features to distin-
guish between types of cell death is not considered reliable,14

and both experimental groups demonstrated zonal as well as
spotty areas of dead hepatocytes (Fig. 3).

Apoptosis Cleaved caspase-3 expression was higher in
control animals (2.12±0.47) vs. hyperglycemic animals
(1.49±0.42) when compared to sham animals (1.00±0.10),
indicating more apoptotic cells in livers from control
animals Fig. (4)

Oxidative Stress Nitrotyrosine concentrations after 4 h of
reperfusion were higher in hyperglycemic animals (1.63±
0.54-fold when compared to control animals (1.00±0.30),
p<0.05) indicating increased oxidative stress resulting in
nitration of tyrosine residues of proteins by peroxynitrite.

Inflammation MPO activity in the liver after 4 h of reper-
fusion was higher in glucose-pretreated animals (5,383±
2,512 vs. 2,219±2,086 mU/mg protein−1 min−1, p<0.05),
indicating increased neutrophil migration into the hepatic
tissue of hyperglycemic animals (Fig. 5).

Heat Shock Protein activation I/R increased HSP32 ex-
pression in control but suppressed HSP32 expression in
hyperglycemic animals (1.97±0.89-fold vs. 0.46±0.13-fold
when normalized to sham animals, p<0.05; Fig. 6a).
Hyperglycemia alone without I/R (hyperglycemic sham)

did not affect HSP32 expression (0.92±0.20 vs. 1.00±0.16
when compared to control sham). I/R increased HSP70
expression in control animals more than in hyperglycemic
animals (19.99±11.55-fold vs. 3.22±0.56-fold when nor-
malized to sham, p<0.05; Fig. 6b). Again, hyperglycemia
alone without I/R did not affect HSP70 expression (0.94±
0.08 vs. 1.00±0.15) when compared to control sham.

Discussion

Acute hyperglycemia during hepatic ischemia amplified the
inflammatory response and resulted in elevated transami-
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Figure 2 Correlation of serum glucose concentrations before the start
of ischemia and serum concentrations of ALT (a) and AST (b) after
4 h of reperfusion. Liver injury, as assessed by transaminase
concentrations and glucose concentrations, was correlated with
correlation coefficients of r=0.70 (ALT) and r=0.68 (AST).
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nase concentrations following I/R. The elevated serum
glucose concentration at the start of ischemia seemed to be
responsible for the increase in injury, as there was a strong
correlation between serum glucose concentrations before
ischemia and transaminase concentration after 4 h of
reperfusion. We used a transient model of hyperglycemia
starting only shortly before ischemia. Serum glucose
concentrations were still higher in hyperglycemic animals
at the end of the 4 h reperfusion period, albeit the graph
(Fig. 1) clearly demonstrates a declining trend.

Hepatic I/R has been reported to result in hepatocyte
death by two different pathways, necrosis and apoptosis.
Whether apoptotic or necrotic cell death predominates
following liver I/R has been the subject of debate. Based
on terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) staining, it was suggested that sinusoidal
endothelial cells and then subsequently hepatocytes under-
go apoptosis but rarely necrosis following 60 min of liver
ischemia.15 However, a later study applying a very similar
ischemia model found only few apoptotic cells and

Figure 3 Sham-treated animals show no significant congestion at low
power (a ×100). Vacuolization and cellular necrosis are not evident in
periportal hepatocytes (b ×200) or in centrizonal areas. Hepatic
architecture is unremarkable. In contrast, control animals following
45 min of ischemia and 4 h of reperfusion show diffuse, moderate
sinusoidal congestion, with numerous sinusoidal channels distended
by red blood cells in several areas of the liver section (c ×200). Two
dying hepatocytes (likely evolving into Councilman bodies) are
visible in the center of the field (c). Mild parenchymal vacuolization
is visible in some hepatocytes, with several hepatocytes in this field

showing irregular nuclear contours, chromatin condensation, pykno-
sis, and nuclear dust, histologic evidence of cell damage, and evolving
cell death (d ×400). Moderate sinusoidal congestion also is seen in
hyperglycemic animals treated with high levels of dextrose before
ischemia (e ×200). This particular animal showed both zones of
necrosis and patchy single-cell necrosis. Cell damage is seen in
several adjacent hepatocytes containing vacuolated cytoplasm,
pyknotic nuclei, and nuclear dust. These dying hepatocytes also show
paler cytoplasm than their undamaged counterparts nearby (f ×400).
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predominantly necrosis following 60 min of ischemia when
combining TUNEL with morphological criteria.16 A sub-
sequent review emphasized that apoptosis and necrosis
share features and mechanisms that can make discrimina-
tion between both forms of cell death very challenging. In
particular, the TUNEL assay is not suited to differentiate
between necrosis and apoptosis, since DNA fragmentation
was reported in apoptosis as well as necrosis.17

In the present study, histological assessment of the liver
samples after 4 h of reperfusion could not reliably
distinguish between apoptotic and necrotic cell death. A
longer reperfusion could potentially facilitate histological
analysis, but 4 h of reperfusion was chosen to enable the
detection of inflammatory mediators. As a result, the
histological scores were basically identical in both exper-
imental groups, in spite of serologic evidence for increased

necrotic cell death in hyperglycemic animals. The higher
transaminase concentrations measured in the hyperglycemic
group after 4 h of reperfusion reflect increased cellular
breakdown due to necrosis with release of intracellular
enzymes. Apoptosis maintains the barrier function of the
cell membrane and would contribute only to a minor extent
to elevated transaminase concentrations. Caspase-3 activa-
tion is considered the most reliable method for the detection
of apoptosis.14 We assessed caspase-3 activation to quantify
the amount of apoptotic cell death and found higher
apoptosis scores in the control group. The lower caspase-3
activation in the hyperglycemic group may be further
evidence that necrosis, not apoptosis, is the preferential
form of cell death in hyperglycemic conditions.

Hyperglycemia per se is known to increase oxidative
stress and to cause a proinflammatory state.8 Further-
more, hyperglycemia has been shown to amplify the
inflammatory response caused by stressors such as LPS

Sham (n=5) Normoglycemia  (n=8) Hyperglycemia  (n=5)

cl
ea

ve
d

 c
as

p
as

e 
3 

ex
p

re
ss

io
n

(n
o

rm
al

iz
ed

 t
o

 n
o

rm
o

g
ly

ce
m

ic
 s

h
am

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

*

Figure 4 Cleaved caspase-3 expression was highest in control
animals, suggesting preferential apoptotic cell death in animals that
were not pretreated with glucose. Data are presented as mean±SD.
*p<0.05 vs. sham.
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Figure 6 Heat shock protein expression as assessed by Western blot
for HSP32 (hemeoxygenase-1) (a) and HSP70 (b). I/R resulted in a
distinct activation of both HSP32 and HSP70 expression in control
animals. However, hyperglycemia ameliorated the activation of
HSP70 by I/R and suppressed HSP32 expression. Densitometric
values were normalized to actin and are expressed as ratios of sham±
SD. *p<0.05 vs. sham, #p<0.05 vs. control I/R.
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Figure 5 Myeloperoxidase activity was increased in liver homoge-
nates of hyperglycemic animals when compared to control animals,
indicating increased neutrophil accumulation after 4 h of reperfusion.
Data are presented as mean±SD. *p<0.05 vs. sham, #p<0.05 vs.
control I/R.
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administration.18 Our results support the hypothesis that
the mechanisms responsible for increased ischemic injury
by hyperglycemia are the amplification of oxidative stress
and of the inflammatory response normally seen with I/R.
The increased concentration of nitrotyrosine containing
protein is an established marker for severe oxidative
stress. Reactive oxygen species, such as the superoxide
radical, react with NO to form the more potent peroxyni-
trite species, which then subsequently nitrate tyrosine
residues of proteins, leading to inactivation of key cellular
proteins, DNA damage, and eventually cell death.19 While
Kupffer cell-induced oxidative stress is considered the
first step in I/R injury,20 it is followed by a profound
inflammatory response that is largely responsible for the
extent of I/R injury. This inflammatory response culmi-
nates in the hepatic accumulation of neutrophils, which
directly damage hepatocytes by releasing oxidants and
proteases. The MPO assay confirmed an increased
neutrophil infiltration in the liver tissue of hyperglycemic
animals. This neutrophil migration and infiltration is
initiated by the production and release of cytokines such
as tumor necrosis factor alpha and interleukin-6. Earlier
studies demonstrated that hyperglycemia enhances cyto-
kine production in response to stress.21

A surprising finding of the present investigation was the
downregulation of HSP32 and HSP70 in hyperglycemic
animals undergoing I/R. Hepatic I/R normally results in
upregulation of HSPs, and the observed effects in livers
from hyperglycemic animals differ distinctly from the
situation in kidneys7 and the brain,22 where hyperglycemic
I/R injury is associated with an increased activation of
HSPs. We could demonstrate in sham experiments that
hyperglycemia alone was not responsible for the down-
regulation of HSPs (data not shown) but that the combina-
tion of hyperglycemia and I/R is required to block or even
suppress HSP activation. Since HSPs are one of the most
potent protective mechanisms against I/R injury, it can be
assumed that their suppression in hyperglycemic I/R
contributes to the increased injury during acute hypergly-
cemia. Inhibition of HSP activation in response to ischemia
has so far not been described in other organs and may
represent a liver-specific (mal-)adaptation to hyperglyce-
mia: It has been described before that diabetes does inhibit
hepatic HSP70 activation by heat stress,23 although
subsequent studies did not confirm this finding.24,25

The mechanism responsible for the downregulation of
HSPs remains to be defined. The expression of the heat
shock genes encoding the different HSPs is regulated by
heat shock transcription factors (HSFs), which are normally
bound to HSPs within the cytosol. When cells are exposed
to stress, HSFs are phosphorylated and form trimers that
enter the nucleus and bind the heat shock elements located
within the promoter of heat shock genes, thus initiating

increased expression of HSPs.26 It has been hypothesized
that, in diabetes, the activation of HSF is inhibited in
insulin-sensitive tissue.27 In type 2 diabetic primates, livers
had reduced HSP70 and HSP90 tissue concentrations that
were related to 50% lower levels of the transcription factor
heat shock factor 1.28 But again, these results are
challenged by a study that showed similar heat shock
factor 1 content in livers from control and streptozotocin
treated rats following heat stress.24 Further interventional
studies with activation of HSPs are planned to show
whether the suppression of HSP activation is responsible
for the worsened injury during hyperglycemia and whether
activation of HSPs is capable of reversing such detrimental
effects.

Conclusions

Acute hyperglycemia worsened liver injury as assessed by
increased transaminase concentrations following hepatic I/
R in rats. The effects of hyperglycemia on liver injury were
associated with increased hepatic oxidative stress, an
increased inflammatory response, and a suppression of
HSP activation. These results, in spite of their descriptive
nature, emphasize the need to better understand the role of
hyperglycemia in organ injury, especially in clinical
scenarios associated with a risk for ischemia. Glucose
concentrations in this study were overall high, suggesting
that glucose control may not need to be very aggressive to
have beneficial effects. Preventing severe hyperglycemia
alone may reduce I/R injury, thus avoiding the inherent risk
of an IIT to cause undesired hypoglycemia.
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