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ABSTRACT
We introduce HELiKs, a groundbreaking framework for fast and
secure matrix multiplication and 3D convolutions, tailored for
privacy-preserving machine learning. Leveraging Homomorphic
Encryption (HE) and Additive Secret Sharing, HELiKs enables se-
cure matrix and vector computations while ensuring end-to-end
data privacy for all parties. Key innovations of the proposed frame-
work include an efficient multiply-accumulate (MAC) design that
significantly reduces HE error growth, a partial sum accumulation
strategy that cuts the number of HE rotations by a logarithmic
factor, and a novel matrix encoding that facilitates faster online
HE multiplications with one-time pre-computation. Furthermore,
HELiKs substantially reduces the number of keys used for HE com-
putation, leading to lower bandwidth usage during the setup phase.
In our evaluation, HELiKs shows considerable performance im-
provements in terms of runtime and communication overheads
when compared to existing secure computation methods. With our
proof-of-work implementation1, we demonstrate state-of-the-art
performance with up to 32× speedup for matrix multiplication
and 27× speedup for 3D convolution when compared to prior art.
HELiKs also reduces communication overheads by 1.5× for ma-
trix multiplication and 29× for 3D convolution over prior works,
thereby improving the efficiency of data transfer.

CCS CONCEPTS
• Security and privacy→Privacy-preserving protocols; •Com-
puting methodologies→Machine learning.
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Privacy-preserving inference; deep neural networks; secure two-
party computation
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1 INTRODUCTION
The prevalence of data analytics in modern society has been greatly
amplified by the era of big data, the ever-increasing computational
1Access HELiKs on GitHub: https://github.com/shashankballa/HELiKs
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power and connectivity, and consequently the now ubiquitous cloud
computation. This has resulted in increased productivity and in-
formed decision-making for individuals and organizations all over.
On the other hand, the popularity of outsourcing data analytics to
a cloud server has also sparked severe privacy concerns, as sen-
sitive information can be vulnerable to exposure or misuse. This
has moved the industry and the research community at large to
push for the adoption of privacy-enhancing technologies. Homo-
morphic Encryption (HE) is one such technology that allows for
computing on encrypted data without requiring any decryption.
HE offers true end-to-end encryption where no one but the owner
of the data sees the data in the clear. HE has been used to enable
several critical privacy-preserving applications like secure genome
analysis [3], private information retrieval [32, 35] and private set in-
tersection [11]. HE has also seen commercial use with the password
monitor feature for the Microsoft Edge web browser [29].

Most modern data analytics applications involve processing
Deep Neural Networks (DNNs), which is much more demanding
compared to the aforementioned applications of HE.With the prolif-
eration of cloud-based tools that use inference on trained DNNs for
data analytics, a huge community of researchers has been focused
on applying HE to enable secure (privacy-preserving) inference
on DNNs. A cloud-based DNN inference scenario, also known as
Machine Learning-as-a-Service (MLaaS), involves a server holding
the trained DNN model and clients sending their data for inference.
A HE-based solution enables clients to send encryptions of their
data and securely outsource all the DNN computation to the server
without revealing their inputs. As linear algebra operations on high-
dimensional data are integral to most data analytics procedures, the
ability to perform fast and lightweight secure computation of these
operations can greatly improve the practicality of a wide range of
privacy-preserving applications on today’s computers.

In this paper, we present HELiKs, a novel HE-based framework
for fast and secure matrix multiplications and 3D convolutions
in privacy-preserving DNN inference. The key contributions of
HELiKs are:

• A new MAC-core (multiply-accumulate) design and a ma-
trix encoding scheme that involves a one-time offline pre-
computation process. The new algorithm cuts the number of
NTT operations required for HE multiplications by 66.67%.
• A partial sum accumulation strategy that reduces the number
of rotations from𝑂 (𝑛 log𝑛) to𝑂 (𝑛) and the number of keys
used in HE computation from 𝑂 (log𝑛) to just 𝑂 (1). This
leads to a substantial reduction in bandwidth usage during
the setup phase.
• A novel use of Symmetric-key HE that effectively halves the
total amount of encrypted data sent from the client to the
server. This also enables us to drop the public key to further
lower the bandwidth usage during the setup phase.
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• We show a proof-of-work implementation that is faster than
prior art by up to 31× for Matrix multiplication and 27× for
3D Convolution, while utilizing 1.4× and 29× lower band-
width for communication, respectively.

In the rest of the paper, we detail the HELiKs framework and
demonstrate its potential for a wide range of applications requir-
ing secure matrix multiplication. The remainder of the paper is
organized as follows: Section 2 presents the background on secure
computation, homomorphic encryption, and other relevant con-
cepts as well as the related work. Section 3 presents the high-level
design of the HELiKs. Section 4 gives the implementation details of
secure matrix multiplication in HELiKs and Section 5 explains the
implementation process of 3D convolutions in the HELiKs. In Sec-
tion 6 we evaluate the HELiKs Framework and compare it against
prior art. Finally, Section 7 concludes the paper and highlights
future directions.

2 BACKGROUND
2.1 Secure Computation and Homomorphic

Encryption
Preserving privacy is paramount, especially when handling con-
fidential data in collaborative environments. The realm of cryp-
tography offers secure computation as a solution to this challenge.
This field enables multiple parties to carry out calculations on their
private data while ensuring the confidentiality of the inputs. Early
pioneering protocols, such as Oblivious Transfers (OT) [37], Yao’s
garbled circuits (GC) [45], and GMW [20], were the cornerstones for
secure two-party computation (2PC). Over the years, these seminal
protocols have been refined and improved for a range of applica-
tions [6, 23, 25, 42]. Modern applications frequently employ a fusion
of these traditional methodologies with the latest optimizations,
designed to cater to specific computational needs [26, 38, 39]. No-
tably, the data exchanged between parties during these protocols
usually increases in tandem with the total multiplication operations
needed. While GC achieves this exchange in a constant number
of communication rounds, OT and GMW necessitate a round of
communication for every multiplication. A primary challenge with
classical 2PC is the near-equal computational effort demanded from
both participating parties.

On the other hand, Homomorphic Encryption (HE) is a cutting-
edge technique that facilitates operations on encrypted datawithout
the necessity for decryption keys or the original data [18]. In an
HE setup, clients encrypt and forward their data to servers. Servers
then perform calculations on this encrypted dataset and return the
processed data. Unique to HE is its ability to separate communi-
cation volume from the computational load. The data exchange
is governed only by the dimensions of the input and output. The
computational burden predominantly rests with the server, with
clients primarily responsible for generating ciphertexts. This in-
volves transforming data into HE plaintexts, encrypting them into
ciphertexts, and finally, decrypting and decoding them back into
original data. Servers shoulder the weighty task of performing
complex operations on these encrypted datasets. Given its distinct
advantages, HE emerges as an optimal solution for two-party secure
computation in the client-server model. This makes it a compelling

alternative to conventional protocols that expect both parties to
have comparable computational capacities.

Consider the case of securely computing a (𝑀, 𝑁 ) matrix-vector
product. In an OT-based approach, the communication overhead
hinges on the product value,𝑀 × 𝑁 , because the computation in-
volves so many multiplications. However, with HE, one only has
to communicate the input and output across and the overhead de-
pends only on their sum,𝑀 +𝑁 . Taking the instance of COINN [26],
a contemporary OT-driven framework designed for secure infer-
ences, the communication needed for evaluating the linear layers of
ResNet50 exceeds 0.5 TB. In contrast, our HE-based methodology
necessitates less than 0.5 GB for the same computation.

2.2 Fully Homomorphic Encryption and
Leveled Variants

A Fully Homomorphic Encryption (FHE) scheme that allows for
arbitrary computations on encrypted data was first presented by
Gentry [18]. FHE schemes achieve unlimited computation capacity
through a compute-intensive operation referred to as the bootstrap-
ping procedure. TFHE [10] and FHEW [16] are a few popular FHE
schemes that are primarily designed around the promise of a fast
bootstrapping procedure. These FHE schemes eliminate the de-
pendency of communication on the computation to be performed;
however, they introduce significant overhead in computation time
because of the bootstrapping procedure.

In contrast, leveled variants of HE schemes propose a differ-
ent construct with larger HE parameters that enable only a fixed
amount of computation without requiring bootstrapping. This re-
sults in significantly faster processing at the expense of increased
communication arising from a larger ciphertext expansion due
to the larger HE parameters. The communication complexity of
Leveled HE schemes is contingent upon the multiplicative depth
of the computation, that is, the number of nested or sequential
multiplications on the encrypted data. This presents a substantial
improvement for applications that involve the multiplication of
large matrices which involves a large number of scalar multiplica-
tions (one for each element) but the total multiplicative depth of
the computation is only 1.

2.3 HE from Ring Learning With Errors
Modern HE schemes are based on the Ring-Learning With Errors
(RLWE) [31] hard problem that involves finding a small error in a
polynomial equation. RLWE-HE schemes operate on polynomial
elements, i.e., the plaintexts or ciphertexts in these schemes are
either a single polynomial or a vector of 2 polynomials, respectively.
The polynomial data structures enable packing a vector of cleartext
values into a single plaintext/ciphertext. This enables a SIMD style
of execution in HE and gives a significant boost in the throughput
of the HE computation [44]. These HE schemes are primarily pa-
rameterized by the ring they operate on, R𝑛

𝑄
= Z𝑄 [𝑋 ]/(𝑋𝑛 + 1),

which is the set of all polynomials of degree less than 𝑛 with integer
coefficients from Z𝑄 (finite field of integers modulo 𝑄). Process-
ing on cleartext data that has been encrypted using RLWE-HE
schemes requires complex operations on polynomials from R𝑛

𝑄
to

realize a specific arithmetic operation on the underlying cleart-
ext data. BGV[7], BFV[8, 17] and CKKS[9] are the most popular
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RLWE-HE schemes. While BGV and BFV are tailored for integer
data and offer exact computation, the CKKS scheme is designed for
approximate computation on real data. These schemes are imple-
mented in most of the software libraries for HE [2, 22, 43] which
also provide functions that perform the necessary computation
on ciphertext/plaintext inputs to realize an addition, Hadamard
multiplication (multiplication), and a cyclic permutation (rotation)
of the encrypted vectors.

In RLWE-HE schemes, a ciphertext ct is represented as a vector
containing two polynomial elements from R𝑛

𝑄
, denoted as ct ∈

[R𝑛
𝑄
]2. For the BFV and BGV schemes, a plaintext is an element

from R𝑛
𝑃
, where 𝑃 (< 𝑄) is the plaintext modulus that dictates the

dynamic range of encrypted data. In the CKKS scheme, which is
designed for approximate computation, the plaintext is an element
from R𝑛

𝑄
and does not include a plaintext modulus. The encryption

process for a vector of secret values m involves encoding it into a
polynomial to produce a plaintext 𝑝𝑡m and then encrypting this
plaintext to obtain a ciphertext ctm = (𝑎, 𝑏). Here, the first polyno-
mial element 𝑎 is chosen uniformly at random from R𝑛

𝑄
. The second

polynomial element, 𝑏, is computed as 𝑏 = 𝑎 · 𝑠𝑘 + 𝛿 · 𝑝𝑡m + 𝜖 · 𝑒 ,
where 𝑠𝑘 is the secret key, 𝑒 is a small error, 𝛿 is a scaling factor
for the plaintext message, and 𝜖 is a scaling factor for the error.
For the BGV and CKKS schemes, 𝛿 = 1, while for the BFV scheme,
𝛿 = ⌊𝑄/𝑃⌉. Whereas, 𝜖 = 1 for the BFV and CKKS schemes and
𝜖 = 𝑃 for the BGV scheme. The method presented in this paper is
designed for RLWE-HE schemes and thus, for the remainder of this
paper, we will refer to RLWE-HE as simply HE.

2.4 Computing on Encrypted Data with HE
In Figure 1 we show the runtimes of all ciphertext computation
operations for the CKKS, BFV and BGV HE schemes in the SEAL
library [43] for various choices of the polynomial modulus degree
(and no variation of other HE parameters). The numbers depicted
in this chart are averages of 1000 trials. Here, Add plain and Multi-
ply plain are optimized variants of the arithmetic operations when
only one of the operands is encrypted and the other is in plaintext.
Additions are the fastest operations in HE: the corresponding poly-
nomials in the ciphertexts/plaintexts are added together to obtain
the sum of the underlying cleartext data. Multiplications are more
complex, involving a convolution operation for multiplying polyno-
mials in the ciphertexts/plaintexts to generate polynomials for the
product ciphertext that encrypts the Hadamard product of the clear-
text data encrypted in the inputs. It has become common practice to
speed up the convolutions for polynomial multiplication with the
Number Theoretic Transform (NTT) [30]. NTT is the finite-field
equivalent of the Fourier transforms; it follows the same structure
of computation but with arithmetic operations and twiddle factors
for the respective finite field. NTTs bring the complexity of one
polynomial multiplication down from 𝑂 (𝑛2) to 𝑂 (𝑛 log𝑛).

Rotations are the most time-consuming operations, involving a
very expensive key-switching procedure that uses a special eval-
uation key ek to change the key the input ciphertext has been
encrypted with in such a way that when the resulting ciphertext
is decrypted with the original secret key, it outputs a vector of
the same cleartext data but with elements cyclically rotated with
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Figure 1: Runtimes for ciphertext computation operations.

the desired shift. These evaluation keys are very large (larger than
ciphertexts), and one key only works for a specific rotation. The
polynomials that have been standardized [1] to meet 128-bit secu-
rity are at least of degree 𝑛 = 2048. Such large polynomials, with
𝑛 ≥ 2048, can encode vectors with 𝑛 elements in the case of BFV
and BGV, or 𝑛/2 elements in the case of CKKS. This makes for a
huge number of total possible unique shifts (up to 𝑛) and an im-
practical number of evaluation keys to be generated and stored
to enable all these rotations in one shot. The aforementioned li-
braries assuage this issue by only generating log𝑛 evaluation keys
for rotations involving power-of-2 shifts, which we will refer to as
prime rotations. Arbitrary rotations are performed as a composition
of multiple prime rotations, involving as many prime rotations as
the hamming weight of the binary decomposition of the desired
arbitrary shift amount.

2.5 Error Growth from HE Computation
In RLWE-HE schemes, error lies at the heart of security. The encryp-
tion process in these schemes perturbs the plaintext polynomial
by adding a small random error sampled from a discrete Gaussian
distribution. This error coexists with the underlying message in
the ciphertext, meaning that any computation on these ciphertexts
affects both the underlying data and the error, causing the error
to grow. As a result, ciphertexts can only handle a limited amount
of error; if the error exceeds a set budget, the underlying data be-
comes permanently corrupted, leading to decryption failure. The
total available error budget is determined by the coefficient modu-
lus𝑄 of the ring R𝑛

𝑄
, while the rate at which the error grows after a

specific operation also depends on the polynomial modulus degree
𝑛 [36] among other parameters.

Regrettably, the coefficient modulus 𝑄 affects the security level
of the HE scheme in an inverse manner: a higher 𝑄 immediately
results in a higher error budget but also significantly lowers the se-
curity level. Moreover, higher parameters lead to a larger ciphertext
expansion factor due to the use of larger polynomials, resulting in
slower operations. Therefore, for a fixed computation, error growth
determines the size of the ciphertexts, and accurately estimating
error growth helps in choosing the optimal HE parameters for the
best performance.

In Figure 2, we show the error growth due to computation in
BGV and BFV schemes. The same trends apply to the CKKS scheme
as well but since the SEAL library doesn’t provide an API for in-
vestigating the error in the CKKS scheme we do not show results
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Figure 2: Error growth from computation in BFV and BGV.

for it. We refer the readers to Costache et al. [12] for a detailed dis-
cussion on error growth in the CKKS scheme. A freshly encrypted
ciphertext has the least amount of error necessary to achieve a
predetermined security level. While the addition of a ciphertext
with a plaintext is free of error growth, adding two ciphertexts leads
to error growth. The error in the sum-ciphertext is the sum of the
errors in the input ciphertexts and the error growth is additive 𝑒𝑎𝑑𝑑 .
Rotation results in more significant error growth than additions,
with the error increasing by an additive factor 𝑒𝑟𝑜𝑡 . Multiplication
has the highest error growth of all operations, and the error grows
by a multiplicative factor 𝑒𝑚𝑢𝑙 . Consequently, careful placement of
multiplications in the computation graph is crucial for curbing error
growth in HE computation and selecting lower HE parameters.

2.6 Related Work
CyptoNets [15] was the first system for secure neural network in-
ference on data encrypted with HE. They use a variant of HE that
is only capable of linear operations and hence the neural network
they consider replaced non-linear activation functions with HE-
friendly polynomial activations. Moreover, the HE scheme used
also did not support packing and the algorithm implemented for
the linear operations was very inefficient. Halevi and Shoup [21]
first introduced an efficient algorithm for securely computing a
matrix product inside a single ciphertext using HE, which primar-
ily consists of two steps. For simplicity, we consider the case of
a matrix-vector product where the matrix is locally held by the
server as its private input, and the vector is the client’s private
input. The client encrypts the vector into contiguous slots of an HE
ciphertext and sends it to the server for computation. The first step
is diagonal encoding, where the server extracts the diagonals of its
2D matrix and encodes them into HE plaintexts. These diagonals,
extracted from the server’s matrix, are output-aligned, meaning
they begin from the first row of the server’s matrix and proceed
diagonally downwards. The second step, iterative MAC (multiply-
accumulate), involves the server initializing an accumulator with a
zero ciphertext using the public key. At each iteration, the server
rotates the ciphertext containing the client’s vector, multiplies it
with the corresponding diagonal, and accumulates the product into
the accumulator. After the final iteration, the server generates an
additive secret sharing of the final result by sampling a random
vector and subtracting it from the accumulator’s final value. The
server then sends the ciphertext holding the difference back to the
client and retains the random vector as its share of the final result.
The client decrypts the ciphertext with its secret key and obtains
its share of the final result.

Gazelle [27] was the first mixed-protocol framework for secure
neural network inference that employed HE for linear layers, GC

for non-linear layers and secret-sharing to communicate interme-
diate results. Gazelle implemented Halevi and Shoup’s algorithm
for matrix multiplication and optimized it to efficiently compute on
wide matrices (number of columns > number of rows), which are
common in neural networks. Most importantly, Gazelle extended
this optimized matrix multiplication algorithm to compute 3D con-
volution, the most prevalent operation in convolutional neural
networks. Several subsequent works [33, 40] on secure inference
utilized Gazelle’s algorithm implemented with the BFV HE scheme
for processing the neural network’s linear layers. In a later work,
Reagen et al. [41] proposed a reordering of operations in Gazelle
that leads to a lower error growth which subsequently enabled
them to work with lower HE parameters to gain a performance
boost. Zhang et al.[46] observed that Gazelle’s optimization for
wide matrices contained few redundant HE rotations which can in-
stead be performed in cleartext without any loss in security. In their
implementation, GALA [46], they skip these expensive HE rotations
leading to faster computation times. Another line of work [4, 5]
proposed packing values from different inputs along the batch axis
into a single ciphertext. This mitigated the requirement for special
algorithms to compute linear algebra operations inside a single
ciphertext and the requirement for HE rotations since the values in
a single ciphertext correspond to different inputs. This approach is
not very useful in many Machine-Learning-as-a-Service scenarios
where each user typically queries a single input and not a batch.

Cheetah [24], however, adopted a completely new approach, pre-
senting a new matrix encoding scheme that leverages the implicit
convolution computation on the coefficients of polynomials when
multiplying two elements from R𝑛

𝑄
. Consequently, the new algo-

rithms for matrix multiplication and 3D convolution do not require
any costly rotation operations. However, this approach generates
the final result in multiple ciphertexts, each holding only a few
elements of the final result. To reduce communication costs, the
authors propose an extraction scheme that breaks up the RLWE
ciphertexts into their individual LWE components and returns only
the LWE components that individually hold an element of the final
result. Although Cheetah is implemented with the BFV HE scheme,
its plaintext encoding and extraction steps diverge from how BFV is
natively implemented in popular HE libraries. As a result, extensive
patches to the HE library are necessary for its implementation. Fur-
thermore, the algorithm also implements an optimization specific to
the BFV scheme’s decryption structure, enabling the truncation of
the ciphertext’s least significant bits to further decrease the amount
of communicated data. Due to this, the Cheetah algorithm does not
guarantee equivalent performance with the BGV scheme. Addition-
ally, the encoding scheme requires placing secret messages in the
coefficient space of the polynomials in the ciphertext, rendering it
inapplicable to the CKKS HE scheme.

2.7 Threat Model
All previously discussed secure inference approaches from Sec-
tion 2.6 operatewithin a two-party semi-honest threatmodel.Within
this setting, a remote server hosts a model and provides Machine
Learning services, while a client sends a request for inference on a
specific input. While the trained parameters of the ML model re-
main confidential to the server and the input is private to the client,
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both the model architecture and hyper-parameters are openly avail-
able to both parties. Under the semi-honest model, each party is
expected to rigidly follow the protocol but might attempt to glean
information about the other party’s data.

3 HELiKs FRAMEWORK
3.1 Design and Achievements
The design of the HELiKs Framework is centered on four key prin-
ciples:
• Consistency: Ensuring that the encoding format remains
unchanged from input to output, allowing seamless com-
position of multiple HE operations without the need for
client-side repacking between operations.
• Integrity: Adhering to scheme definitions for ciphertexts,
which enables compatibility with any HE library without
necessitating modifications.
• Compatibility: Supporting all popular RLWE-HE schemes
(BGV, BFV, and CKKS) for a versatile, plug-and-play module
that can be incorporated into any HE application, regardless
of the underlying scheme.
• Performance: Implementing a streamlined and efficient ap-
proach approach to minimize overheads, ultimately achiev-
ing industry-leading running times and bandwidth usage.

To realize these principles,HELiKs builds upon the Halevi-Shoup
method by integrating various optimizations, resulting in substan-
tial improvements in computation complexity, processing time, and
overall bandwidth usage. A key innovation is the MAC-core design,
which reduces the number of NTTs needed during multiplications
by 33%. In addition, HELiKs introduces a novel matrix encoding
that works in tandem with the MAC-core design to further accel-
erate multiplications. This encoding includes a one-time offline
pre-computation process that cuts the number of NTTs performed
during online computation by an extra 50%.

HELiKs also incorporates a restructured computation graph for
partial sums, which effectively controls error growth from HE com-
putation without compromising correctness. The partial sum accu-
mulation strategy in HELiKs lowers the number of rotations from
𝑂 (𝑛 log𝑛) to 𝑂 (𝑛), substantially reducing the dependency on the
number of evaluation keys from𝑂 (log𝑛) to just𝑂 (1). This leads to
a significant decrease in the number of evaluation keys sent to the
server. To further optimize bandwidth usage, HELiKs reworks the
computation to eliminate the public key dependency and adapts
the algorithm for symmetric key variants of HE. This optimization
halves the data transmitted between the client and server.

3.2 High-level Overview
HELiKs framework comprises efficient protocols for securely com-
puting matrix products and 3D convolution. The primary optimiza-
tions stem from the core MAC computation in a matrix product
all of which carry over to the protocol 3D convolution. In this sec-
tion, we give a high-level overview of the protocol for securely
computing a matrix-vector product detailing the steps involved
in server-side data encoding, client-side encryption, online com-
putation, and secret sharing of the final result. This protocol is
illustrated in Figure 3.
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Figure 3: Protocol for securely computing a matrix-vector
product in the HELiKs framework.

3.2.1 Step 0: Encoding the Server’s Data. The server starts
by preprocessing its secret matrix to reduce the online computa-
tion time. It extracts diagonals from the matrix and creates a set of
one-dimensional vectors. Each diagonal consists of elements from
the matrix in a diagonal pattern, with the first diagonal starting
at the first index of the first column and continuing diagonally
downwards. The server then converts these vectors (matrix diago-
nals) into plaintexts for the chosen RLWE-based HE scheme, with
polynomials represented in the NTT domain.

3.2.2 Step 1: Encrypting the Client’s Data. The client creates
keys for a symmetric-key version of the RLWE-based HE scheme
and encrypts its secret vector, generating an input-ciphertext. This
input-ciphertext and a key-switching key are sent to the server.
The key-switching key is necessary for rotating encrypted data in
a ciphertext one slot to the right.

3.2.3 Step 2: Online Computation at the Server. Once the
server receives the input-ciphertext and key-switching key, it trans-
forms the polynomials in the input-ciphertext to the NTT domain.
Following this, the server multiplies the input-ciphertext by the
plaintext containing the last diagonal and transforms the polyno-
mials in the resulting product-ciphertext from the NTT domain to

2310



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Shashank Balla & Farinaz Koushanfar

the coefficient domain. This product-ciphertext is used to initial-
ize an accumulator-ciphertext. The server then performs a series
of iterative computations, involving rotation, multiplication, and
addition operations. In each iteration, the server uses four inputs:
the input-ciphertext containing the client’s secret vector, the key-
switching key for rotation, the accumulator-ciphertext, and the
plaintext containing the corresponding diagonal of the server’s
matrix for that iteration.

The server processes the diagonals of its matrix in descending
order, with the first iteration using the last diagonal, and the final
iteration using the first diagonal. During each iteration, the server
multiplies the input-ciphertext with the plaintext containing the
corresponding diagonal. The polynomials in the resulting product-
ciphertext are then transformed back to the coefficient represen-
tations from the NTT domain. Next, the accumulator-ciphertext
is rotated, shifting the underlying data one slot to the left, and
then incremented by adding the product-ciphertext. After com-
pleting the iterations, the server applies modulus-switching to the
accumulator-ciphertext, storing it as the result-ciphertext.

3.2.4 Step 3: Secret Sharing the Final Result. The server gen-
erates a random vector, encodes it into plaintext, adds it to the
result-ciphertext to obtain the output-ciphertext, and sends the
output-ciphertext back to the client. The server negates the random
vector and retains it as its share of the result of the secure matrix-
vector product. The client decrypts the output-ciphertext to obtain
its share of the result of the secure matrix-vector product.

4 SECURE MATRIX MULTIPLICATION
In this section, we present the implementation details of the specific
algorithm in theHELiKs framework for securematrixmultiplication
with HE.

4.1 Encoding 2D Matrices
Recall from Section 2.3 that RLWE-HE schemes can only represent
fixed-length vectors, particularly with a scheme instantiated on R𝑛

𝑄

we can only pack a vector of 𝑛 (𝑛/2 for CKKS) elements in a single
ciphertext/plaintext. Further, using a polynomial modulus degree
𝑛 that is a power of 2 enables highly efficient implementations
of NTT. Therefore, most practical HE applications, including our
approach, set 𝑛 to a power of 2. As a result, the number of slots
in an HE ciphertext is also a power of 2. To efficiently pack a 2D
matrix in the available slots, it is first padded to the nearest powers
of 2 of the original dimensions.

The basic case of packing a square matrix, as discussed in Sec-
tion 3.2.1 and illustrated in Step 0 of Figure 3, is applicable onlywhen
using the CKKS scheme on R𝑛

𝑄
with matrix dimension 𝑑 = 𝑛/2.

This is because the CKKS scheme supports a full range of cyclic
rotations across the 𝑛/2 available slots, allowing for rotations of any
size between 1 and𝑛/2−1. For BFV and BGV schemes onR𝑛

𝑄
, which

support only the group of half rotations, we implement a modified
version of Gazelle’s Hybrid approach as presented in GALA [46].
Packed diagonals are input-aligned, and the final rotate-and-sum
computation to accumulate the two final partial sums in the two
halves of the ciphertext is performed on the cleartext secret shares.

≪ " × +Input

Matrix

Output ≪ "× +Input

Matrix

Output

Prior version

!!" 						+ !#$% 						×!&'( 			+ !)** 		→ 		 !$'% !!"								×!&'( 		+ !#$% 				+ !)** 		→ 		 !$'%
Refactored

Input-Aligned DiagonalsOutput-Aligned Diagonals

Offline
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Figure 4: Refactored partial sum computation.

In scenarios involving square matrices of size 𝑑 ≤ 𝑛/4, we pack
𝑛
𝑑
( 𝑛2𝑑 for CKKS) unique diagonals in each plaintext on the server-

side and encrypt 𝑛
𝑑
( 𝑛2𝑑 for CKKS) copies of the input vector in

the input ciphertext on the client side. For rectangular matrices
with dimensions (𝑑𝑜 , 𝑑𝑖 ) with either 𝑑𝑜 or 𝑑𝑖 ≤ 𝑛/4, we pack input-
aligned extended diagonals that wrap around the smaller dimension.
For cases where 𝑑𝑜 ≤ 𝑛/4, we perform the final rotate-and-sum
computation on the cleartext secret shares similar to GALA [46],
bypassing the need for costly ciphertext computation in HE.

4.2 Partial Sum Computation
We start with the Halevi-Shoup algorithm as our baseline, the
details of which were presented in Section 2.6. The computation
involved in the algorithm is iterative where in each iteration the
input ciphertext is rotated and thenmultiplied by the corresponding
diagonal for the iteration and finally accumulated with the result of
the previous iteration. This is illustrated in the left half of Figure 4.
In our implementation, the operations are reordered such that the
input ciphertext is first multiplied by the diagonal, then rotated to
align the product with the output, and finally accumulated into the
result of the previous iteration. To ensure correctness, the encoding
scheme for thematrix is tweaked to produce input-aligned diagonals
i.e., the diagonals now begin from the first column of the matrix
and proceed diagonally downwards.

A refactored version is illustrated in the right half of Figure 4.
Though the total counts of each operation remain the same, the
error growth is now much less than what it was, leaving some avail-
able error budget unused. This allows us to shave off these unused
bits from the coefficient modulus and work with ciphertexts that
have polynomials with much smaller coefficients while maintain-
ing the dynamic range (plaintext modulus) and security level for
the encrypted data. The drop in the size of the ciphertexts linearly
reduces the processing times of all HE operations across the board
as well as lowers bandwidth usage during communication.

4.3 Partial Sum Accumulation
Recall from Section 2.4 that arbitrary rotations in HE are composed
of multiple prime rotations for which the evaluation keys have been
generated. For a square matrix of dimension 𝑑 , the partial sum
computation in our current version is comprised of 𝑑 iterations
where the 𝑖th iteration involves a rotation of 𝑖 steps to the left. This
would require a total of about (𝑑 − 1) × (log𝑑)/2 prime rotations2

2The average hamming weight of all positive integers less than 𝑑 is log𝑑
2 .
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Figure 5: Refactored partial sum aggregation.

with log𝑑 evaluation keys. Figure 5 illustrates this in the schematic
on the left-hand side.

A refactored version is shown in the right half of Figure 5. It
features a restructured partial sum accumulation strategy that con-
sumes the diagonals in descending order. In the first iteration, the
input ciphertext is first multiplied with the plaintext holding the
last diagonal, the product is then rotated 1 step to the right and
used to initialize an accumulator. In the subsequent iterations, after
the input ciphertext is multiplied with the corresponding plaintext3
it is added into the accumulator and then the value stored in the
accumulator is rotated 1 step to the right. The refactored version
lowers the number of prime rotations by a factor of (log𝑑)/2. More-
over, since all the prime rotations involve a fixed shift of 1 step to
the right the computation now requires only one evaluation key.

4.4 NTT pre-computation
Recall from Section 2.4 that all contemporary HE libraries imple-
ment NTT and inverse-NTT (iNTT) to speed up the computation
involved in polynomial multiplications. For every multiplication,
both operands first undergo an NTT, then a Hadamard product of
the respective NTT representations of the operands is computed,
and finally, this Hadamard product is transformed back to its native
coefficient representation through an iNTT to obtain the final result.
The left half of Figure 6 illustrates the intrinsic calls to NTT and
iNTT by the multiplication operator in popular HE libraries when
both operands are not explicitly represented in the NTT domain.
This involves a total of 2𝑑 calls to NTT and 𝑑 calls to iNTT for 𝑑
multiplications for a matrix of dimension 𝑑 .

In the right half of Figure 6, we show the refactored algorithm
which reduces the total calls made to (i)NTT by 66.7%. We first
remove all the redundant NTTs for the input ciphertext by limiting
it to just one. Further, we observe that the NTTs for the plaintext
diagonals are also wastefully re-calculated for subsequent queries
to the protocol involving the same matrix. To assuage this issue, we
integrate these NTT computations into the offline matrix encoding
process. Though this results in a longer encoding time for thematrix,
it leads to a much faster online processing time. Moreover, the
computation cost involved in the new encoding algorithm amortizes
over subsequent queries involving the same matrix.

3In the 𝑖th iteration the input is multiplied with the (𝑑 − 𝑖 ) th diagonal.
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Figure 6: Refactored multiplications with fewer NTTs.

4.5 Tiling for Large Matrices
To efficiently compute on large matrices with dimensions (𝑑𝑜 , 𝑑𝑖 ) >
𝑛/2, we partition the matrix into 𝑛𝑜 × 𝑛𝑖 -many square tiles with a
dimension of 𝑛/2 and encrypt the input vector of 𝑑𝑖 elements using
𝑛𝑖 ciphertexts. The final result is produced in 𝑛𝑜 ciphertexts, and
we compute one output ciphertext at a time following an iterative
process, which is largely similar to the descriptions provided in
earlier sections. During each iteration, we first compute 𝑛𝑖 products
of the𝑛𝑖 input ciphertexts with the corresponding diagonal from the
𝑛𝑖 tiles. We then combine these 𝑛𝑖 products into a single ciphertext
and perform the iNTT, accumulation with the result of the previous
iteration, and rotation of one step to the right. This method reduces
the total number of iNNTs and rotations by a factor of 𝑛𝑖 compared
to a naive approach of computing 𝑛𝑜 × 𝑛𝑖 matrix products.

4.6 Symmetric Key HE
HE can also be instantiated with a symmetric key variant where
a single key is used for both encryption and decryption. When a
ciphertext is generated with symmetric key encryption, the first
polynomial element 𝑎 is created randomly. This enables the possi-
bility of transmitting a short seed in place of the full polynomial.
The receiving party can then use this seed to locally expand and
reconstruct the polynomial with a pseudorandom generator (PRG).
Although the second polynomial element𝑏 must still be transmitted
in its entirety, this approach significantly reduces the communica-
tion cost compared to public key encryption methods. To achieve
this reduction in communication cost, the algorithm is modified
to remove all dependencies on the public key. This alteration also
ensures that the server is no longer capable of encrypting any
data, further enhancing the security and efficiency of the HELiKs
framework.

4.7 Secret Sharing
For BFV and BGV schemes, the plaintext modulus 𝑃 is typically
selected as a Pseudo-Mersenne prime in the form of 𝑃 = 2𝑘𝑛 + 1
[7, 19, 44], where 𝑛 represents the polynomial modulus degree and
𝑘 is a positive integer. When 𝑃 takes this form, the polynomial ring
R𝑛
𝑃
has a multiplicative group order of 2𝑛 . The Chinese Remainder

Theorem (CRT) representation of these polynomial rings enables
the packing of up to 𝑛 messages from Z𝑃 into a single polynomial,
allowing for efficient SIMD operations on encrypted data.

The BFV and BGV schemes can only process data with values
from Z𝑃 and support arithmetic operations in Z𝑃 for encrypted
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computation. Therefore, we employ the same finite field for secret
sharing in the BFV and BGV schemes. After the server completes
the final computation (excluding the rotate-and-sum operation), it
generates a random vector y′s of 𝑛 elements uniformly sampled
from Z𝑃 for each ciphertext cty′ that encrypts a portion y′ of the
final result. The server encodes this vector into a plaintext 𝑝𝑡y′s ,
subtracts it from cty′ to obtain cty′c = cty′ − 𝑝𝑡y′s , ensuring that
y′c + y′s ≡ 𝑦′ mod 𝑃 , and returns cty′c to the client. The client then
decrypts cty′c to obtain y′c and performs the remaining rotate-and-
sum operation on y′c in Z𝑃 to acquire its secret share of the result, yc.
Simultaneously, the server carries out the rotate-and-sum operation
on y′s to obtain its final secret share, ys.

For the CKKS scheme, the ciphertext modulus 𝑄 is a product of
𝑙 primes, enabling 𝑙 levels of computation i.e., 𝑄 =

∏𝑙−1
𝑖=0 𝑞𝑖 . The

HE computation utilizes 𝑙 − 1 levels, and after the computation, the
ciphertexts holding the result are rescaled down to 𝑞0 such that
each ciphertext cty′ is in [R𝑛𝑞0 ]

2. Secret sharing in CKKS can be
implemented using the conversion scheme described in theMP2ML
framework [4]. Following this approach, the server ends up with a
secret share ys that has uniformly random elements from Z𝑞0 , while
the client obtains yc with elements from Z𝑄 such that yc + ys ≡ 𝑦
mod 𝑄 . This asymmetry in the finite fields arises from the fact that
the plaintext space of CKKS is R𝑛

𝑄
and though the ciphertexts are

in [R𝑛𝑞0 ]
2 the decryption process results in a plaintext from R𝑛

𝑄
.

5 SECURE 3D CONVOLUTION
HELiKs also includes an optimized implementation for 3-dimensional
convolution, which is the most common operation in many popular
DNN models. Gazelle [27] proposed an encoding scheme for 4D
filters and an algorithm to evaluate 3D convolutions based on a
series of rotate, multiply and accumulate operations. The algorithm
presented in Gazelle [27] has been reused in many popular privacy-
preserving DNN frameworks to date [33, 40]. The algorithm for
Secure 3D Convolution in HELiKs builds on the specific implemen-
tation of Gazelle in CrypTFlow2 [34, 40] with insights gained from
developing the protocol for matrix multiplication.

First, we briefly recall the convolution operation in Neural Net-
works. Convolution of a (ℎ,𝑤) 2D input with a (𝑓ℎ, 𝑓𝑤) 2D filter
involves scanning the filter across the entire input and storing a
weighted sum of the overlapping (𝑓ℎ, 𝑓𝑤) portion of input with
respective filter elements at corresponding output locations to gen-
erate a (ℎ,𝑤) 2D output. The convolution of a (𝑐𝑖 , ℎ,𝑤) 3D input
with a (𝑐𝑖 , 𝑓ℎ, 𝑓𝑤) 3D filter involves the same process as above, with
the weighted sum now involving a (𝑐𝑖 , 𝑓ℎ, 𝑓𝑤) 3D overlapped region,
and results in a (ℎ,𝑤) 2D output. The 3D convolution operation
repeats this process 𝑐𝑜 times for (𝑐𝑜 , 𝑐𝑖 , 𝑓ℎ, 𝑓𝑤) 4D filter to generate
a (𝑐𝑜 , ℎ,𝑤) 3D output.

This transformation of a (𝑐𝑖 , ℎ,𝑤) input to a (𝑐𝑜 , ℎ,𝑤) output
using a (𝑐𝑜 , 𝑐𝑖 , 𝑓ℎ, 𝑓𝑤) 4D filter can be reinterpreted as a subtle
variation of a matrix-vector product of a (𝑐𝑖 , 1) input with a (𝑐𝑜 , 𝑐𝑖 )
matrix to generate a (𝑐𝑜 , 1) output. In a matrix-vector product, we
multiply scalar elements in the input vector with scalar elements
of the matrix, at the lowest level, and then aggregate the scalar
products that correspond to the same output locations to generate
the output. The 3D convolution operation is very similar where in

place of the scalar multiplications we perform 2D convolutions of
2D channels of input with 2D sections of the filter, at the lowest
level, and then aggregate results of these 2D convolutions that
correspond to the same output channel to generate the final output.

5.1 Offline Filter Encoding
We implement a modified version of Gazelle’s encoding scheme for
4D filters which allows us to first multiply the filter with the input
ciphertext and then perform the rotation. The encoded filter re-
turned by the encoding scheme is a (𝑐𝑜 , 𝑐′𝑖 , 𝑓 ) 3D array of plaintexts,
𝑐′
𝑖
= 𝑐𝑖/𝑐𝑛 is the number of input ciphertexts, 𝑐𝑛 = 𝑛/(ℎ ×𝑤) is the

number of channels encoded in a single ciphertext and 𝑓 = 𝑓ℎ × 𝑓𝑤
is the number of filter elements. In the inner-most dimension, the
encoded filter contains 𝑓 plaintexts pertaining to two 2D convo-
lutions of two input channels with the corresponding (𝑓ℎ, 𝑓𝑤) sec-
tions of the filter for the respective output channels. To gener-
ate these 𝑓 plaintexts for the 2D convolution, we mostly follow
the HE_preprocess_filters_OP()method implemented inCrypT-
Flow2 [34]. The only change is that each plaintext generated using
their method was designed to be multiplied with a particular ro-
tated version of the input channel, which we undo by rotating the
plaintexts by the same amount in the opposite direction and sav-
ing these rotation amounts for later use. As mentioned earlier in
Section 4.2, performing multiplication before rotation significantly
reduces the error growth in the HE computation. Finally, all plain-
texts are transformed to their NTT representations which allows us
to perform much faster multiplications during the online process
as mentioned in Section 4.4. This encoding of the 4D filters is a
one-time offline pre-computation that is reused for all subsequent
convolutions involving the same filter.

5.2 Online Convolution Processing
The online process begins with the client sending 𝑐′

𝑖
HE ciphertexts

to the server for its (𝑐𝑖 , ℎ,𝑤) input image generated with symmetric
key encryption. We first transform all the input ciphertexts to their
NTT representations and then proceed with an iterative algorithm
to compute partial sums for the convolution as illustrated in Algo-
rithm 1. This algorithm generates 𝑐𝑜 ciphertexts that together hold
𝑐𝑛 partial sums for each channel in the final output image. The pro-
cess involves 3 nested loops where the outermost loop iterates over
the output channels, the next loop iterates over all filter elements,
and the innermost loop iterates over all input ciphertexts.

First, we carry over the tiling approach from Section 4.5 to mini-
mize the total number of rotations. This is achieved by computing
the products for all input ciphertexts with the corresponding plain-
text filters for the corresponding output channel and filter element
and aggregating them into a single ciphertext which is then rotated.
Next, we restructure the accumulation of these intermediate cipher-
texts in order to minimize the total number of rotations, iNNTs, and
evaluation keys used for the computation as described in Section 4.3.
For each output channel, we stream through the filter elements
backward starting with the last one. For each segment of 𝑓𝑤 filter
elements, intermediate ciphertexts for the first 𝑓𝑤−1 filter elements
are rotated 1 step to the right and the next intermediate ciphertext
is rotated𝑤 steps to the right. This way the computation requires
only 2 evaluation keys with all rotations performed in one shot.
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Algorithm 1: 3D Convolution in HELiKs

Input: Ciphertexts of input image cti,1, cti,2, .., cti,𝑐 ′𝑖
Encoded filters F with (𝑐𝑜 × 𝑐′𝑖 × 𝑓 ) plaintexts ;
Evaluation keys for rotations ek1 and ekw

Output: Ciphertexts of partial results cto′,1, cto′,2, .., cto′,𝑐𝑜
/* 𝑐𝑛 = 𝑛/(ℎ ×𝑤) */

/* 𝑐′
𝑖
= 𝑐𝑖/𝑐𝑛 */

/* 𝑓 = 𝑓ℎ × 𝑓𝑤 filter elements */

1 for 𝑝 = 1 to 𝑐′
𝑖
do

2 cti,𝑝 = NTT(cti,p)
3 end
4 for 𝑞 = 1 to 𝑐𝑜 do

/* Start from the last filter element */

5 𝑝𝑡fil,𝑓 = F[𝑞, 1, 𝑓 ]
6 cto′,𝑞 = multiply(cti,1, 𝑝𝑡fil,𝑓 )
7 for 𝑠 = 2 to 𝑐′

𝑖
do

8 𝑝𝑡fil,𝑓 = F[𝑞, 𝑠, 𝑓 ]
9 cto′,𝑞 = cto′,𝑞 +multiply(cti,𝑠 , 𝑝𝑡fil,𝑟 )

10 end
11 cto′,𝑞 = iNTT(cto′,𝑞)
12 for 𝑟 = 𝑓 − 1 to 1 do
13 if 𝑟 mod 𝑓𝑤 = 0 then
14 cto′,𝑞 = rotate-right(cto′,𝑞, ekw)
15 else
16 cto′,𝑞 = rotate-right(cto′,𝑞, ek1)
17 end
18 𝑝𝑡fil,𝑟 = F[𝑞, 1, 𝑟 ]
19 ctpartial = multiply(cti,1, 𝑝𝑡fil,𝑟 )
20 for 𝑠 = 2 to 𝑐′

𝑖
do

21 𝑝𝑡fil,𝑟 = F[𝑞, 𝑠, 𝑟 ]
22 ctpartial = ctpartial +multiply(cti,𝑠 , 𝑝𝑡fil,𝑟 )
23 end
24 ctpartial = iNTT(ctpartial)
25 cto′,𝑞 = cto′,𝑞 + ctpartial
26 end
27 end

Finally, we refactor the algorithm to avoid using zero ciphertexts
and thus remove all dependency on the public key.

After generating the partial sums using the algorithm described
above, 𝑐𝑛 partial sums for each output channel are aggregated using
an approach similar to the HE_output_rotations()method imple-
mented in CrypTFlow2 [34]. We modify this method as illustrated
in Algorithm 2, to restructure the computation and accumulation of
intermediate ciphertexts such that the computation only requires 2
evaluation keys with all rotations performed in one shot. On a high
level, this process involves accumulating all channels in one half
of a partial sum with 𝑐𝑛/2 rotations of ℎ ×𝑤 steps to the right and
adding up the accumulated results in the two halves of the partial
sum by rotation of the columns of the partial sum. Our implemen-
tation requires only 2 evaluation keys and does not require a public
key for the computation.

Algorithm 2: Output Rotations for 3D Convolution
Input: Partial results of convolution cto′,1, cto′,2, .., cto′,𝑐𝑜

Evaluation keys for rotation ekℎ × 𝑤 and ekcol
Output: Ciphertexts of output image cto,1, cto,2, .., cto,𝑐 ′𝑜
/* 𝑐𝑛 = 𝑛/(ℎ ×𝑤) */

/* 𝑐′𝑜 = 𝑐𝑖/𝑐𝑛 */

1 out-idx-flags← Boolean vector of 𝑐′𝑜 false values
2 for 𝑠 = 0 to 𝑠 < 2𝑐𝑜/𝑐𝑛 with increments of 2 do
3 𝑞′ = 𝑠 × 𝑐𝑛/2 + 1
4 𝑞′′ = 𝑞′′ + 𝑐𝑛/2
5 ctpartial,𝑠 + 1 = cto′,𝑞′
6 ctpartial,𝑠 + 2 = cto′,𝑞′′
7 for 𝑡 = 1 to 𝑡 < 𝑐𝑛/2 do
8 𝑞′ = 𝑠 × 𝑐𝑛/2 + 𝑡 + 1
9 𝑞′′ = 𝑞′ + 𝑐𝑛/2

10 ctpartial,𝑠 + 1 = ctpartial,𝑠 + 1 + cto′,𝑞′
11 ctpartial,𝑠 + 2 = ctpartial,𝑠 + 2 + cto′,𝑞′′
12 ctpartial,𝑠 + 1 = rotate-right(ctpartial,𝑠 + 1, ekℎ × 𝑤)
13 ctpartial,𝑠 + 1 = rotate-right(ctpartial,𝑠 + 2, ekℎ × 𝑤)
14 end
15 out-idx = (𝑠/2 mod 𝑐𝑜 ) + 1
16 if 𝑠 = 0 then
17 if out-idx-flags[out-idx] is false then
18 cto,out-idx = ctpartial,𝑠 + 1
19 out-idx-flags[out-idx] = 𝑡𝑟𝑢𝑒

20 else
21 cto,out-idx = cto,out-idx + ctpartial,𝑠 + 1
22 end
23 if 2𝑐𝑜/𝑐𝑛 = 1 and 2𝑐𝑖/𝑐𝑛 > 1 then
24 ctpartial,𝑠 + 1 =

rotate-columns(ctpartial,𝑠 + 1, ekcol)
25 cto,out-idx = cto,out-idx + ctpartial,𝑠 + 1
26 end
27 if 2𝑐𝑜/𝑐𝑛 > 1 then
28 ctpartial,𝑠 + 2 =

rotate-columns(ctpartial,𝑠 + 2, ekcol)
29 cto,out-idx = cto,out-idx + ctpartial,𝑠 + 2
30 end
31 else
32 if out-idx-flags[out-idx] is false then
33 cto,out-idx = ctpartial,𝑠 + 1
34 out-idx-flags[out-idx] = 𝑡𝑟𝑢𝑒

35 else
36 cto,out-idx = cto,out-idx + ctpartial,𝑠 + 1
37 end
38 if 2𝑐𝑜/𝑐𝑛 > 1 then
39 ctpartial,𝑠 + 2 = rotate-columns(ctpartial,𝑠 + 2)
40 cto,out-idx = cto,out-idx + ctpartial,𝑠 + 2
41 end
42 end
43 end
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Table 1: Total operation counts for prime rotations (refer Section 2.4), NTTs and iNTTs, along with the total error growth and
number of keys utilized for computing a convolution with the BFV scheme using Gazelle [27], CrypTFlow2 [40], Cheetah [24]
andHELiKs. The values shown in this table pertain to a (𝑐𝑖 , ℎ,𝑤) input image and a (𝑐𝑜 , 𝑐𝑖 , 𝑓ℎ, 𝑓𝑤) filter. The quantity 𝑐𝑛 = 𝑛/(ℎ ·𝑤)
denotes the number of image channels packed in a ciphertext with 𝑛 slots and 𝑓 = 𝑓ℎ · 𝑓𝑤 is the total number of filter elements.

Convolution Prime Rotations NTTs iNTTs Error Growth Keys Utilized # Out cts

Gazelle 𝑐𝑖 ·𝑐𝑜 · (𝑐𝑛−1)
𝑐2𝑛

× log𝑐𝑛
2 +𝑐𝑖 · (𝑓 −1)𝑐𝑛

× log 𝑓
2

2·𝑐𝑜 ·𝑐𝑖 ·𝑓
𝑐𝑛

𝑐𝑜 ·𝑐𝑖 ·𝑓
𝑐𝑛

𝑐𝑖 · (𝑓 −1)
𝑐𝑛

· (𝑒𝑖𝑛 + 𝑒𝑟𝑜𝑡 ) · 𝑒𝑚𝑢𝑙

+ 𝑐𝑖 · (𝑓 −1)
𝑐𝑛

· (𝑐𝑛 − 1) · 𝑓 · 𝑒𝑟𝑜𝑡
pk + log𝑛 eks 𝑐𝑜

𝑐𝑛

CrypTFlow2 𝑐𝑜 · (𝑐𝑛−1)
𝑐𝑛

× log𝑐𝑛
2 +𝑐𝑖 · (𝑓 −1)𝑐𝑛

× log 𝑓
2

2·𝑐𝑜 ·𝑐𝑖 ·𝑓
𝑐𝑛

𝑐𝑜 ·𝑐𝑖 ·𝑓
𝑐𝑛

𝑐𝑖 · (𝑓 −1)
𝑐𝑛

· (𝑒𝑖𝑛 + 𝑒𝑟𝑜𝑡 ) · 𝑒𝑚𝑢𝑙

+ (𝑐𝑛 − 1) · 𝑓 · 𝑒𝑟𝑜𝑡
pk + log𝑛 eks 𝑐𝑜

𝑐𝑛

Cheetah 0 2·𝑐𝑜 ·𝑐𝑖 ·𝑓
𝑐𝑛

𝑐𝑜 ·𝑐𝑖 ·𝑓
𝑐𝑛

𝑒𝑖𝑛 · 𝑒′𝑚𝑢𝑙
pk 𝑐𝑜 ·𝑐𝑖 ·𝑓

𝑐𝑛

HELiKs
(Our work)

𝑐𝑜 · (𝑐𝑛−1)
𝑐𝑛

+ 𝑐𝑜 · (𝑓 − 1) 𝑐𝑖
𝑐𝑛

𝑐𝑜 · 𝑓
𝑐𝑖 · (𝑓 −1)

𝑐𝑛
· 𝑒𝑖𝑛 · 𝑒𝑚𝑢𝑙

+ (𝑐𝑛 − 1) · 𝑓 · 𝑒𝑟𝑜𝑡
up to 4 eks 𝑐𝑜

𝑐𝑛

5.3 Operation Counts and Error Growth
We summarize the total operation counts of prime rotations, NTTs
and iNTTs for convolution with Gazelle, CrypTFlow2 and our imple-
mentation in Table 1. The authors ofGazelle proposed two strategies
for performing the rotations to accumulate partial sums, input-
rotations and output-rotations, and showed that the output-rotations
variant performs better. The output-rotations strategy involves 𝑓 −1
(𝑓 = 𝑓ℎ × 𝑓𝑤 ) rotations for each input ciphertext requiring log 𝑓 /2
prime rotations on average for each rotation. The rotated input
ciphertexts are multiplied with the corresponding plaintexts and
accumulated to generate 𝑐𝑖 · 𝑐𝑜/𝑐𝑛 intermediate ciphertexts. This
process involves 𝑐𝑖 ·𝑐𝑜 · 𝑓 /𝑐𝑛 multiplications with each requiring two
NTTs to transform the operands to their NTT representations and
one iNTT to transform the product back to the coefficient represen-
tation for the rest of the computation. The intermediate ciphertexts
are then grouped into 𝑐𝑜/𝑐𝑛 sets corresponding to the output ci-
phertexts they should be accumulated into. Every set contains 𝑐𝑖
ciphertexts, and each ciphertext in the set is rotated 𝑐𝑛 − 1 times
to accumulate all channels it packs. Each rotation here requires an
average of log 𝑐𝑛/2 prime rotations.

The authors of CrypTFlow2 made the observation that the output-
rotations strategy utilized a factor of 𝑐𝑖/𝑐𝑛 more rotations than
required. The algorithm implemented in CrypTFlow2, first accumu-
lates all intermediate ciphertexts corresponding to the same rotation
amount and then performs rotations and the subsequent accumu-
lations to generate the final result. Since our implementation in
HELiKs builds on this algorithm, we gain the same improvements
for the outer rotations when aggregating the intermediate cipher-
texts. The number of inner rotations performed to generate these
intermediate ciphertexts in our implementation differs from CrypT-
Flow2 because we reorder the operations to perform the multiplica-
tions first on the inputs before any other operation. As shown in

Table 1, this results in an error growth that is 𝑒𝑟𝑜𝑡 ·𝑒𝑚𝑢𝑙 ·𝑐𝑖 · (𝑓 −1)/𝑐𝑛
lower than all prior methods enabling us to work with much smaller
HE parameters. Further, because of the NTT pre-computation we
are able to significantly lower the number of (i)NTTs performed
during the online processing and gain significant speedups in online
runtimes.

The authors of Cheetah [24] introduce a distinct approach, rooted
in the concept that polynomial multiplications implicitly evaluate
inner products over their coefficients. To harness this, Cheetah de-
vises an encoding technique in which the plaintext is positioned in
the coefficients of the polynomial, differing from the conventional
Canonical embedding in the polynomial’s evaluation space. This
deviation from scheme definitions necessitates engineered solu-
tions in the software libraries for seamless operation. When data is
encoded using this method, the core computation is quite direct, ne-
cessitating only 𝑐𝑖 · 𝑐𝑜/𝑐𝑛 HE multiplications4, with each involving
2 NTTs and one iNTT. The absence of rotations negates the need
for any evaluation keys. However, there’s a caveat: this technique
disperses the end result across 𝑐𝑖 · 𝑐𝑜/𝑐𝑛 ciphertexts, which calls
for further adjustments in the software library to solely extract the
segment of the RLWE ciphertexts harboring the actual result. This
unconventional encoding also brings additional overhead to the
error growth. Since the plaintexts reside in the coefficient domain,
its comparable magnitude in the Canonical (evaluation) space mag-
nifies by a factor of up to 6

√
𝑛 [13], denoted as 𝑒′

𝑚𝑢𝑙
≤ 6
√
𝑛 · 𝑒𝑚𝑢𝑙 .

6 EVALUATION
This section provides a performance evaluation for the algorithms
implemented in HELiKs and compares them to prior work.

4Assuming (𝑊𝑊 , 𝐻𝑊 ) = (𝑊,𝐻 ) [24, Appendix D]
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Figure 7: Stacked computation times for all operations and communication measurements for Matrix multiplication using
HELiKs for square matrices of dimension 𝑑 = 26, 29, 212, 214 and 215. The computation times shown for each matrix of dimension
pertain to the baseline CrypTFlow2 and each optimization included in HELiKs, where V4 is the final version implemented in
HELiKs. The communication measurements are for the input data sent by the client to the server and the output data received
by the client from the server.

Experimental Setup: We ran evaluation experiments on an Intel
i7-7700K CPU with 32GB of memory, with a default bandwidth of
100 MB/s. Reported numbers are the average of 100 runs. For each
experiment, we pick parameters that achieve similar precision and
accuracy to the works against which we compare our performance.
Since all the relevant prior work uses the BFV HE scheme, all ex-
periments shown below are performed with the BFV scheme in the
SEAL Library [43] to ensure fairness. The computation performed
in all experiments is verified for correctness (no decryption failure).

6.1 Matrix Multiplication
For all experiments in this section, the polynomial modulus is set
to 𝑛 = 8192 and the plaintext modulus is set to 𝑃 = 4293918721
which is a 32-bit prime. In Figure 7, we present the benchmarks for
matrix multiplications with the baseline Gazelle algorithm as im-
plemented in CrypTFlow2 (CF2) and with each of the optimizations
implemented in HELiKs:

• V1: Performing multiplications first (refer Section 4.2).
• V2: Performing fixed rotations (refer Section 4.3)
• V3: Pre-computing NTTs (refer Section 4.4)
• V4: Using symmetric key encryption (refer Section 4.6)

We include the tiling optimization from Section 4.5 in V2, V3 and
V4 only. Since the optimizations proposed in GALA [46] are similar
to V1, we do not include tiling for V1, so it can be used as a point
of comparison with GALA.

0

0.5

1

1.5

2

2.5

3

0

10

20

30

40

50

60

64 128 256 512 1024 2048 4096 16384 32768

Com
m

unication R
edutionCo

m
pu

ta
tio

n 
sp

ee
du

p

Matrix Dimensions

GALA Computation CF2 Computation GALA Communication CF2 Communication

Figure 8: Matrix multiplication performance gains using
HELiKs over CrypTFlow2 and GALA.

The values shown in Figure 7 are for square matrices of dimen-
sions 𝑑 = 26, 29, 212, 214, 215 where V𝑎-𝑏 pertains to version 𝑎 for
𝑑 = 2𝑏 . Since CF2 has a much higher error growth it requires a
large ciphertext modulus of 218 bits in total while V1, V2, V3 and
V3 only require a ciphertext modulus of only 133 bits. As shown in
the figure, rotations dominate the computation in most scenarios.
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Figure 9: Convolution performance boost with HELiKs over CrypTFlow2 and Cheetah for linear layers in ResNet50.

For the matrix with 𝑑 = 26, the computation only involves a single
multiplication. For large matrices, the computation is dominated
by multiplications and we see significant gains from the NTT pre-
computation. Finally, with the use of symmetric key HE we are able
to reduce the bandwidth used during communication.

In Figure 8, we show the speedup and communication reduction
of HELiKs over CrypTFlow2 and GALA. HELiKs achieves a speedup
of up to 51× over CrypTFlow2 and up to 32× over GALA. The total
amount of data sent and received during the computation with
HELiKs is 2.4× lower than CrypTFlow2 and 1.5× lower than GALA.

6.2 3D Convolution
In this section we evaluate the performance of 3D convolutions
in HELiKs against the implementations of CrypTFlow2 [40] and
Cheetah [24]. Again, the polynomial modulus is set to 𝑛 = 8192
and the plaintext modulus is set to 𝑃 = 4293918721 for HELiKs
and CrypTFlow2 to achieve a precision of 15 bits for the whole
operation. For HELiKs, we use a ciphertext modulus of 𝑄 = 133
bits and for CrypTFlow2 we use a ciphertext modulus of 218 bits.
Cheetah is run with the default parameters reported in the paper.
All experiments in this section are run with 4 threads on the system
used for the experiments. We do not compare with GALA since
the algorithm presented in the paper is exactly the same as in
CrypTFlow2. Moreover, the HE parameters reportedly used inGALA
for their experiments, polynomial modulus degree 𝑛 = 2048 and 20-
bit plaintext modulus, are inapplicable with the algorithm presented
in the paper [46] since it requires that the ciphertext has at least
2×ℎ ·𝑤 slots. This condition does not hold for the models reported
as well as the individual convolution benchmarks reported in the

paper. In light of these inconsistencies, we do not consider the
numbers reported in the paper [46] for our evaluation of HELiKs.

In Figure 9, we show the computation speedup as well as the
reduction in the total bandwidth used for the communication for all
the linear layers in the ResNet50 model with HELiKs over CrypT-
Flow2 and Cheetah. With respect to CrypTFlow2, HELiKs achieves a
speedup of up to 28× with a minimum speedup of at least 4×. Most
of the gains for HELiKs come from the initial layers where the size
of the input image is high and consequently, 𝑐𝑛 = ℎ ·𝑤/𝑛 is very
low, leading to a much lower number of total prime rotations (refer
Table 1) performed during the computations. Though our gains for
the later layers is low, HELiKs achieves a cumulative speedup of
7.5× over CrypTFlow2 for all the layers combined. HELiKs takes
just 60 seconds to run whereas CrypTFlow2 take almost 445 sec-
onds for all the layers in ResNet50. In terms of bandwidth used
during communication,HELiKs is 1.8−3.6× better than CrypTFlow2.
In total, HELiKs requires communication of only 482MB whereas
CrypTFlow2 requires 1.472 GB of data for all layers in ResNet50.

With respect to Cheetah, HELiKs is almost 7.52× faster for some
layers but for a few layers, it takes almost 8.64× longer. On the
whole, HELiKs is still almost 2× faster than Cheetah which takes
117 seconds for all the linear layers in ResNet50. In terms of com-
munication, HELiKs is almost 29× lower than Cheetah for some
layers but for a few layers it is 2.5× higher. For the complete model,
HELiKs still requires 2.2× lower amount of data to be communi-
cated compared to Cheetah which communicates about 1.052 GB of
data. This shows that in spite of the Cheetah framework requiring
extensive patches to the SEAL Library, as discussed in Section 2.6,
HELiKs outperforms it in terms of both computation as well as
communication.
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6.3 End-to-End Inference
In Figure 10, we illustrate the comprehensive runtimes and com-
munication overheads when executing secure inferences using a
ResNet50 DNN. We evaluate three frameworks: CrypTFlow2, Chee-
tah, and our proposed system, HELiKs, which integrates CrypT-
Flow2’s protocols, especially for secure non-linear operations over
the ring Z𝑃 .

CrypTFlow2 Performance: CrypTFlow2 completes the infer-
ence in a total of 570 seconds, involving a communication volume
of 29.79 GB. Notably, the HE computation for the linear layers
dominates the runtime, accounting for 78% of it. This contrasts
with the non-linear layers which are comparatively faster, benefit-
ing from legacy cryptographic methods that have seen significant
optimizations over the past three decades. The computation’s fixed-
point arithmetic nature makes truncation critical to control data
expansion. Emphasizing accurate truncation, CrypTFlow2 incurs
substantial communication costs, with 17.75 GB of data transmis-
sion dedicated solely to truncation during the secure inference
on ResNet50. The encrypted results produced by the CrypTFlow2
framework precisely match the computations performed on the
plaintexts in the clear.

Cheetah’s Innovations: Cheetah introduces novel HE kernels
for linear layers, achieving a reduced runtime of 273 seconds. Their
unique encoding strategy frees them from the natural plaintext
limitations of RLWE schemes, the ring Z𝑃 (R in the case of CKKS),
thus enabling more efficient protocols for non-linear operations
over 𝑙-bit integers (Z2𝑙 ). The real standout in Cheetah’s strategy
is the marked reduction in communication. They leverage DNNs’
inherent resilience to noise and employ a lightweight approximate
truncation by removing the constraint of correcting the error in
the least significant bit. Prior work [14] had already shown that
this error does not affect the accuracy of the DNN, and due to this,
Cheetah demonstrates significant savings in communication costs
with approximate truncation protocol only requiring a mere 345.4
MB. Furthermore, their decision to employ VOLE style OTs rooted
in the silent-OT extension [6], as opposed to the IKNP-based OT
extension [28] utilized by CrypTFlow2, further bolsters communica-
tion efficiency. Silent-OT extension only requires transmission of
short seeds which are expanded locally to yield the correlated ran-
domness. While this cuts the communication cost logarithmically,
it involves much more local computation.

HELiKs + CrypTFlow2: Our system, HELiKs, was constructed
within the Secure and Correct Inference (SCI) Library, embedded
in the CrypTFlow framework [34]. Our prime focus is on linear
layers, allowing HELiKs to substantially expedite the HE computa-
tion time and overall runtime. Using HELiKs, the secure inference
on a ResNet50 model is accomplished in 183 seconds. This per-
formance is notably 3.1× swifter than CrypTFlow2 and 1.5× faster
than Cheetah. However, in terms of communication,HELiKs closely
mirrors CrypTFlow2, as it also shoulders the faithful truncation’s
communication cost.

7 CONCLUSION
Overall, HELiKs significantly reduces runtime and communication
overheads for a wide range of applications requiring secure matrix
multiplication and convolutions. Adhering to the design principles
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Figure 10: Runtimes and communication overheads for
privacy-preserving inference on a pre-trained ResNet50 DNN
using CrypTFlow2, Cheetah, and HELiKs with CrypTFlow2.

of, Consistency, Integrity, Compatibility and Performance, HELiKs
is able to offer state-of-the-art performance with plug-and-play
kernels for any HE scheme that do not require any modifications
to existing libraries. By providing efficient and secure computation,
HELiKs can be a valuable tool for preserving privacy in various
collaborative scenarios. For future work, we intend to focus on
DNN computation and apply and extend HELiKs to a diverse set of
model architectures.
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A HELiKs IN OPENFHE
We incorporated HELiKs into the OpenFHE Library [2], with the
BGV scheme. OpenFHE offers a broad spectrum of HE schemes
and corresponding operations, including multiplication and key-
switching. One challenge, however, is its limited transparency re-
garding manual adjustments of all HE parameters, especially the
coefficient modulus—unlike what SEAL offers. Instead, OpenFHE
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Figure 11: Stacked computation times for all operations and communication measurements for Matrix multiplication using
HELiKs (V2) for square matrices of dimension 𝑑 . The communication metrics represent the client’s sent input and received
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Figure 12: (a) Matrix multiplication efficiency with computation speedups and reduced communication using HELiKs in the
OpenFHE Framework with BGV scheme, comparing CrypTFlow2 and GALA. (b) Computation speedup and communication
reduction of HELiKs over CrypTFlow2 for all linear layers of ResNet50 in OpenFHE.

enables users to specify a multiplicative depth and plaintext modu-
lus, from which it automatically determines the coefficient modu-
lus. This auto-selection is grounded in aggressive noise estimation,
which often results in choosing parameters much larger than nec-
essary for the computation at hand. Recent research on HE noise
estimation [12, 13, 36] indicates a significant discrepancy between
noise estimates and empirical observations. In response to this,
we’ve selected a plaintext modulus of 𝑃 = 65537 and multiplicative
depths of 2 for CrypTFlow2 algorithms and 1 for HELiKs. For the
sake of security, the smallest polynomial ring size, ensuring 128-
bit security for the provided plaintext modulus and multiplicative
depth in OpenFHE, was selected: 𝑛 = 16384 for CrypTFlow2 and
𝑛 = 8192 for HELiKs. Another limitation of OpenFHE is its absence
of simple routines to transfer a ciphertext to the NTT domain or for
symmetric encryption due to which it is impossible to incorporate
the enhancements highlighted in Sections 4.4 and 4.6.

In Figure 11, we delineate the runtime specifics and commu-
nication overhead for matrix multiplication over various matrix
dimensions, using CrypTFlow2 (CF2), GALA (V1), and HELiKs (V2)
without the NTT and Symmetric Key upgrades. All the methodolo-
gies are framed within the BGV scheme, and our observations are
consistent with the discussion in Section 6.1. Figure 12 (a) illustrates
the tangible performance boosts of secure matrix multiplication
withHELiKswhen compared to CrypTFlow2 andGALA in both com-
putation and communication facets. In Figure 12 (b) we show the
performance improvements for secure convolution using HELiKs
over CrypTFlow2 for all the linear layers in a pre-trained ResNet50
DNN model. Given that the convolution computation primarily
hinges on multiplications (approximately 10 − 20× the rotations),
and considering the absence of NTT pre-computation, multiplica-
tion performance enhancements remain unattainable.
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