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RESEARCH ARTICLE Open Access

Healthy eating index patterns in adults by
sex and age predict cardiometabolic risk
factors in a cross-sectional study
Virginia M. Artegoitia1, Sridevi Krishnan2, Ellen L. Bonnel2,3, Charles B. Stephensen2,4, Nancy L. Keim1,2 and
John W. Newman1,2,5*

Abstract

Background: Associations between diet and cardiometabolic disease (CMD) risk may vary in men and women
owing to sex differences in eating habits and physiology. The current secondary analysis sought to determine the
ability of sex differences in dietary patterns to discriminate groups with or without CMD risk factors (CMDrf) in the
adult population and if this was influenced by age.

Methods: Diet patterns and quality were evaluated using 24 h recall-based Healthy Eating Index (HEI-2015) in free-
living apparently healthy men (n = 184) and women (n = 209) 18–65 y of age with BMIs of 18–44 kg/m2. Participants
were stratified into low- and high-CMDrf groups based on the presence/absence of at least one CMDrf: BMI > 25 kg/
m2; fasting triglycerides > 150mg/dL; HDL cholesterol < 50mg/dL-women or < 40mg/dL-men; HOMA > 2; HbA1c >
5.7. Sex by age dietary patterns were stratified by multivariate analyses, with metabolic variable associations established
by stepwise discriminant analysis.

Results: Diet quality increased with age in both sexes (P < 0.01), while women showed higher fruit, vegetable and
saturated fat intake as a percentage of total energy (P < 0.05). The total-HEI score (i.e. diet quality) was lower in the
high-CMDrf group (P = 0.01), however, diet quality parameters predicted CMDrf presence more accurately when
separated by sex. Lower ‘total vegetable’ intake in the high-CMDrf group in both sexes, while high-CMDrf men also
had lower ‘total vegetables’, ‘greens and beans’ intake, and high-CMDrf women had lower ‘total fruits’, ‘whole-fruits’,
‘total vegetables’, ‘seafood and plant-proteins’, ‘fatty acids’, and ‘saturated fats’ intakes (P < 0.05). Moreover, ‘dairy’ intake
was higher in high-CMDrf women but not in men (sex by ‘dairy’ interaction P = 0.01). Sex by age diet pattern models
predicted CMDrf with a 93 and 89% sensitivity and 84 and 92% specificity in women and men, respectively.

Conclusions: Sex and age differences in dietary patterns classified participants with and without accepted CMDrfs,
supporting an association between specific diet components and CMD risk that differs by sex. Including sex specific
dietary patterns into health assessments may provide targeted nutritional guidance to reduce the burden of
cardiovascular disease.
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Background
Obesity, insulin-resistance, dyslipidemia, and elevated blood
pressure represent a cluster of metabolic abnormalities con-
stituting risk factors for cardiometabolic syndrome [1]. The
prevalence of the cardiometabolic disease (CMD) increases
with age [2], and cardiovascular and metabolic manifesta-
tions vary in women and men [3, 4]. As of 2012 25% of the
world’s adult population were suffering from this cluster of
metabolic dysfunctions [5]. While obesity and diabetes have
increased in the Americas, hypertension has had a modest
decline between 1980 and 2014, but the rates of these
changes reportedly vary by sex [2]. Sex differences in the in-
cidence of heart failure, hypertension, metabolic irregular-
ities in glucose, lipid and cardiac energy metabolism, and
endothelial function have all been observed [3, 6, 7]. While
not regularly implemented clinically, sex-specific cardio-
metabolic disease risk factor management presents an op-
portunity [8]. Among the several factors that influence
cardiometabolic disease risk, diet is a modifiable lifestyle
parameter that needs to be better understood within a sex-
specific context. Case in point, controlled feeding of an
isoenergetic Mediterranean diet for 4wks improved plasma
lipid profile in both men and women with mild-impair-
ments of cardiometabolic factors, but only men showed
significant improvements in glucose stimulated insulin re-
sponses [9]. Understanding how habitual diet may influ-
ence the development of cardiometabolic disease risk
factors (CMDrfs) in a sex by diet by age specific manner
may provide clinicians and policy makers guidance to de-
vise sex/age-specific nutritional recommendations, to bet-
ter manage the prevalence of cardiometabolic disease.
The healthy eating index (HEI) is a tool that measures

diet quality as reflected by the recommendations of the
Dietary Guidelines for Americans [10]. First developed
in 2005, and most recently updated in 2015, the HEI
segregates recalled dietary information from either long
term food frequency questionnaires or a series of 24 h
dietary recalls [11, 12] into subcategories, scored on
scales of adequacy or moderation, for putatively healthy
and unhealthy food components, respectively. Adequate
component scores increase, while moderate component
scores decrease with consumption. As a result, the total
HEI score represents a multivariate aggregate of diet
quality relative to federal dietary guidelines, with scores
increasing with diet quality. Elevated HEI scores have
been associated with a reduced risk of overall death in-
cluding cardiovascular disease and cancer [13].

The 2015 HEI adequate dietary components include
‘total fruit’, ‘whole fruit’, ‘total vegetables’, ‘greens and
beans’, ‘whole grains’, ‘dairy’, ‘total protein’, ‘seafood &
plant proteins’, and ‘fatty acids’, which are recommended
to be high in a healthy diet [14]. In contrast, moderate
dietary components where consumption is recom-
mended to be limited include ‘refined grains’, ‘sodium’,
‘added sugar’ and ‘saturated fatty acids’ [14]. Hence, a
multivariate evaluation of the HEI subscores can be seen
as a low-resolution diet pattern analysis that can differ-
entiate diets with similar total HEI scores. A preliminary
comparison of diet patterns in women with mild impair-
ment of either glucose homeostasis, lipid metabolism or
both [15], to those from a contemporaneous cross-
sectional study of men and women [16], indicated that
the diet patterns of the metabolically compromised
women represented a subset of the general population,
supporting an association between diet and the presence
of CMD risk factors (CMDrfs). The objective of this sec-
ondary analysis was to identify sex differences and sex
by age relationships between established CMDrfs and
HEI-based diet quality scores and subscores. Associa-
tions between subscores and CMDrfs may reveal the ef-
fects of nutritional components on CMDrf development
and place them in a context easily translatable into indi-
vidualized nutritional recommendations.

Methods
Participants
In the USDA Western Human Nutrition Research Center
(WHNRC) Cross-Sectional Nutritional Phenotyping Study
(Phenotyping Study; ClinicalTrials.gov: NCT02367287),
generally healthy individuals were recruited in Davis, CA
starting in May of 2015. Details of study recruitment and
participation are contained in a separate report under con-
sideration for publication in Stress: International Journal
on the Biology of Stress (personal communication, Dr.
Kevin Laugero, USDA - WHNRC, Davis CA). Briefly, par-
ticipants were excluded if they were pregnant or lactating,
had recently undergone a minor surgery, recently received
antibiotic therapy, had been hospitalized in the past 4 wk.,
had major surgery in the past 16 wk., were currently tak-
ing daily medication for a diagnosed chronic disease, or
had known egg allergies (egg white protein was a compo-
nent of the meal challenge test used to assess insulin sen-
sitivity). Participants were recruited into 18 categories
defined by sex, three age (18–33 y, 34–49 y, 50–65 y) and
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three body mass index (BMI; 18.5–24.99 kg/m2, 25–29.99
kg/m2, and 30–39.99 kg/m2) categories filled at a relatively
even rate to balance enrollment across seasons and over
4 years [16]. The final enrolled cohort included men (n =
184) and women (n = 209) between the ages of 18–66 with
BMIs of 18–44 kg/m2 (normal to obese).
Anthropometry, body composition, various physio-

logical and psychological test outcomes, and biological
specimens (plasma, urine, feces etc.) were collected dur-
ing two study visits spaced 10–14 days apart. A stan-
dardized meal challenge test in all participants allowed
the evaluation of postprandial insulin sensitivity [17].
While anthropometry was obtained on all subjects, clin-
ical blood parameters were only determined on a total of
362 individuals. Data were captured in Research Elec-
tronic Data Capture (REDCap™) a web-based application
hosted by the University California Davis Health System
Clinical and Translational Science Center [18]. The
study was reviewed and approved by the University of
California, Davis, Institutional Review Board. All partici-
pants provided written informed consent and received
monetary compensation for their participation.

Dietary assessments
Unannounced 24-h dietary recalls were completed using
the Automated Self-Administered 24-h dietary recall sys-
tem to obtain information on participant habitual diets
[12]. Each participant was provided orientation to the as-
sessment tool and completed a training recall with staff
assistance. Data from at least two completed dietary as-
sessments were used to calculate Healthy Eating Index
(HEI) Scores for each participant according to estab-
lished guidelines [10, 13] using SAS 9.3 statistical soft-
ware. The HEI scoring guidelines are outlined in
Supplemental Table 1.

Clinical assessments
Protocols used to obtain anthropometric and metabolic
measures were previously described [16]. Fasting values
for glucose and insulin were used to calculate the
homeostatic model assessment of insulin resistance
(HOMA) [19].
Insulin resistance was also estimated from the post-

prandial response to a mixed macronutrient meal chal-
lenge test (MCT). The MCT contained palm oil,
sucrose, and pasteurized liquid egg white protein as the
main ingredients with a composition of fat (60 cal%):
carbohydrate (28 cal%): protein (12 cal%) and 62.5%
moisture [16]. Postprandial insulin to glucose relation-
ship cutoffs indicative of insulin resistance were estab-
lished by comparison to classic determination using an
oral glucose tolerance test (OGTT) in the independent
cohort of women in the controlled feeding intervention
trial (n = 44) using the approach of Matsuda and

DeFronzo [20]. For this validation, MCTs and OGTTs
were performed within 2 days of each other on three
separate visits before and at 3 and 8 weeks of the inter-
vention. The prediction of the presence or absence of in-
sulin resistance using independent OGTT or MCT
measurements achieved 86% accuracy supporting the
equivalency of these measurements. The full validation
of this modified Matsuda index calculation is being pre-
pared for publication.
The Framingham lipid-based 10 y cardiovascular dis-

ease risk was calculated for a subset of participants based
on the American Heart Association and the American
College of Cardiology [21]. Available online tool (http://
tools.acc.org/ASCVD-Risk-Estimator-Plus/#!/content/
terms/). This estimation used sex, age, total cholesterol,
HDL-cholesterol, systolic blood pressure, blood pressure
lowering medication use, diabetes status, and smoking
status from participants ≥30y old (n = 120 women; n =
107 men).

CMD-risk factor prevalence group classification
Participants were a priori stratified into two groups
based on CMDrf presence (high CMDrf) or absence
(low CMDrf). To be classified into the high CMDrf
group, participants had to have at least one of the
following risk factors [20]: BMI 25–44 kg/m2; fasting tri-
glyceride concentrations > 150mg/dL; HDLc < 50mg/
dL-women or < 40 mg/dL-men; HOMA > 2 or HbA1c
≥5.7 and < 6.5%. Participants without any of these risk
factors were classified into the low CMDrf group.

HEI-based risk factor prevalence prediction
An overview of the study design is presented in Fig. 1.
To assess the ability of HEI-dietary components to pre-
dict CMDrf group association, both Fisher’s linear dis-
criminant analyses and logistic regression were evaluated
[22]. A stepwise discriminant analysis was ultimately
used to stratify participants into low and high CMDrf
groups based on a minimum set of HEI-components.
The analysis of covariance test for the group variable (F
ratio and prob.>F statistic) was an indicator of its dis-
criminatory significance. Both linear discriminant ana-
lysis (LDA) and a quadratic discriminant analysis (QDA)
were investigated respectively.

D�
i
2 xð Þ ¼ x−xið Þ0S−1p x−xið Þ LDAð Þ

D�
i
2 xð Þ ¼ x−xið Þ0S−1i x−xið Þ þ ln Sij j QDAð Þ

where Di is the score on the discriminant function i, x is
the standardized values of the discriminant variables, Sp
is the estimated common covariance matrix and Si is the
estimated covariance matrix for group i. Each observa-
tion x is estimated to each i group′s multivariate mean
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(centroid) using Mahalanobis distance ðx−xiÞ, which con-
siders the correlation structure of the data and the individ-
ual scales. Classification then depends on either a linear or
quadratic combination of the discriminating variables for
each group to produce a probability membership, with as-
signment based on the highest probability.
For sex by age model building, data were divided into

a 75/25 training:validation set splits to avoid over-fitting
and minimize model reliance on sample selection. Valid-
ation sets were selected to balance training set represen-
tation and used to test model fit probabilities (Entropy
R2). Discriminant equation expected error rates (%) were
estimated as the discriminant function classification ac-
curacy over the maximum accuracy obtained from train-
ing sample data. A randomized permutation test was
used to simulate the accuracy score null distribution to
determine if the classification was above-chance [23].
On each iteration of the permutation test, the no-risk
and risk labels were randomly reassigned within each
participant, and the cross-validated accuracy was recal-
culated. This was repeated 2500 times to create a distri-
bution of classifier accuracy scores expected under the
assumption that risk classifications blocks are exchange-
able (Supplemental Fig. 1).
Models were evaluated using confusion matrices, ei-

genvalues, canonical correlations, likelihood ratios and

p-values. Model sensitivity (the ability to predict the
condition when the condition is present) and specificity
(the ability to predict the absence of the condition when
the condition is not present) were calculated for each
model from confusion matrices. The discriminant power
was estimated from the area under the receiver operator
characteristic curve (AUCROC). Models with excellent
(AUCROC ≥ 0.9) or good (0.8 > AUCROC > 0.9) perform-
ance were considered. Sex and age categories were ini-
tially evaluated as covariates, either alone or in
combination, in the CMDrf group models with all HEI-
components and neither was significant (Supplemental
Table 5). Stepwise discriminant models were generated
using all HEI-components for each sex (women, n = 206;
men, n = 172) at three different age categories (18 to 33
y, n = 133; 34 to 49 y, n = 126; and 50 to 65 y., n = 119.
To enhance confidence in the HEI-based CMDrf group
stratification approach, we also applied the constructed
models to an available data set from an independent co-
hort of women (n = 44) enrolled for the presence of
CMDrfs that had participated in a controlled feeding
intervention trial [15].

Statistical analysis
Data normality was assessed using the Shapiro-Wilk test
and Q-Q plots, and transformations applied as necessary

Fig. 1 Graphical summary of study design. WHNRC Nutritional Phenotyping study Cohort characteristics along with the data and data analysis
workflow covered in the current study. Cohort ethnic demographics match that of the 2010 population census of California
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prior to effect testing or modeling efforts. Total-HEI
scores were normally distributed. The 13 HEI-
components were transformed using a marginal rank-
based inverse normal transformation scaled from 0 to 1
[24], but remained non-normal. Mean differences be-
tween predicted CMDrf group BMI, lipid and glucose
profiles and Total HEI-components were examined
using Student’s t-test or chi-square test (for categorical
variables) with comparison across age categories and
sexes. Age by sex interactions were identified using ei-
ther a Tukey-Kramer or Wilcoxon signed-rank multi-
comparison tests for parametric and non-parametric
data, respectively. Pearson correlations were used to
identify associations among HEI components. Correl-
ation strength was considered strong (|r| ≥ 0.7), moder-
ate (0.7 > |r| ≥ 0.4) or weak (0.4 > |r| ≥ 0.1) [15]. All
analyses were performed using JMP Pro version 14.0
(SAS Institute, Cary, North Carolina).

Results
Relationship between HEI-components
Correlations between the HEI component and total
scores were evaluated to determine the amount of
unique information contained in each HEI-components.
The total HEI score had moderate-to low correlations
with the individual HEI-component scores, but the HEI-
components showed many significant correlations (P <
0.05, r > 0.1; n = 378; Supplemental Table 3). Of those,
strong correlations were seen between ‘total fruits’ and
‘whole fruits’ (r = 0.87) and ‘fatty acids’ and ‘saturated
fats’ (r = 0.73). Moderate correlations were seen between
‘greens and beans’ and both ‘total vegetables’ (r = 0.63)
and ‘seafood and plant proteins’ (r = 0.45), ‘total vegeta-
bles’ and ‘added sugars’ (r = 0.43), and between ‘dairy’
and ‘fatty acids’ (r = − 0.42), and between ‘total protein’
and ‘seafood and plant proteins’ (r = 0.40). All other ob-
served correlations were weak (r < 0.4).

Dietary differences with age, sex and cardiometabolic risk
factors
Overall, the total HEI scores were similar between sexes,
and were higher (P < 0.01) in those 50 to 65 y compared
to those 18 to 49 y, regardless of CMDrf group associ-
ation. However, other sex and age associations with
CMDrfs differed. A higher total-HEI score was associ-
ated with lower HOMA in women but lower BMI in
men. In addition, a higher total-HEI score was associated
with lower BMI and HOMA in the young and middle-
aged groups, but only a lower BMI in older individuals.
Numerous sex-dependent differences in HEI-components

were detected. Women had higher scores for ‘total vegeta-
bles’ and ‘whole fruit’ (P < 0.05) and a lower ‘saturated fat’
score (P= 0.03) than men (Supplemental Table 2). In
women, higher scores also approached significance for ‘total

fruits’ (P = 0.07), ‘dairy’ (P = 0.09), and ‘refined grain’
(P = 0.1), as did lower scores for ‘total protein’ (P =
0.06) and ‘added sugars’ (P = 0.06). Men aged 18 to
33 y had lower ‘total fruit’ and ‘whole fruit’ scores
than other age categories (P < 0.01), while women 50
to 65 y had higher ‘refined grain’ scores and men 50
to 65 y had higher ‘saturated fats’ scores than other
age groups (P < 0.05). Women and men 50 to 65 had
higher ‘whole grain’ and ‘sodium’ scores than other
age groups (P < 0.01). Scores for ‘greens and beans’,
‘seafood and plant proteins’, and ‘fatty acids’ showed
no differences between sex or age.

CMDrf group classification
Of the 393 participants, 286 were stratified into the high
CMDrf group with either 1 (n = 71; n = 62), 2 (n = 39;
n = 31), or 3+ (n = 47; n = 36) risk factors for women and
men, respectively. Notably participant selection was
stratified to provide balanced sex and age coverage of
normal, overweight and obese participants, thereby may
over sample the high CMDrf group from the geographic
area. Regardless, only 25% (n = 99) of participants had
BMI > 25 kg/m2 as a unique risk factor. Of the 31 partic-
ipants without clinical blood measures, 25 were classified
in the high CMDrf group by BMI. Of the participants
with BMI and clinical blood measurements, only 5%
were classified as high risk with BMI < 25 kg/m2. There-
fore, of the 6 participants classified in low CMDrf group
based on BMI without supporting clinical measure-
ments, it is estimated that 2 could be misclassified. This
would represent a misclassification rate of 0.5% and was
deemed acceptable. With these caveats, the phenotyping
cohort was stratified into low- (n = 107; ~ 27%) and high
(n = 286; ~ 73%) CMDrf groups that differed (P < 0.01)
in BMI, HDLc, triglycerides (TG) and HOMA (Table 1,
Supplemental Table 4). Sex differences in the prevalence
of overweight and obese conditions were not significant.
In the low CMDrf group, participants aged between 50
to 65 y had higher HDLc (P < 0.01) than 18 to 49 y olds
(72 vs 63 mg/dL). TG was not higher (P = 0.10) in the
high CMDrf group in participants aged between 34 to
65 y compared to 18 to 33 y olds (115 vs 90 mg/dL).
Only 15 participants were tobacco-users and were not
associated with specific CMDrf groups.

Dietary score differences between CMDrf groups
Of the 393 participants, HEI scores were calculated for
378 who completed two or three 24-h recalls. The high
CMDrf group had lower total HEI-score than the low
CMDrf group (total HEI-score 60 vs. 66, respectively;
P < 0.01). Similarly, the high CMDrf group had lower
scores for ‘total fruits’, ‘whole fruits’, ‘total vegetables’,
‘greens and beans’, ‘seafood and plant proteins’, ‘fatty
acids’, and ‘saturated fats’.
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Sex-specific differences between high and low CMDrf
groups in HEI-components of ‘total fruits’, ‘whole fruits’,
‘total vegetables’, ‘greens and beans’, ‘dairy’, ‘seafood and
plant proteins’, ‘sodium’, ‘fatty acids’, and ‘saturated fats’
scores were observed (P < 0.05; Fig. 2). In women, the
high CMDrf group had lower ‘total fruits’, ‘whole fruits’,
‘seafood and plant proteins’, ‘total-vegetables’, ‘sodium’,
‘fatty acids’, and ‘saturated fats’ and higher ‘dairy’ scores.
In contrast, men in the high CMDrf group only showed
lower ‘total vegetables’ and ‘greens and beans’ scores.
‘Whole grain’, ‘refined grain’, and ‘added sugars’ did not
differ between CMDrf groups.

HEI-component-based prediction of CMD-risk factor
presence
As multiple sex by age differences in HEI-component
scores were identified (Supplemental Table 2), models
were built to assess age x sex categories (Supplemental
Tables 5, 6, and 7). HEI-component-based CMDrf group
prediction was excellent for women, and good for men
across age groups. (Table 2, Supplemental Fig. 2). The
frequency of HEI-component inclusion by the stepwise
discriminant analysis in the six age x sex models were
‘dairy’ = ‘total vegetables’ = ‘saturated fats’ (n = 6; 100%) >
‘greens and beans’ = ‘total proteins’ = ‘refined grain’s =
‘fatty acids’ (n =5; 83%) > ‘whole grain’s = ‘total fruits’ =
‘seafood and plant proteins’ (n = 4; 66%) > ‘whole fruits’ =
‘added sugars’ = ‘sodium’ (n = 3; 50%) (Supplemental
Table 8).
The dietary component CMDrf group classification ac-

curacy showed high sensitivity (91% accuracy) within sex
and age (Table 3). However, model specificity was age
dependent, increasing with age: younger-age (78%) <
middle-age (85%) < older-age (> 90%). The predicted vs a
priori CMDrf misclassification rate was only 10% overall,
ranging from 8 to 14% across sex and age groups, with
misclassification highest in the youngest groups (Supple-
mental Table 9). Similarly, these diet-based models for
women classified the independent group of overweight

to obese women from the controlled feeding interven-
tion with 100, 87 and 100% sensitivity for young, mid
and older age groups, respectively. Except for lower ‘fatty
acids’ scores in the controlled feeding intervention (P =
0.04), HEI-components were similar in high CMD-risk
groups across the two studies (Supplemental Table 10).
‘Dairy’, ‘total vegetables’ and ‘saturated fats’ were the

HEI-components common to all diet-based CMDrf pre-
diction models across sex and age. The average HEI-
component profiles of the predicted CMD-risk groups
are shown in Supplemental Table 11 and are parallel to
the findings reported in Fig. 2.

Risk factor patterns in diet-predicted high vs low CMDrf
groups
Finally, we evaluated how HEI-component based CMDrf
group prediction segregated the CMD risk factors used
for stratification and other clinical parameters associated
with cardiometabolic health. As expected, BMI, fasting in-
sulin, and HOMA were higher in both sexes across all age
categories in the high CMDrf group (P < 0.05; Table 4).
Postprandial insulin resistance was also higher in high
CMDrf groups in both sexes (P < 0.01), but was higher in
men than women (P < 0.01). The lipid profile of the pre-
dicted high CMDrf group was characterized by a lower
HDLc and higher total cholesterol, LDL cholesterol
(LDLc), and fasting TG in both sexes at all ages (P < 0.05).
The HDLc concentration increased with age in the low
CMDrf group in women (68, 72, 82mg/dL respectively for
age category), but not in men, while remaining low in the
high CMDrf group across age and sex (P = 0.01; Table 4).
For participants over 30y of age, the average Framingham
risk (%) was also higher (P = 0.03) in 5.5% in the high
compared to 4% in the low CMDrf groups, but sex by risk
interactions were not significant (P = 0.07).

Discussion
The prevalence and manifestation of CMD and its risk
factors are known to differ between the sexes [3] and

Table 1 Comparison of clinical parameters used to stratify cardiometabolic risk groupsa

Risk factors Cardiometabolic risk P-value

Low-risk (n = 107) High-risk (n = 286)

Mean ± SE Criteria (%) Mean ± SE Criteria (%) Risk by age Risk

BMI (kg/m2) 22.5 ± 0.42 0 29.3 ± 0.24 87% 0.56 < 0.01

HDLc women (mg/dL) 74.0 ± 1.91 0 55.5 ± 1.14 42% < 0.01 < 0.01

HDLc men (mg/dL) 57.7 ± 1.89 0 46.0 ± 1.23 45% 0.04 < 0.01

TGfasting (mg/dL) 73.4 ± 4.25 0 107 ± 2.93 14% 0.12 < 0.01

HOMA 1.08 ± 0.23 0 2.63 ± 0.14 45% 0.82 < 0.01

HbA1c (%) 5.24 ± 0.04 0 5.32 ± 0.02 9% 0.81 0.11
aStudy participants were classified a priori for a cardiometabolic outcome. High risk was based on at least one of the following criteria: BMI (kg/m2) of 25–44;
fasting triglycerides > 150 mg/dL; HDLc < 50 mg/dL-women or < 40 mg/dL-men; HOMA > 2; HbA1c ≥5.7 and < 6.5. Low risk was based on the absence of all risk
factors. The interactions of the risk by sex or 3 components (age, sex and risk) was not significant. Values are mean and standard errors (SE)
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differentially change with age [25] depending on lifestyle
habits [26]. Diet constitutes an important modifiable
variable associated with CMD risk [26] that also varies
by sex [27] and age [28]. How diet patterns are associ-
ated with the presence of CMD risk factors, and how
such associations differ between the sexes are poorly

understood. Current dietary recommendations follow
nutritional goals that focus on meeting nutrient needs,
while limiting the intake of ‘added sugars’, ‘saturated
fats’, and ‘sodium’. These recommendations do not cap-
ture potentially excessive intakes of the adequacy com-
ponents (e.g. dairy) and are not stratified by sex [14]. If

Fig. 2 Diet patterns by sex and age for low and high cardiometabolic risk factors (CMDrf). Radar graph depicting dietary patterns of quality
according to Healthy Eating Index-2015 (HEI) for a low (n = 106) and high (n = 272) CMDrf in women and men by age in a cross-sectional study.
HEI-component scores are expressed as a percentage of their maximum score, with scores increasing with diet quality. Each point represents the
mean ± standard error of means. Diet components in bold-italic are recommended to be eaten in moderation. * The symbol represents the HEI-
components included in the predicted CMDrf models. Abbreviation of HEI-components are total-vegetables (ToVeg); saturated fat (satFat); total
protein (ToPro); refined-grains (rGr); ‘fatty acids’ (FAs); ‘greens and beans’ (G&B); whole-grain (wGr) total-fruit (ToFru); sea-food and plants (S&PPro);
whole-fruits (WFru); ‘added sugars’ (AdSug; n = 3); ‘sodium’ (Sod)
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sex-specific interactions between habitual diet and physi-
ology influence cardiometabolic health, modification of
dietary recommendations may be warranted.
Dietary habits can influence health. Indeed, we found

that a higher diet quality was associated with beneficial
anthropometric and metabolic characteristics. Similarly,
previous studies have indicated that diet quality assessed
using diet quality indexes is negatively associated with
cardiometabolic risk factors [29–32]. For instance, a
study of 4097 US adults over 20 y of age identified in-
verse associations between the HEI-2010 total-score and
BMI, triglycerides, TG/HDLc ratio and the presence of
comorbidities [33]. Unreported in these previous works,
we also observed that HEI component mixture complex-
ities did not co-vary with the total diet quality, but
shifted with sex and age. Considering that diet patterns
change with age, as do energy intakes and requirements
[34], these findings are perhaps not surprising. However,
the presence/absence of CMD risk factors in adult men
and women could be successfully determined using HEI-
2015 components alone, but required both separation of

the sexes, and stratification by age greatly enhanced the
models. ‘Dairy’, ‘total vegetables’, and ‘saturated fats’
were the only diet components common in all sex/age
CMDrf presence/absence discrimination models. In
women, the importance of components in order of
model appearance was ‘dairy’, ‘total-proteins’, ‘saturated
fats’, ‘sodium’, ‘total vegetables’. However, in men the
predictive dietary factors were ranked in the order of
‘dairy’, ‘fatty acids’, ‘saturated fats’, ‘greens and beans’,
‘total vegetables’, ‘refined grains’. Notably, the compo-
nents having the lowest correlations with the total score,
i.e. ‘dairy’, had the highest predictive value for CMD risk
factor presence/absence that manifested in a sex and age
specific manner.
Dairy comprises a wide range of food products with

distinctive macronutrients with varying and reportedly
contradictory impacts on cardiometabolic health [35]. In
our results, ‘dairy’ intake was the only adequacy HEI-
component positively correlated to the presence of
CMD risk factors in all women, it was not in men. Two
recent publications describe relationships with dairy in-
take that support these results. First, a prospective study
in U. S urban adults (30–64 y; n = 1371) reported an in-
verse association between ‘dairy’ fat intake to obesity in
men, but a positive relationship with dyslipidemia in
women [36]. Second, in a longitudinal study of French-
adults (28-60y; n = 588), higher consumption of ‘dairy’
products was positively associated with HDL-C and in-
versely associated with fasting glucose in men, but in
women, higher ‘dairy’ consumption was positively re-
lated to BMI, waist circumference and TGs [37].
Despite the importance of ‘dairy’ in these models, it is

critical to highlight that dairy intake alone does not pre-
dict the presence/absence of CMD risk factors. Diet pat-
tern analysis plays a unique role in assessing the
relationship between diet and disease because it is more
strongly related to the risk of disease than individual

Table 2 HEI-2015 component stepwise discriminant models for cardiometabolic risk groups in women and men by age category

Age (y) Model components Percent Predicted (%) AUC Entropy R2 Prob > F

Low-risk
(n = 106)

High-risk
(n = 272)

Women

18 to 33 Dairy, ToVeg, satFat, ToFru, ToPro, rGr, FAs, G&B, AdSug, Sod 93 90 0.93 0.66 0.10

34 to 49 Dairy, ToVeg, satFat, ToFru, ToPro, G&B, wGr, S&PPro, WFru, Sod 100 98 0.96 0.75 0.03

50 to 65 Dairy, ToVeg, satFat, ToPro, rGr, FAs, wGr, S&PPro, AdSug, Sod 100 100 0.92 0.85 0.02

Men

18 to 33 Dairy, ToVeg, satFat, ToPro, rGr, FAs, G&B, wGr, ToFru, S&PPro, wFru 92 92 0.89 0.86 0.04

34 to 49 Dairy, ToVeg, satFat, ToPro, rGr, FAs, wGr, ToFru, S&PPro, wFru, AdSug 100 95 0.83 0.85 0.07

50 to 65 Dairy, ToVeg, satFat, rGr, FAs, G&B, wGr, ToFru 100 96 0.89 0.95 0.05

HEI-components ranked by frequency of appearance in models: dairy (n = 6); total-vegetables (ToVeg; n = 6); saturated fat (satFat; n = 6); total protein (ToPro;
n = 5); refined-grains (rGr; n = 5); ‘fatty acids’ (FAs; n = 5); ‘greens and beans’ (G&B; n = 5); whole-grain (wGr; n = 4); total-fruit (ToFru; n = 4); sea-food and plants
(S&PPro; n = 4); whole-fruits (WFru; n = 3); ‘added sugars’ (AdSug; n = 3); ‘sodium’ (Sod; n = 3). AUC = area under the curve

Table 3 Accuracy of cardiometabolic risk prediction by HEI-
2015 components

Stepwise discriminate
model

Classification Accuracy (%)

Phenotyping

Low CMDrf High CMDrf

Women

18 to 33 y 71 91

34 to 49 y 80 96

50 to 65 y 100 93

Men

18 to 33 y 85 93

34 to 49 y 92 85

50 to 65 y 100 89
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foods [38]. Indeed ‘dairy’ was inversely associated with
‘fatty acids’ and ‘saturated fatty acids’ components.
While the reduction of saturated fatty acids (SFAs) in
the diet is recommended to prevent CMD risk factors
[39], the major source of dietary SFAs is provided by the
low-nutritive value of highly processed foods, followed
by animal food-based products [40]. Therefore, complex
dietary factors interplay to make of dietary pattern that
may influence many chronic diseases.
It is also important to consider that the development

of some CMD risk factors (e.g. insulin resistance and
atherosclerosis) may take time [41], and the lag between
insult and injury may underlay the lower predictive

performance we observed in younger individuals. Simi-
larly, dietary habits may become more stable with time,
allowing the identification of stronger associations be-
tween habitual diet and CMD risk factors in older popu-
lations. Regardless, consideration of sex and age may
advance the goal of developing public health targets by
promoting healthful eating habits.

Limitations
The cross-sectional study design results in associations
that cannot support causal inferences between HEI-2015
and cardiometabolic status. In addition, the restricted
geographical residence, income, and educational level of

Table 4 Metabolic profile in women and men (n = 393) by predicted stepwise discriminative cardiometabolic risk groupsa

Metabolic variables sex Phenotyping study SE P-value FDRd

Low CMDrf High CMDrf Risk

BMI (kg/m2) women 23.6 29.1 0.44 < 0.01 < 0.01

men 23.0 28.4 0.58

LDLc (mg/dL) women 99.5 110 3.51 < 0.01 < 0.01

men 93.9 114 3.62

HDLc (mg/dL) women 70.7 56.9 1.44 < 0.01 < 0.01

men 56.8 47.2 1.98

Cholesterol (mg/dL) women 177 183 3.53 < 0.01 0.02

men 161 179 3.72

Triglycerides (mg/dL) women 70.0 102 6.18 < 0.01 < 0.01

men 81.2 108 6.83

NEFA (mmol/L) women 0.32 0.36 0.01 0.06 0.08

men 0.32 0.33 0.01

Insulin (pmol/L) women 110 155 9.58 0.03 0.05

men 104 133 9.36

Glucose (mg/dL) women 91.3 95.4 1.17 0.24 0.28

men 94.9 96.9 1.36

HOMA women 1.32 2.41 0.24 < 0.01 0.01

men 1.50 2.54 0.22

MCT Matsuda Indexb women 14.6 9.44 1.22 < 0.01 < 0.01

men 17.0 12.6 1.96

HbA1C % women 5.26 5.31 0.05 0.28 0.69

men 5.27 5.31 0.04

Systolic (mm Hg) women 117 118 1.11 0.05 0.10

men 118 122 1.25

Diastolic (mm Hg) women 65 68 1.01 0.04 0.05

men 66 72 1.32

Framingham risk (Log)c women 0.79 1.05 0.09 0.03 0.05

men 1.94 1.70 0.15
aMean differences between predicted cardiometabolic risk group BMI, lipid and glucose profiles were examined using Student’s t-test. The model interactions age,
sex with predicted risk was not significant
bMeal challenge test Matsuda Index cut-off of < 8.8 is indicative of insulin resistance
cThe Risk Calculator estimate 10-year and lifetime risks for atherosclerotic cardiovascular disease (ASCVD), provided by the American Heart Association and the
American College of Cardiology. Non-normally distributed risk (%) was log-transformed
dFalse discovery rate post-hoc p-adjustment
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the participants may reflect dietary habits. Furthermore,
ethnicity was primarily represented by~ 70% white par-
ticipants. The HEI-2015 calculation used two or three
24-h dietary recalls which are prone to error due to their
reliance on the participants’ ability to recall and accur-
ately self-report dietary intake, which may lead to under-
or over-reporting. However, to minimize error in these
measurements a training recall was performed by all par-
ticipants with study staff before the at-home recalls used
in this report. In addition, these short term assessments
may not fully reflect the dietary habits of an individual
over time. However, the use of the HEI to collapse the
data into a diet pattern likely attenuates these errors,
and diet patterns are reportedly stable for up to 5 yrs.
[42]. In addition, as the presentation of metabolic risk
associated with dietary habits is likely associated with
the duration of those practices, the ability of diet to pre-
dict the presence of CVD-risk factors would be expected
to change with age. Finally, 24 h diet recalls may not be
stable predictors of longer term dietary patterns.

Conclusions
In the current study, using diet patterns described by the
HEI-2015 total and subscores we found that: 1) a total
HEI-score > 64 (of 100 perfect quality diet score) was as-
sociated with the absence of CMD risk factors; 2) HEI
component scores yielded better CMDrf predictions
than the total scores; 3) stratification of HEI component
based CMDrf predictions performed best stratified by
sex and age. These results suggest that integrating HEI-
2015 subscores along with total HEI-scores into clinical
assessments may provide preventative strategies for
CMD risk factor development, and sex/age- specific
diet-based intervention strategies to enhance the preva-
lence of a healthy cardiometabolic profile/phenotype.

Abbreviations
CMD: Cardiometabolic disease; CVD: Cardiovascular disease; DGA: Dietary
guidelines for Americans; HbA1c: Glycated hemoglobin; HEI: Healthy eating
index; HDLc: High-density lipoprotein cholesterol; HOMA: Homeostatic
model of assessment - insulin resistance; iMAPS: Individual Metabolism and
Physiological Signatures; MCT: Meal challenge test; TC: Total cholesterol;
TG: Triglycerides; WHNRC: Western Human Nutrition Research Center

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40795-021-00432-4.

Additional file 1: Supplemental Fig. 1. Permutation test. Simulated
distribution of p-values (A) and entropy R-square (B) for cardio-metabolic
risk (n = 2500) under the null distribution of discriminatory HEI-
components.

Additional file 2: Supplemental Fig. 2. ROC analysis. Receiver
operational curves of the HEI-2015 component. HEI were selected by
stepwise discriminant models for cardiometabolic risk groups.

Additional file 3: Supplemental Table 1. HEI-2015 Components and
Scoring Standards. Description of the HEI scoring system.

Additional file 4: Supplemental Table 2. HEI-2015 in a cross-sectional
study. Mean values of HEI-2015 components in women and men of three
different ages categories in the WHNRC Nutritional Phenotyping Study.

Additional file 5: Supplemental Table 3. Correlations of HEI-
components. Pearson correlation of the HEI-2015 components of the
WHNRC Nutritional Phenotyping Study cohort.

Additional file 6: Supplemental Table 4. Prevalence of metabolic
variables in a cross-section study. Number of participants with high risk
metabolic variable and their proportion (%) in the WHNRC Nutritional
Phenotyping study high and low CVD-risk groups.

Additional file 7: Supplemental Table 5. Discriminant model of
cardiometabolic risk. Performance of discriminant models of
cardiometabolic risk groups using all HEI-2015 components.

Additional file 8: Supplemental Table 6. Nominal logistic regression
of cardiometabolic risk. Performance of nominal logistic regression of
cardiometabolic risk groups using all HEI-2015 components.

Additional file 9: Supplemental Table 7. Nominal logistic regression
of cardiometabolic risk using selected HEI-2015 components. Perform-
ance of nominal logistic regression of cardiometabolic risk groups using
selected HEI-2015 components.

Additional file 10: Supplemental Table 8. Stepwise discriminant
analysis. HEI-2015 component selection in the WHNRC Nutritional Pheno-
typing study cohort by stepwise discriminant analysis.

Additional file 11: Supplemental Table 9. Comparison of actual vs
predicted cardiometabolic risk in a phenotyping study. Stepwise
discriminant analysis with the total population or a modeling using
women and men by age category.

Additional file 12: Supplemental Table 10. Evaluation of the
predictive model in an independent study of overweight women.
Predicted healthy eating index (HEI)-components of high-
cardiometabolic risk comparing a cross-sectional and targeted over-
weight study in women.

Additional file 13: Supplemental Table 11. Comparison of actual vs
predicted HEI-components. HEI-components by predicted stepwise dis-
criminative cardiometabolic risk in a cross-sectional study.

Acknowledgments
The authors would like to acknowledge the technical support of a number
of staff and volunteers at the WHNRC for making this research possible. In
particular, Lacey Baldiviez, Eduardo Cervantes, Yasmine Bouzid, Joanne
Aresenault, Dustin Burnett, Leslie Woodhouse, Joseph Domek, Tammy
Freytag, and the BioAnalytical Laboratory support staff. Janet M. Peerson
provided invaluable statistical consultation and review.

Authors’ contributions
N.L.K., E.L.B., C.B.S., and J.W.N. designed research; N.L.K., E.L.B., S.K. and C.B.S.
conducted the research; V.M.A., S.K. and J.W.N. developed statistical analysis
plan. V.M.A. performed statistical analyses. V.M.A. and J.W.N. wrote the paper.
J.W.N. had primary responsibility for final content. All authors read and
approved the final manuscript.

Funding
This study was funded by USDA Intramural Projects 2032–51530-022-00D,
2032–51530-025-00D, and 2032–51530–026-00-D. The USDA is an equal
opportunity employer and provider. Additional supported was provided by
the National Center for Advancing Translational Sciences, National Institutes
of Health, through grant number UL1 TR001860. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the NIH or USDA.

Availability of data and materials
The datasets used and/or analyzed during the current study is a component
of a larger study that will be posted together at a later date. In the
meantime, the data is available from the corresponding author on
reasonable request.

Artegoitia et al. BMC Nutrition            (2021) 7:30 Page 10 of 12

https://doi.org/10.1186/s40795-021-00432-4
https://doi.org/10.1186/s40795-021-00432-4


Declarations

Ethics approval and consent to participate
These secondary analyses as well as the original data collection were
conducted at USDA-ARS Western Human Nutrition Research Center with the
approval of the University of California, Davis, Institutional Review Board. All
participants provided written informed consent and received monetary com-
pensation for their participation.

Consent for publication
Not applicable.

Competing interests
V.M. Artegoitia, S. Krishnan, E.L. Bonnel, C.B. Stephensen, N. Keim and J.W.
Newman - no conflicts of interest.

Author details
1Obesity and Metabolism Research Unit, United States Department of
Agriculture-Agricultural Research Services-Western Human Nutrition Research
Center, 430 West Health Sciences Drive, Davis, CA 95616, USA. 2Department
of Nutrition, University of California Davis, Davis, CA, USA. 3Human Studies
Unit, United States Department of Agriculture-Agricultural Research
Services-Western Human Nutrition Research Center, Davis, CA, USA.
4Immunity and Disease Prevention Research Unit, United States Department
of Agriculture-Agricultural Research Services-Western Human Nutrition
Research Center, Davis, CA, USA. 5West Coast Metabolomics Center, Genome
Center, University of California Davis, Davis, CA, USA.

Received: 28 December 2020 Accepted: 14 April 2021

References
1. Kirk EP, Klein S. Pathogenesis and pathophysiology of the cardiometabolic

syndrome. J Clin Hypertens. 2009;11(12):761–5. https://doi.org/10.1111/j.1
559-4572.2009.00054.x.

2. Miranda JJ, Carrillo-Larco RM, Ferreccio C, Hambleton IR, Lotufo PA, Nieto-
MartSínez R, et al. Trends in cardiometabolic risk factors in the Americas
between 1980 and 2014: a pooled analysis of population-based surveys.
Lancet Glob Health. 2020;8(1):e123–e33. https://doi.org/10.1016/S2214-1
09X(19)30484-X.

3. Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders.
Nat Med. 2019;25(11):1657–66. https://doi.org/10.1038/s41591-019-0643-8.

4. Chella Krishnan K, Mehrabian M, Lusis AJ. Sex differences in metabolism and
cardiometabolic disorders. Curr Opin Lipidol. 2018;29(5):404–10. https://doi.
org/10.1097/MOL.0000000000000536.

5. Srivastava AK. Challenges in the treatment of cardiometabolic syndrome.
Indian J Pharm. 2012;44(2):155–6. https://doi.org/10.4103/0253-7613.93579.

6. Beigh SH, Jain S. Prevalence of metabolic syndrome and gender differences.
Bioinformation. 2012;8(13):613–6. https://doi.org/10.6026/97320630008613.

7. Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial
function important to vascular health and overall cardiovascular disease risk
across the lifespan. Am J Physiol Heart Circ Physiol. 2018;315(6):H1569–H88.
https://doi.org/10.1152/ajpheart.00396.2018.

8. de Jong M, Oskam MJ, Sep SJS, Ozcan B, Rutters F, Sijbrands EJG, et al. Sex
differences in cardiometabolic risk factors, pharmacological treatment and
risk factor control in type 2 diabetes: findings from the Dutch Diabetes Pearl
cohort. BMJ Open Diabetes Res Care. 2020;8(1). https://doi.org/10.1136/
bmjdrc-2020-001365.

9. Bédard A, Riverin M, Dodin S, Corneau L, Lemieux S. Sex differences in the
impact of the Mediterranean diet on cardiovascular risk profile. Br J Nutr.
2012;108(8):1428–34. https://doi.org/10.1017/S0007114511006969.

10. Krebs-Smith SM, Pannucci TE, Subar AF, Kirkpatrick SI, Lerman JL, Tooze JA,
et al. Update of the healthy eating index: HEI-2015. J Acad Nutr Diet. 2018;
118(9):1591–602. https://doi.org/10.1016/j.jand.2018.05.021.

11. Guenther PM, Casavale KO, Reedy J, Kirkpatrick SI, Hiza HA, Kuczynski KJ,
et al. Update of the healthy eating index: HEI-2010. J Acad Nutr Diet. 2013;
113(4):569–80. https://doi.org/10.1016/j.jand.2012.12.016.

12. Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE, Bingley C,
et al. The automated self-administered 24-hour dietary recall (ASA24): a
resource for researchers, clinicians, and educators from the National Cancer

Institute. J Acad Nutr Diet. 2012;112(8):1134–7. https://doi.org/10.1016/j.ja
nd.2012.04.016.

13. Reedy J, Lerman JL, Krebs-Smith SM, Kirkpatrick SI, Pannucci TE, Wilson MM,
et al. Evaluation of the healthy eating Index-2015. J Acad Nutr Diet. 2018;
118(9):1622–33. https://doi.org/10.1016/j.jand.2018.05.019.

14. USDA. Internet: https://www.fns.usda.gov/resource/healthy-eating-index-hei
(accessed 02/25/2020.

15. Krishnan S, Adams SH, Allen LH, Laugero KD, Newman JW, Stephensen CB,
et al. A randomized controlled-feeding trial based on the dietary guidelines
for Americans on cardiometabolic health indexes. Am J Clin Nutr. 2018;
108(2):266–78. https://doi.org/10.1093/ajcn/nqy113.

16. Baldiviez LM, Keim NL, Laugero KD, Hwang DH, Huang L, Woodhouse LR,
et al. Design and implementation of a cross-sectional nutritional
phenotyping study in healthy US adults. BMC Nutr. 2017;3(1):79. https://doi.
org/10.1186/s40795-017-0197-4.

17. Wopereis S, Stroeve JHM, Stafleu A, Bakker GCM, Burggraaf J, van Erk MJ,
et al. Multi-parameter comparison of a standardized mixed meal tolerance
test in healthy and type 2 diabetic subjects: the PhenFlex challenge. Genes
Nutr. 2017;12:21. https://doi.org/10.1186/s12263-017-0570-6.

18. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research
electronic data capture (REDCap)—A metadata-driven methodology and
workflow process for providing translational research informatics support. J
Biomed Inform. 2009;42(2):377–81. https://doi.org/10.1016/j.jbi.2008.08.010.

19. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling.
Diabetes Care. 2004;27(6):1487–95. https://doi.org/10.2337/diacare.27.6.1487.

20. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral
glucose tolerance testing: comparison with the euglycemic insulin clamp.
Diabetes Care. 1999;22(9):1462–70. https://doi.org/10.2337/diacare.22.9.1462.

21. D'Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM,
et al. General cardiovascular risk profile for use in primary care: the
Framingham heart study. Circulation. 2008;117(6):743–53. https://doi.org/1
0.1161/circulationaha.107.699579.

22. Maroco J, Silva D, Rodrigues A, Guerreiro M, Santana I, de Mendonça A.
Data mining methods in the prediction of dementia: a real-data
comparison of the accuracy, sensitivity and specificity of linear discriminant
analysis, logistic regression, neural networks, support vector machines,
classification trees and random forests. BMC Res Notes. 2011;4(1):299.
https://doi.org/10.1186/1756-0500-4-299.

23. Anderson MJ, Robinson J. Generalized discriminant analysis based on
distances. Aust Nz J Stat. 2003;45(3):301–18. https://doi.org/10.1111/1467-
842X.00285.

24. Cai X, Li H, Liu A. A marginal rank-based inverse normal transformation
approach to comparing multiple clinical trial endpoints. Stat Med. 2016;
35(19):3259–71. https://doi.org/10.1002/sim.6928.

25. Neeland Ian J, Poirier P, Després J-P. Cardiovascular and metabolic
heterogeneity of obesity. Circulation. 2018;137(13):1391–406. https://doi.
org/10.1161/CIRCULATIONAHA.117.029617.

26. Leroux C, Brazeau A-S, Gingras V, Desjardins K, Strychar I, Rabasa-Lhoret R.
Lifestyle and cardiometabolic risk in adults with type 1 diabetes: a review.
Can J Diabetes. 2014;38(1):62–9. https://doi.org/10.1016/j.jcjd.2013.08.268.

27. Northstone K. Dietary patterns: the importance of sex differences. Br J Nutr.
2012;108(3):393–4. https://doi.org/10.1017/s0007114511006337.

28. Hiza HAB, Casavale KO, Guenther PM, Davis CA. Diet quality of Americans
differs by age, sex, race/ethnicity, income, and education level. J Acad Nutr
Diet. 2013;113(2):297–306. https://doi.org/10.1016/j.jand.2012.08.011.

29. Mattei J, Sotos-Prieto M, Bigornia SJ, Noel SE, Tucker KL. The Mediterranean
diet score is more strongly associated with favorable cardiometabolic risk
factors over 2 years than other diet quality indexes in Puerto Rican adults. J
Nutr. 2017;147(4):661–9. https://doi.org/10.3945/jn.116.245431.

30. Ruiz-Cabello P, Coll-Risco I, Acosta-Manzano P, Borges-Cosic M, Gallo-Vallejo
FJ, Aranda P, et al. Influence of the degree of adherence to the
Mediterranean diet on the cardiometabolic risk in peri and menopausal
women. The flamenco project. Nutr Metab Cardiovasc Dis. 2017;27(3):217–
24. https://doi.org/10.1016/j.numecd.2016.10.008.

31. Camhi SM, Evans EW, Hayman LL, Lichtenstein AH, Must A. Healthy eating
index and metabolically healthy obesity in US adolescents and adults. Prev
Med. 2015;77:23–7. https://doi.org/10.1016/j.ypmed.2015.04.023.

32. de Almeida VD, de Matos FV, Ramos EG, Marinheiro LPF, de Souza RAG, de
Miranda Chaves CRM, et al. Association between quality of the diet and
cardiometabolic risk factors in postmenopausal women. Nutr J. 2014;13(1):
121. https://doi.org/10.1186/1475-2891-13-121.

Artegoitia et al. BMC Nutrition            (2021) 7:30 Page 11 of 12

https://doi.org/10.1111/j.1559-4572.2009.00054.x
https://doi.org/10.1111/j.1559-4572.2009.00054.x
https://doi.org/10.1016/S2214-109X(19)30484-X
https://doi.org/10.1016/S2214-109X(19)30484-X
https://doi.org/10.1038/s41591-019-0643-8
https://doi.org/10.1097/MOL.0000000000000536
https://doi.org/10.1097/MOL.0000000000000536
https://doi.org/10.4103/0253-7613.93579
https://doi.org/10.6026/97320630008613
https://doi.org/10.1152/ajpheart.00396.2018
https://doi.org/10.1136/bmjdrc-2020-001365
https://doi.org/10.1136/bmjdrc-2020-001365
https://doi.org/10.1017/S0007114511006969
https://doi.org/10.1016/j.jand.2018.05.021
https://doi.org/10.1016/j.jand.2012.12.016
https://doi.org/10.1016/j.jand.2012.04.016
https://doi.org/10.1016/j.jand.2012.04.016
https://doi.org/10.1016/j.jand.2018.05.019
https://www.fns.usda.gov/resource/healthy-eating-index-hei
https://doi.org/10.1093/ajcn/nqy113
https://doi.org/10.1186/s40795-017-0197-4
https://doi.org/10.1186/s40795-017-0197-4
https://doi.org/10.1186/s12263-017-0570-6
https://doi.org/10.1016/j.jbi.2008.08.010
https://doi.org/10.2337/diacare.27.6.1487
https://doi.org/10.2337/diacare.22.9.1462
https://doi.org/10.1161/circulationaha.107.699579
https://doi.org/10.1161/circulationaha.107.699579
https://doi.org/10.1186/1756-0500-4-299
https://doi.org/10.1111/1467-842X.00285
https://doi.org/10.1111/1467-842X.00285
https://doi.org/10.1002/sim.6928
https://doi.org/10.1161/CIRCULATIONAHA.117.029617
https://doi.org/10.1161/CIRCULATIONAHA.117.029617
https://doi.org/10.1016/j.jcjd.2013.08.268
https://doi.org/10.1017/s0007114511006337
https://doi.org/10.1016/j.jand.2012.08.011
https://doi.org/10.3945/jn.116.245431
https://doi.org/10.1016/j.numecd.2016.10.008
https://doi.org/10.1016/j.ypmed.2015.04.023
https://doi.org/10.1186/1475-2891-13-121


33. Al-Ibrahim AA, Jackson RT. Healthy eating index versus alternate healthy
index in relation to diabetes status and health markers in US adults: NHAN
ES 2007–2010. Nutr J. 2019;18(1):26. https://doi.org/10.1186/s12937-019-04
50-6.

34. Wakimoto P, Block G. Dietary Intake, Dietary Patterns, and Changes With
Age: An Epidemiological Perspective. J Gerontol Series A. 2001;56(suppl_2):
65–80. https://doi.org/10.1093/gerona/56.suppl_2.65.

35. Slurink IAL, Soedamah-Muthu SS. Dairy consumption and cardiometabolic
risk: advocating change on change analyses. Am J Clin Nutr. 2020;111(5):
944–5. https://doi.org/10.1093/ajcn/nqaa058.

36. Beydoun MA, Fanelli-Kuczmarski MT, Beydoun HA, Dore GA, Canas JA, Evans
MK, et al. Dairy product consumption and its association with metabolic
disturbance in a prospective study of urban adults. Br J Nutr. 2018;119(6):
706–19. https://doi.org/10.1017/S0007114518000028.

37. Samara A, Herbeth B, Ndiaye NC, Fumeron F, Billod S, Siest G, et al. Dairy
product consumption, calcium intakes, and metabolic syndrome–related
factors over 5 years in the STANISLAS study. Nutrition. 2013;29(3):519–24.
https://doi.org/10.1016/j.nut.2012.08.013.

38. Reedy J, Wirfält E, Flood A, Mitrou PN, Krebs-Smith SM, Kipnis V, et al.
Comparing 3 dietary pattern methods—cluster analysis, factor analysis, and
index analysis—with colorectal cancer risk: the NIH–AARP diet and health
study. Am J Epidemiol. 2010;171(4):479–87. https://doi.org/10.1093/aje/kwp393.

39. Svetkey LP, Simons-Morton D, Vollmer WM, Appel LJ, Conlin PR, Ryan DH, et al.
Effects of dietary patterns on blood pressure: subgroup analysis of the dietary
approaches to stop hypertension (DASH) randomized clinical trial. Arch Intern
Med. 1999;159(3):285–93. https://doi.org/10.1001/archinte.159.3.285.

40. Harrison S, Brassard D, Lemieux S, Lamarche B. Dietary saturated fats from
different food sources show variable associations with the 2015 healthy
eating index in the Canadian population. J Nutr. 2020;150(12):3288–95.
https://doi.org/10.1093/jn/nxaa300.

41. Polakof S, Dardevet D, Lyan B, Mosoni L, Gatineau E, Martin J-F, et al. Time
course of molecular and metabolic events in the development of insulin
resistance in fructose-fed rats. J Proteome Res. 2016;15(6):1862–74. https://
doi.org/10.1021/acs.jproteome.6b00043.

42. Jankovic N, Steppel MT, Kampman E, de Groot LC, Boshuizen HC,
Soedamah-Muthu SS, et al. Stability of dietary patterns assessed with
reduced rank regression; the Zutphen Elderly Study. Nutr J. 2014;13:30.
https://doi.org/10.1186/1475-2891-13-30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Artegoitia et al. BMC Nutrition            (2021) 7:30 Page 12 of 12

https://doi.org/10.1186/s12937-019-0450-6
https://doi.org/10.1186/s12937-019-0450-6
https://doi.org/10.1093/gerona/56.suppl_2.65
https://doi.org/10.1093/ajcn/nqaa058
https://doi.org/10.1017/S0007114518000028
https://doi.org/10.1016/j.nut.2012.08.013
https://doi.org/10.1093/aje/kwp393
https://doi.org/10.1001/archinte.159.3.285
https://doi.org/10.1093/jn/nxaa300
https://doi.org/10.1021/acs.jproteome.6b00043
https://doi.org/10.1021/acs.jproteome.6b00043
https://doi.org/10.1186/1475-2891-13-30

	Abstract
	Background
	Methods
	Results
	Conclusions
	Trial registration

	Background
	Methods
	Participants
	Dietary assessments
	Clinical assessments
	CMD-risk factor prevalence group classification
	HEI-based risk factor prevalence prediction
	Statistical analysis

	Results
	Relationship between HEI-components
	Dietary differences with age, sex and cardiometabolic risk factors
	CMDrf group classification
	Dietary score differences between CMDrf groups
	HEI-component-based prediction of CMD-risk factor presence
	Risk factor patterns in diet-predicted high vs low CMDrf groups

	Discussion
	Limitations

	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note



