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A New Posterior Probability-Based Measure of Coherence
Stephan Hartmann (S.Hartmann@lmu.de)

Munich Center for Mathematical Philosophy and Department of Psychology, LMU Munich, 80539 Munich (Germany)

Borut Trpin (borut.trpin@lrz.uni-muenchen.de)
Munich Center for Mathematical Philosophy, LMU Munich, 80539 Munich (Germany)

Abstract

According to a common view in epistemology, a set of propo-
sitions is justified if it is coherent. Similarly, a new proposition
should be accepted if it is coherent with the accepted body of
beliefs. But what is coherence? And what, in turn, justifies the
above claims? To answer these questions, various Bayesian
measures of epistemic coherence have been proposed. Most of
these measures are based on the prior probability distribution
over the corresponding propositional variables. We criticize
this “static” conceptualization of coherence and propose in-
stead that the coherence of an information set is related to how
well the information set responds when each of the proposi-
tions it contains is confirmed by an independent and partially
reliable information source. The elaboration of this idea will
show that the proposed “dynamic” perspective has several ad-
vantages and solves some open problems of coherentist epis-
temology. It also has implications for our understanding of
reasoning and argumentation in science and beyond.
Keywords: Reasoning and Argumentation; Coherence; For-
mal Epistemology

Introduction
In scientific and in ordinary reasoning and argumentation,
we often use coherence considerations (e.g. Thagard, 2000,
2007). These considerations guide us when it comes to form-
ing hypotheses and possibly incorporating them into our be-
lief system. In doing so, we strive for a coherent belief sys-
tem and want new information to fit well into it. This perva-
sive practice raises several general questions, such as: What
is epistemic1 coherence anyway? How can we explicate the
concept of coherence? And: What is good about coherence?
Why should we strive for coherent information at all? Al-
though these questions have already been addressed in the
philosophical literature (see e.g. BonJour, 1985), many as-
pects are still unclear, mainly due to the fact that the concept
of coherence is difficult to make precise. The use of formal
methods promises progress here, as has already been shown
in several studies (see Olsson, 2022 for a recent overview).

Formally, coherence is a property of an information set
S = {F1, . . . ,Fn}, over which a (subjective) probability distri-

1We avoid explicitly referring to epistemic coherence in what fol-
lows because this is the only kind of coherence we assess in this
paper. That is, our paper only engages with the type of coherence
that refers to how information cognitively fits together. There are
also other important related conceptions such as logical coherence,
which revolves around logical consistency, and probabilistic coher-
ence, which generalizes logical consistency. BonJour (1985, pp. 93-
101) provides an insightful discussion of how these and several other
aspects of coherence are related.
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Figure 1: Venn diagrams of the Tweety example.

bution P is defined. To illustrate this, we consider the proposi-
tions B: “My pet Tweety is a bird”, G: “My pet Tweety cannot
fly” and P: “My pet Tweety is a penguin” and let S = {B,G}
and S′ = {B,G,P}. Fig. 1. shows possible probability distri-
butions that an agent could choose in each case.

Here we would like to judge that S′ is more coherent than
S. To do this, we need to define a suitable coherence measure
as a function of the corresponding probability distribution P.
This measure then induces an ordering of information sets ac-
cording to their coherence. Moreover, it seems desirable that
a measure allows us to decide whether an information set is
coherent (or incoherent) in an absolute sense. For example,
we would like to say that the information set S′ above is (ab-
solutely) coherent, while the information set S is (absolutely)
incoherent. Again, we will see that some of the measures dis-
cussed in the literature allow such a judgment, while others
do not. A natural way to formally arrive at such a judgment
is to show that there is a threshold value τ and that an infor-
mation set is (absolutely) coherent (or incoherent) if and only
if the coherence value assigned to it by a given measure is
greater (or less) than τ. However, it turns out that for some
measures (such as the Olsson-Glass measure, which we will
come back to) there is no such value for τ.

While at first glance it seems plausible that all informa-
tion sets can be ordered according to their coherence, Bovens
and Hartmann (2003, Ch. 1) have expressed doubts about
this assertion by pointing to examples such as the following.
Let S := {F1,F2,F3} with F1: “The culprit was a woman”,
F2: “The culprit had a Danish accent”, and F3: “The culprit
drove a Ford”, and S′ := {F′

1,F
′
2,F

′
3} with F’1: “The culprit

was wearing Coco Chanel shoes”, F’2: “The culprit had a
French accent”, and F’3: “The culprit drove a Ford”. We ask:
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Which of the two sets is more coherent? On the one hand, the
information set S seems to consist of independent sentences,
which does not make it particularly coherent. But is it there-
fore less coherent than S′? It should be noted that in S′ two
of the propositions seem to be positively correlated (namely
F’1 and F’2) and two propositions (F’2 and F’3) seem to be
negatively correlated. This suggests that there may be no fact
of the matter as to which of the two sets is more coherent.

With this in mind, Bovens and Hartmann (2003) have pro-
posed how to generate a partial coherence ordering of infor-
mation sets instead. Specifically, this is achieved by assum-
ing that each piece of information in S is confirmed by an
independent and partially reliable information source. It is
assumed that all information sources have the same reliabil-
ity r. One can then calculate the posterior probability of S as
a function of r and define a suitable coherence measure based
on this posterior probability. Finally, it is postulated that an
information set S is more coherent than an information set
S′ if, for all values of the reliability parameter r, the coher-
ence measure of S is greater than the coherence measure of
S′. If the curves of the respective coherence measures cross
at a point as a function of r, then S and S′ cannot be ordered
by their coherence.

The change from a “static”, prior-based view to a “dy-
namic”, posterior-based view of coherence thus allows us to
take into account the plausible insight (suggested by exam-
ples such as the one mentioned above) that not all informa-
tion sets can be ordered according to their coherence. This
view is dynamic in that it takes into account the probabilistic
response of the information set when confronted with con-
firming evidence. The central idea here, then, is that one must
examine an information set in order to learn about its coher-
ence. (This approach is reminiscent of how we learn about
causal relationships. Here, too, the system in question must
be investigated; in this case by means of interventions.)

Although this approach may sound promising, the specific
measure proposed by Bovens and Hartmann (2003) has been
criticized as it does not cope with some simple test cases
(see Meijs, 2005). For example, if we allow a very mi-
nor probability that somebody has an ostrich for a pet (i.e.,
a ground-dwelling pet bird that is not a penguin) and ac-
cordingly slightly change the probability distribution in the
Tweety example from Fig. 1, so that P(B,G,¬P) = .000001
instead of 0 and P(¬B,¬G,¬P) = .009999 instead of .01,
then the measure by Bovens and Hartmann cannot determine
whether learning that Tweety is a penguin increases the co-
herence or not (Meijs, 2005, pp. 58-59). In addition, there is
another problem that also affects the other (prior probability-
based) measures. All these measures either always allow us to
judge an information set as absolutely coherent (or absolutely
incoherent), or they never allow us to make such a judgment.
The Bovens and Hartmann measure belongs to the second
category. However, in analogy to the impossibility of always
ordering information sets according to their coherence made
plausible above, it is also possible that one cannot always de-

cide whether an information set is absolutely coherent or ab-
solutely incoherent. It may well be that some information
sets have this property while others do not. Accordingly, the
new coherence measure we propose in this paper will provide
only a partial ordering of information sets according to their
coherence. In particular, it will allow us to identify cases in
which there is arguably no fact of the matter as to whether an
information set is (absolutely) coherent or incoherent.

Prior-Based Measures of Coherence
We will now discuss three prior-based probabilistic coher-
ence measures. These measures formalize one or more core
intuitions associated with the notion of coherence. One of
them is the intuition that the propositions in a coherent infor-
mation set are interdependent and informationally relevant to
each other. To formalize this, we consider an information set
S := {F1, . . . ,Fn} and introduce the following definition.

Definition 1. A probability distribution P is defined over a set
of propositional variables V := {F1, . . . ,Fn} with the values Fi
and ¬Fi for all i = 1, . . .n.2

(i) V is independent (relative to P) iff P
(∧

i∈I Fi
)
=

∏i∈I P(Fi) for all non-empty subsets I⊆{1, . . . ,n}.

(ii) V is positively correlated (relative to P) iff P
(∧

i∈I Fi
)
≥

∏i∈I P(Fi) for all non-empty subsets I ⊆{1, . . . ,n} and
at least one of the “≥” is a “>”.

(iii) V is negatively correlated (relative to P) iff P
(∧

i∈I Fi
)
≤

∏i∈I P(Fi) for all non-empty subsets I ⊆{1, . . . ,n} and
at least one of the “≤” is a “<”.

The Shogenji measure (Shogenji, 1999), defined as

cohS(S) :=
P(F1, . . . ,Fn)

P(F1 · · ·P(Fn)
,

is based on this intuition: If S is independent, then cohS(S) =
1; if S is positively correlated, then cohS(S) > 1, and if S is
negatively correlated, then cohS(S)< 1. Hence, the Shogenji
measure allows us to define a notion of absolute coherence–S
is absolutely coherent if cohS(S) > 1, and it is absolutely in-
coherent if cohS(S)< 1. As all information sets are assigned
a coherence value, the Shogenji measure provides a complete
ordering of information sets according to their coherence.

According to another intuition, coherence has something to
do with the relative overlap of the propositions in probability
space. The greater the relative overlap, the greater the co-
herence. The idea behind this proposal is that there is a lot of
agreement between coherent propositions. The simplest mea-
sure that captures this intuition is the Olsson-Glass measure
(Olsson, 2002; Glass, 2002). It is defined as follows:

cohOG(S) :=
P(F1, . . . ,Fn)

P(F1 ∨·· ·∨Fn)

2We follow the convention of denoting propositional variables in
italics and their values in roman script.
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It should be noted that although this measure also allows a
complete ordering of information sets according to their co-
herence, it does not have a natural threshold that would allow
the notion of absolute coherence to be defined.

The third and final measure we will discuss here combines
the intuition of relative overlap and deviation from indepen-
dence. It is derived from the Olsson-Glass measure by nor-
malizing it in an appropriate way. To illustrate the procedure,
we start with the following definition:

Definition 2. A probability distribution P is defined over a set
of propositional variables V := {F1, . . . ,Fn}. The associated
probability distribution P̃ satisfies the following conditions:
(i) P̃ is defined over the same setV; (ii)V is independent rela-
tive to P̃; (iii) P̃(Fi)=P(Fi) for all i=1, . . . , n.

Following Hartmann and Trpin (2023), we then define:

cohOG+(S) :=
coh(P)OG(S)

coh(P̃)OG(S)

= cohS(S) ·
1−P(¬F1) · · ·P(¬Fn)

1−P(¬F1, . . . ,¬Fn)

Note that here the Olsson-Glass measure evaluated under the
probability distribution P is divided by the Olsson-Glass mea-
sure evaluated under the associated probability distribution
P̃. It turns out that the resulting measure has many advan-
tages: Not only does it combine the two main intuitions as-
sociated with the notion of coherence (i.e., dependence and
relative overlap). It also makes it possible to define a thresh-
old value τ above which a set of information is considered
absolutely coherent (this threshold value is 1). Moreover, it
is (in contrast to several other proposals in the literature; see
e.g. Koscholke, Schippers, & Stegmann, 2019) easy to calcu-
late. Finally, Hartmann and Trpin (2023) showed that cohOG+

performs well in terms of truth-tracking. That is, if there is no
further evidence confirming the items in the information set,
then it makes sense to base the acceptance of an information
set on its coherence, since a more coherent set – as measured
by the OG+-measure – has a higher chance of being true.

Before closing this section, it is interesting to note that one
can define the Shogenji measure in terms of the associated
probability distribution introduced in Definition 2:

cohS(S) :=
P(S)
P̃(S)

Posterior-Based Measures of Coherence
As we have seen, all the measures mentioned in the last sec-
tion are based on the prior probability distribution. The de-
cision as to whether an information set is (absolutely) coher-
ent and how coherent it is follows solely from this. In con-
trast, we now turn to a class of coherence measures based on
the posterior probability distribution. It turns out that these
measures have numerous advantages. Originally proposed by
Bovens and Hartmann (2003), one investigates how much the
entire information set is confirmed when each element of the

information set is confirmed by an independent and partially
reliable information source. Specifically, an information set
represented by a Bayesian network is considered, where the
prior probability distribution takes into account not only the
relevant fact variables Fi, but also the corresponding report
variables Ri (for i = 1, . . . ,n). The following important inde-
pendence assumption is made:

Ri ⊥⊥ R1, . . . ,Ri−1,Ri+1, . . . ,Rn,F1, . . . ,Fi−1,Fi+1, . . . ,Fn|Fi

∀i ∈ {1, . . . ,n} (1)

This means that each report variable is independent of all
other report variables and all other fact variables if the value
of the corresponding fact variable is given. This assumption
models the idea that the reports are independent. See Fig. 2
for an illustration.

Assuming that the likelihoods of all reports are the same,
one sets P(Ri|Fi) = p and P(Ri|¬Fi) = q for all i = 1, . . . ,n.
From this one can define the likelihood ratio x := q/p and
the reliability r = 1 − x. (For a discussion see Bovens &
Hartmann, 2003, Ch. 2. All other strictly monotonically
decreasing functions ρ(x) with ρ(0) = 0 and ρ(1) = 1 are
also possible.)3 The resulting posterior probability P∗(S) =
P(F1, . . . ,Fn|R1, . . . ,Rn) can then be defined by the so-called
weight vector ⟨a0,a1, . . . ,an⟩, where a0 := P(F1, . . . ,Fn),
a1 := P(¬F1,F2, . . . ,Fn)+P(F1,¬F2, . . . ,Fn)+ . . . etc. Note
that each ai represents the probability that exactly i of n
propositions are false. Note also that a0 is the prior prob-
ability of S and that all ai add up to 1: ∑

n
i=0 ai = 1. After

receiving positive reports, the information set S gets a proba-
bility boost boost(S) := P∗(S)/P(S). Next, the authors note
that an information set with completely overlapping proposi-
tions receives a maximum boost. In this case, the weight vec-
tor is simply given by4 ⟨a0,0,0, . . . ,0,a0⟩ and boostmax(S) :=
P∗

max(S)/P(S). Finally, the coherence of S is defined as
coh(BH)

x (S) := boost(S)/boostmax(S) = P∗(S)/P∗
max(S). Ac-

cordingly, one obtains:

coh(BH)
x (S) =

a0 +a0xn

∑
n
i=0 ai xi

Furthermore, Bovens and Hartmann argue that an informa-
tion set S is more coherent than an information set S′ if for
all x ∈ (0,1), cohBH

x (S) > cohBH
x (S′). This simple proposal

led to a number of interesting results. For example, it could
be shown that the “correct” judgment can be obtained for nu-
merous test cases from the literature. However, as mentioned,
Meijs (2005) also pointed out several counterexamples which

3Although we consider the likelihood ratio x and the reliability
r = 1−x for the whole range of values between 0 and 1, we assume
that x and the corresponding r are the same for all reports because
we are assuming that all reports are on equal standing. It is an inter-
esting task for future research to consider how different modelling
assumptions related to x would affect our results. See Osimani and
Landes (2023) for a related discussion in a different context.

4Here and in the following we use the short form a0 := 1−a0.
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R1 F1 F2 R2

F3 R3

Figure 2: An example of a Bayesian network representing the
probabilistic (in-)dependencies between the fact variables Fi
and the corresponding report variables Ri (for i = 1,2 and 3).

can occur due to minor changes in the probability distribution
or, more generally, when mutual support relations of the set
are not captured. Moreover, since the measure is in the tra-
dition of the overlap measure due to the specific normaliza-
tion used, there is no threshold that could be used to decide
whether the information set is absolutely coherent or not.

These shortcomings, in conjunction with the discussion in
the previous section, lead to our new proposal. Specifically,
instead of using P∗

max(S), we propose to normalize the poste-
rior probability with P̃∗(S), i.e. with the posterior probability
that would be obtained if all propositions were independent,
but without changing the marginal probabilities of the indi-
vidual propositions. Accordingly, we propose

cohx(S) :=
P∗(S)
P̃∗(S)

(2)

as a new posterior probability-based measure of coherence.
Let us now explore the proposed measure in more detail.

To do so, let us first define c(n)i as the sum of the proba-
bilities of i true propositions (for i = 1, . . . ,n). Note that
c(n)n = a0. For example, c(3)1 = P(F1) +P(F2) +P(F3) and
c(3)2 = P(F1,F2)+P(F1,F3)+P(F2,F3). For convenience, let
us furthermore set c(n)0 = 1. Then the following proposition
holds (all proofs are in the appendix):

Proposition 1. Let S = {F1, . . . ,Fn} be an information set
and Fi the corresponding fact variables and Ri the corre-
sponding report variables. A probability distribution P is
defined over these variables, which fulfils the independence
condition from Eq. (1). Then

P∗(S) =
a0

∑
n
i=0 c(n)i xi xn−i

It is interesting to note that P∗(S) decreases if one of the
c(n)i increases and everything else is kept fixed. For n = 3, we
have

P∗(S) =
a0

x3 + c(3)1 x2x+ c(3)2 xx2 +a0 x3

If one keeps a0,c
(3)
1 and x fixed and increases c(3)2 , then P∗(S)

decreases. This is surprising as the dependence between the
variables increases and so one would expect that therefore
the confirmation of one proposition “swaps over” to the other
propositions so that the whole set gets more confirmed. The
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Figure 3: The difference function for the Tweety example.

reason is that a0 and c(3)1 are kept fixed, which implies the
introduction of negative dependence elsewhere in the infor-
mation set as a result of increasing c(3)2 .

An analogous result as the one stated in Proposition 1 holds
for P̃(S); just replace a0 by ã0 and c(n)i by c̃(n)i . Note that these
expressions are all functions of the marginals P(Fi) only and
that P̃(S) can also be written in factored form. However, for
the present purpose, the representation in terms of the c̃(n)i is
most convenient. Finally, we obtain

cohx(S) =
a0

ã0
· ∑

n
i=0 c̃(n)i xi xn−i

∑
n
i=0 c(n)i xi xn−i

.

An interesting consequence of this representation is that the
coherence of an information set decreases if one of the c(n)i in-
creases while keeping everything else fixed. This observation
supports the claim made in Hartmann and Trpin (2023) that
the principle of Dependence is not sacrosanct in the debate
about coherence.

We now want to investigate what kind of coherence order-
ing the new posterior-based measure generates. As in the case
of the Bovens-Hartmann measure, we say that an information
set S is more coherent than an information set S′ if for all
x ∈ (0,1), cohx(S) > cohx(S′). It is therefore not surprising
that the new measure, like the Bovens and Hartmann mea-
sure, allows scenarios in which there is no fact of the matter
as to which of the two information sets is more coherent. The
new measure generates only a partial ordering, which agrees
with our intuitions (as discussed above).

As an illustration, let us consider the Tweety example.
The plot in Fig. 3 shows the difference function f (x) :=
cohx(S′)−cohx(S) with S := {B,G} and S′ := {B,G,P} with
the probability distributions from Fig. 1. We find that the
difference function is always positive and conclude, in accor-
dance with our intuitions, that S′ is more coherent than S.

It turns out that the new posterior-based measure also copes
well with other test cases and avoids Meijs’ counterexam-
ples against the Bovens and Hartmann measure. For exam-
ple, a very small change in the probability distribution of the
Tweety example (as described earlier) has a negligible effect
on coherence, just like we would expect.
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1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Figure 4: An illustration of sit3 from the Tokyo corpse exam-
ple. Witness 1 reports the corpse to be somewhere in squares
20-61, while Witness 2 reports it to be somewhere in 50-91.
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Figure 5: Coherence for S1 (orange, dash-dotted), S2 (green,
dashed), S3 (red, dotted), S4 (violet, dashed), and S5 (dark
orange, dotted) as a function of x.

To get a better feel of the new measure, it is helpful to take
a look at an example from Bovens and Hartmann (2003):

A corpse in Tokyo. Suppose that we are trying to locate a
corpse from a murder somewhere in Tokyo. We draw a grid
of 100 squares over the map of the city and consider it equally
probable that the corpse lies somewhere within each square.
We interview two partially and equally reliable witnesses.

Consider the following situations siti, i ∈ {1, ...,5}, in
which these two witnesses report that the corpse is to be found
somewhere in the following numbered squares:

sit1 sit2 sit3 sit4 sit5
Ri.1 50-60 22-55 20-61 41-60 39-61
Ri.2 51-61 55-90 50-91 51-70 50-72

Bovens and Hartmann (2003) expect that S1 = {R1.1,R1.2}
should be more coherent than S2 = {R2.1,R2.2} or S3 =
{R3.1,R3.2}. S4 = {R4.1,R4.2} and S5 = {R5.1,R5.2} should
have similar degrees of coherence. Our new measure masters
the case with ease (see Figure 5): it judges S1 as highly coher-
ent, S2 as highly incoherent and S3 as mildly incoherent. S4
and S5 are judged as absolutely coherent to similar degrees.

P*(F1, F2, F3)

P
˜*(F1, F2, F3)

0 0.2 0.4 0.6 0.8 1xc

0.
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x
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Figure 6: An example of the posterior probability functions
P∗ and P̃∗ for a randomly generated set S= {F1,F2,F3}. Note
the criss-crossing at x ≈ .35.

Discussion
All coherence measures proposed so far assume that it can
either always be decided whether an information set is ab-
solutely coherent (or absolutely incoherent), or never. For
example, the Shogenji measure always allows us to make
this decision, and the Olsson-Glass measure and the Bovens
and Hartmann measure never allow us to make this decision.
However, the examples given in the Introduction now suggest
that some information sets should be judged as (absolutely)
coherent or incoherent and others not. In the Tweety exam-
ple, for instance, the set S seems to be incoherent and the set
S′ coherent. However, in the other example (“The culprit was
wearing Coco Chanel shoes” etc.), it appeared that the set
S′ was neither coherent nor incoherent in the absolute sense.
Some evidence pointed in this direction, and other evidence
in the other direction.

This discussion suggests that an appropriate measure of co-
herence should allow us to judge some information sets as
(absolutely) coherent or incoherent, while in other cases it
should lead to the judgment that it is not a fact of the mat-
ter whether the particular set is (absolutely) coherent or in-
coherent. It turns out that the new measure allows exactly
this. To illustrate this, let us consider the posterior probabil-
ities P∗(S) and P̃∗(S) for a concrete example. See Fig. 6.
We can see that the two curves cross at a certain value xc
of x. What should we conclude from this about the coher-
ence of S? If one focuses on values of x > xc, one would
come to the conclusion that S is absolutely coherent, since
in this range P∗(S) > P̃∗(S). However, the situation is re-
versed if one considers values x < xc. Here P∗(S) < P̃∗(S)
and one would conclude that S is absolutely incoherent. We
therefore get a contradiction. Note, however, that the judg-
ment about whether an information set is (absolutely) coher-
ent or not should not depend on the “dummy” variable x. It
should only be determined by the “internal” properties of S.
We therefore conclude that in such cases there is no case of
the matter whether the information set S is coherent or not.
The following proposition provides a sufficient condition for
the existence of a crisscrossing point.
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Proposition 2. Let S be an information set with a probability
distribution P defined over it. P is characterized by the values
c(n)i for i= 0, . . . ,n as specified in Proposition 1. Then there is
no fact of the matter as to whether S is coherent or incoherent
if (i) 1 < a0/ã0 < c(n)n−2/c̃(n)n−2 or (ii) 1 > a0/ã0 > c(n)n−2/c̃(n)n−2.

This is an interesting result which shows that even infor-
mation sets with a considerable amount of dependencies may
not be coherent in an absolute sense.

Conclusions
In science and in ordinary reasoning and argumentation, we
often use coherence considerations to help us navigate an un-
certain world. In doing so, we judge some information sets
to be absolutely coherent or incoherent, and we judge some
information sets to be more coherent than other sets. This pa-
per has been concerned with clarifying the theoretical foun-
dations for this practice. More specifically, we have argued
that it is not always a fact of the matter as to whether a given
information set is absolutely coherent or incoherent, and as
to whether one information set is more coherent than another
set. These claims have been motivated by examples, and we
have shown that our theoretical account, in particular the new
posterior-based coherence measure , can ground these claims.

In our further research, it will be important to better un-
derstand the conditions under which a set of information is
absolutely coherent or incoherent. To this end, we also want
to confront our theoretical findings with further case studies.
In addition, we plan to conduct psychological experiments to
compare our theoretical models with the way participants use
coherence considerations in their reasoning.

Appendix
Proof of Proposition 1
Bovens and Hartmann (2003, Ch. 1) showed already that

P∗(S) =
a0

∑
n
i=0 ai xi .

Let us now consider the denominator of the expression:

n

∑
i=0

ai xi = a0 +

(
1−a0 −

n−1

∑
i=1

ai

)
xn +

n−1

∑
i=1

ai xi

= a0 +a0 xn +
n−1

∑
i=1

ai (xi − xn)

= a0 +a0 xn + xx
n−1

∑
i=1

ai

n−2

∑
j=i−1

x j

= a0 +a0 xn + xx
n−2

∑
j=0

(
j+1

∑
i=1

ai

)
x j

= a0 +a0 xn + xx
n−2

∑
i=0

bi xi, (3)

with bi := ∑
i+1
j=1 a j. Multiplying relevant terms on the right-

hand side of Eq. (3) with appropriate powers of 1 = x+ x),

we obtain
n

∑
i=0

ai xi = a0 (x+ x)n +a0 xn + xx
n−2

∑
i=0

bi xi (x+ x)n−2−i.

Expanding the binomials and some regrouping yields

n

∑
i=0

ai xi = a0 xn + xn +a0

n−1

∑
k=1

(
n
k

)
xk xn−k +ψn,

with

ψn =
n−2

∑
i=0

n−2−i

∑
j=0

bi

(
n−2− i

j

)
xi+ j+1 xn−i− j−1

=
n−2

∑
i=0

n−1

∑
k=i+1

bi

(
n−2− i
k−1− i

)
xk xn−k

=
n−1

∑
k=1

k−1

∑
i=0

bi

(
n−2− i
n−1− k

)
xk xn−k

=
n−1

∑
k=1

(
k−1

∑
i=0

i+1

∑
j=1

a j

(
n−2− i
n−1− k

))
· xk xn−k

=
n−1

∑
k=1

(
k

∑
j=1

a j

k−1

∑
i= j−1

(
n−2− i
n−1− k

))
· xk xn−k

=
n−1

∑
k=1

(
k

∑
j=1

a j

k− j

∑
m=0

(
n−1− j−m

n−1− k

))
· xk xn−k.

Hence,
n

∑
i=0

ai xi = a0 xn + xn +
n−1

∑
k=1

ck xk xn−k,

with

ck = a0

(
n
k

)
+

k

∑
j=1

a j

k− j

∑
m=0

(
n−1− j−m

n−1− k

)
,

for k = 1, . . . ,n−1. If we set c0 = a0 and cn = 1, then we find
n

∑
i=0

ai xi =
n

∑
k=0

ck xk xn−k.

A combinatorial argument then shows that the expressions ck
(for k = 0, . . . ,n−1) are the sums of the joint probabilities of
exactly k (true) propositions.

Proof of Proposition 2
We have to find the values of x for which P∗(S) = P̃∗(S).
Using Proposition 1, we obtain the following equation for x:

φ
(n)
k (x) := δ0 xn−1 +δ0 sxn−2 x+

n−2

∑
k=1

δk xk−1 xn−k = 0,

where we have set δ0 := a0 − ã0, δk := a0 c̃(n)k − ã0 c(n)k (for

k = 1, . . . ,n−2) and s :=∑
n
i=1 P(Fi). Note that φ

(n)
k (0) = c(n)n−2

and φ
(n)
k (1) = δ0. Hence, a criss-crossing occurs if either (i)

δ0 > 0 and c(n)n−2 < 0 or (ii) δ0 < 0 and c(n)n−2 > 0. Note that
these are only sufficient conditions. The conditions specified
in the proposition follow immediately.
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