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Joint Beamwidth and Power Optimization in

MmWave Hybrid Beamforming-NOMA

Systems

Mojtaba Ahmadi Almasi, Lisi Jiang, Hamid Jafarkhani, and Hani Mehrpouyan

Abstract

The use of directional transmission in millimeter-Wave (mmWave) frequencies results in limited

channel coherence time. In this paper, we take the limited channel coherence time into account for

non-orthogonal multiple access (NOMA) in mmWave hybrid beamforming systems. Due to the limited

coherence time, the beamwidth of the hybrid beamformer affects the beam-training time, which in turn

directly impacts the data transmission rate. To investigate this trade-off, we utilize a combined beam-

training algorithm. Then, we formulate a sum-rate expression which considers the channel coherence

time and beam-training time as well as users’ power and other system parameters. Further, a joint

power and beamwidth optimization problem is solved by iterating between the power allocation and

the beamwidth optimization. When allocating the power, we use the log-exponential reformulation and

the sequential parametric convex approximation (SPCA) methods to solve the non-convex problem.

Since beamwidth optimization involves too many variables, we propose an algorithm which iterates

between clusters of users. Numerical results show that the optimized mmWave hybrid beamforming-

NOMA system can achieve much higher sum-rates compared to NOMA with analog beamforming and

traditional multiple access techniques.

Index Terms

mmWave communication, NOMA, beamwidth control, sum-rate, optimization.
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I. INTRODUCTION

Current wireless communication networks operating under 6 GHz are restrained by limited

spectral resources. Subsequently, it is necessary to use the millimeter-Wave (mmWave) band

ranging from 30 to 300 GHz to increase the available spectrum [1]. Short wavelength and a

large path loss are key characteristics of mmWave communication systems. Due to the short

wavelength, a large number of antennas can be packed in a small area in mmWave devices.

This feature combined with beamforming can be used to tackle severe path loss. Since a

fully-digital beamforming may not be practical, various architectures have been proposed for

mmWave outdoor communications, i.e., analog beamforming with multiple RF chains [2], hybrid

beamforming [3]–[5], beamspace multiple-input multiple-output (MIMO) [6], and reconfigurable

antenna-based MIMO [7], [8]. The fully-digital architecture needs one radio frequency (RF) chain

per antenna. Hence, power consumption by large number of RF chains and hardware complexity

are the main obstacles in implementing the fully-digital architecture. Although multi-user analog

beamforming reduces the hardware complexity of the system and uses only the angle of arrival

(AoA) information for beam alignment, it may not completely direct the total energy of a beam

toward a desired receiver [2]. Accordingly, alternative methods such as beamspace MIMO [6]

and reconfigurable antenna-based MIMO [7], [8] architectures reduce the number of required RF

chains by dedicating one RF chain to each channel path instead of each antenna. However, these

architectures are not able to change their beamwidth, which seems to be necessary and desired

in the mmWave networks [9]. This is because in lens-based architectures, the lens operates like a

passive phase-shifter network. Hence, it may not be possible to adjust the beamwidth. In contrast,

not only does the hybrid beamforming architecture reduce the number of required RF chains,

but also, thanks to the use of phase-shifters, it can adjust the transmission beamwidth. Hence, in

this paper, we adopt the hybrid beamforming architecture which is a feasible solution to meet

the demands in mmWave networks.

Non-orthogonal multiple access (NOMA) aims to improve the spectral efficiency and simul-

taneously serve more than one user at the same frequency/time/code in single-carrier and multi-

carrier systems [10], [11]. Especially, NOMA transmits the users’ signal at the same time slot and

frequency band by using superposition coding (SC) and decodes the desired signal by exploiting

successive interference cancellation (SIC) at the receiver [12]. In this paper, we leverage power-

domain NOMA in which each user has a different level of power.

Recently, NOMA has been incorporated into the mmWave communication, termed mmWave-
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NOMA, to enhance spectral efficiency and connectivity of the network. Here, we review the work

on mmWave-NOMA networks in the downlink transmission with a single transmitter [9], [13]–

[20]. In [13], a random beamforming method is studied for mmWave directional transmission.

In [14], two NOMA users with different directions are assigned the same beamforming codeword

using phase-shifters with finite resolution. NOMA is combined with lens-based beamspace

MIMO in [15], and a power allocation algorithm is proposed. Energy-efficiency of mmWave-

NOMA networks is evaluated in [16]. A joint power allocation optimization to design beam-

forming vectors for mmWave-NOMA networks is presented in [17]. The coverage and rate of

mmWave-NOMA networks for analog beamforming in the presence of misalignment between

the transmit and receive beams is analyzed in [18]. The impact of beamwidth on user pairing in

mmWave-NOMA is studied in [9]. Also, [19] evaluates the effect of beam misalignment on the

sum-rate performance of mmWave-NOMA networks with hybrid beamforming. Further, NOMA

is utilized in lens-based mmWave reconfigurable antennas to increase the number of served users

and improve the sum-rate in [20]. What is common among the above works is the assumption

that there is sufficient time to train the beams.

In practical scenarios, neglecting the effect of beam-training duration may cast doubt on the

performance of the mmWave-NOMA networks. Especially, since the channel coherence time in

mmWave bands is limited [21], the beam-training duration should be adequately small. Thus, on

one hand, a small beam-training duration results in a wide beamwidth, i.e., low beamforming

gain, and noisy channel estimation. On the other hand, a long beam-training time provides robust

beamforming and accurate channel estimation but imposes a delay in data transmission. This may

not be desirable in delay-sensitive systems as it leaves less time for data transmission and leads to

low sum-rates. There is a rich literature on fast beam-training algorithms [22]–[31]. This issue is

very crucial in mmWave-NOMA networks in which more users are trained at each frequency/time

resource. Beamwidth control and sum-rate trade-off in the mmWave analog beamforming-NOMA

network for two users are evaluated in [32]. The impact of beam-training duration on the sum-

rate of the system is determined and then an optimization problem that maximizes the sum-rate

subject to the training duration and allocated power for each user is investigated. However,

due to the inter-cluster interference, an extension of this architecture to the mmWave hybrid

beamforming-NOMA network is quite challenging. In this paper, motivated by [32], we study

the beamwidth control and sum-rate trade-off for the mmWave hybrid beamforming-NOMA

network. There are two major differences between [32] and our work. First, we consider a
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hybrid beamforming system which produces side lobes and as a result inter-cluster interference.

Second, we do not allow receivers to have a beamwidth wider than that of their intended transmit

beam. Otherwise, the receiver cannot catch the entire transmission energy. Neither the first case

nor the second case is considered in [32]. The contributions of this paper are listed below:

1) We consider the well-studied mmWave hybrid beamforming combined with NOMA for

limited coherence time scenarios. The system can control the beamwidth, using the phase-

shifters deployed in the hybrid beamformer, and allocate power to NOMA users. To this

end, a tone-based beam-training algorithm [26] compatible to our mmWave-NOMA system

is utilized. The algorithm combines the exhaustive search [22] and tone-based beam-

training [26] algorithms.

2) Unlike the existing multi-beam mmWave-NOMA systems, we take the channel coherence

time into account. The limited coherence time leads to a trade-off between the beamwidth

resolution and the data transmission rate. We also formulate a new sum-rate expression

for optimization.

3) A joint power and beamwidth optimization algorithm is proposed which iterates between

the power allocation and beamwidth optimization.

4) The numerical results verify the effectiveness of the joint optimization algorithm. Also,

three significant results are revealed. First, at low signal-to-noise ratios (SNRs), both power

allocation and beamwidth control play a major role in the sum-rate while at high SNRs,

beamwidth is the only important parameter. Second, for very short channel coherence times

and high SNRs the optimization is not required and predefined fixed values can be used

instead. Third, a bottleneck for achieving high sum-rates is a small number of antennas,

which results in a low resolution beamwidth, especially at large coherence time and low

SNRs.

The rest of the paper is organized as follows. In Section II, the system model is described. Sec-

tion III formulates the optimization problem. In Section IV, the allocated power and beamwidth

are determined through the proposed optimization algorithm and its convergence analysis is

provided. Numerical results are presented in Section V. Section VI concludes the paper.

Notations: Hereafter, j =
√
−1, small letters, bold letters, and bold capital letters designate

scalars, vectors, and matrices, respectively. Superscripts (·)T , (·)∗, and (·)† denote the transpose,

conjugate, and transpose-conjugate operators, respectively. Further, | · |, ‖·‖, ‖·‖2, and ‖·‖F
denote the absolute value, the norm-1, the norm-2, and the Frobenius norm, respectively. Also,
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Fig. 1: Schematic of (a) the BS with hybrid beamforming structure and (b) a user equipment with analog beamforming structure.

E(·) denotes the expectation. Finally, d·e denotes the ceiling function.

II. SYSTEM MODEL

We assume a narrow band mmWave downlink system composed of a single cell with a base

station (BS) and MUE user devices. The BS is equipped with NRF RF chains and NBS antennas

whereas each user has one RF chain and NUE antennas. Each RF chain is connected to the

antennas through phase-shifters. The architecture of the BS and a typical user is shown in Fig. 1.

Due to the hybrid beamforming structure at the BS, the number of antennas is larger than the

number of RF chains, NBS > NRF, and due to the analog beamforming at the users, we have

NUE > 1. Further, the BS transmits Ns streams simultaneously by steering NB beams toward

the users. To implement hybrid beamforming, the condition NB ≤ NRF should be satisfied. In

this paper, however, we assume NB = NRF to reduce the complexity and cost of the system.

Indeed, if we consider sending one stream via one beam, it results in Ns = NRF. On the other

hand, to establish better connectivity by increasing the number of simultaneously served users in

a dense area and further improve spectral efficiency, we use NOMA in the proposed mmWave

hybrid beamforming network. Hence, each beam can serve more than one user. That is, the

transmitter simultaneously sends NRF streams toward MUE > NRF users which are grouped into

NRF clusters, i.e., MUE =
∑NRF

n=1 Kn, where Kn denotes the number of users in the nth cluster.

Note that NOMA requires the number of users in each cluster to be more than one, which should

be satisfied by Kn > 1. Hereafter, the mth user equipment in the nth cluster is represented by

UEn,m.

A. Channel Model

We use the widely adopted extended Saleh-Valenzuela model as a multi-path channel (MPC)

model in our mmWave hybrid beamforming-NOMA system [3], [33]. In this model, each LoS
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and NLoS path is defined by a channel gain and an array steering vector at the transmitter and

an array response vector at the receiver. Hence, the channel matrix between the BS and UEn,m

in downlink is given by

Hn,m =
1√

Ln,m + 1

(
βn,m,0Gn,m,0 +

Ln,m∑
l=1

βn,m,lGn,m,l

)
, (1)

where βn,m,0 and βn,m,l denote the channel gain of LoS and NLoS channels, respectively.

Gn,m,0 ∈ CNUE×NBS is the LoS channel matrix and Gn,m,l is the lth NLoS channel matrix.

In particular, Gn,m,l, 0 ≤ l ≤ Ln,m, is given by

Gn,m,l = aUE(θaz
n,m,l,θ

el
n,m,l)a

†
BS(φaz

n,m,l,φ
el
n,m,l), (2)

where θaz
n,m,l (θel

n,m,l) and φaz
n,m,l (φel

n,m,l) are normalized azimuth (elevation) AoA and angle of

departure (AoD), respectively. Also, aBS ∈ CNBS×1 and aUE ∈ CNUE×1 are the antenna array

steering vector and array response vector of the BS and UEn,m, respectively. In mmWave outdoor

communications, to further reduce the interference, sectorized BSs can be employed. Mostly,

each sector in the azimuth domain is much wider than that of the elevation domain [2], [4].

Reasonably, we assume that the BS separates the clusters in the azimuth domain and considers

fixed elevation angles. Further, we assume that the sector-level beamwidth for the BS is defined

by ωBS and for each user is defined by ωUE. Hence, the BS implements only azimuth beamforming

and neglects elevation beamforming. In this case, the antenna configuration is a uniform linear

array (ULA) and the superscript “el” is dropped. For a ULA, the steering vector is defined as

aBS(φn,m,l) =
[
1, e−jπφn,m,l , . . . , e−jπ(NBS−1)φn,m,l

]T
, (3)

where φn,m,l ∈ [−1, 1] is related to the AoD ϕ ∈ [−π
2
, π

2
] as φn,m,l = 2Dsin(ϕ)

λ
. Note that D

denotes the antenna spacing and λ denotes the wavelength of the propagation. The antenna

array response vector for aUE(θn,m,l) can be written in a similar fashion. AoD/AoA variations

over the coherence time are trivial and can be ignored [34]. Let T and Tb denote the coherence

time and the time duration over which AoD/AoA remain unchanged, respectively. In [34], it

is shown that the coherence time duration is far less than Tb, i.e., T � Tb, which ensures

that AoD/AoA do not change over the coherence time. In this paper, the channel gain captures

path loss and shadow fading effects. The assumption on AoD/AoA and the channel gain state

that the channel model in (1) represents a long term channel which is widely adopted in the

literature [24], [31], [34]. Ignoring AoD/AoA variations and instantaneous channel fluctuations

are valid assumptions since the power allocation and the beamwidth control are done over the
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coherence time. This follows from the fact that the long term channel model can be effectively

used in long term resource allocation [34].

It is demonstrated that in dense urban environments, with high probability, the mmWave

channels contain only one or two paths, with the dominant one that carries most of the signal

energy [35]. Therefore, with a single path assumption, the MPC model described in (1) is

converted to a single path channel model given by

Hn,m = βn,maUE(θn,m)a†BS(φn,m). (4)

Hence, the BS communicates to the users through a single path channel. It is worth mentioning

that the users are ordered based on their channel gain, i.e., βn,1 ≥, . . . ,≥ βn,M where βn,m is

captured through channel quality indicator (CQI) [36]. Although it is assumed that the channel

is single path, in some rare cases there might be more than one dominant path. To mitigate the

multipath issue, rake receivers or orthogonal frequency-division multiplexing (OFDM) can be

used. It should also be mentioned that due to the availability of large bandwidth, in mmWave

systems, wide band transmission is preferred. For this case, the considered narrow band system

should be combined with OFDM. In general, the extension of our narrow band system to the

wide band is straightforward and studied in the literature. For instance, the OFDM-based NOMA

has been considered in [12] and other similar work.

B. Beam-Training

Each transmission frame in mmWave directional communications depends on the channel

coherence time and consists of two parts: (i) beam-training and (ii) data transmission as depicted

in Fig. 2. At the first step, the channel parameters AoDs, AoAs, and effective channel are

estimated by channel estimation algorithms. In this paper, we assume that the channel parameters

are perfectly estimated [24], [32]. In particular, the estimation of AoDs and AoAs is performed

using beam alignment algorithms and takes much more time compared to the effective channel

estimation. The beam alignment algorithms should be fast, accurate, and energy-efficient. At the

second step, during the remaining time, the data is transmitted. Recently, a few codebook-based

beam-training algorithms have been proposed for mmWave hybrid beamforming systems [22],

[23], [25], [26], [36]. Even the current fastest algorithms take a considerable portion of the

coherence time that leaves a short time for data transmission and can diminish the achievable

rate of a user [37]. On the other hand, a smaller beam-training duration means wider beamwidth,

which supplies lower beamforming gain. Consequently, in the mmWave systems, there exists a
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T

Beam Training Data Transmission

τ

AoD, AoA, and effective channel of 
the BS and all UEn,m  are estimated.s

Fig. 2: Schematic of the transmission frame in the mmWave-NOMA system.

trade-off between the training duration and data transmission duration. This trade-off becomes

more notable in the mmWave-NOMA networks in which more channels should be estimated.

Motivated by this, finding an optimal beam-training duration and user power allocation for data

transmission to increase the sum-rate of the mmWave-NOMA system will be the subject of this

paper.

As mentioned before, the main part of a beam-training algorithm consists of beam alignment

followed by an effective channel estimation. In general, there are two different search algorithms

for beam alignment, exhaustive search [22] and hierarchical search [23]. The former algorithm

examines all beam pairs in the codebook for BS and UE and determines the best pair that

maximizes the beamforming gain. The training time for this algorithm is proportional to the size

of the beam’s search space which is given by

τ =

⌈
ωBS

η

⌉⌈
ωUE

µ

⌉
Tp, (5)

where η and µ denote the beamwidths of the BS and the UE, respectively. Further, Tp is the

time for pilot transmission. On the other hand, the hierarchical search algorithm is designed

based on multi-level codebook designs and uses bisection beam search. At the first level, the

algorithm chooses a wider beam with a low resolution which has a small beam search space.

The algorithm refines the search iteratively using the next-level codebook within the subspace

defined in the wider-level. At each level, the algorithm performs an exhaustive search to find

the best pair. Compared to the exhaustive search, the hierarchical algorithm takes less training

time with the same beam resolution and length of the pilot sequence at the cost of the higher

probability of misalignment [36].

The exhaustive and hierarchical algorithms are designed only for single-user and multi-user

scenarios. In particular, multi-user beam alignment algorithms assume that each user has a distinct

AoD and might not be efficient for NOMA systems in which users are allowed to have the same

AoD. Particularly, the hierarchical algorithm has a higher probability of beam misalignment at

the low SNR regime [36]. This can be a major barrier in realizing the hierarchical algorithm in

mmWave-NOMA networks, where the users with low SNR are paired with the users with high

SNR. It seems that the exhaustive algorithm is a proper candidate for the beam alignment in the
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mmWave-NOMA system since it works better at the low SNR regime [36]. In the exhaustive

search algorithm, all beams are aligned with the same resolution. That is, the beamwidth of

the beams at the BS is equal. In some scenarios, this may impose a limitation on designing

an optimal mmWave-NOMA system. To overcome this issue, we adopt a multi-user tone-based

beam-training algorithm proposed in [26]. The algorithm consists of three steps summarized as

follows. At the first step, each user transmits a pilot using one omni-directional antenna with

a unique frequency tone in the uplink. Given a predefined resolution ωBS
η

for each user, the BS

searches for the best AoD that maximizes the beamforming gain. It is worth mentioning that the

BS can estimate the AoDs with different predefined resolutions. At the second step, using the

estimated AoDs, the BS simultaneously transmits a pilot for each user over a unique frequency

tone in the downlink. Each user estimates the AoA with a predefined resolution ωUE
µ

. Finally, each

user transmits an orthogonal pilot sequence to the BS, and the BS estimates the channel. We note

that using a unique tone for each user requires more hardware complexity compared to the search

algorithm. There are two main differences between the tone-based algorithm and the exhaustive

search algorithm. First, due to using unique frequency tones, the beam alignment for each user is

done independently. Hence, the BS can select different beamwidth values for different users and

each user can also have a distinct beamwidth value. Second, the beam-training time is shorter

than those of the exhaustive search algorithm. That is, the total training time for the tone-based

algorithm is τ = max{(dωBS
ηn
e + d ωUE

µn,m
e)Tp}, where ηn and µn,m denote the beamwidth of the

nth beam of the BS and the UEn,m, respectively. It is clear when ηn and µn,m are the same

as those of the exhaustive search algorithm, the training time for the tone-based algorithm is

smaller than (5).

Although the algorithm in [26] is applicable to the mmWave-NOMA structure and can re-

markably reduce the training time, similar to the hierarchical algorithm, it may result in a higher

probability of misalignment. This is due to the use of omni-directional antennas at the first

step which does not provide enough beamforming gain, especially for low-SNR users. To tackle

this challenge, we modify the algorithm at the cost of sacrificing the speed of beam-training.

We assume that each user steers directional beams with the predefined beamwidth µ. Then, we

combine the first and second steps and perform an exhaustive beam search to find the best beam

pair that achieves the highest beamforming gain. Note that the BS communicates with each user

via a unique frequency tone. Further, the third step remains unchanged. Therefore, the training

time becomes τ = max{dωBS
ηn
ed ωUE

µn,m
eTp}. When beamwidth for the BS and users are the same as
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those of (5), the beam-training time for the modified tone-based algorithm is similar to that of

the exhaustive search algorithm. In summary, we adopt the tone-based beam alignment algorithm

in [26] and instead of hierarchical search we use exhaustive search.

C. Data Transmission

In mmWave-NOMA systems, during the data transmission, the transmit symbols are superpo-

sition coded at the BS. Then, at the user side, unintended symbols are removed via SIC. More

details on these two processes are provided as follows. Let s ∈ CNRF×1 denote the information

signal vector such that its nth element sn satisfies E [sns
∗
n] = 1

NRF
for n = 1, 2, . . . , NRF.

At the baseband of the BS, the superposition coded signal of the nth stream is given by

sn =
∑Kn

m=1

√
Pn,mzn,m where Pn,m and zn,m are the allocated power and transmit symbol

for the mth user in the nth cluster, respectively. Then, the hybrid beamforming is done in digital

and analog precoding stages. The BS applies the digital precoder FBB ∈ CNRF×NRF using RF

chains, and then applies the analog precoder FRF ∈ CNBS×NRF using phase-shifters. Thus, the

transmit signal vector after superposition coding and beamforming, x ∈ CNBS×1, is expressed as

xT = FRFFBBs
T . (6)

Each element of all beamforming vectors has a constant magnitude of 1√
NBS

. Further, the total

power of the hybrid beamforming is constrained to
∥∥FRFFBB

∥∥2

F
= NRF. On the other hand, the

received signal by UEn,m, rn,m ∈ CNUE×1, is given by

rn,m = Hn,mFRFFBBs + nn,m, (7)

where nn,m ∈ CNUE×1 is the additive white Gaussian noise vector with zero-mean and σ2 variance

for each element, i.e., CN (0, σ2). Then, the received vector at UEn,m followed by the analog

combiner wn,m ∈ CNUE×1 is obtained as

yn,m =
√
Pn,mw

†
n,mHn,mFRFf

n
BBzn,m︸ ︷︷ ︸

desired signal

+
Kn∑
k 6=m

√
Pn,kw

†
n,mHn,mFRFf

n
BBzn,k︸ ︷︷ ︸

intra-cluster interference

+

NRF∑
q 6=n

Kq∑
`=1

√
Pq,`w

†
n,mHn,mFRFf

`
BBzq,`︸ ︷︷ ︸

inter-cluster interference

+w†n,mnn,m︸ ︷︷ ︸
noise

. (8)
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Each user decodes the intended signal by using SIC. As such, after applying SIC, the received

signal at UEn,1 is given by

yn,1 =
√
Pn,1w

†
n,1Hn,1FRFf

n
BBzn,1 +

NRF∑
q 6=n

Kq∑
`=1

√
Pq,`w

†
n,1Hn,1FRFf

`
BBzq,` + w†n,1nn,1, (9)

and the received signal at UEn,m, for m > 1, is given by

yn,m =
√
Pn,mw

†
n,mHn,mFRFf

n
BBzn,m +

m−1∑
k=1

√
Pn,kw

†
n,mHn,mFRFf

n
BBzn,k︸ ︷︷ ︸

residual intra-cluster interference

+

NRF∑
q 6=n

Kq∑
`=1

√
Pq,`w

†
n,mHn,mFRFf

`
BBzq,` + w†n,mnn,m. (10)

One can observe that the desired signal of the first user in (9) is contaminated by the inter-

cluster interference and noise, whereas the desired signal of the other users represented by (10)

is contaminated by the residual intra-cluster and inter-cluster interference and noise.

D. Clustering

In this section, we describe a simple, yet effective clustering method for two NOMA users per

cluster which is the case in our system model. The reason for choosing two users per cluster will

be explained in the next sections. Before proceeding, we define cluster-head and far UE terms.

In a cluster, we call the closer UE to the BS the cluster-head and the other UE the far UE. A

clustering algorithm for two NOMA users per cluster, mainly designed based on the following

two key points, has been proposed in [38, Algorithm 1]: (i) A key point to maximize the sum-

rate in NOMA is to ensure that the high channel gain users are selected as the cluster-heads.

(ii) The channel gain difference between the cluster-head and the far UE should be sufficiently

high.

Before applying the clustering method in [38], we select 2NRF users and divide them into

two groups. The first group consists of the NRF users with the highest channel gains denoted

by UEn,1 for n = 1, 2, · · · , NRF. The second group includes the remaining NRF users denoted

by UEn,2 for n = 1, 2, · · · , NRF. Further, the users of the first group are called the cluster-heads

and the users of the second group are called the far users. The following conditions result in

good performance.

Condition 1: The cluster-heads are located in distinctive directions.
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Condition 2: The far users UEn,2 have the lowest channel gains among all the users and are

paired with UE1,1, UE2,1, · · · , UENRF,1, respectively.

Then, we use the clustering algorithm proposed in [38] in our mmWave-NOMA network.

To make sure that Conditions 1 and 2 hold, we replace the users that violate them. Since the

probability of existing high channel gain users in mmWave cells is almost one, new cluster-heads

that will not violate Condition 1 are always available. Since the sum-rate is mainly determined

by the channel gain of the cluster-heads, replacing the users that violate Condition 2 will not

affect the sum-rate dramatically. Therefore, to ease the calculations, for the rest of the paper, it

is assumed that UEn,1 and UEn,2 are clustered together.

E. Hybrid Beamforming Gain and SINR

After the clustering is performed, an efficient beamforming is used to reduce/eliminate the

inter-cluster interference. We use the zero-forcing beamforming (ZFBF) method which is widely

adopted in the literature [15], [19], [38]–[40]. This method is low-complex and highly efficient. In

fact, it is shown that when the channels of the users inside a cluster are highly correlated, ZFBF

can significantly suppress the inter-cluster interference. In ideal cases, i.e., a perfect correlation,

ZFBF is able to completely eliminate the inter-cluster interference. First, we describe an ideal

beamforming gain which is the same as that of an ideal ZFBF. Then, to take the practical

issues into account, we describe a non-ideal beamforming gain which reflects the impact of the

imperfect channel correlation in ZFBF. We note that when the channels between the users are

not highly correlated, the singular value decomposition (SVD) method is used to design the

beamforming matrix [15].

Let us define fn = FRFf
n
BB as the hybrid beamforming vector of the nth beam at the BS.

An ideal hybrid beamformer leads to |a†BS(φn,m)fn| =
√
Gid

BS(φn,m,ηn) in which Gid
BS is the

beamforming gain of the ideal beamformer at the BS and ηn denotes the beamwidth of the nth

beam. It is worth mentioning that in this paper the parameter Gid
BS is irrespective of how the

hybrid beamforming is designed. Essentially, the value of Gid
BS depends on the beamformer fn,

where ||fn|| = 1, and the size of the transmit antenna array. Also, note that an ideal beamforming

vector is obtained when there is no channel estimation error and perfect beam alignment is done

while considering an infinite resolution for the phase-shifters. Further, the beamwidth depends on

the design of the analog beamformer and the digital beamformer. In particular, the beamforming
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(a)

BS

(b)

main lobe

side lobe

UE1,1

UE1,2

UE2,1
UE2,2

Fig. 3: (a) A non-ideal beam is modeled with a constant main lobe gain and side lobe gain, (b) The impact of the side lobe

gain of each beam on the UEs located in the other cluster.

gain is defined as

Gid
BS(φn,m,ηn) =


2π
ηn
, if |φn,m| ≤ ηn

2
,

0, otherwise.
(11)

Further, the beamforming gain of the ideal analog beamformer at UEn,m is assumed to be

|w†n,maUE(θn,m)| =
√
Gid

UE(θn,m,µn,m) in which Gid
UE is the gain of the ideal analog beamformer

and µn,m denotes the beamwidth of UEn,m. Similar to Gid
BS, the ideal beamforming gain is defined

as

Gid
UE(θn,m,µn,m) =


2π
µn,m

, if |θn,m| ≤ µn,m

2
,

0, otherwise.
(12)

Note that ideal beamforming at the BS and users results in the complete cancellation of the

inter-cluster interference represented in (8).

In practice, achieving the ideal beamforming gain may not be possible because of the appli-

cation of suboptimal solutions for the analog beamformer, finite resolution of the phase-shifters,

channel estimation error, and beam misalignment. These problems reduce the gain in the main

lobe and introduce a side lobe for each beam. Hence, the beamforming model should take these

issues into account [18], [23]. A more practical model for the beamforming gain of the nth beam

is given by

GBS(φn,m,ηn) =


2π−(2π−ηn)ξ

ηn
, if |φn,m| ≤ ηn

2
,

ξ, otherwise,
(13)

where 0 ≤ ξ < 1 with ξ � 1 for narrow beams, which is widely adopted in the literature [25],

[29], [41]. Note that there is another common model for the beamforming gain with side lobe

level varying with the beamwidth [18]. In this paper, to make the analysis tractable, we use

the model described above that satisfies the total power of 1, i.e.,
∫ 2π

0
GBS(φn,m,ηn)dφn,m =
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ηn
2π

2π−(2π−ηn)ξ
ηn

+ 2π−ηn
2π

ξ = 1. Similarly, the model for the beamforming gain of UEn,m is given

by

GUE(θn,m,µn,m) =


2π−(2π−µn,m)ξ

µn,m
, if |θn,m| ≤ µn,m

2
,

ξ, otherwise.
(14)

In the above equations, the main lobe’s gain is distributed uniformly in the entire beamwidth

and the side lobe’s gain is assumed to be constant [26], [27] as demonstrated in Fig. 3.(a).

However, in reality, the main lobe’s gain changes over the beamwidth and the side lobe’s gain

depends on the size of the beamwidth. For example, for a narrower beam, the side lobe’s gain

is higher [42]. Further, the side lobe results in interference that impacts the UEs located in

other clusters as shown in Fig. 3.(b). In our formulation, this interference is modeled by the

inter-cluster interference term in (8).

Hence, using (9), (13), and (14), the signal-to-interference-plus-noise ratio (SINR) of UEn,1

in the nth beam is expressed as

γn,1 =
Pn,1β

2
n,1GBS(φn,1,ηn)GUE(θn,1,µn,1)

NRF∑
q 6=n

Kq∑
`=1

Pq,`β
2
n,1GUE(θn,1,µn,1)ξ + σ2

, (15)

and, using (10), (13), and (14), the SINR of UEn,m, m > 1, is given by

γn,m =
Pn,mβ

2
n,mGBS(φn,m,ηn)GUE(θn,m,µn,m)

m−1∑
k=1

Pn,kβ
2
n,mGBS(φn,m,ηn)GUE(θn,m,µn,m) +

NRF∑
q 6=n

Kq∑
`=1

Pq,`β
2
n,mGUE(φn,m,µn,m)ξ + σ2

.

(16)

Due to the single cell assumption, we can conclude that the users do not receive any interfer-

ence from the side lobe and only receive signal from the main lobe. Further, it is assumed

that codebooks for a specific level (beam resolution) are designed efficiently such that the

steered beams by the BS do not overlap [22]. Hence, each user receives the desired signal

and intra-cluster interference sent through the main lobe of the desired beam and the inter-

cluster interference sent through the side lobe of the other beams as visualized in Fig. 3.(b).

Further, in the modified beam-training algorithm described in Section II-B and adopted in this

section, the beams directed by the BS can have different beamwidth values, i.e., the beams have

different resolutions. In this case, during the data transmission, beam overlap may occur, which

can impose severe inter-cluster interference. To avoid this, we assume that there is a proper angle

gap between the two neighboring beams. In mmWave hybrid beamforming, a limited number
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of RF chains is used, i.e., the number of beams is limited [19]. Therefore, the direction of each

beam is selected to satisfy the required angle gap between the beams. Further, each cluster’s

users are served via a common beam directed by the BS. Therefore, the training time for UEn,m

is given by τn,m = dωBS
ηn
ed ωUE

µn,m
eTp as explained in Section II-B. Accordingly, the achievable rate

for UEn,m can be calculated as

Rn,m =
(

1− τ

T

)
log2(1 + γn,m), (17)

where T denotes the channel coherence time as indicated in Fig. 2. It is worth mentioning that

the chosen frame duration is smaller than the channel coherence time.

III. PROBLEM FORMULATION

Here, NOMA is performed for two UEs per cluster which is compatible with the multi-user

superposition transmission schemes recently adopted by 3GPP [43], [44]. Further, the BS is

assumed to generate only two beams. Extension to more than two clusters will be addressed

in future work. To optimize the sum-rate performance, ηn, µn,m, and Pn,m should be optimized

according to

maximize
η,µ,P

2∑
n=1

2∑
m=1

Rn,m (18a)

subject to ηmin ≤ηn ≤ ωBS, (18b)

µmin ≤µn,m ≤ min{ωUE,ηn}, (18c)

τ ≤ T, (18d)

τ ≥ ωBS

ηn

ωUE

µn,m
Tp, (18e)

Rn,m ≥ Rmin, (18f)
2∑

n=1

2∑
m=1

Pn,m≤ Ptot, (18g)

Pn,m> 0, (18h)

where η = [η1, η2], µ = [µ1,1,µ1,2,µ2,1,µ2,2], P = [P1,1, P1,2, P2,1, P2,2], and Ptot denotes the total

power of the BS. The smallest beamwidth resolutions for the BS and UE are denoted by ηmin and

µmin, respectively. Here, we assume ηmin = µmin. The beamwidth resolution relates to the number

of antennas. Usually, the number of antennas at a BS is larger than those of UEs. Thus, the BS

can generate narrower beams. However, we assume that the minimum beamwidths of the BS
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and UEs are identical. For the sake of simplicity, we relax τ ≥ dωBS
ηn
ed ωUE

µn,m
eTp to τ ≥ ωBS

ηn

ωUE
µn,m

Tp

in (18e). After we obtain the optimal η and µ, we can recalculate τ = max{dωBS
ηn
ed ωUE

µn,m
eTp}.

IV. JOINT BEAMWIDTH CONTROL AND POWER ALLOCATION

Problem (18) is an intractable non-convex optimization problem and needs to be decomposed.

We propose an algorithm which iterates between the power allocation and the beamwidth

optimization. When allocating the power, we fix the beamwidths and when optimizing the

beamwidths, we keep the powers fixed. We assume that the BS and the users are aligned after the

training process, which means |φn,m| ≤ ηn
2

and |θn,m| ≤ µn
2

. We also assume the users within the

same cluster have the same beamwidth, i.e., µn,1 = µn,2 = µn. However, the users in different

clusters do not necessarily have the same beamwidth.

A. Power allocation

When the beamwidth and the training time are fixed, the beamforming gains are also fixed.

Then, problem (18) is simplified to:

maximize
P

2∑
n=1

2∑
m=1

Rn,m (19a)

subject to (18f)−(18h). (19b)

Although Problem (19) has been greatly simplified compared to Problem (18), its objective is still

complicated and non-convex. To transform Problem (19) into a tractable form, we use the log-

exponential reformation idea in [45]. Introducing slack variables S = [xn,m,dn,m], n = 1,2,m =

1,2, we can transform the objective in Problem (19) into a linear form by
∑2

n=1

∑2
m=1 log2

2xn,m

2dn,m .

For the sake of brevity, we denote GBS(ηn)GUE(µn) by Gn and GUE(µn) by Gn
UE and make the

following definitions:

SIn,1 , Pn,1β
2
n,1Gn +

2∑
`=1,q 6=n

Pq,`β
2
n,1G

n
UEξ + σ2, (20)

SIn,2 , Pn,2β
2
n,2Gn + Pn,1β

2
n,2Gn +

2∑
`=1,q 6=n

Pq,`β
2
n,2G

n
UEξ + σ2, (21)

In,1 ,
2∑

`=1,q 6=n

Pq,`β
2
n,1G

n
UEξ + σ2, (22)
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In,2 , Pn,1β
2
n,2Gn +

2∑
`=1,q 6=n

Pq,`β
2
n,2G

n
UEξ + σ2. (23)

Then, Problem (19) can be rewritten as

maximize
S,P

(1− τ

T
)

2∑
n=1

2∑
m=1

(xn,m − dn,m) (24a)

subject to 2xn,1≤ SIn,1, (24b)

2xn,2≤ SIn,2, (24c)

2dn,1≥ In,1, (24d)

2dn,2≥ In,2, (24e)

(1− τ

T
)(xn,m − dn,m)≥ Rmin, (24f)

(18g)− (18h). (24g)

In Problem (24), the optimum is achieved when the constraints (24b)-(24e) satisfy with equality.

Let us use (24b) as an example to show that the equality should be satisfied at the optimum.

Assuming the opposite, we can increase xn,1 while keeping other variables fixed. This results in

increasing the cost function and contradicts the optimality assumption. Since constraints (24b)-

(24e) achieve equality at the optimum, the non-convex objective of Problem (19) is equivalently

decomposed into (24a) and constraints (24b)-(24e).

Unfortunately, constraints (24d) and (24e) are still non-convex. To relax the non-convex

constraint to convex constraints, we use a sequential parametric convex approximation method

(SPCA) [46]. In this method, the non-convex feasible set is sequentially approximated by an

inner convex approximation. Using (24d) as an example, at Iteration k, since function 2dn,1 is a

convex function, i.e., 2y − 2x ≥ 2x log 2(y − x), we have a lower bound of 2dn,1 as:

2d
∗
n,1[k−1] log 2(dn,1 − d∗n,1[k − 1]) + 2d

∗
n,1[k−1] ≤ 2dn,1 , (25)

where d∗n,1[k − 1] is the optimal solution at Iteration k − 1. Based on (25), we can relax (24d)

into a convex constraint as

2d
∗
n,1[k−1] log 2(dn,1 − d∗n,1[k − 1]) + 2d

∗
n,1[k−1] ≥

2∑
`=1,q 6=n

Pq,`β
2
n,1G

n
UEξ + σ2. (26)

Using the same method for (24e), we have

2d
∗
n,2[k−1] log 2(dn,2 − d∗n,2[k − 1]) + 2d

∗
n,2[k−1] ≥ Pn,1β

2
n,2Gn +

2∑
`=1,q 6=n

Pq,`β
2
n,2G

n
UEξ + σ2. (27)
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At each iteration, we can relax Problem (24) into the following convex problem:

maximize
S,P

(1− τ

T
)

2∑
n=1

2∑
m=1

(xn,m − dn,m) (28a)

subject to (24b), (28b)

(24c), (28c)

(26)− (27), (28d)

(18g)− (18h). (28e)

This is a convex problem, which can be efficiently solved by off-the-shelf solutions, such as

CVX [47].

By relaxing Problem (24) to Problem (28) in each iteration, we can propose an iterative

algorithm to provide an approximation solution for Problem (24). Detailed steps are presented

in Alg. 1. According to [46], Alg. 1 converges.

Algorithm 1 Power allocation
1: Set the sum-rate Rsum[−1] ← 0, the maximal iteration number kmax ← 1000 and the convergence threshold

ε← 10−3;

2: repeat

3: Choose a feasible start point P∗[0];

4: x∗n,m[0]← log2(P ∗n,m[0]β2
n,mGn),

5: d∗n,1[0]← log2(
∑2
`=1,q 6=n P

∗
q,`[0]β2

n,1G
n
UEξ + σ2);

6: d∗n,2[0]← log2(P ∗n,1[0]β2
n,2Gn +

∑2
`=1,q 6=n P

∗
q,`[0]β2

n,2G
n
UEξ + σ2);

7: until (24f) is satisfied

8: k ← 0;

9: while Rsum[k]−Rsum[k − 1] ≥ εRsum[k − 1] and k ≤ kmax do

10: k ← k + 1;

11: Solve (28) to obtain S∗[k] and P∗[k];

12: end while

13: Return P∗[k].

B. Beamwidth optimization

When the powers are fixed, the problem to optimize the beamwidth can be rewritten as

maximize
η,µ

2∑
n=1

2∑
m=1

Rn,m (29a)

subject to (18b)−(18f). (29b)
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Problem (29) is a very complicated problem with non-convex objective and constraints. To

simplify the problem, we first perform the following variable substitutions:

µn =
A

fn
, (30)

ηn =
A

hn
, (31)

where fn , GUE(µn) − ξ, hn , GBS(ηn) − ξ and A = 2π − 2πξ is a constant. By assuming

GBS(ηn)GUE(µn) ≈ (2π−2πξ)2

ηnµn
+ ξ2, we have ηnµn = A2

hnfn
and GBS(ηn)GUE(µn) = hnfn + ξ2.

Then, the SINR for UEn,1 and UEn,2 can be rewritten as

γn,1 =
Pn,1β

2
n,1(hnfn + ξ2)∑2

`=1,q 6=n Pq,`β
2
n,1(fn + ξ)ξ + σ2

, (32)

γn,2 =
Pn,2β

2
n,2(hnfn + ξ2)

Pn,1β2
n,2(hnfn + ξ2) +

∑2
`=1,q 6=n Pq,`β

2
n,2(fn + ξ)ξ + σ2

. (33)

Instead of finding the optimal beamwidth, we find the optimal fn and hn. We can rewrite

Problem (29) as

maximize
h,f

2∑
n=1

2∑
m=1

Rn,m (34a)

subject to
A

ωBS
≤ hn ≤

A

ηmin
, (34b)

A

ωUE
≤ fn ≤

A

µmin
, (34c)

hn ≤ fn, (34d)

Rn,m ≥ Rmin, (34e)

τ ≤ T, (34f)

τ = max{ωBSωUEhnfn
A2

Tp}, (34g)

where h = [h1, h2] and f = [f1, f2]. Problem (34) is still intractable with a non-convex objective.

To further decompose the problem, we will iterate between the two clusters, i.e., we first fix

Cluster 2 to optimize the beamwidths in Cluster 1 and then fix Cluster 1 to optimize the

beamwidths in Cluster 2.

C. Optimal beamwidth search for each cluster

Let us assume the beamwidths of Cluster 2 are fixed and optimize the beamwidths in Cluster

1 as an example. The optimization for Cluster 2 is similar. In this case, the SINRs of UE2,1 and
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UE2,2 are fixed. We denote them by γfix
2,1 and γfix

2,2. We also denote the corresponding variables f2

and h2 as ffix
2 and hfix

2 . Then, the beamwidth optimization problem for Cluster 1 is as follows:

maximize
h1, f1

2∑
m=1

R1,m + (1− τ

T
)

2∑
m=1

log2(1 + γfix
2,m) (35a)

subject to
A

ωBS
≤ h1 ≤

A

ηmin
, (35b)

A

ωUE
≤ f1 ≤

A

µmin
, (35c)

h1 ≤ f1, (35d)

R1,m ≥ Rmin, (35e)

(1− τ

T
) log2(1 + γfix

2,m) ≥ Rmin, (35f)

τ ≤ T, (35g)

τ = max{ωBSωUEh1f1

A2
Tp,

ωBSωUEh
fix
2 f

fix
2

A2
Tp}. (35h)

To simplify Problem (35), we discuss how to pick the optimal value for τ and remove it from

the objective function. There are two cases for the optimal τ :

• Case 1: h1f1 < hfix
2 f

fix
2 . In this case, the τ should be set to τ ∗ =

ωBSωUEhfix
2 f

fix
2

A2 Tp. Then, the

objective function should be (1− τ∗

T
)
∑2

n=1

∑2
m=1 log2(1 + γn,m).

• Case 2: h1f1 ≥ hfix
2 f

fix
2 . In this case, the τ should be set according to the value of h1f1, which

is τ = ωBSωUEh1f1
A2 . Then, the objective function should be (1− ωBSωUEh1f1Tp

A2T
)
∑2

n=1

∑2
m=1

log2(1 + γn,m).

Since the solution for the two cases are different and the objective function may change, the

search for the optimal beamwidths is complicated and needs to be simplified. To simplify, first,

we introduce a variable gn = hnfn. Then, the SINR UEn,1 and UEn,2 can be rewritten as

γn,1 =
Pn,1β

2
n,1(gn + ξ2)∑2

`=1,q 6=n Pq,`β
2
n,1(fn + ξ)ξ + σ2

, (36)

γn,2 =
Pn,2β

2
n,2(gn + ξ2)

Pn,1β2
n,2(gn + ξ2) +

∑2
`=1,q 6=n Pq,`β

2
n,2(fn + ξ)ξ + σ2

. (37)

Since we fix the parameters for Cluster 2, log2(1 + γ2,1) + log2(1 + γ2,2) is a constant, which we

denote by C. Then, we define a function F (g1,f1) , log2(1 + γ1,1) + log2(1 + γ1,2) + C which

has the following property:
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Proposition 1. For F (g1, f1) with its domain defined by (f1,g1) ∈ [lbf ,ubf ]× [lbg,min{f 2
1 ,ubg}],

0 < lbg ≤ lb2
f and 0 < ubg ≤ ub2

f , the maximum point lies on the boundary g1 = f 2
1 , f1 ∈

[lbf ,
√
ubg].

Proof. See Appendix A.

Proposition 1 implies that if we want to find the maximum point of F (g1,f1), we only need to

search on the boundary g1 = f 2
1 ,f1 ∈ [lbf ,ubf ]. This simplifies F (g1,f1) to F (f 2

1 ,f1). We further

define Fb(f1) , F (f 2
1 ,f1). Then, to find the maximum point of F (g1,f1), we can perform a line

search for Fb(f1) on f1 ∈ [lbf ,ubf ].

Next, we define the function G(g1,f1) , (1− ωBSωUEg1
A2 Tp)F (g1,f1). Function G(g1,f1) has the

following property:

Proposition 2. For G(g1, f1) with its domain defined by (f1,g1) ∈ [
√
lbg,ubf ]×[lbg,min{f 2

1 ,ubg}],
ubf ,lbg,ubg > 0, ubg < ub2

f , the maximum point lies on the boundary g1 = f 2
1 ,f1 ∈ [

√
lbg,
√
ubg].

Proof. See Appendix B.

Proposition 2 implies that if we want to find the maximum point of G(g1,f1), we only need

to search on the boundary g1 = f 2
1 ,f1 ∈ [lbf ,ubf ]. This simplifies G(g1,f1) into G(f 2

1 ,f1). We

define Gb(f1) , G(f 2
1 ,f1). Then, to find the maximum point of G(g1,f1), we can perform the

line search for Gb(f1) on f1 ∈ [lbf ,ubf ].

To find the maximum point for Problem (35), we plot its feasible region with boundaries

colored in green and blue in Figs. 4 and 5. According to Propositions 1 and 2, the maximum

point lies on the blue boundary and we only need to search on the blue boundary. However, the

objective function varies along the blue boundary. To conduct an effective search, we need to

divide the blue boundary into two different subsets. Moreover, different initial conditions lead

to different division strategies. There are two cases:

• Case 1: g(0)
1 < gfix

2 , where g(0)
1 is the initial point. In this case, along the blue boundary, when

we increase g1 from g
(0)
1 to gfix

2 , the objective function is (1− τ∗

T
)Fb(f1). If we continue to

increase g1, the objective function changes to Gb(f1). Then, the blue boundary is divided

as shown in Fig. 4. On Subset a, we perform a line search over (1 − τ∗

T
)Fb(f1) to find a

maximum point (f
(F )
1 ,(f

(F )
1 )2). On Subset b, we perform a line search over Gb(f1) to find

the maximum point (f
(G)
1 ,(f

(G)
1 )2). Then, we compare the values of (1 − τ∗

T
)Fb(f

(F )
1 ) and

Gb(f
(G)
1 ), to pick the larger one as the optimal solution (f ∗1 ,g

∗
1).
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Subset a

Subset b

Fig. 4: The search region division for Case 1.

Subset a 

Subset b 

Fig. 5: The search region division for Case 2.

• Case 2: g(0)
1 ≥ gfix

2 , where g
(0)
1 is the initial point. In this case, when we decrease g1 to

be less than gfix
2 , the objective function changes from Gb(f1) to (1 − τ∗

T
)Fb(f1). Then, the

blue boundary is divided as shown in Fig. 5. On Subset a, we perform a line search over

(1 − τ∗

T
)Fb(f1) to find a maximum point (f

(F )
1 ,(f

(F )
1 )2). On Subset b, we perform a line

search over Gb(f1) to find the maximum point (f
(G)
1 ,(f

(G)
1 )2). Then, we compare the values

of (1− τ∗

T
)Fb(f

(F )
1 ) and Gb(f

(G)
1 ), to pick the larger one as the optimal solution (f ∗1 ,g

∗
1).

While performing the line search, we also need to consider the minimum rate constraint.

The details of line search for (1 − τ∗

T
)Fb(f1) and Gb(f1) are described in Alg. 2 and Alg. 3,

respectively.

Algorithm 2 Line search over (1− τ∗

T
)Fb(f1)

1: Input τ∗, the search interval [fmin,fmax] and the step size ∆;

2: Initialize Rmax ← 0 and f (F )
1 ← fmin;

3: for f1 = fmin : ∆ : fmax do

4: if (1− τ∗

T )Fb(f1) > Rmax and (1− τ∗

T ) log2(1 + γ1,1) ≥ Rmin and (1− τ∗

T ) log2(1 + γ1,2) ≥ Rmin then

5: Rmax ← (1− τ∗

T )Fb(f1);

6: f
(F )
1 ← f1;

7: end if

8: end for

9: Return Rmax, f (F )
1 .

D. Joint beamwidth optimization

For a fixed power allocation, our final beamwidth search algorithm, iterating between the

beamwidth search for the two clusters, is presented in Alg. 4.
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Algorithm 3 Line search over Gb(f1)

1: Input the search interval [fmin,fmax] and the step size ∆;

2: Initialize Rmax ← 0 and f (G)
1 ← fmin;

3: for f1 = fmin : ∆ : fmax do

4: τ ← ωBSωUEf
2
1

A2 Tp

5: if Gb(f1) > Rmax and (1− τ
T ) log2(1 + γ1,m) ≥ Rmin and (1− τ

T ) log2(1 + γfix
2,m) ≥ Rmin then

6: Rmax ← Gb(f1);

7: f
(G)
1 ← f1;

8: end if

9: end for

10: Return Rmax, f (G)
1 .

Algorithm 4 Joint Beamwidth Optimization
1: Set the sum-rate Rsum[−1]← 0, the maximal iteration number kmax ← 1000 and the convergence threshold

ε← 10−3;

2: Input: Rsum[0], µ2,η2,µ(0)
1 ,η1(0), ωBS, ωUE, µmin and ηmin;

3: Calculate f (0)1 ,g(0)1 ,f (0)2 and g(0)2 according to (30), (31) and gn = fnhn;

4: Calculate lbf , ubf , lbg and ubg based on ωBS, ωUE, µmin and ηmin;

5: k ← 0;

6: while Rsum[k]−Rsum[k − 1] ≥ εRsum[k − 1] and k ≤ kmax do

7: k ← k + 1;

8: if g(k−1)1 < g
(k−1)
2 then

9: τ∗ ← ωBSωUEg
(k−1)
2 Tp

A2 ;

10: Do line search for (1− τ∗

T )Fb(f1) on interval f1 ∈ [

√
g
(k−1)
1 ,

√
g
(k−1)
2 ] using Alg. 2 to get the maximum

point (f
(F )
1 ,(f

(F )
1 )2);

11: Do line search for Gb(f1) on interval f1 ∈ [

√
g
(k−1)
2 ,

√
ubg] using Alg. 3 to get the maximum point

(f
(G)
1 ,(f

(G)
1 )2);

12: if Fb(f
(F )
1 ) == 0 and Gb(f

(G)
1 ) == 0 then

13: (f
(k)
1 ,g

(k)
1 )← (f

(k−1)
1 ,g

(k−1)
1 );

14: end if

15: Compare the value of (1− τ∗

T )Fb(f
(F )
1 ) and Gb(f

(G)
1 ), and pick the larger one as the optimal solution

(f
(k)
1 ,g

(k)
1 );

16: else if g(k−1)1 ≥ g(k−1)2 then

17: Do line search for Gb(f1) on interval f1 ∈ [

√
g
(k−1)
2 ,

√
ubg] using Alg. 3 to get the maximum point

(f
(G)
1 ,(f

(G)
1 )2);

18: τ∗ ← ωBSωUEg
(k−1)
2 Tp

A2 ;
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19: Do line search for (1 − τ∗

T )Fb(f1) on interval f1 ∈ [lbf ,

√
g
(k−1)
2 ] using Alg. 2 to get the maximum

point (f
(F )
1 ,(f

(F )
1 )2);

20: if Fb(f
(F )
1 ) == 0 and Gb(f

(G)
1 ) == 0 then

21: (f
(k)
1 ,g

(k)
1 )← (f

(k−1)
1 ,g

(k−1)
1 );

22: end if

23: Compare the value of (1− τ∗

T )Fb(f
(F )
1 ) and Gb(f

(G)
1 ), and pick the larger one as the optimal solution

(f
(k)
1 ,g

(k)
1 );

24: end if

25: if g(k−1)2 < g
(k)
1 then

26: τ∗ ← ωBSωUEg
(k)
1 Tp

A2 ;

27: Do line search for (1− τ∗

T )Fb(f2) on interval f2 ∈ [

√
g
(k−1)
2 ,

√
g
(k)
1 ] using Alg. 2 to get the maximum

point (f
(F )
2 ,(f

(F )
2 )2);

28: Do line search for Gb(f2) on interval f2 ∈ [

√
g
(k)
1 ,
√
ubg] using Alg. 3 to get the maximum point

(f
(G)
2 ,(f

(G)
2 )2);

29: if Fb(f
(F )
2 ) == 0 and Gb(f

(G)
2 ) == 0 then

30: (f
(k)
2 ,g

(k)
2 )← (f

(k−1)
2 ,g

(k−1)
2 );

31: end if

32: Compare the value of (1− τ∗

T )Fb(f
(F )
2 ) and Gb(f

(G)
2 ), and pick the larger one as the optimal solution

(f
(k)
2 ,g

(k)
2 );

33: else if g(k−1)2 ≥ g(k)1 then

34: Do line search for Gb(f2) on interval f2 ∈ [

√
g
(k)
1 ,
√
ubg] using Alg. 3 to get the maximum point

(f
(G)
2 ,(f

(G)
2 )2);

35: τ∗ ← ωBSωUEg
(k)
1 Tp

A2 ;

36: Do line search for (1− τ∗

T )Fb(f2) on interval f1 ∈ [lbf ,

√
g
(k)
1 ] using Alg. 2 to get the maximum point

(f
(F )
2 ,(f

(F )
2 )2);

37: if Fb(f
(F )
2 ) == 0 and Gb(f

(G)
2 ) == 0 then

38: (f
(k)
2 ,g

(k)
2 )← (f

(k−1)
2 ,g

(k−1)
2 );

39: end if

40: Compare the value of (1− τ∗

T )Fb(f
(F )
2 ) and Gb(f

(G)
2 ), and pick the larger one as the optimal solution

(f
(k)
2 ,g

(k)
2 );

41: end if

42: Calculate Rsum[k];

43: end while

44: Calculate µn and ηn based on fn, hn, where hn = gn/fn;

45: Return µ∗n and η∗n.
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E. The joint algorithm

Based on Alg. 1 and Alg. 4, we can propose a joint optimization algorithm, which iterates

between the power allocation and the beamwidth optimization. The details of the algorithm are

described in Alg. 5.

Algorithm 5 Joint optimization
1: Set the sum-rate Rsum[−1] ← 0, the maximal iteration number nmax ← 1000 and the convergence threshold

ε← 10−3;

2: Choose a feasible start point P∗[0], µ∗[0], η∗[0] and φ∗[0];

3: n← 0;

4: while Rsum[n]−Rsum[n− 1] ≥ εRsum[n− 1] and n ≤ nmax do

5: n← n+ 1;

6: Search the optimal beamwidth using Alg. 4 with P∗[n] to obtain µ∗[n], η∗[n] and φ∗[n] ;

7: Solve Problem (19) using Alg. 1 with µ∗[n− 1], η∗[n− 1], φ∗[n− 1] to obtain P∗[n] ;

8: end while

9: Return P∗[n], µ∗[n], η∗[n].

F. Convergence and complexity analysis

To prove the convergence of Alg. 5, we first need to prove the convergence of Alg. 1 and

Alg. 4. The convergence of Alg. 1 has been proved in [46]. In Alg. 4, to maximize the sum-

rate, we optimize the beamwidth for one cluster while keeping the other cluster fixed. Such a

step cannot decrease the sum-rate and generates a non-decreasing sequence of sum-rate values.

Therefore, the convergence of Alg. 4 is guaranteed because the algorithm generates a sequence

of non-decreasing sum-rates with an upper bound (the maximum sum-rate).

In Alg. 5, when allocating the power, we increase the sum-rate while keeping the beams in the

feasible region. When optimizing the beamwidth, we search the feasible region for the beams

to find the maximum sum-rate while guaranteeing the minimum rate constraint and keeping the

powers in the feasible region. By doing so, we generate a monotonically increasing sequence

with an upper bound (the maximum sum-rate), which proves the convergence.

Here, we provide the complexity analysis of the proposed algorithm. In our algorithm, we

iteratively optimize the power allocation and beamwidth. In the power allocation algorithm,

we use SPCA to gradually convexify the original non-convex problem. In each iteration, the

complexity mainly lies in solving Problem (28). We use an off-the-shelf solution, i.e., CVX

to solve Problem (28), which uses the interior-point method. The computational complexity
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of CVX is O((3MUE)3.5), where MUE is the total number of users and 3MUE is the number of

variables in Problem (28). In the beamwidth optimization, we iteratively optimize the beamwidth

for each sector. In each iteration, the main complexity lies in the line-search algorithm, with

the complexity O(
ubf−lbf

∆
), ubf and lbf are the upper bound and lower bound of variable f in

Problem (35), respectively, and ∆ is the stepsize of the line-search algorithm.

V. SIMULATION RESULTS

In this section, we present the simulation results of the joint power and beamwidth optimization

algorithm. Four UEs are considered which are divided in two clusters each with two UEs. It is

assumed that the UEs inside each cluster have different distances from the BS. Four multiple

access techniques are investigated. The first technique is OMA in which UEs are served in

different time slots. The second technique is a combination of OMA and NOMA called NOMA-

OMA. In NOMA-OMA, UEs that belong to the same cluster are supported by a fixed-power

NOMA and each cluster is supported by OMA at each time slot. The third technique is Fixed-

NOMA in which all UEs are served by a fixed-power NOMA at one time slot. Finally, the

fourth technique is the jointly optimized power and beamwidth NOMA system presented in

Section IV, called Optimized-NOMA. For all techniques, first, the beams are trained and then

the data transmission is done.

To evaluate the performance of the Optimized-NOMA, the parameters are set as follows. The

minimum rate for all UEs is assumed to be Rmin = 0.1 bits/s/Hz. Further, for the Fixed-NOMA,

we allocate 1
5

of the total power to the cluster-head and 4
5

of the total power to the far UE as

done in [48]. Also, the power is equally divided between the two clusters. The SNR used in the

simulations indicates the transmit SNR, i.e., SNR=Ptot
σ2 , σ2 = 1. In the first cluster, the channel

gains of the near and far UEs from the BS are β2
1,1 = −17dB and β2

1,2 = −26.5dB. In the

second cluster, the channel gains of the near and far UEs are β2
2,1 = −19dB and β2

2,2 = −25dB.

Also, the side lobe level is constant and is given as ξ = 0.1. For the Optimized-NOMA, we

use ωBS = ωUE = 120◦ and ηmin = µmin = 5◦ unless it is mentioned otherwise. Further, the

convergence threshold is set to ε = 10−3.

Fig. 6 demonstrates the performance of the sum-rate versus SNR. It is assumed that T =

5 × 103Tp which indicates a large channel coherence time and η = µ1 = µ2 = 10◦. For all

SNRs, by increasing SNR the sum-rate increases. The Optimized-NOMA achieves the highest

sum-rate. Especially, at low SNRs, the performance gap is larger. For instance, at SNR = 0dB

the gap between the Optimized-NOMA and Fixed-NOMA is more than 5 bits/s/Hz which reveals
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Fig. 6: Performance of the sum-rate versus SNR for a

large channel coherence time, i.e., T = 5× 103Tp.
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Fig. 7: Performance of the sum-rate versus SNR for a

short channel coherence time T = 1× 103Tp.

our joint optimization algorithm designs the powers and beamwidths very efficiently. As SNR

increases, the gap decreases which is due to the fact that in the Fixed-NOMA the BS and UEs

steer strong beams even if the powers and beamwidths are not optimized. The Fixed-NOMA

technique preforms better than the NOMA-OMA and OMA techniques. The reason is that the

Fixed-NOMA serves all the users at the same time and takes the advantages of the spectrum

sharing among UEs.

In Fig. 7, we repeat the same simulation as in Fig. 6 for a relatively short channel coherence

time, i.e., T = 1 × 103Tp. Similarly, by increasing SNR, the sum-rate increases for all the

techniques. However, compared to Fig. 6, at low SNRs, the rate gap between the Optimized-

NOMA and Fixed-NOMA is small. Moreover, at high SNR regions, these two techniques achieve

identical sum-rates. This is because when the channel coherence time is short, the optimization

algorithm does not allocate a large portion of T to the beam-training, e.g., τ is small. Thus, the

optimized beamwidths are not narrow enough to provide higher gain. Also, at high SNRs, the

optimized powers have trivial effects on the sum-rate compared to the predefined fixed values

which is an interesting observation. This observation indicates that for a short channel coherence

time like T = 1× 103Tp and high SNR, the optimization is not required and fixed-NOMA can

be used instead. For a smaller coherence time, the optimized-NOMA shows better performance

only at low SNRs. Nevertheless, severe path loss and shadowing in mmWave bands makes the

low SNR regime very crucial. Especially, NOMA is supposed to consider near and far users,

where the far users likely receive signal through NLoS low SNR channels [35]. We emphasize

that at high SNRs, by increasing the coherence time, the rate gap between the optimized-NOMA

and the fixed-NOMA becomes larger (See Fig. 6).

Fig. 8 shows the sum-rate performance versus the normalized channel coherence time, i.e.,
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Fig. 9: Performance of the sum-rate of the Optimized-

NOMA versus minimum BS and UE beamwidth (ηmin and

µmin) for T = 5× 103Tp and various SNRs.

T/Tp for the moderate SNR= 20dB. In this simulation, two sets of beamwidths are considered

for the first three techniques: (i) η = µ = 5◦ (narrow beamwidth) and (ii) η = µ = 10◦ (relatively

wide beamwidth). The Optimized-NOMA outperforms the other techniques for both sets of the

beamwidths. For the Fixed-NOMA with η = µ = 10◦ and short normalized channel coherence

times, the performance is very close to that of the Optimized-NOMA. This is expected as we

explained before. However, for η = µ = 5◦ and short normalized channel coherence times,

the sum-rate of the Fixed-NOMA is much smaller than that of the Optimized-NOMA. This is

because at small T/Tp, the Fixed-NOMA assigns more time to the beam-training and leaves less

time for the data transmission. As the normalized time goes up, more time is available for data

transmission, and the narrow beam provides a higher sum-rate. This statement also is supported

by Fig. 8 where at large channel coherence times, the Optimized-NOMA selects the minimum

beamwidth. Hence, the Optimized-NOMA and the Fixed-NOMA with η = µ = 5◦ achieve

identical sum-rates at large normalized channel coherence times. Using Optimized-NOMA, a

wide beamwidth is preferred for short T/Tp while a narrow beamwidth is preferred for large

T/Tp. In Fig. 9, we simulate the performance of the sum-rate versus the minimum beamwidth

of BS and UEs. The simulation is done for SNRs 10dB, 20dB, and 30dB and T = 5 × 103Tp.

In practice, the number of antennas at the BS and UEs is limited and even for large T/Tp, a

narrow beamwidth may not be generated. At high SNRs, e.g. 30dB, increasing the minimum

beamwidth does not affect the sum-rate severely. As such, compared to ηmin = µmin = 3◦, at

10◦, the sum-rate is reduced only by 0.5 bits/s/Hz. At SNR= 20dB, the sum-rate drops about

0.8 bits/s/Hz which is larger than the drop at SNR= 30dB. The minimum beamwidth has a

major effect at SNR= 10dB. When SNR is low, narrow beams can still provide high gains
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to compensate for the low SNR. As the minimum beamwidth increases and the SNR is low,

the optimization algorithm cannot select narrow beams. As a result, the sum-rate dramatically

decreases. In this case, simulation results indicate that decreasing the beamwidth from 3◦ to 10◦

decreases the sum-rate by about 2 bits/s/Hz.

VI. CONCLUSIONS

In this paper, NOMA is incorporated into mmWave hybrid beamforming systems. We also

consider the beam-training time because of the limited channel coherence time in mmWave

directional communications. By combining the exhaustive search and tone-based beam-training

algorithms, a new beam-training algorithm is employed. The formulated sum-rate expression

consists of the channel coherence time and beam-training time. To maximize the sum-rate,

a joint power allocation and beamwidth control optimization problem is solved by an algo-

rithm which iterates between the power allocation and the beamwidth optimization. The non-

convex power allocation is solved by the log-reformulation and SPCA. The beamwidth op-

timization is solved by iterating between the two clusters. A boundary-search algorithm is

proposed to reduce the search complexity for the beamwidth in each cluster. The numerical results

demonstrate that an efficient power allocation and beam-training time can lead to higher sum-

rates compared to the conventional mmWave-NOMA without optimized parameters, NOMA-

OMA, and OMA. The only exception is that for a short channel coherence time and high

SNR, the optimized-NOMA and the fixed-NOMA have identical sum-rate performance. Also,

at low SNRs, the size of the antenna array is a major obstacle in achieving higher sum-rates.

Appendix A

Proof of Proposition 1

Since F (g1,f1) is a continuous function defined on a bounded closed set, it has a maximum

point according to the extreme value theorem. Also, according to the critical point theorem, the

maximum point should either be a stationary point or a boundary point. It is easy to observe

that F (g1,f1) is a monotonic increasing function of g1 and a monotonic decreasing function of

f1. This means ∂F
∂g1

> 0 and ∂F
∂f1

< 0, i.e., there is no stationary point for F (g1,f1) on the defined

domain. Then, the maximum point should lie on the five boundaries: (i) f1 = lbf , g1 ∈ [lbg,lb
2
f ],

(ii) g1 = lbg, f1 ∈ [lbf ,ubf ], (iii) f1 = ubf , g1 ∈ [lbg,ubg], (iv) g1 = ubg, f1 ∈ [
√
ubg,ubf ], and

(v) g1 = f 2
1 , f1 ∈ [lbf ,

√
ubg].

For the boundary (i), since F (g1,f1) is a monotonic increasing function of g1, the maximum

point can only lie on the point (lbf ,lb
2
f ) which belongs to the boundary (v) as well. For the
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boundary (ii), since F (g1,f1) is a monotonic increasing function of g1, we can pick g1 > lbg to

increase the value of F (g1,f1). This implies that the maximum point cannot lie on the boundary

(ii). Similarly, the maximum point cannot lie on the boundary (iii) either. For the boundary (iv),

since F (g1,f1) is a monotonic decreasing function of f1, the maximum point can only lie on

the point (
√
ubg,ubg) which belongs to boundary (v) as well. Note that the possible maximum

points on the boundaries (i) and (iv) also belong to the boundary (v). Therefore, the maximum

point must lie on the boundary (v) and the proof is complete.

Appendix B

Proof of Proposition 2

Since G(g1,f1) is a continuous function defined on a bounded closed set, it has a maximum

point according to the extreme value theorem. Also, according to the critical point theorem, the

maximum point should either be a stationary point or a boundary point. It is easy to observe that

G(g1,f1) is a monotonic decreasing function of f1. ∂G
∂f1

< 0, i.e., there is no stationary point for

G(g1,f1) on the defined domain. Then, the maximum point should lie on the four boundaries:

(i) g1 = lbg, f1 ∈ [
√
lbg,ubf ], (ii) f1 = ubf , g1 ∈ [lbg,ubg], (iii) g1 = ubg, f1 ∈ [

√
ubg,ubf ], and

(iv) g1 = lb2
f , f1 ∈ [

√
lbg,
√
ubg].

For the boundary (i), since G(g1,f1) is a monotonic decreasing function of f1, the maximum

point can only lie on the point (
√
lbg,lbg) which belongs to the boundary (iv) as well. For the

boundary (ii), since G(g1,f1) is a monotonic decreasing function of f1, we can pick f1 < ubf

to increase the value of G(g1,f1), which implies that the maximum point cannot lie on this

boundary. For the boundary (iii), since G(g1,f1) is a monotonic decreasing function of f1, the

maximum point must lie on the point (
√
ubg,ubg), which also belongs to the boundary (iv).

Since the possible maximum points on the boundaries (i) and (iii) also belong to the boundary

(iv), the maximum point must lie on the boundary (iv) and the proof is complete.
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