UCLA

Posters

Title

Centralized Routing for Resource-Constrained Wireless Sensor Networks (SYS 5)

Permalink

https://escholarship.org/uc/item/30q628jx

Authors

Thanos Stathopoulos Lewis Girod John Heideman et al.

Publication Date

2006

Centralized Routing for Resource-Constrained Wireless Sensor Networks

Thanos Stathopoulos, Lewis Girod, John Heidemann, Deborah Estrin, Karen Weeks CENS Systems Lab, UCLA MIT CSAIL USC/ISI

CentRoute: Centralized routing protocol for motes

Why centralized routing for motes

- **Heterogeneous systems:** Collections of *motes* and *microservers* working together
- Utilize heterogeneity: *shift routing decisions* from resource-constrained motes to resource-rich microservers

Centralized routing

- Addresses problems of distributed protocols
- Provides *global view* of the entire mote network at each sink

Heterogeneous Design Principle

Use the advantages of one platform to offset the disadvantages of another

Corollaries for mote routing:

- Centralize decision making on a *microserver* to make routing decisions based on a *complete* set of information
- **Reduce** memory requirements of motes
- **Program** a significant part of the protocol in a *familiar* and resource-rich *32-bit environment*

Problems with Distributed Proactive Routing on Motes

Distributed Decision-Making with RAM Constraints

- *Mote-specific* problems:
 - Distributed decision making in conjunction with storage constraints leads to routing instabilities and inconsistencies
 - Limited RAM also creates scalability challenges
 in terms of network density and network size
- Additional problems
 - Proactive nature leads to increased energy consumption
 - Distance-vector leads to count-to-infinity scenarios and routing loops

Node A *has* node B in neighbor table and as a next hop to a destination

Node B *doesn't have* node A in neighbor table and thus *doesn't forward* the packet further

- Selection of the next hop to a destination is based on *neighbor table*
 - Memory requirements are *O(neighborhood size)*
- Memory constraints place upper bound on table size
 - Cache eviction policies used
 - Subject to *thrashing*, especially in dense networks
 - Leads to routing instabilities ("flapping")
 - Independent decisions by nodes based on artificially constrained information lead to inconsistencies

CentRoute: Protocol Details and Performance

Protocol Details

- Runs on *both* motes and their sink (microserver)
 - Motes forward *control data* to microserver
 - Decision-making logic implemented *exclusively* on microserver
- *On-demand* protocol
 - Tree maintained by *data packets*
- Dynamic single-sink support
 - Sink selected at *runtime*
 - Motes only send data to (and keep state for) one sink at a time
- Multi-sink ambiguity resolved in *microserver tier*
- Source Routing used in both directions

Tree Formulation

- Motes broadcast beacons *only* when they wish to join a tree
- Any motes *attached* to the tree *forward* join beacons towards shepherd via unicast
- Microserver picks *best path* using an ETX metric and sends a *unicast source-routed reply* to the mote
- Mote attaches to tree and uses the *last mote* on the reverse path as its *parent*

The CentRoute *phased-join* operation

CentRoute | MintRoute | Multihop | Multihop

Improved connectivity at *medium and high*densities due to lack of per-mote neighbor state

Quickly connects large part of the network

Performance

Very low control overhead due to *on-demand* nature

Neighbor density (motes)	CentRoute loop prob. (%)	MintRoute loop prob. (%)	Multihop loop prob. (%)
4	0	0.47	2.11
8	0	0.01	1.92
12	0	0.02	1.88
16	0	0.03	2.48
20	0	0.03	3.65
24	0	0.04	4.8
28	0	0.04	3.12
32	0	0.02	7.27

Eliminates loops through centralized decision making, source routing and absence of any mote decisions

Usage (bytes) RAM ROM per neighbor CentRoute MintRoute 1274 17184 0 MintRoute Multihop 1560 17292 19

Lower memory usage on the mote due to absence of O(N) state

Current status & Future Work

Current Status

- Deployed at Botanical Gardens.
- Field deployment at James Reserve pending

Future work

• Utilize global view & centralization nature to design a transmission scheduler for Cyclops image transfer over multiple hops