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Abstract

Effectively characterizing primate diets is fundamental to understanding primate behavior,

ecology and morphology. Examining temporal variation in a species’ diet, as well as compar-

ing the responses of different species to variation in resource availability, can enhance

understanding of the evolution of morphology and socioecology. In this study, we use feed-

ing data collected over five years to describe the diets of two sympatric Southeast Asian pri-

mate species of similar body size: white-bearded gibbons (Hylobates albibarbis) and red

leaf monkeys (Presbytis rubicunda rubida), in Gunung Palung National Park, West Kaliman-

tan, Indonesia. Long-term data sets are especially important for characterizing primate diets

in Southeast Asia, where the forests exhibit supra-annual mast fruiting events. We found

that gibbons were mainly frugivorous, with fruit and figs comprising 70% of their 145 inde-

pendent feeding observations, whereas leaf monkeys ate a substantial amount of seeds

(26%), fruits and figs (26.5%) and leaves (30%, n = 219 independent feeding observations).

Leaf monkeys consumed a higher number of plant genera, and this was due mostly to the

non-frugivorous portion of their diet. To investigate resource selection by these primates we

utilized two different approaches: the Manly Selectivity Ratio, which did not take into account

temporal variation of resource availability, and a model selection framework which did incor-

porate temporal variation. Both species selected figs (Ficus) more than predicted based on

their availability under the Manly Selectivity Ratio. Model selection allowed us to determine

how these primates alter the proportion of leaves, flowers, seeds, figs and fruit in their diets

in response to variation in fruit availability. When fruits were scarce, both gibbons and leaf

monkeys incorporated more leaves and figs into their diets, indicating that these two food

classes are fallback foods for these primates. We discuss how different measures of

resource selection can provide seemingly contradictory results, and emphasize the
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importance of long term studies that combine independent feeding observations with rigor-

ous assessment of temporal variation in resource availability when modelling feeding

selectivity.

Introduction

A thorough investigation of primate diets, and how primates alter their diets in response to

variation in food availability, is fundamental for understanding primate behavior, ecology and

morphology [1–9]. Periods of resource scarcity may have particularly important impacts on

primate fitness because during these times feeding competition can be intense and food quality

poor [10]. While such periods can have disproportionate impacts on primate feeding adapta-

tions and sociality, they occur infrequently in some environments [9,11–13]. Long-term obser-

vations of primate feeding behavior and concurrent assessment of plant food availability are

therefore necessary to sample across the full range of variation within the diet and to encom-

pass periods of high and low resource availability [14–16].

The need for long-term data sets is particularly acute in Southeast Asia because most forest

types there exhibit dramatic, supra-annual fluctuations in fruit production that exceed the

magnitude of variation in food availability characteristic of other tropical forests [17–20]. Mast

fruiting events are periods of super-abundance of resources, and are characteristically followed

by periods of extreme food scarcity [14,19]. These phenological cycles are linked to EL Niño

Southern Oscillation events [18,21] and consequently occur at irregular intervals that are

unpredictable from the perspective of vertebrate frugivores. Due to the hyper-variability in

food availability in the Dipterocarp forests of SE Asia, dietary changes in response to food

availability can be dramatic, with some primate species incurring negative energy balance dur-

ing periods of low resource availability [22]. Studying the responses of frugivores to these fluc-

tuations in food availability—especially the responses of multiple taxa that differ in their

dietary adaptations, life histories, and feeding strategies [23,24]–can shed light on the evolu-

tion of primate feeding adaptations.

A useful way to understand dietary responses to fluctuations in food availability is to cate-

gorize dietary items based on their use and availability, and in particular to distinguish

between preferred and fallback foods [9,25–28]. Preferred foods are generally high-quality

foods that are easy to process and are eaten more often than would be predicted based on their

availability [29]. Foods that are consumed more during periods when preferred foods are

scarce are termed fallback foods [9]. Comparative studies of primate diets are particularly

informative for understanding how responses to resource availability drive evolutionary pro-

cesses [30–32]. For example, the African grey-cheeked mangabey (Lophocebus albigena) has a

relatively high degree of dietary overlap with the sympatric red-tail guenon (Cercopithecus
ascanius). L. albigena possesses much harder tooth enamel than C. ascanius, some of the hard-

est tooth enamel found in extant primates. The foods that L. albigena consumes during times

of resource scarcity (i.e., their fallback foods: bark and seeds) are thicker and harder to process

than foods eaten by C. ascanius, and the difference in tooth enamel thickness between the two

species can be explained by the foods they consume when resources are scarce [8]. Compara-

tive studies can also be useful for understanding how resource availability influences primate

population biology. For example, the population density of white-bearded gibbons (Hylobates
albibarbis) is limited by the availability of their fallback foods [9,14], whereas red leaf monkey

(Presbytis rubicunda) population density is limited by the availability of high quality, preferred
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foods [24]; these differences may be due to differences in the life histories of the two species

[25].

Gibbons and leaf monkeys provide an excellent comparison for investigating the effects of

resource variability on primate ecology because they are similar in body size, but have different

social systems, life histories and diets [24]. Gibbons generally live in male-female pairs and

have relatively slow life histories (e.g., long inter-birth intervals and long lifespans), whereas

leaf monkeys live in single-male, multi-female groups and have relatively fast life histories [25].

Gibbons and leaf monkeys are classified as frugivores and folivores/gramnivores, respectively.

Gibbons are generally considered ripe-fruit specialists and possess few morphological adapta-

tions to process low-quality foods [33], whereas leaf monkeys, like all colobine monkeys, have

morphological adaptations such as complex, multi-chambered stomachs, thin tooth enamel

and high shearing cusps that facilitate the consumption of leaves [34,35].

In this study, we conduct a dietary analysis of two sympatric primate species, red leaf mon-

keys (P. rubicunda, hereafter referred to as leaf monkeys), and white-bearded gibbons (H. albi-
barbis, hereafter referred to as gibbons) in Gunung Palung National Park, Indonesia using

plant phenology data and primate feeding observations collected over 66 months. We examine

the feeding ecology of sympatric populations of gibbons and leaf monkeys to: 1) characterize

and compare gibbon and leaf monkey diets, identify the genera consumed and their impor-

tance, the relative contribution of different plant parts to overall diets, and overall dietary rich-

ness, diversity and overlap; 2) analyze feeding selectivity for each primate species; and 3) assess

how these primates respond to temporal variation in fruit availability. Specifically, we make

the following predictions: compared to gibbons, leaf monkeys will have higher dietary richness

and diversity; prefer more genera, and avoid fewer genera; and show shifts in types of plant

parts consumed in response to variation in overall fruit availability. We make these predictions

based on evidence that leaf monkeys have morphological and physiological adaptations to pro-

cess a wider variety of foods than gibbons [36–38].

Materials and methods

Field site and study subject

We conducted this study at the Cabang Panti Research Station (CPRS) in Gunung Palung

National Park, West Kalimantan, Indonesia (1˚13˚ S, 110˚7˚ E) from September 2007 through

February 2013. At CPRS, mean gibbon group sizes are 4.32 individuals (SD = 0.89, range 2–6,

N = 33 groups) and mean home range size is 43 ha (SD = 5.4); mean leaf monkey group sizes

are 5.77 individuals (SD = 2.6, range 2–11, N = 13 groups) and with 90 ha (SD = 11.4) mean

home range size [24,39]. There are seven floristically distinct forest types at Gunung Palung

National Park [20], but for the present analyses we focused on the five forest types that exhibit

mast fruiting (freshwater swamp, alluvial bench, lowland sandstone, lowland granite, and

upland granite) as the non-masting forest types (montane and peat swamp) have dramatically

different phenological patterns and plant species composition [14,18,20,23]. We operationally

define mast fruiting events as periods where there was at least a three-fold increase in fruiting

stems above the mean proportion of stems fruiting in all other months. We recorded daily

maximum and minimum temperature and rainfall at the field station at CPRS (elevation

approximately 15 m asl).

Feeding observations

Each month, AJM, field managers, or trained Indonesian field assistants walked two replicate

census routes (averaging 3.5 km in length) in each of the seven forest types found at CPRS and

collected data on gibbon and leaf monkey feeding behavior. Inter-observer reliability was
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ensured through extensive training, periodic checks of distance measures, and regular quizzes

to assess the accuracy of plant and vertebrate species identifications. Observers were randomly

rotated across habitat types and census routes, and average encounter rates and detection dis-

tances are highly concordant between observers [39]. Standard line-transect methods allowed

for the collection of statistically independent feeding observations and avoided the potential

for pseudo-replication that may occur when multiple feeding observations are collected from

the same group on the same day. We systematically walked fourteen, spatially segregated line

transects, at a consistent speed between 0530 and 1200 hrs (for details see [14,40]). For any

group or individual encountered while feeding, we recorded the first item consumed by the

first individual seen [40,41]. We collected feeding data on all age and sex classes, thus adults

and juveniles of both sexes were included in our analyses. Because data were collected across

multiple forest types and many groups, the results reflect the diet for the population, rather

than potentially idiosyncratic observations of a single group. Following collection of feeding

data, observations along the vertebrate census route continued so that multiple feeding obser-

vations were not made from the same group on the same day.

We collected additional feeding data during targeted focal observations of gibbons and leaf

monkeys. We selected target groups at random from among the known groups at the site

(NHYLOBATES = 20–28 groups, NPRESBYTIS = 8–14 groups during the research period located

across the five masting forest types examined in this study). After contacting the target primate

group (normally in the morning between 6:00 and 9:00, although some observations were

made later in the day), we randomly selected a focal individual of any age-sex class (except

nursing infants) and followed until it began feeding. Data collection on focal follows continued

for 30 minutes, at which point a new focal individual was randomly chosen. We did not record

a new feeding observation from the focal animal until it had travelled to a different tree or

liana to ensure that multiple feeding observations were not recorded from the same individual

plant.

We collected the following data for each primate group encountered on transect routes

and during focal follows. For the plant fed upon by the first primate individual sighted, we

recorded the identification of the plant eaten (to the lowest taxonomic level possible), location

(using a GPS unit and/or a detailed address based on the trail system), size (dbh, diameter at

breast height), and growth form (i.e., tree, liana) of the plant; the part being eaten (e.g., fruit

pulp, seeds, young leaves); the maturity stage, if applicable (e.g., immature, ripe); the number

of animals feeding; and an estimate of the total crop size [14,39]. We gathered one feeding

observation every 3.6 days, on average (range 0–68, SD = 6.3). In previous analyses, we found

there were no significant differences in the use of plant genera collected during line transect

surveys or focal follows [41], therefore we lumped feeding observations together to increase

sample size.

Assessing plant phenology

To assess spatial and temporal variation in food availability, we monitored the reproductive

behavior of tree and liana stems located in fifty 0.1 or 0.2 ha botanical plots (placed in a ran-

dom, stratified manner, 10 plots and 1.5 ha per forest type; 4,739 tagged stems, see [24,41]).

Each month all stems in every plot were carefully examined with binoculars and assigned to

one of six reproductive states (reproductively inactive, or bearing flower buds, flowers, imma-

ture, mature, or ripe fruits). Determination of fruit ripeness stages was based on changes in

size, color, and texture, using categories developed over the last 30 years for each plant taxon

[20,25]. Mature fruits are full-sized fruits that are unripe but have seeds that are fully developed
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and hardened; ripe fruits are the final development stage prior to fruit fall, usually signaled by

a change in color or softness [42].

Bornean forests contain some of the highest levels of vascular plant diversity in the world

[43], and although many plant stems in the plots were identified to species, the inclusion of

stems identified only to genus meant that all analyses were done at this higher taxonomic level.

Previous work on a variety of taxa has shown that lower taxonomic resolution is appropriate

when identification to the species level is not possible or feasible [44–46].

Dietary composition

We used rarefied species accumulation curves to assess the dietary richness (i.e., taxonomic

breadth) of gibbon and leaf monkey diets, both overall and for the frugivorous portion

(excluding figs) of the diet. We report dietary richness as the observed cumulative number of

plant genera consumed given the number of months in which feeding observations were

recorded for each primate species. We constructed diet richness curves using the “specaccum”

function from the “vegan” package [47] in R 3.0.0 statistical software [48].

We described diet breadth of gibbons and leaf monkeys both in terms of the number plant

taxa eaten and the relative proportion of feeding observations on each of five food classes

(leaves, flowers, seeds, fruits, and figs). We exclude the synconia of Ficus (Moraceae) from the

category of fruits and treat them separately because their reproductive parts are not true fruits,

they are important foods for many vertebrates [25,49,50], and they have unusual phenological

behavior rendering them qualitatively distinct from other fruiting plants considered herein

[18,41,51].

Dietary overlap

We calculated dietary overlap measures that incorporated the number of shared items in the

diet and their relative importance [40]. Our dietary overlap index ranges from 0 to 1, with 0

indicating no overlap and 1 indicating complete overlap. To calculate the dietary overlap

index, we tallied the number of feeding observations on each genus for both gibbons and leaf

monkeys, including multiple feeding observations on the same food item when applicable. We

then compared the overlap of items eaten by both primates to the total number of items eaten

by each primate. Thus, from the perspective of consumer A, the equation is:

A \ Bn=An

and from the perspective of consumer B:

A \ Bn=Bn

where A \ Bn is the number of food items shared by the two consumers, and An, Bn are the

number of food items in each of the respective consumer’s diets [40]. As gibbons and leaf

monkeys had different total numbers of feeding observations, and varying numbers of feeding

observations on the same genus (i.e., different genera were of varying importance), this

resulted in different values of dietary overlap for each species, with each value representing die-

tary overlap from the focal consumer’s perspective. Dietary overlap was calculated for the over-

all diet and for each food class (fruits, seeds, flowers, leaves and figs).

Dietary selectivity

Our study focused on the fruit portion of the diets, because fruits are expected to be the most

limiting class of resources on which these species feed [14,24,40]. Forest productivity was

Feeding ecology of Hylobates albibarbis and Presbytis rubicunda rubida
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defined for gibbons as the proportion of stems bearing fruit that were mature or ripe; for leaf

monkeys stems bearing immature and mature fruits were also included, reflecting the fact that

gibbons avoid unripe fruits whereas leaf monkeys consume them frequently and tend to avoid

ripe fruits because foods rich in starch or sugar can disrupt the forestomach pH and cause aci-

dosis [38]. Despite this fact, we included ripe fruits in the estimate of food availability for leaf

monkeys as our phenology categories were based on the most advanced stage, meaning that

trees with one ripe fruit were scored as ripe, even if most of the fruits on the tree were still

mature [14,42], so plants scored as ripe often still contained some food for leaf monkeys. We

followed the Design I Protocol for calculating selectivity ratios, the appropriate approach when

animals are not individually identified, the availability of a given resource is known, and

resource use is sampled randomly [46].

We calculated Manly Selectivity Ratios (MSRs; selection ratio: genus use/genus availability)

using the “widesI” function in the “adehabitat” package in R [52]. Genus use is simply the total

number of independent feeding observations recorded on a genus, i. We followed the general

convention for MSRs and calculated availability as the total number of stems of genus i that

were observed to fruit during the study period. We calculated selection ratios for each genus

that was observed to have been fed upon at least once by either gibbons or leaf monkeys. We

report MSRs that are standardized so that they add to 1; these values can be interpreted as the

probability that for a selection event the primate would choose the genus of interest over other

available genera [53]. Values close to zero indicate “avoidance”, meaning the genus was eaten

less than would be expected based on its availability. Thus, in the MSR context, the term

“avoidance” of an item does not necessarily indicate the item is never consumed (i.e., it does

not mean that it is a non-food item). Large values indicate “preference” wherein genera were

selected more than predicted based on availability.

We conducted a chi-squared test of the null hypothesis that the animals were randomly

feeding (i.e., selecting resources in proportion to their availability). The chi-squared test was

significant for both animals, so we computed 95% confidence intervals for proportions of used

and available resources. If there are fewer than five resource units per category (or genera in

this case), the corresponding confidence intervals should be interpreted with caution [53]. Rel-

atively few of the genera in our study had five or more feeding observations (5 genera for gib-

bons and 8 genera for leaf monkeys), so we caution against strong interpretations based on the

calculated confidence intervals of the selectivity values.

Dietary composition as a function of fruit availability

We calculated the proportion of the diet comprising each of the five food classes in three-

month blocks. We combined data into three-month periods in order to increase sample size

per period and thereby improve the reliability of estimates [41]. We then compared the num-

ber of feeding observations for each food class (figs, flowers, fruit, leaves and seeds) in each

three-month block to the corresponding average fruit availability values during the same

period. Availability values were calculated as the proportion of the overall stems in the forest

that were bearing fruit. Availability differed for gibbons and leaf monkeys because immature

fruits were included in calculations for the latter but not the former (see above).

We fit linear models using ordinary least squares regression that predicted use (number of

feeding observations on a given food class) based on the following predictors, calculated for a

three-month block: fruit availability (proportion of stems in plots that were fruiting), seed
availability (proportion of stems in plots with seeds), flower availability (proportion of stems

in plots that were flowering), and fig availability (proportion of stems of the genus Ficus that

were fruiting). We also included the following environmental predictors: minimum

Feeding ecology of Hylobates albibarbis and Presbytis rubicunda rubida
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temperature (the mean minimum temperature for a given three-month block), maximum tem-
perature (the mean maximum temperature for a given three-month block), and rainfall (aver-

age daily rainfall, in centimeters, for a given three-month block). We then compared each of

these models and a null intercept model using biased-corrected Akaike’s Information Crite-

rion (AICc) using the “AICctab” function in the R package “bbmle” [48]. We obtained esti-

mates of the 95% confidence bands for the regressions by simulation using the R package

“rethinking” [54]. Due to random sampling variation, some three-month blocks had observa-

tions of leaf monkeys but none for gibbons, so we fit the models using 15 three-month blocks

for gibbons and 20 three-month blocks for leaf monkeys.

Ethics statement

This research complied with all applicable laws of the Republic of Indonesia and the United

States of America. Per regulations of the Institutional Animal Care and Use Committee at the

University of California-Davis, as our research entailed solely non-invasive observation of wild

animals, no formal IACUC review was required. Permission to conduct research at Gunung

Palung National Park was kindly granted by the Indonesian Institute of Sciences (LIPI), the

State Ministry of Research, Technology, and Higher Education (MENRISTEKDIKTI), the

Directorate General for Nature Conservation (PHKA) and the Gunung Palung National Park

Bureau (BTNGP).

Results

We collected 145 feeding observations from gibbons and 219 feeding observations from leaf

monkeys (gibbon feeding data in S1 Table and leaf monkey feeding data in S2 Table). Mean

monthly survey effort across the five forest types sampled was 61.45 km/month (SD = 2.73

km). Approximately 41% of feeding observations were recorded on census routes (NGIBBONS =

102 observations or 46% of total gibbon observations, NLEAF MONKEYS = 120 observations or

38% of total leaf monkey observations), and the remainder were made during focal follows.

Most feeding observations (88% of all observations) were made in the morning. There was no

systematic bias towards males or females in either species, nor any difference in the proportion

between them. Our observations were mostly of adults (~75%), but the proportion of adults

and subadults did not differ between species.

The sampling period included a mast fruiting event from December 2009 though February

2010, during which plant reproductive output spiked. The proportion of plant stems fruiting

in our plots during these three months ranged from 0.08 to 0.15 and averaged over 0.10, more

than three times higher than lowest levels of productivity. This resulted in substantial variation

in availability of food for both gibbons and leaf monkeys over the course of our study. Lump-

ing of months to ensure adequate sample sizes for statistical analyses meant that variation in

the proportion of fruiting stems in our 3-mo sampling blocks was more muted. For gibbons,

the proportion of stems with mature and ripe fruit ranged from 0.026–0.077; for leaf monkeys

the proportion of stems with immature, mature and ripe fruit ranged from 0.04–0.11 (fruit

availability data provided in S3 Table). The sampling effort was not biased towards periods of

high or low fruit availability (gibbons: N = 145, Mann Whitney U = 14, P = 0.1162; leaf mon-

keys: N = 219, Mann Whitney U = 32, P = 0.4319; Fig 1).

Diet composition

The species accumulation curves illustrate that leaf monkey diets had higher overall taxonomic

richness than gibbon diets, when considering all food classes (Fig 2A). Neither curve reached

an asymptote, reflecting that additional richness would be predicted with additional sampling.
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Fig 1. Plot of general forest productivity for gibbons (A: the proportion of stems in the forest bearing mature and ripe fruit) and

leaf monkeys (B: proportion of stems bearing immature, mature and ripe fruit). There was substantial variation in fruit availability over

the course of the study period. The size of the points represents the number of feeding observations for each three-month block.

doi:10.1371/journal.pone.0173369.g001
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Fig 2. Rarefaction curves indicating the dietary richness of P. rubicunda and H. albibarbis. Dietary

richness (number of genera) as a function of time (months of observation) for (A) all food classes and (B) only

the frugivorous portion of the diet. Overall diet richness was greater for leaf monkeys (P. rubicunda) than for

gibbons (H. albibarbis, A), but the species did not differ in the number of genera of fruits they consumed (B).

Error bars represent +/- 1 standard deviation from the mean.

doi:10.1371/journal.pone.0173369.g002
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Nevertheless, the gibbon curve clearly separates from the leaf monkey curve and begins to flat-

ten earlier, indicating that the differences in dietary diversity between the taxa are not the

result of different sample sizes. In contrast to the overall diet, gibbons and leaf monkeys exhib-

ited high similarity in the richness of the frugivorous portion of the diet (Fig 2B). Therefore,

the higher overall dietary richness of leaf monkey diets is due to food classes other than fruit.

Leaf monkey diets were more diverse than gibbon diets both in terms of the total number

of taxa fed upon and the distribution of feeding observations across food classes (Table 1). Leaf

monkey diets were composed of 31.1% leaves (N = 68 observations), 25.6% fruits (N = 56),

26% seeds (N = 57), 8.2% figs (N = 18), 6.4% flowers (N = 14), and 2.7% (N = 6) unidentified

items, whereas gibbon diets were composed of 50% fruits (N = 72), 20% figs (N = 29), 9.7%

flowers (N = 14), 9.7% leaves (N = 14), and 6.9% (N = 10) unidentified items. Leaf monkeys

consumed food sources from 69 genera in 37 families while gibbons consumed them from 46

genera in 40 families. Gibbons and leaf monkeys used different food classes from different gen-

era. Leaf monkeys ate 28 genera of leaves, 13 genera of flowers, 32 genera of seeds, and 29 gen-

era of fruits. Gibbons had a narrower dietary breadth, consuming 9 genera of leaves, 9 genera

of flowers, 5 genera of seeds, and 31 genera of fruits.

Dietary overlap

Our measure of dietary overlap included the number of genera consumed in common and the

relative importance of each item in the diet, producing an index that permits asymmetry in

dietary overlap measures. From the gibbon’s perspective, there was higher overall dietary over-

lap (when genera from all food classes were included) than from the leaf monkey’s perspective

(0.48 vs. 0.32 overlap, respectively). This asymmetry is exemplified in the dietary overlap mea-

sures for the food class figs. From the leaf monkey perspective, the fig dietary overlap was 1;

from the gibbon’s perspective it was 0.62. This asymmetry reflects differences in the impor-

tance of figs for the two primate species. In the fruit portion of the diet, leaf monkeys exhibited

higher dietary overlap with gibbons (0.46) then vice versa (overlap from the gibbon’s perspec-

tive = 0.36), a pattern that was reversed in the leaf portion of the diet, with leaf monkeys exhib-

iting lower dietary overlap with gibbons (0.09) than gibbons with leaf monkeys (0.42; Table 1).

Leaf monkeys also had lower dietary overlap with gibbons in terms of seeds consumed (0.04)

than gibbons had with leaf monkeys (0.33).

Table 1. Contribution of various food classes and dietary overlap measures for gibbon and leaf monkey diets.

FOOD CLASSES

Leaf Flower Seed Fruit (non-fig) Fig Unknown Total

Leaf Monkeys

Feeding Observations 68 14 57 56 18 6 219

Percentage of Diet 31.1% 6.4% 26.0% 25.6% 8.2% 2.7% 100%

Number of Genera 28 13 32 29 1 6 69

Dietary Overlap with Gibbons 0.09 0.29 0.04 0.46 1 NA 0.32

Leaf Flower Seed Fruit (non-fig) Fig Unknown Total

Gibbons

Feeding Observations 14 14 6 72 29 10 145

Percentage of Diet 9.7% 9.7% 4.1% 50.0% 20.0% 6.9% 100%

Number of Genera 9 9 5 31 1 7 46

Dietary Overlap With Leaf Monkeys 0.42 0.29 0.33 0.36 0.62 NA 0.48

doi:10.1371/journal.pone.0173369.t001
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Dietary selectivity

Gibbons and leaf monkeys differed in the genera of fruit-bearing plants they consumed. For

gibbons, 14 genera each contributed� 1% of the total diet; 27% of all feeding observations

came from one genus, Ficus (N = 29). Other important genera for gibbons were Artabotrys
(Moraceae; 9.3%, N = 10), Syzygium (Myrtaceae; 8.4%, N = 9), Willughbeia (Apocynaceae;

5.6%, N = 6), and Diospyros (Ebenaceae; 4.7%, N = 5). Twenty-one genera were important

food sources for leaf monkeys, each comprising� 1% of the diet. The important foods sources

for leaf monkeys were Ficus (Moraceae; 13.9%, N = 18), Strombosia (Olacaceae; 8.5%, N = 11),

Hydnocarpus (Achariaceae; 7.8%, N = 10), Xanthophyllum (Polygalaceae; 7%, N = 9), Artocar-
pus (Moraceae; 5.5%, N = 7) and Strychnos (Loganiaceae; 5.5%, N = 7). Note that sample sizes

are different for dietary composition and feeding selectivity, as we included raw counts of feed-

ing observations for dietary composition, but included only observations of fruiting genera for

the selectivity analyses.

The differences between gibbon and leaf monkey diets were also evident in the preference

for different genera (Gibbons Fig 3a; Leaf monkeys Fig 3b). Gibbons preferred two and

avoided six out of the 35 genera on which they were observed to feed at least once, whereas leaf

monkeys preferred four genera and avoided five of the 51 fruiting genera they consumed. Gib-

bons fed on Ficus (MSRs: 0.093) and Artabotrys (MSRs: 0.271) more than predicted based on

their availability, and leaf monkeys preferred Artocarpus (MSRs: 0.054), Ficus (MSRs: 0.140),

Hydnocarpus (MSR: 0.078) and Xanthophyllum (MSRs: 0.070). Gibbons avoided Agelaea
(MSRs: 0.009), Baccaurea (MSR: 0.009), Calophyllum (MSRs: 0.028), Gironniera (MSRs:

0.009), Gymnacranthera (MSR: 0.009) and Pternandra (MSRs: 0.019). Leaf monkeys avoided

Baccaurea (MSRs: 0.016), Calophyllum (MSR: 0.008), Gironniera (MSRs: 0.008), Gymna-
cranthera (MSR: 0.008) and Pouteria (MSRs: 0.016). We provide a complete list of standard-

ized MSR values for both gibbons and leaf monkeys in S4 Table.

Dietary composition as a function of fruit availability

Fruit availability was in the top model as a predictor of resource use for all classes of foods for

both primates, with the exception of leaves (gibbons) and flowers (gibbons and leaf monkeys).

The responses of gibbons and leaf monkeys to variation in fruit availability were qualitatively

similar within food classes. We found that as overall fruit availability increased, the consump-

tion of leaves and figs declined, while the consumption of fruit and seeds increased. For gib-

bons, the intercept only null model was the top model for leaf consumption (30% model

weight), and this was also the case for flowers (28% model weight). For leaf monkeys, the

strongest predictor of flower consumption was rainfall (27% model weight; for a complete list

of models tested, model weights and delta AIC values see S5 Table).

For the other food classes, fruit availability was the only predictor included in the top mod-

els. The slope estimate for the model of leaf consumption was negative (32% model weight; Fig

4B), meaning as the percentage of trees in the forest with fruit increased there was a decrease

in the proportion of leaves in the diet. The proportion of figs in the diet also decreased in the

diets of leaf monkeys (23% model weight; Fig 4J) and gibbons (31% model weight; Fig 4I) as

fruit availability increased.

The pattern was reversed in the models of seed consumption, with fruit availability having a

positive slope in models for both leaf monkeys (34% model weight; Fig 4F) and gibbons (44%

model weight; Fig 4E). We also found a positive effect of fruit availability on fruit consumption

for leaf monkeys (47% model weight; Fig 3H). But for gibbons, the best predictor of fruit con-

sumption was availability of flowers (22% model weight). The proportion of fruit in the diet

for gibbons was generally greater than 50% even during periods of low availability (Fig 4G),
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Fig 3. Feeding selectivity in gibbons (3a) and leaf monkeys (3b). Closed circles indicate availability (proportion of fruiting observations of

genus i, out of total fruiting observations), open triangles indicate use (proportion of the diet), and error bars are 95% confidence intervals. Non-

overlapping confidence intervals indicate positive selectivity (when triangles (use) are to the right of circles (availability)) or avoidance (when

triangles (use) are to the left of the circles (availability)). Genera are listed from top to bottom in decreasing order of absolute selectivity values.

doi:10.1371/journal.pone.0173369.g003
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Fig 4. Proportions of food classes in the diet plotted against the proportion of stems in the forest bearing fruit. Data

points show values for three-month blocks. Rows indicate dietary components comprising leaves (A, B), flowers (C, D), seeds

(E, F), fruit (G, H), and figs (I, J). Note that estimates of fruit availability (x-axis in all plots) are based on different calculations

for the two species: plots for H. albibarbis (left column) depict the proportion of stems bearing mature and ripe fruit only,

whereas plots for P. rubicunda (right column) depict the proportion of stems bearing immature mature, and ripe fruits. Lines

are ordinary least squares regression lines and standard errors (solid and dotted lines, respectively). Differences in sample

size reflect differences in the number of three-month blocks with feeding observations from gibbons (n = 15) and leaf

monkeys (n = 20). Bold regression lines indicate that fruit availability was a predictor in the top model for that plant part.

doi:10.1371/journal.pone.0173369.g004
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while this proportion rarely exceeded 50% in leaf monkey diets and only then during periods

of high availability (Fig 4H).

Discussion

We report the results of a long-term comparative study of the feeding ecology of two sympatric

primates. In the masting Dipterocarp forests of Gunung Palung National Park in Indonesia,

leaf monkeys had higher dietary richness and diversity than gibbons, which is likely due to leaf

monkeys’ physiological ability to process and digest a broader range of foods. We analyzed

resource selection from two perspectives: 1) by genus in the selectivity analyses, and 2) and by

food class to investigate how these primates alter their diets in response to variation in fruit

availability. The key distinction between these two approaches was that the food class analyses

included changes in food availability over time, whereas the selectivity analyses did not; selec-

tivity analyses included only measures of the commonness of stems. Despite the notable differ-

ences in dietary richness, both primates exhibited similar responses to variation in fruit

availability. When fruit availability decreased, gibbons and leaf monkeys incorporated more

leaves and figs into their diets, and when fruit availability increased they consumed more fruit

and seeds. Below we briefly consider strengths and limitations of our methods, discuss how

our results relate to what has been found for other populations of the same species in different

habitats, and note how the results of our study fit more broadly in the context of other compar-

ative studies of primate feeding ecology. Finally, we draw distinctions between selectivity

analyses that are static (i.e., time invariant) and dynamic dietary composition analyses that

incorporate temporal fluctuations in food availability. Using figs as an example, we discuss

how a food source can paradoxically be identified as both a preferred and a fallback food, and

highlight the importance of taking variation in food availability into account when characteriz-

ing primate diets.

Methodological considerations and limitations

We acknowledge that our sample sizes for feeding data are smaller than for most studies of

primate feeding ecology, even those that are conducted over much shorter periods than ours.

Our sampling methods were a deliberate choice to ensure statistical independence, avoid

pseudoreplication, and sample the population. Primate feeding data are typically collected

during extended follows of focal animals and many feeding observations are recorded from

the same group, often the same individual, on a single day. In addition, one or a small number

of groups are typically sampled. These typical methods present challenges for appropriate sta-

tistical analysis, interpretation, and extrapolation beyond the sampled groups. Our methods

place a primacy on ensuring statistical independence of feeding observations and avoiding

biases associated with sampling few groups or habitat types. We note that while our sample

sizes are small, they are unbiased, so the effects of small sample size are primarily on the width

of confidence intervals and not the mean model results or general trends that we detected.

While we consider our data to be an accurate representation of the feeding behavior of the

populations of the two species we studied, certain limitations warrant consideration. For

example, most of our feeding observations were made before noon, and there is evidence that

some primate species alter their food intake over the course of the day. Spider monkeys (Ateles
geoffroyi) in Santa Rosa National Park, Costa Rica, eat more fruit in the mornings, and more

leaves during midday and in the evening [55]. Both siamangs (Symphalangus syndactylus) and

lar gibbons (Hylobates lar) in Peninsular Malaysia show a similar pattern where they consume

more leaves later in the day [56]. If gibbons and leaf monkeys exhibit similar diurnal variation

at our site, then our over-sampling of the morning would have biased our results. Sex and age
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can also have important influences on primate dietary composition. For example, in mountain

gorillas (Gorilla beringei), females and growing juveniles eat more food, and consume more

protein per kilogram of body mass, than males [57]. Significant differences in dietary composi-

tion between age and sex classes have also been described for sifakas (Propithecus verreauxi
[58]), green monkeys (Cercopithecus sabaeus [59]), and snub-nosed monkeys (Rhinopithecus
roxellana [60]). We collected feeding observations from the first individual detected along the

transect line or a randomly selected focal animal, regardless of age or sex class, so there are no

inherent biases in our methods towards certain types of individuals. Nevertheless, it is possible

that certain age or sex classes are more easily detected along transects and would therefore be

oversampled in the data. We have not detected significant differences in feeding observations

from transects (which are potentially subject to this bias) and randomly-selected focal follows

(which are not [41]), but note that our small sample sizes mean that our power to reject the

null model of no difference is limited.

Dietary diversity, richness and overlap

We showed that gibbon and leaf monkey dietary overlap was asymmetrical and varied depend-

ing on the plant part consumed. Our results suggest that these primates are potentially impor-

tant, albeit asymmetrical, food competitors, which is consistent with previous studies [40]. For

example, dietary overlap for leaves and seeds was high from the gibbons’ perspective but low

from the leaf monkeys’ perspective. This pattern was reversed for the dietary overlap for fruit,

with leaf monkeys having a slightly higher measure of dietary overlap with gibbons than vice

versa. Overall dietary overlap was higher from the gibbons’ perspective than from the leaf

monkeys’ because leaf monkeys consumed a more diverse diet than gibbons did.

Our dietary overlap analyses did not account for variation in resource availability or dif-

ferences in habitat types due to limitations in sample size, but both these factors could poten-

tially influence dietary overlap measures. For example, in three sympatric primate species

(Ateles geoffroyi, Alouatta palliata, and Cebus capucinus) in Santa Rosa National Park, Costa

Rica, there was substantial variation in monthly dietary overlap measures [61]. The authors

propose that the high dietary flexibility of these primate species, along with variation in die-

tary overlap, means that feeding competition may only be an intermittent selective force,

occurring on a supra-annual basis. Data from our site demonstrate that the different forest

types support different densities of gibbons and leaf monkeys [24], and that degree of

resource overlap between gibbons and other vertebrate frugivores varies substantially

between peat swamps and other forest types [40]. Importantly, our results of dietary overlap

were consistent with results from other aspects of this study, showing that for the frugivorous

portion of the diet, gibbons and leaf monkeys have similar measures of dietary overlap and

dietary richness, but differences in dietary overlap and richness occur in the leaf and seed

portion of the diet.

Behavioral mechanisms, such as the incorporation of a broad range of foods in the diet,

may allow folivorous primates such as leaf monkeys to reduce the amount of toxins consumed

(the “diet-breadth trade-off” hypothesis [62]). By incorporating more varied food sources into

their diets than gibbons, leaf monkeys at our site may mitigate the potential buildup of specific

toxins from seeds and leaves, leading to greater diversity in the non-frugivorous portion of

their diets. Fruits are easy to process and digest [63] while leaves often contain antifeedants

and other compounds that can be toxic to primates in large amounts [31]. Unripe fruits are

heavily chemically defended, possessing relatively high levels of antifeedants [64,65] and seeds

also contain secondary compounds, such as strychnine and alkaloids, that can be toxic in large

quantities [66]. Our results are consistent with a recent study investigating dietary flexibility of
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two lemur genera, the omnivorous Eulemur, with the more folivorous Propithecus, where ana-

tomical adaptations to digest fiber allowed for increased dietary breadth in Propithecus [67].

Dietary selectivity

The results of the selectivity analyses provide further evidence that gibbons have a narrower

diet than leaf monkeys, at least in the masting forests of CPRS. In line with our predictions,

leaf monkeys preferred more genera and avoided fewer genera than gibbons. Both gibbons

and leaf monkeys selected figs (genus Ficus) more than predicted based on their availability,

when temporal variation was not considered. Interestingly, gibbons and leaf monkeys both

avoided four of the same genera: Baccaurea, Calophyllum, Gironniera and Gymnacranthera.

These genera exhibit relatively low synchrony similar to figs, meaning that they are consis-

tently available in the environment. For gibbons, the most important predictors of resource

use are overall abundance of the genus, as well as the consistency of fruit availability [41].

Although these four genera were relatively abundant, and consistently available, gibbons and

leaf monkeys both avoided them, most likely because they are of low quality for primates (e.g.,

Calophyllum is a highly tannic, bat-dispersed fruit; Gymnacranthera produces thin, lipid-rich

but sugar-poor pulp that targets dispersal by hornbills). It is important to note that use or

importance of a food item in a primate diet is different than preference [9], and genera that are

classified as avoided may still constitute a substantial portion of the primate’s diet. This is

because very common items may be consumed fairly often (making them important), but

eaten much less often than would be predicted based on their availability (making them

avoided).

Despite methodological differences, both Marshall et al. [40] and our selectivity analyses

returned qualitatively similar results for gibbons. For example, both studies ranked the liana

Artabotrys as being the most highly selected genus for gibbons. Artabotrys exhibits low syn-

chrony, so it is consistently available [41]. The high selectivity score for Artabotrys in both our

study and previous studies indicates that gibbons are consuming this genus more than pre-

dicted based on availability, which is probably because it produces relatively high quality,

sugar-rich fruits that are easy to process, as well as the fact that it is often available during peri-

ods of otherwise low food availability [41,68]. Our selectivity results are also similar to those of

gibbon hybrids (Hylobates muelleri x albibarbis) in the Barito Ulu research area, Central Kali-

mantan, Indonesia [69].

Response to variation in resource availability

Both gibbons and leaf monkeys experienced dramatic fluctuations in resource availability dur-

ing the study period. Fruit availability varied by more than an order of magnitude among

months, from less than 1% of stems to over 15% of stems bearing fruit—to place these numbers

in context, note that majority of trees that we have monitored in our plots never fruited in a

seven-year period that included two mast fruiting events [18]. Extreme fluctuations in fruit

availability, which are unpredictable from the primate’s perspective, are important forces shap-

ing primate behavior, ecology and morphology [8,9,25,28]. It is therefore crucial to capture the

full range of variation in fruit availability when studying primate diets. Our study encompassed

at least one masting event- two for leaf monkeys due to random variation in sampling of the

different primate species- which allowed us to compare the primate diets over the full range of

resource availability they are likely to experience.

Despite the fact that gibbons and leaf monkeys have distinctly different diets, their dietary

response to decreased fruit availability was qualitatively similar. Both primates showed

increased consumption of leaves when fruit was less abundant. A similar pattern was seen for
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figs, with both primates increasing their fig consumption when fruit was less abundant, and

eating very few figs during periods of high fruit availability. The patterns of leaf and fig con-

sumption exhibited by gibbon and leaf monkeys indicate that they utilized these foods as fall-

back foods, as reported in analyses of earlier data sets at CPRS [14,24,25]. We discuss how figs

can be paradoxically identified as preferred (over-selected) and as fallback foods below.

Our results are consistent with past studies conducted on leaf monkeys in masting forests

on Borneo. In areas where resource availability is highly variable, leaf monkeys eat more leaves

during periods of low fruit availability, but incorporate fruit into the diet when it is available

[70]. This dietary switching has not been shown to occur in non-masting forests. For example,

leaf monkeys were shown to have a higher degree of frugivory in non-masting peat swamp for-

ests of Sabangau, Central Kalimantan, Indonesia than those reported by other researchers in

masting dipterocarp forests of Gunung Palung [39], Sepilok [71], Tanjung Puting [72] and

Danum Valley [70], and the amount of fruit included in the diet was not influenced by changes

in overall fruit availability [73]. Leaf monkeys did not incorporate low quality foods into their

diets in the non-masting peat forests, as fruit was consistently available year-round. Although

peat swamp forests are present at our study site, we excluded peat swamp forest from our

investigation of the influence of fruit availability on dietary composition because combining

feeding observations from masting and non-masting forests that were phenologically unsyn-

chronized would have confounded the analysis. Our results supporting the occurrence of die-

tary shifts in response to food availability suggest that differences in dietary strategies used in

peat swamp forests versus dipterocarp forests may be substantial.

Both primate species in our study showed a marked increase in fruit consumption when

fruit availability increased, and even during periods of fruit scarcity, fruit comprised at least

50% of gibbon diets, which is consistent with studies at other sites [68,74] and previous studies

at CPRS [14,24,40]. The same pattern was seen with seed consumption, and this is most likely

because seed and fruit availability are intrinsically linked. The top model for gibbon leaf con-

sumption did not include total fruit availability. This may be because gibbons do not consume

many leaves, regardless of fruit availability, as leaves rarely comprised more than 25% of their

feeding observations. It is also possible that with more sampling, a stronger relationship

between fruit availability and leaves would emerge.

Our results are consistent with other comparative primate studies. For example, three sym-

patric new world primates (Callimico goeldii, Saguinus fuscicollis and S. labiatus) showed high

degree of dietary overlap during periods of high fruit availability when a few abundant fruit

species dominated their diets, but during periods of low fruit availability their diets diverged,

and they incorporated more fungus (C. goeldii), nectar (S. labiatus) or arthropods (S. fuscicollis)
into their diets [75]. Exploitation of different food resources during periods of resource scar-

city, as well differences in foraging heights, may allow these closely related primates to live in

sympatry. Tutin and Fenandez [76] compared the diets of sympatric chimpanzees and gorillas

at Lope, Gabon and found a high degree of dietary overlap, particularly for fruits. Importantly,

they found that the diets of these two primates diverged most during periods of fruit scarcity,

and that gorillas incorporated more leaves, stems and bark into their diets, while chimpanzees

maintained high levels of frugivory even during times when fruit was scarce. Dietary diver-

gence during periods of resource scarcity potentially allows primates to mitigate the effects of

feeding competition, and the authors interpreted dietary divergence as evidence of niche sepa-

ration in these two sympatric primates. In our study, we provide further evidence that dietary

divergence is an important mechanism in which closely-related, sympatric primate species

may mitigate feeding competition.
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The importance of figs

Figs have been classified as an important food for primates throughout the tropics, and are

often fallback foods, due to their relatively constant availability and increased representation

in the diet when other fruit is scarce [19,28], but in some sites figs have been identified as “pre-

ferred” or over-selected [77,78]. Differences between sites have been attributed to differences

in the quality of non-fig fruits, with figs being fallback foods in sites where there are other

high-quality fruits, and figs being preferred foods in sites where high-quality non-fig fruits are

lacking [78]. In our study, both gibbons and leaf monkeys showed a marked decrease in fig

consumption when fruit availability increased. In addition, the proportion of figs included in

gibbon and leaf monkey diets was similar (approximately 0.25 during periods of low fruit

availability but almost zero during periods of high fruit availability).

We analyzed figs from two perspectives: 1) as a genus (Ficus) in the selectivity analyses

which did not take into account temporal variation of food availability, and 2) as a food class

when investigating the proportion of stems included in the diet, which did take into account

changes in food availability over time. In the selectivity analyses, the genus Ficus was an impor-

tant and preferred food because gibbons select figs more than would be expected based on the

stem density of figs. Use of the food class “figs” decreased with an increase in overall fruit avail-

ability. In this context, figs were a fallback food because they were eaten in periods of low fruit

availability, and consumption was inversely correlated with preferred food (fruit) availability.

Thus, as a food class, figs conformed to the definition of a fallback food, but in the selectivity

analyses that excluded temporal variation in food availability, gibbons preferred figs. This dif-

ference occurred because figs were more consistently available than most genera and gibbons

disproportionately feed on genera that are consistently available over time [41].

Previous research from our study site found that the number of gibbon feeding observa-

tions on figs was negatively correlated with availability of ripe fruit, and thus figs were a fall-

back food for gibbons [14]. We present the results of over five additional years of new feeding

observations and find a consistent result that the proportion of figs in gibbon diets decrease as

fruit availability increased. Our study therefore substantiates the earlier finding that figs are an

important food class for gibbons during periods of low fruit availability, and highlights that

this pattern is stable over long periods.

Implications for conservation

Characterizing primate diets has important conservation implications. For example, preferred

and fallback foods may be important factors influencing primate population density [14]. Gib-

bon population density at Gunung Palung National Park is highly correlated with the abun-

dance of their main fallback food, while leaf monkey population density is highly correlated

with the abundance of their preferred foods [25]. This trend may not be consistent across

regions, as colobine biomass was correlated with proportion of trees that are legumes (Faba-

ceae), which are generally preferred foods, in Asia but not in Africa [29]–although differences

in sampling intensity, study duration and study design may also contribute to these differ-

ences. This potential for regional variation in preferred and fallback foods, as well as the impli-

cations for primate ecology, highlights the needs for intensive sampling of a broad range of

diets of various primate species and populations.

In addition, anthropogenic climate change is and will continue to impact plant reproduc-

tive phenology [79]. In the face of a changing climate, especially in hyper-variable dipterocarp

forests where masting is correlated with El Niño events [17], long-term data sets can provide

reference points for primate feeding ecology, which may be useful to assess how climate

change affects primate species and their food resources. Feeding ecology studies can provide
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insights into the range of resources used by primates, and may allow for predictions about

how habitat disturbance, such as selective logging of primate food trees, will influence their

ecology and likelihood of persistence. Feeding ecology studies can also be used to inform con-

servation actions for specific populations and metapopulations [80]. For example, an in-depth

knowledge of primate feeding ecology can be used in habitat restoration projects, when the

goal is to minimize periods of resource scarcity for primates in restored habitats [81].

Conclusions

This study contributes to existing knowledge of gibbon and leaf monkey natural history,

diets and responses to variation in resource availability. These two sympatric primate spe-

cies, despite having quantitatively different diets, exhibit similar feeding strategies when

faced with variation in food availability. We show that during times of high fruit availability,

both primates incorporate a high proportion of fruit in their diet, and during periods of low

fruit availability they incorporate more figs and leaves. In addition, our results show that

despite differences in diet and life history, both primates utilized figs as a fallback food, pro-

viding further support for the importance of figs as a fallback food for a broad range of pri-

mates. Additional comparative studies on sympatric primates in different regions will

improve understanding of how primates alter their diets in response to resource scarcity

and show if our results apply more broadly.
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81. Garcia LC, Hobbs RJ, Mäes dos Santos FA, Rodrigues RR. Flower and Fruit Availability along a Forest

Restoration Gradient. Biotropica. 2014; 46: 114–123.

Feeding ecology of Hylobates albibarbis and Presbytis rubicunda rubida

PLOS ONE | DOI:10.1371/journal.pone.0173369 March 9, 2017 23 / 23

http://dx.doi.org/10.1007/s10329-016-0535-1
http://www.ncbi.nlm.nih.gov/pubmed/27056265
http://dx.doi.org/10.1007/BF01024119
http://www.ncbi.nlm.nih.gov/pubmed/24310393
http://dx.doi.org/10.1002/ajp.22148
http://www.ncbi.nlm.nih.gov/pubmed/23553789
http://dx.doi.org/10.1002/ajp.22074
http://www.ncbi.nlm.nih.gov/pubmed/22972588



