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ABSTRACT: Self-assembly of nanoparticles (NPs) to form
structural colors offers promising opportunities for developing
electronic, optoelectronic, and magnetic devices. In this regard, we
reported co-assembly of cellulose nanofibrils (CNFs) and
graphene to produce colored thin films. We demonstrated that
biomimetic iridescent “peacock feather”-like full-color thin films
can be generated by simple evaporation of aqueous suspensions on
a surface tension confined, optically symmetric indium tin oxide-
coated polyethylene terephthalate substrate. Amphiphilic CNFs
serve dual functions to attract hydrophobic graphene via van der
Waals interactions and to disperse hydrophilically and anionically
CNF-tethered graphene while regulating surface tension to induce
capillary and Marangoni flows in the force fields and construct thickness variation during dewetting. These CNF−graphene thin
films exhibit full-color patterns and function as tunable light and moisture actuators. This approach has high potential to be applied
to assemble other metal or metal oxide NPs for fast, simple, and robust fabrication without involving any complex lithography and
external fields.

KEYWORDS: structural color, photonic thin films, iridescence, cellulose nanofibrils, evaporation-induced self-assembly
photonic thin films, amphiphilic cellulose nanofibrils, iridescent colors, light and moisture actuator

1. INTRODUCTION

Thin films with spatially ordered sophisticated hierarchical
structures, most commonly assembled from nanoparticles
(NPs), have attracted much interest for their tailored
electronic, magnetic, and optical properties1 for a diverse
range of applications in photovoltaics,2 sensors,3 catalysis,4 and
magnetic storage.5 To date, organic or inorganic NPs in
monodistributed sizes have been organized into ordered two-
dimensional (2D) arrays by a myriad of techniques, including
Langmuir−Blodgett deposition,1 droplet evaporation,6 and
interfacial assembly.7 In these approaches, NP assembly is
generally known to be driven by attractive van der Waals
interactions balanced by steric repulsion.8 Depending on the
competing effects of NP diffusion, convection, and solvent
dewetting, a variety of patterns of 2D and three-dimensional
(3D) ordered arrays as well as fractal aggregates, “coffee rings,”
photon crystals, and percolation clusters may emerge.9 Thus,
manipulating NPs and regulating their fluid interfaces may
enable the formation of large ordered NP thin films.10

Among biologically derived nanomaterials, cellulose nano-
fibrils (CNFs) by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO) oxidation first reported by de Nooy et al.11 have
been structured into 2D films and 3D gels.12−18 While
TEMPO-mediated oxidation regioselectively converts the
surface C6 hydroxyls to carboxylate groups on CNFs, many

pronounced attributes of high length-to-width aspect ratios,19

low coefficient thermal expansion (3.8 ppm K−1),20 high
tensile strength (1.6−6.4 GPa),19 and Young’s modulus (78−
114 GPa),21 as well as many versatile characteristics, such as
reducing capability,22 tunable softness,23 gel−liquid phase
transition,24 binding ability,25 dispersing character,26 high
transparency,27 foaming ability,28 and scaffolding13 have also
been discovered. We have derived various nanocelluloses from
agricultural biomass by chemical and shear force methods.29−31

The CNFs derived from rice straw by coupled TEMPO
oxidation and shear force have shown to exhibit unique
anisotropic amphiphilicity, because of exposure of the
hydrophilic 110 and 11̅0 as well as the hydrophobic 200
crystallographic planes of cellulose Iβ crystalline structure, to
function as colloidal emulsifiers,32 exfoliating dispersants for
graphene,26 and amphiphilic aerogels.33 TEMPO-CNF from
softwood bleached kraft has also been observed to sponta-
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neously align into the plywood-like hierarchical structure to
serve as an exceptionally high oxygen barrier film.34

To date, CNFs have been used as aqueous suspensions,35

and widely made into fibers,36 composites,37 layer-by-layer
films,15 bulk films,27 by varying processes of ambient drying,38

wet spinning,36 spin coating,39 vacuum filtration,27 and
casting.40 However, structural colors have only been observed
on shorter, rigid rod-shape, and highly crystalline cellulose
nanocrystals (CNCs) known for exhibiting chiral nematic pitch
that displays colors in suspensions, thin films, and bulk
films.41,42 In CNC-silica composites, increasing silica contents
have shown to increase the reflective wavelength λmax to display
a range of tunable colors like dark red, red, green, and blue43

through evaporation-induced self-assembly (EISA).44 Neutral-
izing CNC surface sulfates with strong Li+, Na+, K+, NH4+,
NMe4+, and NBu4+ containing bases could also retain intrinsic
chiral nematic order in polar solvents, such as dimethyl
sulfoxide, formamide, N-methylformamide, and dimethylfor-
mamide.45 The particular photonic properties, that is, selective
left-handed circularly polarized light reflection that pitches on
the order of visible light wavelengths,46,47 are of particular
interest in physics. To our knowledge, self-assembly of CNFs
to display structural colors has not been fully explored.
Here, we report the EISA of CNFs and iridescent

microstructure of thin films showing intriguing photonic
properties. This evaporation approach common to cast films
from common polymers is simpler and more cost-effective than
most processes reviewed. The optical activities and structural
colors displayed by these CNF films are comparable with the
self-assembled CNC but without the chiral nematic structure.
The highly anisotropic amphiphilicity of the CNFs allowed
them to bound to graphene and CNF-bound graphene to
deposit on the hydrophobic substrate to function with
flexibility, foldability, and fast response. As a proof-of-concept,
we demonstrate the preparation of a family of iridescent CNF
films whose optical properties can be easily tailored.

2. EXPERIMENTAL SECTION
2.1. Materials. Cellulose was extracted from rice straw (Calrose

variety, harvested in California) using a three-step procedure, as
reported previously.30 Graphite flakes, toluene, anhydrous ethanol,
sodium chlorite, acetic acid, potassium hydroxide, and sodium
hypochlorite (NaClO) were used, as reported previously.26 Sodium

dodecyl sulfate (SDS, Sigma-Aldrich) was used as received. Indium
tin oxide (ITO, 130 nm thick)-coated polyethylene terephthalate
(PET, 0.127 mm thick) (Sigma-Aldrich) was used as the substrate for
CNF coating. The ITO layer contained 90−100% diindium trioxide
and 10−20% tin(IV) oxide. Silicon wafer featuring ⟨111⟩, P-type at 2
in. × 0.3 mm, was purchased from Sigma-Aldrich and used without
further treatment. Water was purified by the Milli-Q plus water
purification system (Millipore Corporate, Billerica, MA).

2.2. Preparation of CNF-Exfoliated Graphene and Thin Film.
Aqueous CNF-exfoliated graphene (5 wt %) was prepared by aq.
CNF with graphite flakes and blended (37 × 103 rpm) for 3 min and
then centrifuged to collect the CNF-exfoliated graphene supernatant,
as detailed previously.26 To prepare CNF or CNF/graphene-coated
ITO/PET films, aq. CNF or CNF-exfoliated graphene suspension
(0.1 wt %, 0.5 mL) was drop-wise deposited onto ITO-coated PET
and allowed to dry under ambient condition for 12 h. An ITO-coated
PET substrate had a surface resistivity of 60 Ω/square and a root
mean square roughness (Rq) of 0.856 ± 0.275 nm (5 μm × 5 μm)
based on three atomic force microscopy (AFM) measurements.

2.3. Characterizations. AFM was performed using Asylum-
Research MFP-3D, and transmission electron microscopy (TEM) was
conducted using a JEOL2100F electron microscope. Scanning
electron microscopy (SEM) imaging of dried graphene/CNF thin
films (0.5 mL, 0.1%) on ITO/PET was performed on a Quattro S
environmental scanning electron microscope from Fisher Scientific.
Surface tension (γ) values were measured on a K10 Kruss
tensiometer. CNF/graphene compositions were determined by
graphene char quantity using a thermogravimetric analyzer (TGA-
50, Shimadzu Company) operated at 10 °C min−1 rate to 500 °C.
CNF and CNF/graphene show some decomposition below 200 °C,
which was ascribed to the existence of absorbed moisture on
TEMPO-oxidized CNF. Iridescent images of graphene/CNF thin
films were taken by a polarizer-free camera (HAUPPAUGE winTV)
equipped in the AFM. Profiles of dried films were scanned (0.074
μm/s resolution and 22.222 μm/s speed) by a Dektak XT 2D
profilometer (Bruker). UV−vis spectra were collected on ∼1.6 cm
diameter dried droplets (from 0.1 wt % graphene/CNF, 0.5 mL on
ITO-coated PET) using a UV−vis spectrophotometer (Evolution
600, Thermo Scientific). Dynamic wetting profile of graphene/CNF
droplets on substrates was imaged by a 1000× LED USB
magnification digital microscope with a 0.3m CMOS image sensor
and AMCAPdirectshow software (version 9.0160).

Computation software COMSOL Multiphysics (version 5.3) with a
wave optical module was used to model the microstructure−optics
relationship, as assisted with the finite element method. A port
boundary condition was included at the top. The port boundary
condition at the top launched a plane wave at a specified angle at a

Figure 1.Morphologies of CNFs and CNF-containing suspensions: (a) AFM and (b) TEM images; (c) illustrations of aq. CNF-exfoliate graphene
and deposition on ITO-coated PET; and (d) photographic images of 0.5 mL aq. CNF and CNF-exfoliate graphene on ITO-coated PET.
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certain incident power. Two interior boundaries were set to integrate
the power flux in the upward and downward directions, then the total
transmittance and reflectance could be obtained after being
normalized by the incident power. Floquet periodic boundary
condition was also included on the left and right sides for non-
normal incident light.

3. RESULTS AND DISCUSSION

3.1. Formation of Iridescent Orderly Structure. The
TEMPO-mediated oxidation coupled with high-speed blend-
ing (37,000 rpm) produced CNFs that were 1.69 ± 0.52 nm
thick (n = 100) by AFM and 2.57 ± 0.85 nm wide and 0.99 ±
0.48 μm long (n = 200) by TEM (Figure 1a,b), which is
consistent with previously reported findings from the same
source and process.48,49 As such measurements were made
from dilute CNF concentrations on hydrophilic mica for AFM
and glow-discharged grid for TEM, the wider surfaces along
these substrates are assumed to be hydrophilic and those
smaller surfaces along the height dimension to be hydrophobic.
As reported previously, the hydrophobic CNF surfaces or the
predominantly 200 crystallographic planes attach to graphite
surfaces to aid aqueous exfoliation by high-speed shear force
into exfoliated CNF-tethered graphene sheets at 84.2 wt %
yield under an optimal 0.2 g/g graphene/CNF mass ratio.26

Here, aqueous CNF/graphene (0.5 mL, 0.1 wt %) colloid was
deposited onto a smooth (Rq = 0.856 ± 0.275 nm, Figure S1)
ITO-coated PET substrate and then dried under the ambient
condition (Figure 1c,d). Aqueous CNF alone was also
prepared in the same manner for comparison.
Upon air drying under ambient condition, aq. CNF-tethered

graphene or CNF/graphene (0.5 mL, 0.1 wt %, Figure 2a)
deposited onto the ITO-coated PET substrate formed a thin
coating covering a ca. 2 cm diameter area and appeared
iridescent, showing blue, green, yellow, and red colors (Figure
2b). Graphene/CNF films containing 72.4 wt % CNFs
(calculated from thermogravimetric analysis (TGA) data,

Figure S2) had a dark perimeter and a black dot in the center
(Figure 2a). When dried slightly tilted, the dark center of the
iridescent circle drifted in the gravitational flow direction, as
pointed by an arrowhead in Figure 2a. Comparatively, aqueous
dispersions of graphene alone at either 0.2 or 0.002 wt % on
ITO dried to gray, evenly spread, homogeneous thin films
without colors (Figure S3), inferring the structural color to
originate from CNFs rather than graphene. Such similar
iridescent patterns were observed on all thin films containing
CNF, that is, aq. CNF alone, or aq. graphene/CNF with
0.0067 to 0.067% CNF, dried at 25 or 50 °C, as well as in
varying droplet volumes of 10, 20, 30, and 40 μL, showing
theses structural colors to be independent of aq. CNF
concentrations and volumes (Figure 2c). Clearly, the zoomed
angular view of the film from 40 μL 0.1% graphene/CNF on
ITO (Figure 2d) showed circular iridescent patterns
mimicking the biologically structural coloration found on
eyespots of peacock’s train feather.
Interestingly, neither CNF bulk films nor CNF coatings have

been reported to show orderly structures when fabricated by
the vacuum filtration-assisted paper-making technique (Figure
S4).40,50 In fact, bacterial cellulose CNF/graphene, coated on
the PET substrate,50 appeared gray displaying no other colors.
The rarely seen iridescent colors are thought to be related to
surface tension (γ) caused by the unique amphiphilic nature of
these CNFs, as sketched in Figure 2e. The CNF-tethered
graphene sheets inside the droplet move upward from the
perimeter along the air/liquid interface (Marangoni flow) and
outward toward the edge along the liquid/solid interface
(capillary flow) where γ is minimal at these interfaces, giving
rise to the mass transport in the radiant direction. Marangoni
flow is an anticapillary flow, which goes from edge to center at
the air/liquid interface induced by the constantly changing and
uneven surface tensions. Marangoni number (Ma) described
contribution from two factors51

Figure 2. Air-dried aq. CNFs/graphene (0.5 mL, 0.1 wt %) on ITO-coated PET: (a) iridescent pattern formation dried tilted in the 4 o’clock
direction as the dark spot showed; (b) close up of colors showing four basic colors (R: red; G: green; B: blue; and Y: yellow); (c) optical image by
angular view (∼60° to surface) of iridescent graphene/CNF (0.1%) films dried from various volumes of 40, 30, 20, and 10 μL; (d) optical image of
a NP film (40 μL graphene/CNF dried on ITO/PET). Two concentric regions with distinct hues are visible. The inner region is a uniform NP
monolayer (in dark) about 1 mm in diameter. The outer region contains contrary colors in red and green, which assemblies the appearance of a
peacock’s feather showing colorful eyespots; (e) sketch of EISA of aq. CNF/graphene on the ITO/PET substrate, showing amphiphilic CNFs with
their hydrophobic sides/surfaces adhered to graphene and advanced by the capillary flow from center to edges. D and h [inset in (e)] denote
distance from center to edge and film thickness, respectively; (f) top view of the wetting process of a 20 μL aq. 0.64% CNF suspension on an ITO/
PET substrate, showing changes in contact lines and displaying of colors at the final stage (white dots were reflection of lamps).
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γ= − × Δ ηαMa t TLd /d ( / )

where γ denotes the liquid surface tension, t is the time, ΔT is
the temperature difference within the colloidal droplet, L is the
characteristic droplet length, and η and α are the dynamic
viscosity and thermal diffusivity of the droplet, respectively.
The capillary flow transports either CNF or CNF-tethered
graphene from center to edge. Along this process, the rate of
evaporation is higher around the edges of the liquid/solid
interface, increasing γ at the high-concentration CNF location
(x-axis direction, Figure 2e), which accelerates the upward
movement of CNFs toward the center along the air/liquid
interface. The CNF-tethered graphene sheets flow radiantly
toward the edge of the droplet via the capillary flow where they
accumulate and solidify upon water evaporation, forming a
gradient of thickness in a volcanic crater profile or “hills” in
iridescence. Similar “coffee particulates,” “silver nanowires,”
and monodispersed polystyrene have also shown to form
volcanic crater shapes driven by an outward capillary flow from
center to edge.52,53

Figure 2f presents the top view of a 20 μL aq. 0.64% CNF
suspension on the ITO-coated PET substrate, showing
changes in contact lines around the thin-film area. Initially,
the drop size stayed unchanged until ca. t = 18 min (figure not
shown here) and then shrunk when completely dried at t = 53
min. During the initial 18 min for the solvent in the CNF
suspension to evaporate, CNFs undergo intensive movements
because of Marangoni and capillary flows and flow-induced
reorganization. Then, the contact line shrunk and vanishes
from the edge to the center. The contact area reduced linearly
with time (Figure S5), suggesting an even evaporating rate.
What is worth noting, in the last image, a slight iridescent
coloration is inversely located displaying red and green formed
on the film, which indicated that there is possible relationship
of the microstructure with viewing angles.
To find out the factors of the CNF concentration affecting

the appearance of patterning, the as-prepared CNF suspension
(0.67%) was diluted to a gradient of concentrations from

0.00067 to 0.67% and then 10 μL of each concentration
deposited and air dried on the ITO-coated PET substrate. The
strongest iridescent patterns were observed on those from
0.0067 to 0.067% CNF concentrations (Figure 3b,c). Clearly,
the iridescence patterns originate from the self-organization of
CNFs in the specific range of concentrations where sufficient
CNFs and inter-CNF spacing allow such organization. The
iridescence faded out on that at 0.67% aq. CNF that gelled,
indicating limited reorganization of individual CNFs. In
gelation, the critical percolation threshold φc, which character-
izes formation of the network, equals to 0.7/(L/W), where L
and W denote the respective average CNF length and
width.30,31,54 Based on CNF dimensions measured, φc is
calculated to be 0.1817%, the CNF concentration above which
the formation of the CNF network hinders their self-
assembling. Therefore, iridescence is expected to be observed
in films from aq. CNF at concentrations up to the 0.1817%
percolation threshold which falls between the 0.067 and 0.67%
observed. The 0.1% aq. graphene/CNF protocol contained
0.0724% CNF which was far below the 0.1817% percolation
threshold φc, where free CNF−CNF colloidal interactions and
assembling could result in an orderly structure with an
iridescent texture.
The AFM image of the CNF/graphene thin-film surfaces

coated on either mica or the ITO/PET substrate showed no
clear evidence of fibril alignment (Figures 3e and S6),
suggesting the preferential surfacing of graphene to reduce
surface tension. The cross-sectional CNF/graphene thin film
showed no evidence of chiral pitch (Figure 3f). During this
process, obvious Newton’s rings emerge on the thin film
because of the rapid and uniform thinning of the several
micron thick aq. suspension into near 100 nm thick film. As
thinning progresses, CNFs or CNF-tether graphene sheets in
the suspension adhere to the substrate and cannot move in the
thin film. Finally, as the Newton’s rings disappear, a radially
oriented alignment of CNF or CNF/graphene array is left on
the substrate.

Figure 3.Microscopic images of CNF-only thin-film series cast from ambient drying of aq. CNF (0.00067−0.67%) on ITO-coated PET taken by a
polarizer-free camera equipped in AFM: (a) 0.00067; (b) 0.0067; (c) 0.067; and (d) 0.67%. Images in (b,c) display the strongest iridescence. The
scale bars in (a−d) were 150 μm; (e) AFM image of CNF/graphene; and (f) TEM image of cross-sectional and top views of a piece of CNF/
graphene thin film detached from ITO/PET substrate.
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3.2. Optical Properties and Volcanic Mouth Micro-
structure of CNF-Containing Thin Films. Light trans-
mittance of CNF and graphene/CNF thin films evaporated
from aq. suspensions (0.5 mL, 0.1%) on top of the ITO-coated

PET substrate was compared with that of their bulk films (∼15
μm thick) prepared by vacuum filtration (Figure 4a) and at
several arbitrarily selected locations of graphene/CNF thin film
on the ITO/PET substrate (Figure 4b). The ITO-coated PET

Figure 4. Optical properties and topological microstructures of CNF and CNF/graphene thin films on the ITO/PET substrate: (a) UV−vis spectra
of films and their bulk counterparts; (b) UV−vis spectra of several arbitrarily selected locations in films; (c) topological microstructures of CNF
thin films on the ITO/PET substrate scanned by a profiler; (d) graphene thin films on the hydrophobic substrate (silicone) prepared from 0.1 wt %
aq. graphene suspension alone or that stabilized by 0.3 wt % SDS; (e) topological microstructures on two representatives, including thick (4 wt %)
and thin (0.05 wt %) CNF/graphene films; and (f) height offset vs aq. CNF/graphene concentrations, the arrow marked the concentration range
(<0.2 wt %) displaying structural colors. Red square denoted the film derived from pure 0.067 wt % CNF displaying colors.

Figure 5. Wetting dynamics of aq. graphene/CNF (0.1%) on ITO with water and aq. CNF (0.23−0.067%) for comparison: (a) time-lapse
variation in surface tension (γ) of aq. CNF suspensions at 0−0.86% CNF concentrations. Lower left inset depicts the height and radius change as
water evaporates, upper right inset proposes CNF moves at different times; (b) CAs of a 10 μL water or aq. CNF sessile droplets on the ITO
substrate; and (c) normalized droplet radius and heights (inset) of above-mentioned liquid droplets. Normalization was dealt by transforming data
vector into a new vector whose norm (i.e., h, radius) equals to 1. (d) Time-lapse changes in CA of 10 μL CNF (0.067%), graphene/CNF (0.1%),
and water on ITO.
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substrate transmitted up to ∼80% in the visible light spectra in
an unremarkably smooth line. Intriguingly, both graphene/
CNF and CNF thin films on the ITO-coated PET substrate
exhibited multiple peaks throughout the visible light spectrum,
clearly indicating the presence of optical interference. Neither
bulk films showed any specific UV−vis absorption, suggesting
the colors to be originating from thin-film-air surface and
interfaces to be elucidated in the following section.
To further examine the microstructure-induced optical

phenomenon, a dilute aq. CNF droplet (0.067%, 10 μL) was
dried on a rigid hydrophobic silicon wafer surface to also form
ca. 1 mm diameter circular thin films with unique volcano-
shaped thickness contour of 0.884 μm perimeter height and
0.337 μm height in the center or a 262% height offset
(Hperimeter/Hcenter × 100%) (Figure 4c). In contrast, both 0.1%
aq. graphene and 0.1% aq. graphene/SDS suspensions
deposited onto ITO dried into thin films in even thickness
without any colorful pattern at all (Figure 4d). Similar to CNF
alone, graphene/CNF droplets (20 μL) at 0.05, 0.1, 0.2, 0.3,
and 0.4% concentrations dried on ITO also exhibited volcanic
thickness profiles with respective 186, 165, 124, 130, and 125%
height offsets, of which the representative 0.05 and 0.4% curves
are shown in Figure 4e. Observation with the naked eyes, those
from the lower 0.05−0.1% graphene/CNF concentrations
appeared iridescent but not as strong as those from 0.2 to 0.4%
concentrations (Figure 4f). It is very clear that the iridescence
is attributed to CNF only, not graphene; only CNF-containing
suspensions, that is, graphene/CNF or CNF, deposited on
ITO series, are dried to volcanic-shaped thickness profiles that
were not observed on those obtained from aq. graphene
suspensions. The distinct iridescent phenomenon is attributed
to the Bragg reflection in the gradient slope microstructured
thin film of self-assembled CNFs driven by differential water
evaporation (Marangoni flow) and surface tension (capillary
flow) in aq. liquid deposited onto hydrophobic ITO-coated
substrates, which is not observed in thick bulk films.
3.3. Dynamic Wetting Related to Self-Assembling

Mechanism of CNFS. How the amphiphilic characteristics of
CNF surfaces affect their aq. suspension behaviors was further
probed by their effects on water surface tension and dewetting
behaviors. With increasing CNF concentrations from 0.23 to
0.86 wt %, the surface tension γ (70.4 mN m−1) first increased
slightly to 71.3 mN m−1 with 0.23 wt % CNF, then decreased
to 65.7 mN m−1 as the CNF concentration further increased to
0.86 wt % (Figure 5a). This is consistent with the anisotropic

and amphiphilic characteristics of CNFs that have shown to aid
aqueous exfoliation and stabilization of bound graphene.26 The
anisotropic CNF surface amphiphilicity can also be reflected in
their film surfaces. Neat CNF thin film dried from 0.3% aq.
CNF on the hydrophobic ITO had a static water contact angle
(CA) of 62.3° on the surface exposed to air and 78.2° on the
surface dried facing the hydrophobic ITO (Figure 5b),
reflecting the nature of the air and ITO surfaces CNF exposed.
Water formed a CA of 91.9° on the hydrophobic ITO, a
lowered CA of ∼74.9° on CNF and raised CA back to ∼81.6°
on the more hydrophobic graphene/CNF, the effects expected
from amphiphilic CNFs and hydrophobic graphene/CNF.
These observations support the notion that amphiphilic CNFs
rotate to lower the surface tension with respect to the specific
interfaces. For a liquid droplet on a surface, the height (h) is
associated with the radius R and CA (θ): h = R tan(θ/2).51

The radius for both aq. CNF and graphene/CNF remained
unchanged at 1 (normalized) for ∼25 min, then drastically
reduced (Figure 5c), which is obviously different from the
constant decreasing radius of pure water. Meanwhile, the h and
CA of both aq. CNF and graphene/CNF decreased linearly
with time (Figure 5d). That the radius remained constant till t
= 25 min suggests aq. CNF-containing droplet on hydrophobic
ITO resembled a constant contact area motion, that is, pinned
contacting area between the liquid/substrate but decreasing
CA and h with time as a function of decreasing dynamic
surface tension with the increasing concentration or evapo-
ration.
Computational modeling by COMSOL software confirmed

our prediction that optical interference of irradiative light with
CNF/ITO/PET resulted in the structural colors. As shown in
Figure 6a, we built from top to bottom a structure with air (i)
CNFs (ii), ITO (iii), and PET (iv) filled in each layer. Incident
light came at a 661 nm wavelength shining at 60° angle from
the top. Each layer has a thickness very close to that of
experimentally prepared thin film, that is, the CNF layer has a
concave dent at a 12 μm radius, a 115 μm radius of curvature
of 115 μm, and a height of 4 μm (from the highest to lowest),
comparing to 0.067% CNF coated on a silicon surface to form
1 mm diameter, volcano-shaped contour of 0.884 μm
perimeter height, and 0.337 μm height in the center (Figure
4c). Some discernments were set because of the limitation of
computations. The refractive index for air and PET was set at
1.0003 and 1.6357, respectively, while interpolation curves
were introduced to describe the wavelength-dependent

Figure 6. COMSOL modeling to predict the optical activity of multiple layers of CNF-coated ITO/PET with the Roman numbers denoting each
layer material, (i): air; (ii): CNFs; (iii): ITO; and (iv): PET: (a) computational model of the layered microstructure with the CNF layer having a
radius of 12 μm, radius of curvature of 115 μm, and a height of 4 μm and (b) computational modeled results for optical transmittance, reflectance,
and absorbance of CNF-containing triple layers.
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refractive index of CNF and ITO. Using the transfer-matrix
method, the computational modeled results are shown in
Figure 6b for optical transmittance, reflectance, and
absorbance of CNF-containing triple layers. We observed
that the incident light also generated wavy curves, which is
believed to attribute to the above-mentioned Bragg refraction
within the layers. The optical properties of bulk CNF films
with a thickness of > 10 μm were also computed but did not
show the wavy peaked curves, confirming the role of the
nanometer structure in generation of interference. In summary,
the color of these films is caused by the thin-film interference
because of the thickness variation.

4. CONCLUSIONS
Unique photonic structures displaying bright iridescent full-
color patterns have been facilely built from air drying of aq.
CNF alone or CNF-tether graphene at 0.0067−0.067%
deposited onto the ITO-coated PET substrate. The concentric
microstructure and volcanic crater contour were driven by
Marangoni and capillary flows of amphiphilic CNF alone and
with tethered graphene. The thickness variation induced a
complex optical pathway, which caused the formation of
sizable, colorful, iridescent full structural colors, as confirmed
by computational modeling.
This proof-of-concept study shows that this approach of

surface-energy-assisted aq. CNF coating and ambient drying
provides sufficient control over the flow of liquid droplets to
define sizable critical features. The unique amphiphilicity of the
biologically derived CNF nanomaterial to function as a
structural color material is particularly significant for its easy
assembling, high scalability, and sustainability in a variety of
technology areas. As demonstrated with graphene, other NPs,
such as carbon nanotubes and inorganic noble metals, may also
be coupled with CNFs for structural patterning and, upon
calcination to remove the template, used as electrodes. These
sizable photonic thin films may find applications in camouflage
coatings, optical filters, solar gain regulators, reflective displays,
negative refraction, and superlens.
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