
UC Berkeley
UC Berkeley Previously Published Works

Title
Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse and Sequence-Encoded 
Antibody Oligomers.

Permalink
https://escholarship.org/uc/item/30r8r3b7

Journal
Chem, 8(11)

ISSN
2451-9294

Authors
Winegar, Peter
Figg, C
Teplensky, Michelle
et al.

Publication Date
2022-11-10

DOI
10.1016/j.chempr.2022.07.003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/30r8r3b7
https://escholarship.org/uc/item/30r8r3b7#author
https://escholarship.org
http://www.cdlib.org/


Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse 
and Sequence-Encoded Antibody Oligomers

Peter H. Winegar1,2,4, C. Adrian Figg1,2,4, Michelle H. Teplensky1,2, Namrata Ramani2,3, 
Chad A. Mirkin1,2,3,5,*

1Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, 
USA

2International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, 
Evanston, IL 60208, USA

3Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan 
Road, Evanston, IL 60208, USA

4These authors contributed equally

5Lead contact

SUMMARY

Synthesizing protein oligomers that contain exact numbers of multiple different proteins in defined 

architectures is challenging. DNA–DNA interactions can be used to program protein assembly 

into oligomers; however, existing methods require changes to DNA design to achieve different 

numbers and oligomeric sequences of proteins. Herein, we develop a modular DNA scaffold 

that uses only six synthetic oligonucleotides to organize proteins into defined oligomers. As a 

proof-of-concept, model proteins (antibodies) are oligomerized into dimers and trimers, where 

antibody function is retained. Illustrating the modularity of this technique, dimer and trimer 

building blocks are then assembled into pentamers containing three different antibodies in an exact 

stoichiometry and oligomeric sequence. In sum, this report describes a generalizable method for 

organizing proteins into monodisperse, sequence-encoded oligomers using DNA. This advance 

will enable studies into how oligomeric protein sequences affect material properties in areas 
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spanning pharmaceutical development, cascade catalysis, synthetic photosynthesis, and membrane 

transport.

Graphical Abstract

eTOC

In nature, many proteins organize into architectures where the exact number and spatial 

arrangement of each protein can dictate biological function, including catalysis and 

photosynthesis. To mimic and even surpass such function, the preparation of many different 

protein architectures is required. However, this is synthetically challenging. Herein, we developed 

a modular method that uses designed nucleic acid sequences to organize proteins into different 

monodisperse and sequence-encoded oligomers, including dimers, trimers, and pentamers.

Keywords

biomaterial; protein; antibody; DNA; DNA nanotechnology; polymer; oligomer; sequence-
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INTRODUCTION

In Nature, many proteins assemble into defined oligomeric architectures that contain exact 

numbers and oligomeric sequences of multiple different proteins.1, 2, 3 Herein, oligomeric 

sequence of proteins and oligomeric protein sequence are defined as the order of proteins 

within an oligomeric architecture. This assembly can dictate the biological (e.g., human 
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IgM antibodies contain five protein subunits),4 catalytic (e.g., eukaryotic RNA polymerase 

II contains twelve protein subunits),5 photophysical (e.g., cyanobacteria photosystem I 

contains twelve protein subunits),6 and membrane transport (e.g., Streptomyces lividans 
potassium channel contains four protein subunits)7 properties of proteins. To mimic and 

potentially surpass these properties, the modular synthesis of different protein oligomers is 

needed. A versatile synthetic protein oligomerization method would: (1) provide access to a 

large number of proteins per oligomer, (2) provide access to any oligomeric sequence of the 

same or different proteins, (3) be generalizable with regard to proteins, and (4) not require 

mutations of the amino acid sequence of proteins and recombinant protein expression. A 

method that meets all four criteria would enable the study of how the identity, number, 

stoichiometry, oligomeric sequence, and architecture of proteins affects the emergent 

properties of oligomers. While strategies have been developed to prepare synthetic protein 

oligomers8, 9, 10, 11 and study how oligomerization affects protein properties,12, 13, 14, 15 

there is no current method that meets all four listed criteria (Figures 1A and 1B). In this 

work, we explored the design and synthesis of a single modular nucleic acid scaffold that 

can be used to organize proteins into a near limitless array of monodisperse and sequence-

encoded protein oligomers (Figure 1C).

Protein oligomers are frequently prepared using techniques from molecular biology, 

including genetic engineering and recombinant expression of mutated proteins (Figure 

1A). Generally, fusion proteins are designed via genetic engineering and recombinantly 

expressed to achieve the desired oligomerization structure. Three common methods for 

oligomerization using fusion proteins include: direct expression of protein oligomers as a 

single polypeptide16, 17, 18; fusion of proteins to a subunit of a multimeric protein (e.g., 
streptavidin) that assembles into supramolecular constructs (Figure 1A, i)19, 20, 21, 22; 

or fusion of proteins to a subunit that can selectively form covalent bonds with a 

complementary group (e.g., SpyTag/SpyCatcher,23 SnoopTag/Snoopcatcher,24 SNAPtag,25 

HALOtag,26 or cutinase,27 Figure 1A, ii).24, 28, 29, 30, 31 Furthermore, recent advances in 

the design of protein–protein interfaces enable sophisticated control over synthetic protein 

architectures (Figure 1A, iii).32, 33, 34, 35, 36, 37 Each of these methods requires mutations 

of the amino acid sequence of proteins and recombinant protein expression. However, many 

proteins are challenging to prepare via recombinant expression (e.g., proteins with post-

translational modifications,38 proteins with disulfide bonds,39 toxic proteins,40 or proteins 

that aggregate41), potentially limiting the scope of proteins that can be oligomerized through 

these methods.

Chemical approaches to assemble proteins are another powerful method to control 

oligomerization (Figure 1B). The amino acid sequence of proteins can be mutated 

to incorporate (un)natural amino acids at defined positions for interactions such as 

electrostatic,42 supramolecular host–guest binding,43, 44, 45, 46 metal coordination,47, 48, 49 

or covalent linking.50, 51 However, without extensive chemical design, modification of 

protein amino acid sequences and/or recombinant protein expression, it is challenging to 

access monodisperse and sequence-encoded oligomers that are larger than dimers or trimers. 

Chemical approaches to directly oligomerize proteins post-expression without modifying the 

amino acid sequence of proteins or using an assembly template (vide infra) were expanded 

with the introduction of bioorthogonal “click” reactions (Figure 1B, i).52, 53, 54 While these 
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reactions have been used to oligomerize therapeutically relevant proteins (e.g., antibodies), it 

is challenging to achieve oligomers larger than dimers or trimers.55

Proteins can be oligomerized using attachment to chemical scaffolds (e.g., 
polymers56, 57, 58, 59, 60 or DNA61, 62, 63, 64, 65, Figure 1B, ii). Templated assembly of 

proteins using DNA is one of the most promising and versatile approaches to organize 

proteins into oligomers larger than dimers or trimers. The utility of this approach is 

a result of the programmability of nucleic acids where specific, defined assemblies 

can be accessed solely based on DNA sequence design.61, 62, 63, 64, 65 For example, 

proteins have been covalently66, 67, 68 or noncovalently67, 69 modified with oligonucleotides 

and the resulting constructs have been organized via DNA–DNA interactions into 

a multitude of protein oligomers with one-,70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 

two-,82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104 and 

three-dimensional105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119 architectures. 

However, in each of these systems, DNA design must be changed to synthesize defined 

protein oligomers that contain different numbers or oligomeric sequences of proteins. For 

example, a protein tetramer can be readily synthesized using a DNA tetrahedron scaffold82 

or a four-arm Holliday DNA junction scaffold.83, 84, 85 However, to synthesize a protein 

pentamer, every DNA sequence must be redesigned to account for the one additional protein. 

Modular multi-protein constructs can be realized on large DNA origami structures,86, 87, 105 

but most of the composition (e.g., >80%) of these constructs is DNA instead of protein. 

Molecular constructs that minimize the required amount of DNA such that most of the 

chemical properties are dictated by the identity and organization of proteins are inaccessible 

using these techniques.62 Together, these limitations significantly hamper any studies 

where access to libraries of different protein oligomers with discrete stoichiometries and 

oligomeric sequences of proteins could provide insight into how protein–protein interactions 

and cooperativity can be exploited for enhanced properties of oligomers.

We hypothesized that a single set of designed DNA strands could be used as a modular 

scaffold to organize proteins into oligomers with exact stoichiometries and oligomeric 

sequences (Figure 1C). This DNA design would enable different proteins to be precisely 

organized into an expansive array of monodisperse, sequence-encoded oligomers (Figure 

1C, i). Herein, we tested our hypothesis by designing a modular six-strand DNA scaffold 

and using it to oligomerize commercially available and therapeutically relevant proteins 

(i.e., antibodies). The scaffold consists of three distinct DNA strands that can be conjugated 

to proteins and three distinct DNA strands that template the assembly of DNA-modified 

proteins into oligomers via DNA–DNA interactions (Scheme S1). Importantly, each of 

the six DNA strands contains two distinct binding domains and the sites for attachment 

to proteins can be located anywhere on the DNA strands (Scheme S3). Using the 

designed DNA scaffold, monodisperse, sequence-encoded monomer, dimer, and trimer 

building blocks are synthesized. Next, these building blocks are used to access a larger 

oligomer (i.e., pentamer) that contains a defined number and oligomeric sequence of 

proteins. Importantly, the foundational examples shown herein are a fraction of the possible 

oligomeric sequences that are accessible using the modular six-strand DNA scaffold (Figure 

1C, ii, Table S3). For example, if five different proteins are used, there are, in principle, 

3,125 different accessible pentameric sequences. Overall, this generalizable synthetic route 
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will enable future investigations into how the identity, stoichiometry, oligomeric sequence, 

and architecture of proteins in oligomers affect the properties of these constructs.

RESULTS

Three commercially available IgG antibodies commonly used as checkpoint inhibitors (i.e., 
anti-mouse-PD-1 (A), anti-mouse-TIGIT (B), and anti-mouse-CTLA-4 (C)) were chosen 

for the sequence-encoded oligomerization of proteins using a modular DNA scaffold. To 

install a single DNA strand onto either A, B, or C, each antibody was reacted with 2 

equiv. of an oligo(ethylene glycol) molecule containing an N-hydroxysuccinimide activated 

ester and an azide (NHS–PEG12–N3) for 45 min (Figure 2A). This chemistry targets the 

primary amines (e.g., ε-amines on lysines and α-amines on N-termini)120 on both the Fc 

and Fab regions of the antibody and was chosen because it is generalizable with regard 

to proteins. Although the exact location of conjugation cannot be controlled, we expected 

that the number of azide modifications per antibody would be controlled by low numbers 

of equivalents of NHS–PEG12–N3 added. We hypothesized that the low number of primary 

amines modified would not inhibit the target binding characteristics of antibodies. After 

purification by size-exclusion chromatography (SEC), the azide on the surface of each 

antibody underwent a strain-promoted azide-alkyne cycloaddition reaction with 5 equiv. 

of DNA strands containing dibenzocyclooctyne (DBCO) and a fluorophore (i.e., Cyanine 

3 (Cy3), Cyanine 5 (Cy5), or fluorescein (FITC)) and two distinct 20 base nucleic acid 

sequences (Table S1, Schemes S1A and S2, i.e., S2–DBCO–Cy3–S3, S4–DBCO–Cy5–

S5, or S6–DBCO–FITC–S1). After 16 h, roughly 25–30% of antibodies were modified 

with one DNA strand (Figure S1). Next, unreacted DNA was removed from the reaction 

mixture using SEC. Anion exchange chromatography was used to isolate antibodies that 

were functionalized with a single DNA strand from unreacted antibodies and antibodies 

that were functionalized with multiple DNA strands (Figure 2A). Three different protein–

DNA conjugates (i.e., S2–A–Cy3–S3, S4–B–Cy5–S5, and S6–C–FITC–S1) were prepared 

and confirmed to contain a single DNA functionalization via sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE, Figure 2B) and SEC (Figure S2).

Protein oligomers were synthesized by mixing the purified protein–DNA conjugates (Figure 

3A, 3E: lanes 1–3) with template DNA strands (Table S1, Scheme S1B, i.e., S1'–S2', 

S3'–S4', or S5'–S6'). The template strands were designed as complements to two 20 base 

nucleic acid sequences on different antibody–DNA conjugates (Table S2, Scheme S1C). 

For example, the S5' DNA sequence on the template strand S5'–S6' is complementary to 

the S5 DNA sequence on S4–B–Cy5–S5 and the S6' DNA sequence is complementary 

to the S6 DNA sequence on S6–C–FITC–S1. Equal amounts of the B–DNA conjugate, 

C–DNA conjugate, S5'–S6' template strand, and S1'–S2' template strand were mixed to 

synthesize a protein dimer with the oligomeric sequence S4–B–C–S2' (Figure 3B, Scheme 

S5A) at an assembly yield of 68% (Figure S5A, D). Oligomers that contain greater than 

two antibodies were not observed in the assembly mixture because there are no DNA 

sequences that are complementary to either the S4 or S2' DNA sequences. Protein dimers 

were isolated from unreacted monomers and template strands in the assembly mixture 

using SEC purification and characterized with agarose gel electrophoresis (Figure 3E: lane 

4). Importantly, the agarose gel showed a single band for dimers with only the expected 
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Cy5 and FITC fluorescence and lower electrophoretic mobility than either antibody–DNA 

conjugate alone. Therefore, monodisperse and sequence-encoded protein dimers with the 

oligomeric sequence S4–B–C–S2' were successfully synthesized.

Next, the synthesis of a sequence-encoded protein trimer was targeted. Equal amounts of the 

A–DNA conjugate, B–DNA conjugate, C–DNA conjugate, S3'–S4' template strand, and S5'–

S6' template strand were mixed to synthesize a protein trimer with the oligomeric sequence 

S2–A–B–C–S1 (Figure 3C, Scheme S5B) at an assembly yield of 27% (Figure S5B, 

D). Oligomers that contain greater than three antibodies or trimers containing alternative 

oligomeric antibody sequences were not observed in the assembly mixture because there are 

no DNA sequences that are complementary to either the S2 or S1 DNA sequences. Protein 

trimers were isolated from the assembly mixture using SEC purification and characterized 

with agarose gel electrophoresis (Figure 3E: lane 5). The agarose gel showed a single band 

for the trimers with the expected Cy3, Cy5, and FITC dye fluorescence as well as lower 

electrophoretic mobility on an agarose gel than the dimers. Therefore, these results indicate 

that monodisperse and sequence-encoded protein trimers with the oligomeric sequence S2–

A–B–C–S1 were successfully synthesized. Importantly, no disassembly of S4–B–C–S2' or 

S2–A–B–C–S1 oligomers were observed over 10 days of storage at 4 °C.

To ensure that this synthetic technique is generalizable, different protein oligomers were 

synthesized, including a protein dimer with the oligomeric sequence A–B (Figure S13) 

and a protein trimer with the oligomeric sequence, A–B–B (Figure S6). Furthermore, 

another antibody, anti-human-PD-1 (D), was functionalized with a single DNA strand of 

S2–DBCO–Cy3–S3, S4–DBCO–Cy5–S5, or S6–DBCO–FITC–S1 (Figure S3 and S4), and 

the resulting constructs were organized into protein dimers with the oligomeric sequence 

D–D (Figures S7, S8, and S10) and trimers with the oligomeric sequence D–D–D (Figure 

S7). Analytical SEC analysis of antibody–DNA conjugates, dimers, and trimers show a 

single peak for each sample with decreases in retention time as degree of oligomerization 

increases (Figures S6C and S7C).

The target binding characteristics of human antibodies after functionalization with DNA and 

oligomerization with the modular DNA scaffold were investigated using antigen binding 

and checkpoint inhibitor activity cellular assays. We studied D, D–DNA conjugates, D–D 
dimers, and D–D–D trimers using these assays and confirmed that antigen binding and 

checkpoint inhibitor activity were retained in each sample (Figures S11 and S12, see the 

supplemental information (SI) for additional details). Importantly, an antibody dimer, A–B, 

exhibited minimal degradation in the cellular media used in these experiments (Figure S13, 

see the SI for additional details).

Finally, a protein dimer and trimer were used as building blocks to synthesize a 

monodisperse and sequence-encoded protein pentamer where three different antibodies 

are organized into a precise oligomeric sequence. The S4–B–C–S2' protein dimer and 

S2–A–B–C–S1 protein trimer were mixed together at a 1:1 ratio and the specific binding 

between the S2' DNA sequence on the dimer and the S2 DNA sequence on the trimer leads 

to the synthesis of a sequence-encoded protein pentamer with the oligomeric sequence 

S4–B–C–A–B–C–S1 (Figure 3D, Scheme S5C) at an assembly yield of 58% (Figure 
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S5C, D). Oligomers that contain greater than five antibodies were not observed in the 

assembly mixture. Protein pentamers were isolated from other unreacted dimers, trimers, 

and template strands in the assembly mixture using SEC purification and characterized 

with agarose gel electrophoresis (Figure 3E: lane 6). The pentamers showed a single band 

with the expected Cy3, Cy5, and FITC dye fluorescence as well as lower electrophoretic 

mobility on an agarose gel than the trimers. Therefore, monodisperse and sequence-encoded 

protein pentamers with the oligomeric sequence S4–B–C–A–B–C–S1 were successfully 

synthesized. This is the first reported monodisperse antibody pentamer that contains 

different antibodies in a predefined oligomeric sequence.

DISCUSSION

The designed set of six DNA strands was used as a modular scaffold to organize proteins 

into oligomers with programmed identity, stoichiometry, and oligomeric sequence. This 

scaffold provided access to monomer, dimer, and trimer building blocks that could be 

modularly combined independent from the identity of proteins. Therefore, all of the criteria 

for a versatile synthetic protein oligomerization method were met: (1) providing access to 

a large number of proteins per oligomer, (2) providing access to any oligomeric sequence 

of the same or different proteins, (3) being generalizable with regard to proteins, and (4) 

not requiring mutations of the amino acid sequence of proteins and recombinant protein 

expression.

Established chemistry was used to functionalize a primary amine (e.g., ε-amine on a lysine 

or α-amine on a N-terminus) on proteins with a single DNA strand.120 Nearly all proteins 

contain primary amines, so this approach is generalizable with regard to proteins, including 

proteins that are commercially available, isolated from natural sources, or recombinantly 

expressed. Many other covalent66, 67 and noncovalent67, 69 bioconjugation methods could 

also be used to modify proteins with one of the DNA strands reported here. By taking 

advantage of these approaches, nearly any protein can be modified with a single DNA strand 

and organized into monodisperse, sequence-encoded oligomers using the designed DNA 

scaffold.

While modular multi-protein constructs can be prepared using large DNA origami scaffolds, 

proteins comprise less than 20% of the mass of these constructs.86, 87, 105 This large amount 

of DNA compared to protein means that most of the solution properties and interactions 

of these constructs are dictated by the DNA scaffold instead of by the proteins. In cases 

where protein binding interactions are integral to function (e.g., antibody–antigen binding), 

this large amount of DNA may affect target recognition and accessibility. In contrast, 

using the modular DNA scaffold reported in this work, proteins make up most of the 

mass of oligomeric constructs. For example, proteins comprise 84%, 86%, and 85% of 

the mass of the sequence-encoded B–C dimer, A–B–C trimer, and B–C–A–B–C pentamer, 

respectively. While other protein assembly techniques using nucleic acids also provide 

access to oligomers mostly comprised of proteins (e.g., oligomerization using a DNA 

tetrahedron scaffold82 or a four-arm Holliday DNA junction scaffold83, 84, 85), they lack 

modularity to access different numbers of proteins per construct.
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In principle, the modular DNA scaffold described herein provides access to vast numbers 

of different oligomeric sequences and sizes. For example, 3 different proteins could be 

oligomerized into trimeric constructs with 27 different oligomeric sequences, including 

homooligomers of one protein, and hetero-oligomers of 2 or 3 proteins (Figure 1c, 

ii). Oligonucleotides in the DNA scaffold interact through Watson–Crick–Franklin base 

pairing to form a right-handed double helix. Therefore, two oligomers with reversed 

oligomeric sequences of proteins (e.g., A–A–B and B–A–A) form different structures and 

are considered as different sequences. Likewise, 2 different proteins could be oligomerized 

into dimeric constructs with 4 different oligomeric sequences, 4 different proteins could 

be oligomerized into tetrameric constructs with 256 different oligomeric sequences, and 

5 different proteins could be oligomerized into pentameric constructs with 3,125 different 

oligomeric sequences (Table S3). Furthermore, each oligomer building block synthesized 

using this method inherently contains living chain ends where more units could be added to 

access larger oligomers (e.g., hexamers, heptamers, and octamers, Scheme S4). Considering 

the growing number of discovered proteins, the foundational oligomers synthesized in this 

work illustrate the unlimited number of protein oligomers that could be accessed via a single 

modular DNA scaffold.

CONCLUSION

In conclusion, this work shows how monodisperse, sequence-encoded protein oligomers 

can be synthesized using generalizable bioconjugation chemistry with a judiciously 

designed DNA scaffold. This versatile protein oligomerization approach is powerful and 

useful because oligomers with different stoichiometries and oligomeric sequences can be 

synthesized without the need to redesign the proteins or the DNA scaffold. Importantly, 

this synthetic advance will enable subsequent studies to understand the fundamental 

relationships between protein oligomer structures and properties, which have significant 

implications for many fields (e.g., therapeutics, catalysis, photosynthesis, and membrane 

transport).

EXPERIMENTAL PROCEDURES

Resource availability
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Materials availability—All materials generated in this study can be obtained upon 
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Refer to Web version on PubMed Central for supplementary material.
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Bigger Picture Statement

In nature, many proteins combine to form architectures that contain exact numbers 

and oligomeric sequences of different subunits, and such hierarchical structural control 

influences their biological, catalytic, photophysical, and membrane transport properties. 

To mimic such structures and potentially surpass their properties, the synthesis of 

different sequence-encoded protein oligomers is needed.

Herein, a method to organize proteins in such a way using designed nucleic acid 

sequences is reported. Generalizable bioconjugation reactions are used to install one 

DNA strand on each protein, and assembly occurs via base-pair recognition of different 

DNA sequences. Therefore, nearly any protein can be used without requiring mutations 

or recombinant expression. Using this method, monomers, dimers, and trimers are 

synthesized that can be further assembled into larger structures, laying the foundation 

for the study of sequence-encoded protein materials across many areas.
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Highlights

• A modular DNA scaffold was designed to organize proteins into defined 

oligomers

• Oligomers were synthesized with exact numbers and sequences of up to five 

proteins

• This oligomerization strategy is generalizable to nearly any protein
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Figure 1. Protein oligomerization techniques and limitations.
(A) Protein oligomers can be synthesized using techniques from molecular biology 

including (i) recombinant expression of linear oligomers, (ii) protein fusion to assembling 

units, and (iii) protein fusion to conjugation units. (B) Oligomerization can also be achieved 

using techniques from chemistry, such as (i) bioconjugation chemistry and (ii) scaffold-

directed oligomerization of proteins. (C) In this work, (i) we design a set of six DNA strands 

that can be used as a modular DNA scaffold to organize proteins into an expansive array of 

monodisperse and sequence-encoded oligomers. (ii) This generalizable method will enable 

the synthesis of different oligomeric sequences of proteins.
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Figure 2. Antibody functionalization with a single DNA strand.
(A) Primary amines on the surface of antibodies were functionalized with azides using an 

NHS-PEG12-N3 linker. Next, dibenzocyclooctyne (DBCO)-modified DNA was conjugated 

to azide-modified antibodies via a strain-promoted azide-alkyne cycloaddition (SPAAC). 

(B) SDS-PAGE characterization of mouse antibodies (i.e., lane 1: anti-mouse-PD-1 (A), 

lane 3: anti-mouse-TIGIT (B), and lane 5: anti-mouse-CTLA-4 (C)) and antibody–DNA 

conjugates (i.e., lane 2: S2–A–Cy3–S3, lane 4: S4–B–Cy5–S5, and lane 6: S6–C–FITC–S1). 

A single gel was imaged for SimplyBlue SafeStain, Cy3, Cy5, and FITC fluorescence.
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Figure 3. Antibody oligomerization into encoded sequences using DNA–DNA interactions.
(A) Antibody–DNA conjugates and template DNA strands were assembled using DNA–

DNA interactions into sequence-encoded protein (B) dimers and (C) trimers. Dimers and 

trimers were subsequently assembled using DNA–DNA interactions into sequence-encoded 

protein (D) pentamers. (E) Agarose gel characterization of antibody–DNA conjugates (i.e., 
lane 1: S2–anti-mouse-PD-1 (A)–Cy3–S3, lane 2: S4–anti-mouse-TIGIT (B)–Cy5–S5, 

and lane 3: S6–anti-mouse-CTLA-4 (C)–FITC–S1) along with sequence-encoded antibody 

dimers (i.e., lane 4: S4–B–C–S2'), trimers (i.e., lane 5: S2–A–B–C–S1), and pentamers 

(i.e., lane 6: S4–B–C–A–B–C–S1). A single gel was imaged for Cy3, Cy5, and FITC 

fluorescence and these images are merged into one composite image in Figure S9.
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