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ABSTRACT OF THE DISSERTATION

Low-Complexity Decoding of Low-Density Parity Check Codes

Through Optimal Quantization and Machine Learning

and Optimal Modulation and Coding for Short Block-Length Transmissions

by

Linfang Wang

Doctor of Philosophy in Electrical & Computer Engineering

University of California, Los Angeles, 2023

Professor Richard D. Wesel, Chair

This dissertation investigates two topics in channel coding theory: low-complexity decoder

design for low-density parity-check (LDPC) codes and reliable communication in the short

blocklength regime.

For the first topic, we propose a finite-precision decoding method that features the three

steps of Reconstruction, Computation, and Quantization (RCQ). The parameters of the

RCQ decoder, for both the flooding-scheduled and the layered-scheduled, can be designed ef-

ficiently using discrete density evolution featuring hierarchical dynamic quantization (HDQ).

To further reduce the hardware usage of the RCQ decoder, we propose a second RCQ frame-

work called weighted RCQ (W-RCQ). Unlike the RCQ decoder, whose quantization and

reconstruction parameters change in each layer and iteration, the W-RCQ decoder limits

the number of quantization and reconstruction functions to a very small number during

the decoding process, for example, three or four. However, the W-RCQ decoder weights

check-to-variable node messages using dynamic parameters optimized by a quantized neural

ii



network. The proposed W-RCQ decoder uses fewer parameters than the RCQ decoder, thus

requiring much fewer resources such as lookup tables.

For the second topic, we apply probabilistic amplitude shaping (PAS) to cyclic redun-

dancy check (CRC)-aided tail-biting trellis-coded modulation (TCM). CRC-TCM-PAS pro-

duces practical codes for short block lengths on the additive white Gaussian noise (AWGN)

channel. In the transmitter, equally likely message bits are encoded by a distribution matcher

(DM), generating amplitude symbols with a desired distribution. A CRC is appended to the

sequence of amplitude symbols, and this sequence is then encoded and modulated by TCM

to produce real-valued channel input signals. We prove that the sign values produced by

the TCM are asymptotically equally likely to be positive or negative. The CRC-TCM-PAS

scheme can thus generate channel input symbols with a symmetric capacity-approaching

probability mass function. We also provide an analytical upper bound on the frame error

rate of the CRC-TCM-PAS system over the AWGN channel. This FER upper bound is the

objective function for jointly optimizing the CRC and convolutional code. This paper also

proposes a multi-composition DM, a collection of multiple constant-composition DMs. The

optimized CRC-TCM-PAS systems achieve frame error rates below the random coding union

(RCU) bound in AWGN and outperform the short-blocklength PAS systems with various

other forward error correction codes.
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CHAPTER 1

Introduction

Channel codes, which correct errors in data, are essential for our networked world. Wi-Fi,

5G cell phone communication, flash memories, and hard disk drives rely on channel codes

for reliability. This dissertation studies the following channel coding problems:

1. The low-complexity decoder design for low-density parity check (LDPC) code.

2. The reliable communication system in the short-blocklength regime.

LDPC [Gal62a] codes have been implemented broadly, including the NAND flash and

wireless communication systems. The sum-product decoder, which is considered as the most

powerful decoder for the LDPC code, is kept from practical use due to its high computation

complexity. The low-complexity approximations of sum-product decoders, such as the nor-

malized Min Sum (NMS) decoder and offset Min Sum (OMS) decoder, suffer from the error

correction performance loss when using small bit width for the messages of the decoder, i.e.,

less than 5 bits. As a result, LDPC decoders with low complexity and excellent decoding

performance are desired in practical communication systems with limited hardware resources

such as area and routing capacity.

In recent years, extensive research on non-uniformly quantized decoders has shown that,

by quantizing the messages of the decoders smartly, the decoders can deliver excellent error

correction performances with a low bit width of less than 5 bits. There are two popular

ideas in the research of non-uniformly quantized decoders. The first type of decoders, such as

Vasic’s finite alphabet iterative decoders (FAID) [PDD13b] and Lewandowsky’s Information-
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Bottleneck (IB) [LB18a] decoder, convert all the arithmetic operations to lookup operations

by designing the look-up tables (LUTs) with low-bitwidth input and output messages. The

second type of non-uniformly quantized decoder designs the non-uniform quantizers and

dequantizers for the messages in the decoder, such that the messages have a fine resolution

when used for computation and have a coarse resolution when transmitted between the check

node units and the variable node units. One famous decoder that uses the second idea is

the mutual-information-maximization (MIM) quantized belief propagation (QBP) decoder

in [LT05a].

chapter 2 generalizes the framework in [LT05b] and proposes a finite-precision LDPC

decoding method that features the three steps of Reconstruction, Computation, and Quanti-

zation (RCQ). Unlike the MIM-QBP, which is an approximation of the sum-product decoder,

RCQ decoders can be an approximation of either a box-plus decoder (bp-RCQ) or a Min-

Sum decoder (ms-RCQ). As an iterative message-passing decoder, the RCQ decoder can

be flooding-scheduled or layered-scheduled. In the flooding-scheduled decoder, the recon-

struction and quantization modules are updated in each iteration; In the layered-scheduled

decoder, reconstruction and quantization modules are updated in each iteration and layer.

This chapter also presents using discrete density evolution featuring hierarchical dynamic

quantization (HDQ) to design the parameters of RCQ decoder efficiently.

chapter 3 studies how to reduce further the number of parameters required by the RCQ

decoder with the help of degree-specific weights optimized by a neural network. The layered-

RCQ decoder needs to update the quantization and reconstruction function parameters in

each layer at each iteration. For the LDPC codes with many layers or requiring many

iterations, the extra resources for the RCQ decoder parameters may offset the benefit of

its low-bitwidth messages. Hence, reducing the number of quantization and reconstruction

pairs of the RCQ decoder is desirable.

The conventional NMS decoder and OMS decoder use a single parameter (or weight)

throughout the decoding process. Recent research has shown that the decoding perfor-
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mance of those decoders can be boosted by assigning the weight dynamically to each edge

in each iteration [NBB16b]. Such decoders are called neural NMS (N-NMS) or OMS (N-

OMS) decoders, as the weights can be optimized by training the neural network obtained

by unfolding the NMS or OMS decoders. N-NMS and N-OMS decoders are impractical for

long-blocklength LDPC codes due to the huge number of weights. Chapter 3 shows that

the neural decoders can be significantly simplified by assigning the iteration-specific weights

based on the check and variable node degree with the same decoding performance as the

decoders that assign distinct weights to each edge. The simplified decoder is named the

neural 2-dimensional (2D) neural NMS (N-2D-NMS) or OMS (N-2D-OMS) decoder.

With the help of the neural 2D decoder, chapter 3 proposes a novel RCQ framework

called weighted-RCQ (W-RCQ). Unlike the RCQ decoder, whose quantization and recon-

struction parameters change in each layer and iteration, the W-RCQ decoder limits the

number of quantizer/quantizer pairs to a very small number, for example, four or fewer.

However, the W-RCQ decoder weights check-to-variable messages using dynamic parameters

optimized via a quantized NN (QNN). The proposed W-RCQ decoder uses fewer parameters

than the RCQ decoder, thus requiring much fewer LUTs. Simulations in chapter 3 for a

(9472,8192) LDPC code on a field-programmable gate array (FPGA) device show that the

4-bit W-OMS-RCQ decoder delivers comparable decoding performance but with much fewer

hardware resources, compared with the 4-bit RCQ decoder and the 5-bit OMS decoder.

The second topic of the dissertation studies reliable communications over the additive

white Gaussian noise (AWGN) channel with high spectral efficiency for short block lengths.

To closely approach theoretical limits, it is helpful to use shaping so that signal points are

not equally likely, not equally spaced, or both [Gal68,FGL84,For92,KP93,LFT94,FWS01,

XWS21]. Recently, a new transmission framework called probabilistic amplitude shaping

(PAS) [BSS15, BSS19] is proposed. PAS employs a distribution matcher (DM) [SB15] be-

fore a forward error correction (FEC) encoder and channel-signaling mapping function to

accomplish optimal or almost optimal shaping.
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Chapter 4 presents a PAS system for the AWGN channel in the short-blocklength

regime. In the proposed PAS system, a DM takes the binary information bits and generates

the magnitude symbols with the desired probability mass function. The popular distribution

matcher, constant composition DM, performs excellently in the long blocklength regime but

not in the short blocklength regime. This dissertation proposes a multi-composition DM,

which delivers a satisfying performance at the short block length. Then, the output of the

DM is encoded by a CRC-aided, rate- k0
k0+1

, systematic, recursive tail-biting convolutional

code (TBCC) and modulated via a channel-signal mapping function. The TBCC and the

channel-signal mapping function constitute the TCM [Ung82]. The proposed PAS system

is also referred to as the CRC-TCM-PAS system. The optimized CRC-TCM-PAS systems

achieve FERs below the random-coding union (RCU) bound in AWGN and outperform the

short-blocklength PAS systems with various other forward error correction codes studied

in [CDJ19].

Finally, Chapter 5 summarizes the dissertation and points out promising future direc-

tions.
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CHAPTER 2

Reconstruction-Computation-Quantization (RCQ): A

Paradigm for Low Bit Width LDPC Decoding

2.1 Introduction

Low-Density Parity-Check (LDPC) codes [Gal62b] have been implemented broadly, including

in NAND flash systems and wireless communication systems. Message-passing algorithms

such as belief propagation (BP) and Min Sumare utilized in LDPC decoders. In practice,

decoders with low message bit widths are desired when considering the limited hardware re-

sources such as area, routing capabilities, and power utilization of FPGAs or ASICs. Unfor-

tunately, low bit width decoders with uniform quantizers typically suffer a large degradation

in decoding performance [LT05a]. On the other hand, the iterative decoders that allow for

the dynamic growth of message magnitudes can achieve improved performance [ZS14].

LDPC decoders that quantize messages non-uniformly have gained attention because they

provide excellent decoding performance with low bit width message representations. One

family of non-uniform LDPC decoders use lookup tables (LUTs) to replace the mathematical

operations in the check node (CN) unit and/or the variable node (VN) unit. S. K. Planjery et

al. propose finite alphabet iterative decoders (FAIDs) for regular LDPC codes in [PDD13a,

DVP13], which optimize a single LUT to describe VN input/output behavior. In [PDD13a]

a FAID is designed to tackle certain trapping sets and hence achieves a lower error floor than

BP on the binary symmetric channel (BSC). Xiao et al. optimize the parameters of FAID

using a recurrent quantized neural network (RQNN) [XVT19a,XVT20a], and the simulation
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results show that RQNN-aided linear FAIDs are capable of surpassing floating-point BP in

the waterfall region for regular LDPC codes.

Note that the size of the LUTs in [PDD13a, DVP13, XVT19a, XVT20a] describing VN

behavior are an exponential function with respect to node degree. Therefore, these FAIDs can

only handle regular LDPC codes with small node degrees. For codes with large node degrees,

Kurkoski et al. develop a mutual-information-maximization LUT (MIM-LUT) decoder in

[RK16], which decomposes a single LUT with multiple inputs into a series of concatenated

2× 1 LUTs, each with two inputs and one output. This decomposition makes the number of

LUTs linear with respect to node degree, thus significantly reducing the required memory.

The MIM-LUT decoder performs lookup operations at both the CNs and VNs. The 3-

bit MIM-LUT decoder shows a better FER than floating-point BP over the additive white

Gaussian noise (AWGN) channel. As the name suggests, the individual 2 × 1 LUTs are

designed to maximize mutual information [KY14].

Lewandowsky et al. use the information bottleneck (IB) machine learning method to

design LUTs and propose an IB decoder for regular LDPC codes. As with MIM-LUT, IB

decoders also use 2 × 1 LUTs at both CNs and VNs. Stark et al. extend the IB decod-

ing structure to support irregular LDPC codes through the technique of message align-

ment [SLB18, Sta21]. The IB decoder shows an excellent performance on a 5G LDPC

code [SBW20a,SWB20]. In order to reduce the memory requirement for LUTs, Meidlinger

et al. propose the Min-IB decoder, which replaces the LUTs at CNs with label-based min

operation [MBB15,MM17,MMB20,GBM18].

Because the decoding requires only simple lookup operations, the LUT-based decoders

deliver high throughput. However, the LUT-based decoders require significant memory re-

sources when the LDPC code has large degree nodes and/or the decoder has a large prede-

fined maximum decoding iteration time, where each iteration requires its own LUTs. The

huge memory requirement for numerous large LUTs prevents these decoders from being

viable options when hardware resources are constrained to a limited number of LUTs.
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Lee et al. [LT05a] propose the mutual information maximization quantized belief propaga-

tion (MIM-QBP) decoder which circumvents the memory problem by designing non-uniform

quantizers and reconstruction mappings at the nodes. Both VN and CN operations are simple

mappings and fixed point additions in MIM-QBP. He et al. in [HCM19a] show how to system-

atically design the MIM-QBP parameters for quantizers and reconstruction modules. Wang

et al. further generalize the MIM-QBP structure and propose a reconstruction-computation-

quantization (RCQ) paradigm [WWS20a] which allows CNs to implement either the min or

boxplus operation.

All of the papers discussed above focus on decoders that use the flooding schedule. The

flooding schedule can be preferable when the code length is short. However, in many prac-

tical settings such as coding for storage devices where LDPC codes with long block lengths

are selected, the flooding schedule requires an unrealistic amount of parallel computation for

some typical hardware implementations. Layered decoding [JF05], on the other hand, bal-

ances parallel computations and resource utilization for a hardware-friendly implementation

that also reduces the number of iterations as compared to a flooding implementation for the

same LDPC code.

2.1.1 Contributions

As a primary contribution, this work extends our previous work on RCQ [WWS20a] to

provide dynamic quantization that changes with each layer of a layered LDPC decoder,

as is commonly used with a protograph-based LDPC code. The original RCQ approach

[WWS20a], which uses the same quantizers and reconstructions for all layers of an iteration,

suffers from FER degradation and a high average number of iterations when applied to a

layered decoding structure. The novelty and contributions in this chapter are summarized

as follows:

• Layer-specific RCQ Decoding structure. This chapter proposes the layer-specific RCQ
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decoding structure. The main difference between the original RCQ of [WWS20a] and

the layer-specific RCQ decoder is that layer-specific RCQ designs quantizers and re-

constructions for each layer of each iteration. The layer-specific RCQ decoder provides

better FER performance and requires a smaller number of iterations than the original

RCQ structure with the same bit width. This improvement comes at the cost of an

increase in the number of parameters that need to be stored in the hardware.

• layer-specific RCQ Parameter Design. This work uses layer-specific discrete den-

sity evolution featuring hierarchical dynamic quantization (HDQ) to design the layer-

specific RCQ parameters. We refer to this design approach as layer-specific HDQ

discrete density evolution. For each layer of each iteration, layer-specific HDQ discrete

density evolution separately computes the PMF of the messages. HDQ designs distinct

quantizers and reconstructions for each layer of each iteration.

• FPGA-based RCQ Implementations. This chapter presents the Lookup Method, the

Broadcast Method and the Dribble Method, as alternatives to distribute RCQ pa-

rameters efficiently in an FPGA. This chapter verifies the practical resource needs

of RCQ through an FPGA implementation of an RCQ decoder using the Broadcast

method. Simulation results for a (9472, 8192) quasi-cyclic (QC) LDPC code show that

a layer-specific Min SumRCQ decoder with 3-bit messages achieves a more than 10%

reduction in LUTs and routed nets and more than a 6% reduction in register usage

while maintaining comparable decoding performance, compared to a standard offset

Min Sumdecoder with 5-bit messages.

2.1.2 Organization

The remainder of this chapter is organized as follows: Sec. 2.2 introduces the RCQ decoding

structure and presents an FPGA implementation of an RCQ decoder. Sec. 2.3 describes

HDQ, which is used for channel observation quantization and RCQ parameter design. Sec.
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2.5 shows the design of the layer-specific RCQ decoder. Sec. 2.6 presents simulation results

including FER and hardware resource requirements. Sec. 2.7 concludes our work.

2.2 The RCQ Decoding Structure

Message passing algorithms update messages between variable nodes and check nodes in an

iterative manner either until a valid codeword is found or the maximum number of iterations

IT is reached. The updating procedure of message passing algorithms contains two steps:

1) computation of the output message, 2) communication of the message to the neighboring

node. To reduce the complexity of message passing, the computed message is often quantized

before being passed to the neighboring node. We refer to the computed messages as the

internal messages, and communicated messages passed over the edges of the Tanner graph

as external messages.

For the uniform quantization decoder, the external messages are simply clipped internal

messages, in order for a lower routing complexity. However, When external messages are

produced by a uniform quantizer, low bit width external messages can result in an early

error floor [ZS14]. Non-uniform quantizers, on the other hand, address error floor issue by

providing larger message magnitude range. Zhang et al. design a q+1 quasi-uniform LDPC

decoder, where 2q messages are allocated to uniform quantization, and the other 2q messages

correspond to exponentially growing quantization interval lengths [ZS14]. Thorpe et al.

introduced a non-uniform quantizer in [LT05a]. Their decoder adds a non-uniform quantizer

and a reconstruction mapping to the output and input of the hardware implementation of

each node unit. This approach delivers excellent decoding performance even with a low

external bit width. The RCQ decoder [WWS20a] can be seen as a generalization of the

decoder introduced in [LT05a].

In this section, we provide detailed descriptions of the RCQ decoding structure. Three

FPGA implementation methods for realizing the RCQ functionality are also presented.
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Figure 2.1: Illustration of a generalized RCQ unit which consists of three modules: Recon-

struction that maps a be-bit value to a bi-bit value, Computation that performs arithmetic

operations, and Quantization that quantizes a bi-bit value to a be-bit value.

2.2.1 Generalized RCQ Unit

A generalized RCQ unit as shown in Fig. 2.1 consists of the following three modules:

2.2.1.1 Reconstruction Module

The reconstruction module applies a reconstruction function R(·) to each incoming be-bit

external message to produce a bi-bit internal message, where bi > be. We denote the bit width

of CN and VN internal message by bi,c and bi,v, respectively. For the flooding-scheduled RCQ

decoder, R(·) is iteration-specific and we use R(t)
c (·) and R

(t)
v (·) to represent the reconstruction

of check and variable node messages at iteration t, respectively. In the layer-specific RCQ

decoder, R(·) uses distinct parameters for each layer in each iteration. We use R
(t,r)
c (·) and

R
(t,r)
v (·) to represent the the reconstruction of check and variable node messages at layer r

of iteration t, respectively. The reconstruction functions are mappings of the input external

messages to log-likelihood ratios (LLR) that will be used by the node. In this paper, these

mappings are systematically designed by HDQ discrete density evolution, which will be
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introduced in a later section.

For a quantizer Q(·) that is symmetric, an external message d ∈ Fbe

2 can be represented

as [dMSB d̃], where dMSB ∈ {0, 1} indicates sign and d̃ ∈ Fbe−1
2 corresponds to magnitude.

We define the magnitude reconstruction function R∗(·) : Fbe−1
2 → Fbi−1

2 , which maps the

magnitude of external message, d̃, to the magnitude of internal message. Without loss of

generality, we restrict our attention to monotonic reconstruction functions so that

R∗(d̃1) > R∗(d̃2) > 0, for d̃1 > d̃2, (2.1)

where d̃1, d̃2 ∈ Fbe−1
2 . The reconstruction R(d) can be expressed by R(d) =

[
dMSB R∗(d̃)

]
.

Under the assumption of a symmetric channel, we have R([0 d̃]) = −R([1 d̃]).

2.2.1.2 Computation Module

The computation module F (·) uses the bi-bit outputs of the reconstruction module to com-

pute a bi-bit internal message for the CN or VN output. We denote the computation module

implemented in CNs and VNs by Fc and Fv, respectively. An RCQ decoder implementing

the min operation at the CN yields a Min Sum(ms) RCQ decoder. If an RCQ decoder

implements belief propagation (bp) via the boxplus operation, the decoder is called bpRCQ.

The computation module, Fv, in the VNs is addition for both bpRCQ and msRCQ decoders.

If the RCQ decoder implements the Min operation at the check node yielding a MinSum

(ms) decoder, i.e.:

Fc(h1, . . . , hJ) =
∏
j

sign(hj)×min
j
|hj|, (2.2)

where hj ∈ Fbi

2 , j = 1, ..., J are internal messages, then we call the decoder an msRCQ

decoder.

If an RCQ decoder implements belief propagation (bp) via the boxplus operation :

Fc(h1, . . . , hJ) = h1 ⊞ h2 ⊞ ...⊞ hJ , (2.3)
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the decoder is called bpRCQ. The operator ⊞ is defined as:

h1 ⊞ h2 = log

(
1 + eh1+h2

eh1 + eh2

)
. (2.4)

At variable node unit, both msRCQ and bpRCQ decoder sum up all incoming messages:

Fv(r1, . . . , rJ) =
J∑

j=1

rj. (2.5)

2.2.1.3 Quantization Module

The quantization module Q(·) quantizes the bi-bit internal message to produce a be-bit exter-

nal message. Under the assumption of a symmetric channel, we use a symmetric quantizer

that features sign information and a magnitude quantizer Q∗(·). The magnitude quantizer

selects one of 2be−1 − 1 possible indexes using the threshold values {τ0, τ1, ..., τmax}, where

τj ∈ Fbi

2 for j ∈ {0, 1, ..., 2be−1 − 2} and τmax is τjmax for jmax = 2b
e−1 − 2. We also require

τi > τj > 0, i > j. (2.6)

Given an internal message h ∈ Fbi

2 , which can be decomposed into sign part hMSB and

magnitude part h̃, Q∗(h̃) ∈ Fbe−1
2 is defined by:

Q∗(h̃) =


0, h̃ ≤ τ0

j, τj−1 < h̃ ≤ τj

2b
e−1 − 1, h̃ > τmax

, (2.7)

where 0 < j ≤ jmax. Therefore, Q(h) is defined by Q(h) = [hMSB Q∗(h̃)]. The su-

per/subscripts introduced for R(·) also apply to Q(·).

2.2.2 Bit Width of RCQ decoder

The three tuple (be, bi,c, bi,v) represents the precision of messages in a RCQ decoder. For the

msRCQ decoder, it is sufficient to use only the pair (be, bi,v) because bi,c = be, we simply
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denote bi,v by bv. The CN min operation computes the XOR of the sign bits and finds

the minimum of the extrinsic magnitudes. For a symmetric channel, the min operation can

be computed by manipulating the external messages, because the external message delivers

the relative LLR meaning of reconstructed values. Since we only use external messages to

perform the min operation, Rc(·) and Qc(·) are not needed for the msRCQ decoder. Finally,

we use ∞ to denote a floating point representation.

2.2.3 FPGA Implementation for RCQ

The RCQ FPGA decoder may be viewed as a modification to existing hardware decoders

based on the BP or MS decoder algorithms, which have been studied extensively [ZDN06,

SH16,LZS17,AKK19]. The RCQ decoders require extra Q(·) and R(·) functions to quantize

and reconstruct message magnitudes. To implement Q(·) and R(·) functions, we have de-

vised the Lookup, Broadcast, and Dribble methods. These three approaches are functionally

identical, but differ in the way that the parameters needed for the Q(·) and R(·) operations

are communicated to the nodes.

2.2.3.1 Lookup Method

The quantization and reconstruction functions simply map an input message to an output

message. Thus, a simple implementation uses lookup tables implemented using read-only

memories (ROMs) to implement all these mappings. As an example, for the iteration-specific

magnitude quantizer Q∗(t)(·), all iterations can be implemented by a single table indexed by

the pair (x̃, t), where x̃ is the internal message magnitude and t is the current iteration. This

index forms an address into a ROM to produce an output ỹ. The Q(·) and R(·) functions

in every VN require their own ROMs, implemented using block RAMs. If block RAMs with

multiple ports are available, then they can be shared by different VN banks to reduce the

total amount required. If no ROM sharing occurs, then L VN unit with two ROMs each
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Figure 2.2: msRCQ magnitude reconstruction module (a) and magnitude quantization mod-

ule (b). In FPGA, magnitude reconstruction module is realized by a multiplexer, and magni-

tude quantization is realized by comparison functions and a thermometer-to-binary decoder

which realizes the mapping relationship shown in (c).

results in a total of 2L additional block RAMs used. This amount can be reduced with

ROM sharing and other synthesis techniques. Because Q(·) and R(·) change with respect to

different iterations and/or layers, one potential drawback of the Lookup method is a large

block RAM requirement.

2.2.3.2 Broadcast Method

The Broadcast method provides a scheme where all RCQ parameters are stored centrally in a

control unit, instead of being stored in each VN. As an example, for the layered RCQ decoder
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whose parameters update every layer and iteration, the pair (t,m), which corresponds to the

current iteration and current layer, is used to index into ROMs in the control unit These

ROMs output quantization thresholds {τ (t,m)
0 , τ

(t,m)
1 , . . . , τ

(t,m)
max } and reconstruction values

{R(i,l)(0), R(t,m)(1), . . . , R(t,m)(2b
c−1 − 1)}, which are wired to the VN units. The Q(·) and

R(·) blocks in the VN units only take in the parameters for each decoding iteration and

layer, and use logic to perform their respective operations. Each VN only takes in the

Q(·) and R(·) parameters necessary for decoding the current iteration and layer, and use

logic to perform their respective operations. Fig. 2.2 shows an implementation for a 3-bit

RCQ, which uses mere 2 bits for magnitude reconstruction and quantization. The 2-bit

magnitude reconstruction module is realized by a 4 × 1 multiplexer. The 2-bit magnitude

quantization consists of two steps, first a thermometer code [AV18], where the contiguous

ones are analogous to mercury in a thermometer, is generated by comparing the input with

all thresholds, and then the thermometer code is converted to the 2-bit binary form by using

a thermometer-to-binary decoder, which realizes the mapping relationship in Fig. 2.2c. Two

block RAMS are required in the control unit for the thresholds and reconstruction values.

Small LUTs in each VN implement the Q(·) and R(·) functions. The main penalty of the

Broadcast method is the additional wiring necessary to route the RCQ parameters from the

central control unit to the VNs.

The main penalty of the Broadcast is the additional wiring necessary to route the L-

msRCQ parameters from the control unit to VN banks. If w bits are used for each of the

thresholds and reconstruction values of 3-bit L-msRCQ, a total of 7w additional wires need

to be routed to each VN unit, w wires for each of the three thresholds and each of the four

reconstruction values. With L VN units, the total amount of added routes is 7wL. For a

4-bit L-msRCQ decoder, the total increase is 15wL. The same parameters are routed to all

the VN units. Thus shared wiring may be used in some cases.
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2.2.3.3 Dribble Method

The Dribble method attempts to reduce the number of long wires required by the Broad-

cast method. Registers in the VNs save the current thresholds and reconstruction values

necessary for the Q(·) and R(·) functions. Once again, quantization and reconstruction can

be implemented using the logic in Fig. 2.2. When a new set of parameters is required,

the bits are transferred (dribbled) one by one or in small batches from the control unit to

the VN unit registers. Just as in the Broadcast method, two extra block RAMs and logic

for the Q(·) and R(·) functions are required. But where the Broadcast method needs 7w

additional wires routed to each VN bank for 3-bit L-msRCQ, the Dribble method requires

only as many wires as the transfer batch size. The penalty of the Dribble method comes

with the extra usage of registers in the VN units. A total of 7w bits stored in registers would

be necessary in each VN bank to save the current threshold and reconstruction values for

3-bit L-msRCQ. In total, 7wL bits of register storage would be used for 3-bit L-msRCQ,

and 15wL bits would be necessary for 4-bit L-msRCQ. This total can be reduced by having

multiple VN units share sets of registers. We have implemented all methods and explored

their resource utilization in [TWC21a].

2.3 Hierarchical Dynamic Quantization (HDQ)

This section introduces the HDQ algorithm, a non-uniform quantization scheme that this

paper uses both for quantization of channel observations and for quantization of internal

messages by RCQ. Our results show, for example, that HDQ quantization of AWGN channel

observations achieves performance similar to the optimal dynamic programming quantizer

of [KY14] for the binary input AWGN channel, with much lower computational complexity.
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2.3.1 Motivation

The quantizer plays an important role in RCQ decoder design. First, the channel obser-

vation is quantized as the input to the decoder. This section explores how to use HDQ to

quantize the channel observations. Second, the parameters of R(·) and Q(·) are also de-

signed by quantizing external messages according to their probability mass function (PMF)

as determined by discrete density evolution. The use of HDQ to quantize internal messages

is described in Section 2.5.

The HDQ approach designs a quantizer that maximizes mutual information in a greedy

or progressive fashion. Quantizers aiming to maximize mutual information are widely used

in non-uniform quantization design [HCM19a, WWS20a, LB18b, SLB18, SBW20a, MBB15,

MMB20, MM17, SWB20, GBM18, WLW19, WCS11, WVC14]. Due to the interest of this

paper, the cardinality of quantizer output is restricted to 2b, i.e., this paper seeks b-bit

quantizers. Kurkoski and Yagi [TV13] proposed a dynamic programming method to find an

optimal quantizer that maximizes mutual information for a binary input discrete memoryless

channel (BI-DMC) whose outputs are from an alphabet with cardinality B, with complexity

O(B3). The dynamic programming method of [KY14] finds the optimal quantization, but

the approach becomes impractical when B is large.

In order to quantize the outputs for a channel with large cardinality B when construct-

ing polar codes, Tal and Vardy devised a sub-optimal greedy quantization algorithm with

complexity O(B log(B)) [TV13]. In [LB18b], Lewandowsky et al. proposed the modified

Sequential Information Bottleneck (mSIB) algorithm to design the channel quantizer and

LUTs for LDPC decoders. mSIB is also a sub-optimal quantization technique with complex-

ity O(aB), where a is the number of trials. As a machine learning algorithm, multiple trials

are required for good results with mSIB. Typical values of a range, for example, from 15 to

70.

HDQ is proposed in [WWS20a] as an efficient b-bit quantization algorithm for the sym-
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metric BI-DMC with complexity O
(

2b

log(γ)
log(B)

)
. HDQ has less complexity than mSIB and

also the Tal-Vardy algorithm. This section reviews the HDQ using symmetric binary input

AWGN channel as an example. As an improvement to the HDQ of [WWS20a], sequential

threshold search is replaced with golden section search [Kie53].

2.3.2 The HDQ Algorithm

Let the encoded bit x ∈ {0, 1} be modulated by Binary Phase Shift Keying (BPSK) and

transmitted over an AWGN channel. The modulated BPSK signal is represented as s(x) =

−2x+ 1. We denote the channel observation at the receiver by y where

y = s(x) + z, (2.8)

and z ∼ N (0, σ2). The joint probability density function of x and y, f(x, y;σ), is:

f(x, y;σ) =
1

2
√
2πσ2

e−
(y−s(x))2

2σ2 . (2.9)

HDQ seeks an b-bit quantization of the continuous channel output y, as in [WCS11]. In

practice, often y is first quantized into B values using high-precision uniform quantization

where B ≫ 2b, i.e., analog-to-digital (A/D) conversion. Let W be the result of the A/D

output, where W ∈ W and W = {0, 1, ..., B − 1}. The alphabet of B channel outputs

from the A/D converter is then subjected to further non-uniform quantization resulting

in a quantization alphabet of 2b values. We use D to represent the non-uniform quantizer

output, which is comprised of the b bits D = [D1, ..., Db]. HDQ aims to maximize the mutual

information between X and D.

For the symmetric binary input AWGN channel, a larger index w implies a larger LLR,

i.e.:

log
PW |X(i|0)
PW |X(i|1)

< log
PW |X(j|0)
PW |X(j|1)

, ∀i < j. (2.10)

Based on Lemma 3 in [KY14], any binary-input discrete memoryless channel that satisfies

(2.10) has an optimal b-bit quantizer that is determined by 2b − 1 boundaries, which can be
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Figure 2.3: Given the conditional probability p(y|x) of symmetric BI-AWGN channel, HDQ

sequentially quantizing A/D output w into a 2-bit message by first finding the index ξ2, then

the indices ξ1 and ξ3.

identified by their corresponding index values. Denote the 2b − 1 index thresholds by {ξ1,
ξ2, ..., ξ2b−1} ⊂ W . Unlike the dynamic programming algorithm [KY14], which optimizes

boundaries jointly, HDQ sequentially finds thresholds according to bit level, similar to the

progressive quantization in [WLW19].

HDQ quantizes the symmetric BI-AWGN channel output using a progressive [WLW19]

or greedy approach. The general b-bit HDQ approach is as follows:

1. We assume an initial high-precision uniform quantizer. For this case, set the extreme

index thresholds ξ0 = 0 and ξ2b = B − 1, which are the minimum and maximum

outputs of the uniform quantization.

2. The index threshold ξ2(b−1) is selected as follows to determine the bit level 0:

ξ2(b−1) = arg max
ξ0<ξ<ξ

2b

I(X;D1) , (2.11)
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Algorithm 1: Hierarchical Dynamic Quantization
input : P (X,W ) , X ∈ {0, 1},W ∈ {0, ..., B − 1}; b
output: {ξ0, ξ1, ..., ξ2b−1}, P (X,T )

ξ0 ← 0, ξ2b ← B − 1

for i← 0 to b− 1 do

for j ← 0 to 2i − 1 do
ξ(j+0.5)2b−i = GSS(ξj2b−i , ξ(j+1)2b−i)

end

end

PXT (x, t) =
∑ξt+1

w=ξt
PXW (x,w), X ∈ {0, 1}, T ∈ {0, ..., 2b−1}

where

D1 = 1(W ≥ ξ
(b−1)
2 ). (2.12)

3. The index thresholds ξ2(b−2) and ξ3∗2(b−2) are selected as follows to determine bit level

1:

ξ2(b−2) = arg max
ξ0<ξ<ξ

2b−1

I(X;D2|D1 = 0), (2.13)

ξ3∗2(b−2) = arg max
ξ
2b−1<ξ<ξ

2b

I(X;D2|D1 = 1) , (2.14)

and

D2 =


1(W ≥ ξ2(b−2)) if D1 = 0

1(W ≥ ξ3∗2(b−2)) if D1 = 1

. (2.15)

4. In the general case, when the thresholds for k previous quantization bits have been

determined, 2k thresholds {ξ(j+0.5)2b−k , j = 0, .., 2k − 1} must be selected to determine

the next quantization bit. Each threshold maximizes I(X;Dk+1|Dk = dk, . . . , D1 = d1)

for a specific result for the k previous quantization bits.

Fig. 2.3 illustrates how HDQ quantizes the symmetric binary input AWGN for the

case where b = 2. First, the indices ξ0 and ξ4 of the extreme points are set. Then the
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index ξ2 is set to maximize I(X;D1). Finally, the indices ξ1 and ξ3 are set to maximize

I(X;D2|D1) by independently selecting ξ1 to maximize I(X;D2|D1 = 0) and ξ3 to maximize

I(X;D2|D1 = 1).

Alg. 1 provides a full description of HDQ algorithm. The function GSS(ξℓ, ξr) uses the

golden section search algorithm described in Sec.2.3.3 for thresholds search.

HDQ provides the 2b − 1 index thresholds {ξ1, . . . , ξ2b−1}. For channel quantization, the

index thresholds can be mapped to channel outputs. For the RCQ decoding, the messages

are LLR values, the LLR magnitude thresholds {τ0, . . . , τ2b−1−2} are calculated from the

index thresholds {ξ2b−1+1, . . . , ξ2b−1} as follows:

τi = log
PW |X(ξ1+i+2b−1|0)
PW |X(ξ1+i+2b−1|1) , i = 0, 1, . . . , 2b−1 − 2. (2.16)

HDQ also provides the joint probability between code bit X and quantized message D,

P (X,D). The magnitude reconstruction function R∗(·) is computed as follows:

R∗(d) = log
PXT (0, d+ 2b−1)

PXT (1, d+ 2b−1)
, d = 0, 1, ..., 2b−1 − 1. (2.17)

2.3.3 Golden-Section Search and Complexity Analysis

After k stages of HDQ, there are 2k quantization regions each specified by their leftmost and

rightmost indices ξℓ and ξr. The next stage finds a new threshold ξ∗ for each of these 2k

regions. Each ξ∗ is selected to maximize a conditional mutual information as follows:

ξ∗ = arg max
ξℓ<ξ<ξr

I(ξ), (2.18)

where

I(ξ) = I (X;Dk+1(ξ)|D1 = d1, . . . , Dk = dk) (2.19)

=
∑

x,dk+1

P
(
x, dk+1(ξ)|dk1

)
log

P (dk+1(ξ)|x, dk1)
P (dk+1(ξ)|dk1)

(2.20)
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x

f(x)

al ara′ a′′

Figure 2.4: Illustration of one iteration of golden-section search for finding maximum point

of f(x) in the interval [al, ar]. a′ = ar − ar−al
γ

and a′′ = al +
ar−al

γ
. Because f(a′′) < f(a′),

[a′′, ar] is truncated and [al, a
′′] becomes the new search interval for the next iteration.

for the binary k-tuple dk1 = d1, . . . , dk that defines (ξℓ, ξr). The probability P
(
x, dk+1(ξ)|dk1

)
is defined as follows:

P
(
x, dk+1(ξ)|dk1

)
=


∑ξ

w=ξl
PXW (x,w)∑ξr

w=ξl
PW (w)

dk+1 = 0

∑ξr
w=ξ+1 PXW (x,w)∑ξr

w=ξl
PW (w)

dk+1 = 1

. (2.21)

Because I(ξ) is concave in ξ, the local maximum can be found using the golden section

search [Kie53], a simple but robust technique to find extreme point of a unimodal function

by successively narrowing the range of values on a specified interval. Specifically, Fig. 2.4

illustrates one iteration of golden-section search for finding maximum point of f(x) in the

interval [al, ar]. First, find a′ = ar − ar−al
γ

and a′′ = al +
ar−al

γ
, where γ =

√
5+1
2

. Because

f(a′′) < f(a′), which suggests that the maximum point lies in [al, a
′′], the interval [a′′, ar]

is truncated and [al, a
′′] is updated as the next round search interval. Further details of
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Figure 2.5: A trellis whose paths represent all 2-bit quantizers for a BI-DMC with 8 outputs.

The vertices in column i are possible values for ith threshold ξi. Each branch in the trellis

identifies a quantization region.

golden-section search can be found in [Kie53]. When using the golden-section search to find

all 2b−1 thresholds for the b-bit HDQ, I(ξ) will be computed using (2.19) a number of times

that is proportional to:

logγ(B) +
21∑
i=1

logγ(B2,i) + . . .+
2b−1∑
i=1

logγ(Bb,i), (2.22)

= logγ(B) + logγ

21∏
i=1

B2,i + . . .+ logγ

2b−1∏
i=1

Bb,i, (2.23)

≤ logγ(B) + 2 logγ

(
B

2

)
+ . . .+ 2b−1 logγ

(
B

2b−1

)
(2.24)

=
2b

log(γ)
log(B). (2.25)

Bj,i is the ith interval length in j − 1 bit level quantization and
∑2j−1

i=1 Bj,i = B. Therefore,

a b-bit quantization on a B-output channel using HDQ can be designed in O
(

2b

log(γ)
log(B)

)
time.
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2.3.4 Comparing HDQ with Optimal Dynamic Programming

Unlike the dynamic programming approach of Kuskoski and Yagi [KY14], HDQ does not

always provide the optimal solution. This subsection provides an example contrasting HDQ

with the dynamic programming solution. Following [KY14], Fig. 2.5 gives a trellis whose

paths represent all 2-bit quantizers for a binary input DMC with 8 outputs. The outputs are

indexed from 0 to 7 and satisfy (2.10). The vertices in column i are possible values for ξi,

and each path represents a valid quantizer whose thresholds are determined by the vertices

in each column. Each branch in the trellis identifies a quantization region. For example, the

branch connecting vertex ξ0 = 0 to vertex ξ1 = 2 specifies the leftmost quantization region

as {0,1}, i.e., ξℓ = 0 and ξr = 1.

The dynamic programming algorithm determines vertices of all columns jointly, whereas

HDQ identifies the vertices in a greedy way, by first finding the vertex in column 2 to

maximize I(X;D1) and then vertices in column 1 and 4 to maximize I(X;D2|D1 = d1).

Hence, the greedy approach of HDQ only searches part of trellis and therefore is sub-optimal.

However, our simulations show that HDQ finds the quantizer that perform closely to the

optimal one.

2.3.5 Simulation Result

This section provides simulation results for quantizing symmetric binary input AWGN chan-

nel observations. The simulations compare HDQ to the optimal dynamic programming result

as well as to two sub-optimal approaches: mSIB with 20 and 70 trials and the greedy quan-

tization algorithm describe in [LB18b]. For all the quantization approaches, the channel

observations are first quantized uniformly into B = 2000 points between −2 and 2.

Fig. 2.6a gives the thresholds as a function of σ2 for HDQ, dynamic programming,

mSIB with 20 and 70 trials, and greedy quantization. The quantization thresholds for HDQ,

dynamic programming, and mSIB are indistinguishable in Fig. 2.6a. HDQ has significantly

24



C
h

a
n

n
e
l 

O
b

s
e
rv

a
ti

o
n

(a)

(b)

Figure 2.6: Fig. (a): Quantization thresholds for dynamic programming, msIB, and HDQ

on the BI-AWGNC as a function of σ2 for B = 2000. Fig. (b): Mutual information loss

between each sub-optimal quantizer and optimal quantizer for BI-AWGNC as a function of

σ2 for B = 2000.
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lower complexity than both dynamic programming and mSIB. The thresholds for greedy

quantization algorithm of [TV13] deviate noticeably from the thresholds found by the other

approaches.

In order to quantify the performance of sub-optimal quantizers, we define ∆I as follows:

∆I = Idp(X;D)− Isub(X;D), (2.26)

where Idp(X;D) and Isub(X;D) are the mutual information between code bit X and quan-

tized value D as obtained by dynamic programming and sub-optimal quantizers, respectively.

Fig. 2.6b plots ∆I as a function of σ2 for each sub-optimal quantizer. All three sub-optimal

quantizers perform quite well with ∆I < 10−3 bits. However, HDQ and mSIB achieve

∆I < 10−6, significantly outperforming the greedy approach of [TV13].

2.4 Flooding-scheduled RCQ Decoder

RCQ decoder is a result of quantized density evolution: In the tth iteration, the quantization

functions and the reconstruction functions associated with that iteration, i.e., Qc
t , Rv

t , Qv
t ,

Rv
t+1 are constructed by quantizing the joint p.m.f. between code bits and the message

from either the variable node or check node. These functions are also the parameters of

the flooding-scheduled RCQ decoder. To differentiate our discrete density evolution from

the one using uniform quantization [SFR01], we name our density evolution HDQ Discrete

Density Evolution (HDQ-DDE). Specifically, this section describes the HDQ-DDE when

the check node uses box-plus operation. The decoder generated by such HDQ-DDE is a

flooding-scheduled bpRCQ decoder.

2.4.1 MIM-DDE at check node

Denote the joint p.m.f between the external message from the ith variable node and corre-

sponding code bit by P v,i(X,T ), X = {0, 1}, T = {0, . . . , 2m−1}. Based on the independence
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assumption in density evolution [RU01], all incoming messages have same distribution:

P v,i(X,T ) = P v(X,T ), i = 0, ..., dc − 2 (2.27)

where dc is check node degree. At check node, the code bit corresponding to output is the

XOR sum of code bits corresponding to all inputs. By denoting:

P v,a(X,T )⊛ P v,b(X,T ) ≜
∑
m,n:

m
⊕

n=k

P v,a(Xm, T )P
v,b(Xn, T ), (2.28)

where m,n, k ∈ {0, 1}, the joint p.m.f between code bit corresponding to output and input

messages, P c
out(X,T), can be represented by:

P c
out(X,T) = P v,0(X,T )⊛ ...⊛ P v,dc−2(X,T ) (2.29)

= P v(X,T )⊛ ...⊛ P v(X,T ) (2.30)

≜ P v(X,T )⊛(dc−1), (2.31)

where T is a vector containing all incoming dc − 1 messages.

In order to keep the cardinality of external message the same, P c
out(X,T) needs to be

quantized to 2m levels. As pointed in [LB18b], |T| = 2m(dc−1) will be very large when m and

dc is large. For an example, if dc = 8 and m = 4, |T| = 2.68∗108. Hence, directly quantizing

P c
out(X,T) is impossible. To mitigate the problem of cardinality bombing, we propose an

intermediate coarse quantization algorithm called One-Step-Annealing (OSA) quantization

without sacrificing mutual information. Note that Eq. (2.31) can be calculated in a recursive

way and each step takes two inputs:

P c
out(X,T)⊛i = P v(X,T )⊛(i−1) ⊛ P v(X,T ) (2.32)

We observe that, in each step, the output of Eq.(2.32) has some entries with very close log

likelihood ratio (LLR) values. By merging entries whose LLR difference is small enough,

mutual information loss is negligible. Hence, OSA simply merges entries whose LLR values
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Algorithm 2: One Step Annealing Algorithm (OSA)
input : Pr (X, Y ) , X ∈ {0, 1}, Y ∈ {0, ..., N − 1}; ls
output: Pr(X,T )

j ← 0, Pr(X0, Tj)← P (X0, Y0), Pr(X1, Tj)← P (X1, Y0), l← log Pr(X0,Y0)
Pr(X1,Y0)

for i← 1 to N − 1 do

if (log P (X0,Ti)
P (X1,Ti)

− l) ≤ ls then
P (X0, Tj)← Pr(X0, Tj) + Pr(X0, Yi), P (X1, Tj)← Pr(X1, Tj) + Pr(X1, Yi)

else
j ← j + 1

Pr(X0, Tj)← Pr(X0, Yi), Pr(X1, Tj)← Pr(X1, Yi)

l← log Pr(X0,Yi)
Pr(X1,Yi)

end

end

Figure 2.7: OSA illustration: points are ordered w.r.t. LLR values. Each color represents a

cluster and LLR value difference in each cluster is less than ls.

difference is less than a threshold ls, and the output of OSA will be the input of the next

p.m.f calculation step, i.e.:

P v(X,T )⊛i = OSA(P v(X,T )⊛(i−1), ls)⊛ P v(X,T ). (2.33)

We use ls ∈ [10−4, 10−3] in our simulation. Fig. 2.7 shows an illustration of OSA and a

full description of the OSA algorithm is given in Algorithm 2. The following table shows |T|
after we implement OSA and choose different ls. The example we show has the parameter

m = 4, dc = 8. The result shows that OSA greatly decreases the output cardinality, and

based on our simulation, mutual information losses under these three ls are all less than 10−7

bits.
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ls 0 10−4 5 ∗ 10−4 10−3

|T| 2.68 ∗ 108 3.3 ∗ 104 1.7 ∗ 103 1.3 ∗ 103

2.4.2 MIM-DDE at variable node

Each variable node sums the LLR messages from its channel observation and neighboring

check nodes. By denoting:

P c,a(X,T )⊡ P c,b(X,T ) =
1

P (X)
P c,a(X,T )P c,b(X,T ), (2.34)

the joint p.m.f between code bit X and incoming message combination T, P v
out(X,T), given

variable node degree dv, can be expressed by:

P v
out(X,T) = P ch(X,T )⊡ P c(X,T )⊡(dv−1), (2.35)

Similarly, for irregular LDPC codes with variable edge degree distribution

λ(x) =

dv,max∑
i=2

λix
i−1, (2.36)

P v
out(X,T) is given by:

P v
out(X,T) = P ch(X,T )⊡

dv,max∑
i=2

λiP
c(X,T )⊡(dv−1). (2.37)

P v
out(X,T) is then quantized to 2m levels by HDQ. Also, as a result of HDQ, and joint p.m.f

between code bit X and quantized messages T , P v(X,T ), is updated. Qv in this iteration

and Rc in the next iteration are built correspondingly. Note that variable nodes also face

the cardinality bombing problem, hence OSA is needed in each recursive step.

Thus, by implementing MIM-DDE, we can iteratively update P c(X,T ), P v(X,T ) and

build Qc
i , Qv

i , Rc
i and Rv

i , i = {0, ..., IT − 1}.

In MIM-DDE, we only limit the precision of external messages, i.e. m, and keep internal

messages, nc (only for bp-RCQ) and nv, full precision. To make internal message precision

finite, a uniform nc (or nv) quantizer is required when implementing F c(or F v).
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2.4.3 Threshold

At any specified Eb

No
, flooding-scheduled HDQ discrete density evolution constructs the R(t)(·)

and Q(t)(·) functions at each iteration t and also computes the mutual information I(t)
(

Eb

No

)
between a code bit and its corresponding variable node message in each layer r at each

iteration t. An important design question is which value of Eb

No
to use to construct the R(t)(·)

and Q(t)(·) functions implemented at the decoder, which necessarily will work over a range

of Eb

No
values in practice. Define the threshold of a flooding RCQ decoder given a maximum

number of decoding iterations IT as:

Eb

No

∗
= inf

{
Eb

No

: I(IT )

(
Eb

No

)
> 1− ϵ

}
, (2.38)

i.e., Eb

No

∗ is the smallest Eb

No
that achieves a mutual information between the code bit and the

external message that is greater that 1−ϵ. Our simulation results show that Eb

No

∗ for ϵ = 10−4

produced R(t)(·) and Q(t)(·) functions that deliver excellent FER performance across a wide
Eb

No
range.

2.5 Layered-scheduled RCQ Decoder

This section is focused on HDQ discrete density evolution for LDPC decoders with a layered

schedule. Specifically, this section considers layer-specific msRCQ decoding on QC-LDPC

codes.

2.5.1 Decoding a Quasi-Cyclic LDPC Code with a Layered Schedule

QC-LDPC codes are structured LDPC codes characterized by a parity check matrix H ∈
F(n−k)×n
2 which consists of square sub-matrices with size S, which are either the all-zeros

matrix or a cyclic permutation of the identity matrix. These cyclic permutations are also

called circulants that are represented by σi to indicate that the rows of the identity matrix

are cyclically shifted by i positions. Thus an M × U base matrix Hp can concisely define
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a QC-LDPC code, where each element in Hp is either 0 (the all-zeros matrix) or σi (a

circulant). QC-LDPC codes are perfectly compatible with horizontal layered decoding by

partitioning CNs into M layers with each layer containing S consecutive rows. This ensures

that each VN connects to at most one CN in each layer.

Denote the ith CN and jth VN by ci and vj respectively. Let u(t)
ci→vj be the LLR message

from ci to its neighbor vj in tth iteration and lvj be the posterior of vj. In the tth itera-

tion, a horizontal-layered Min Sumdecoder calculates the messages u
(t)
ci→vj′ and updates the

posteriors lvj′ as follows:

lvj′ ← lvj′ − u(t−1)
ci→vj′

∀j′ ∈ N (ci), (2.39)

u(t)
ci→vj′

=

 ∏
j̃∈N (ci)/{j′}

sign(lvj̃)

× min
j̃∈N (ci)/{j′}

|lvj̃ |, ∀j
′ ∈ N (ci), (2.40)

lvj′ ← lvj′ + u(t)
ci→vj′

∀j′ ∈ N (ci). (2.41)

N (ci) denotes the set of VNs that are neighbors of ci. For a QC-LDPC code with a long

block length, layered decoding is preferable for hardware implementations because parallel

computations of each of (2.39), (2.40), and (2.41) exploit the QC-LDPC structure.

2.5.2 Representation Mismatch Problem

The RCQ decoding structure in [WWS20a] can be used with a layered schedule as discussed in

Sec. 2.5.1. Fig. 2.8a illustrates the paradigm for an msRCQ decoder with a layered schedule.

The Q(t)
v and R

(t)
v are designed by the HDQ discrete density evolution as in [WWS20a]. Even

though the msRCQ decoder has better FER performance than the standard Min Sumdecoder

under a flooding schedule [WWS20a], under a layered schedule, msRCQ has worse FER

performance than standard Min Sumand also requires more iterations. These performance

differences are shown below in Fig. 2.11 of Sec. 2.6. This subsection explains how the
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performance degradation of the RCQ decoder under the layered schedule is caused by the

representation mismatch problem.

Consider a regular LDPC code defined by a parity check matrix H. In iteration t,

define the PMF between code bit x and external CN messages u(t)
ci→vj as P (t)

(ci,vj)
(X,D), where

X = {0, 1} and D = {0, ..., 2be − 1}. One underlying assumption of HDQ discrete density

evolution is that all CN messages have the same PMF in each iteration, i.e., for any (ci, vj)

and (ci′ , vj′) that satisfy Hi,j = Hi′,j′ = 1:

P
(t)
(ci,vj)

(X,D) = P
(t)
(ci′ ,vj′ )

(X,D). (2.42)

(2.42) implies that the message indices of different CN have the same LLR representation,

i.e.:

log
P

(t)
(ci,vj)

(0, d)

P
(t)
(ci,vj)

(1, d)
= log

P
(t)
(ci′ ,vj′ )

(0, d)

P
(t)
(ci′ ,vj′ )

(1, d)
, d ∈ {0, ..., 2be − 1}. (2.43)

The msRCQ decoder with a flooding schedule obeys (2.42) and (2.43) because the VN

messages to calculate different CN messages have the same distribution. Therefore, it is

sufficient for a decoder with a flooding schedule to use the iteration-specific reconstruction

function R(t) for all external CN messages. However, for a decoder with a layered schedule,

the VN messages to calculate CN messages from different layers have different distributions.

For the decoder with a layered schedule, l(t)vj→ci is calculated by:

l(t)vj→ci
= l(ch)vj

+
∑

{i′|i′∈N (vj),i′<i}
u(t)
ci′→vj

+
∑

{i′|i′∈N (vj),i′>i}
u(t−1)
ci′→vj

, (2.44)

Unlike a decoder using a flooding schedule, which updates l(t)vj→ci only using CN messages in

iteration t− 1, decoders using a layered schedule use messages from both iteration t− 1 and

iteration t. The VN messages computed in different layers utilize different proportions of

check-to-variable node messages from iterations t−1 and t. Since the check-to-variable node

messages from different iterations have different reliability distributions, the VN messages

from different layers also have different distributions. Therefore (2.42) and (2.43) no longer
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Figure 2.8: Two layered decoders. Fig. (a) uses the same RCQ parameters for each layer as

with the msRCQ design for a flooding decoding in [WWS20a]. Fig. (b) shows the proposed

layer-specific msRCQ decoder in [TWC21a], which features separate RCQ parameters for

each layer. The main difference is that msRCQ decoder uses iteration specific parameters

while L-msRCQ decoder considers layer-and-iteration parameters.
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hold true, and a single R(t)(·) is insufficient to accurately describe CN messages from different

layers.

In conclusion, the Representation Mismatch Problem refers to inappropriately using a

single R(t) and single Q(t) for all layers in iteration t of a layered decoding schedule. This issue

degrades the decoding performance of layer-scheduled RCQ decoder. On the other hand, the

conventional fixed-point decoders that do not perform coarse non-uniform quantization, such

as standard Min Sumdecoder, are not affected by the changing the distribution of messages

in different layers and hence don’t have representation mismatch problem.

2.5.3 Layer-Specific RCQ Design

Based on the analysis in the previous subsection, R and Q should adapt for the PMF

of messages in each layer, in order to solve the representation mismatch problem. This

motivates us to propose the layer-specific RCQ decoding structure in this paper, as illustrated

in Fig. 2.8b. The key difference between the RCQ decoder and layer-specific RCQ decoder

is that layer-specific RCQ designs quantizers and reconstruction mappings for each layer in

each iteration. We use R(t,r) and Q(t,r) to denote the reconstruction mapping and quantizer

for decoding iteration t and layer r, respectively. As illustrated in Fig. 2.8b, layer-specific

RCQ specifies R and Q for each layer to handle the issue that messages in different layers

have different PMFs. This leads to a significant increase in the required memory because

the memory required to store R(t,r) and Q(t,r) is proportional to the product of the number

of layers and the number of iterations required for decoding the QC-LDPC code.

Designing Q(t,r)(·) and R(t,r)(·) for layer-specific msRCQ requires the message PMF for

each layer in each iteration. However, HDQ discrete density evolution [WWS20a], which

performs density evolution based on ensemble, fails to capture layer-specific information.

In this section, we propose a layer-specific HDQ discrete density evolution based on base

matrix Hp of QC-LDPC code. In layer-specific HDQ discrete density evolution, the joint

PMF between code bit X and external message D from check/variable nodes are tracked
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in each layer in each iteration. We use P (t,r)(X,Dc), X ∈ {0, 1}, Dc ∈ {0, . . . , 2be − 1}
to represent the joint PMF between code bit and CN message in layer m and iteration t.

Similarly, VN messages are denoted by P (t,r)(X,Dv).

2.5.3.1 Initialization

For an AWGN channel with noise variance σ2, the LLR of channel observation y is l =

2
σ2y. For the msRCQ decoder with bit width (be, bv), the continuous channel LLR input

is uniformly quantized into 2b
v regions. Each quantization region has a true log likelihood

ratio, which we refer to as ld, so that we have an alphabet of bv real-valued log likelihood

ratios Dch = {l0, ..., l2bv−1}. Using these values, the joint PMF between the code bit X and

channel LLR message Dch ∈ {0, ..., 2bv − 1} is:

PXDch(x, d) = PD(d)
e(1−x)ld

eld + 1
, X ∈ {0, 1}, ld ∈ Dch . (2.45)

The distribution PXDch(x, d) is used for the HDQ discrete density evolution design. The

actual decoder does not use the real-valued likelihoods ld but rather uses bv-bit channel

LLRs obtained by uniformly quantizing continuous channel LLR values.

2.5.3.2 Variable Nodes PMF Calculation

Given a base matrix Hp, with entry Hp(r, c) at row r and column c, define the sets of active

rows R(c) for a specified column c and active columns C(r) for a specified row r as follows:

R(c) = {r|Hp(r, c) ̸= 0}, C(r) = {c|Hp(r, c) ̸= 0}. (2.46)

In iteration t and layer r, consider the joint PMF between a code bit X corresponding to a

VN in the circulant Hp(r, c) and the vector D, which includes the channel message Dch for
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X and the check node messages Dc incident to that VN. This PMF is calculated by:

P (t,r,c)
v (X,D) = P (X,Dch)⊡

(
⊡k∈R(c)

k<r

P (t,k)(X,Dc)

)
⊡

(
⊡k∈R(c)

k>r

P (t−1,k)(X,Dc)

)
,

(2.47)

⊡ is defined as follows:

P (x, [d1, d2]) = P (X1, D1)⊡ P (X2, D2) (2.48)

≜
1

PX(x)
PX1D1(x, d1)PX2D2(x, d2), (2.49)

x ∈ {0, 1}, d1, d2 ∈ {0, . . . , 2be − 1}. When |R(c)| is large, the alphabet D of possible input

message vectors D is large with |D| = 2b
v+(|R(c)|−1)be . To manage the complexity of HDQ

discrete density evolution, message vectors D with similar log likelihoods are clustered via

one-step-annealing as in [WWS20a] for (2.47).

The layer-specific msRCQ decoder uses layer-specific parameters, and for each layer the

marginal distribution on the computed variable node messages will be distinct. The marginal

distribution used by HDQ at layer r is computed as follows:

P̃ (t,r)
v =

{
1

|C(r)|P
(t,r,c)
v (X,D) | c ∈ C(r)

}
(2.50)

where P (t,r)(X,Dv) and Q(t,r)(·) can be obtained by quantizing P̃
(t,r)
v using HDQ:

[
P (t,r)(X,Dv), Q(t,r)(·)

]
= HDQ

(
P̃ (t,r)

v , 2b
e
)
, (2.51)

where HDQ is defined as a function that realizes be-bit HDQ on P̃
(t,r)
v and generates P (t,r)(X,Dv)

and Q(t,r) as outputs. Note that (33) and (34) realize implicit message alignment in [Sta21]

such that the internal messages from any c ∈ C(r) use same set of thresholds for quantization

and the same external messages from any c ∈ C(r) have same LLR interpretations, regardless

of node degree.
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2.5.3.3 Check Nodes PMF Calculation

Let l(t,r)v (d) be the LLR of external VN message d in layer r and iteration t. As an LLR, this

CN input l(t,r)v (d) has the following meaning:

l(t,r)v (d) = log
P

(t,r)
XDv(0, d)

P
(t,r)
XDv(1, d)

, d = 0, ..., 2b
e − 1. (2.52)

Given input messages d1, d2 ∈ Dv, the CN min operation produces the following output:

lout
MS =min

(
|l(t,r)v (d1)|, |l(t,r)v (d2))|

)
× sgn(l(t,r)v (d1))× sgn(l(t,r)v (d2)).

(2.53)

Under the symmetry assumption, there is a dout ∈ Dv that has the LLR computed as lout
MS:

lout
MS = log

P
(t,r)
XDv(0, dout)

P
(t,r)
XDv(1, dout)

. (2.54)

At the check node output, loutMS will be assigned the label dout ∈ Dv that satisfies (2.54).

However, the LLR meaning associated with that dout must be adjusted.

Define the follow function:

dout = MS(d1, d2), (2.55)

where dout, d1, d2 ∈ Dv. (2.55) holds if and only if (2.53) and (2.54) and are both satisfied.

Define the binary operation ⊛ by:

P̃XD(x, d) = P (X1, D1)⊛ P (X2, D2) (2.56)

≜
∑

d1,d2:MS(d1,d2)=d
x1,x2:x1

⊕
x2=x

PX1D1(x1, d1)PX2D2(x2, d2). (2.57)

The joint PMF between code bit and external CN message in layer r and iteration t can

be updated by:

P (t,r)(X,Dc) = P (t,r)(X,Dv)⊛ ...⊛ P (t,r)(X,Dv) (2.58)

≜ P (t,r)(X,Dv)⊛(|C(r)|−1). (2.59)
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R(t,r)(·) can be directly computed using P (t,r)(X,Dc):

R(t,r)(d) = log
P

(t,r)
XDc(0, d)

p
(t,r)
XDc(1, d)

, d ∈ {0, ..., 2be − 1}. (2.60)

2.5.4 Threshold

The threshold of a layer-specific RCQ decoder given a base matrix with M layers and max-

imum number of decoding iterations IT is defined as:

Eb

No

∗
= inf

{
Eb

No

: I(IT ,r)

(
Eb

No

)
> 1− ϵ,∀r ∈ [1,M ]

}
. (2.61)

2.6 Simulation Result and Discussion

This section presents RCQ and layer-specific RCQ decoder designs for two example LDPC

codes and compares their FER performance with existing conventional decoders such as BP,

Min Sum, and state-of-the-art non-uniform decoders, such as an IB decoder. All decoders

are simulated using the AWGN channel, and at least 100 frame errors are collected for each

point. We also compare hardware requirements for an example LDPC code.

2.6.1 IEEE 802.11 Standard LDPC Code

We first investigate the FER performance of RCQ decoders with a flooding schedule using an

IEEE 802.11n standard LDPC code taken from [80212]. This code has n = 1296, k = 648,

and the edge distribution is:

λ(x) = 0.2588x+ 0.3140x2 + 0.0465x3 + 0.3837x10, (2.62)

ρ(x) = 0.8140x6 + 0.1860x7. (2.63)

The maximum number of decoding iterations was set to 50.

Fig. 2.9a shows the FER curves of 4-bit bpRCQ and msRCQ decoder with floating-point

internal messages, i.e., bpRCQ(4,∞,∞) and msRCQ(4,∞), respectively . The notation of
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Figure 2.9: Fig. (a): FER performance of 4-bit msRCQ and bpRCQ decoders with floating

point message representations use at the VNs. Fig. (b):FER performance of fixed point

4-bit msRCQ decoders, compared with other non-uniform quantization decoders.
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∞ represents floating-point message representation. Denote floating point BP nad Min Sum

by BP(∞) and Min Sum(∞), respectively. The 4-bit bpRCQ decoder has at most 0.1 dB

degradation compared with the floating-point BP decoder, and outperforms floating-point

BP at high Eb

No
. The 4-bit msRCQ performs better than conventional Min Sumand even

surpasses BP at high Eb

No
. The lower error floor of msRCQ decoder as compared to standard

BP follows from the slower message magnitude convergence rate as compared to standard

BP. This is similar to improved error floors achieved by the averaged BP (ABP) [35], which

decreases the rate of increase of message magnitudes by averaging the posteriors l
(t)
v in

consecutive iterations. As shown in Fig. 2.9a, ABP also delivers a lower error floor than

standard BP.

The slow magnitude convergence rate of msRCQ decoder can be explained as follows.

For conventional Min Sumdecoder, the magnitude of each check node message is always

equal to the magnitude of an input variable node message for that CN. This is not true

for the msRCQ decoder. msRCQ compares the relative LLR meanings of input messages

and returns an external message by implementing the min operation. However, the external

message is then reconstructed at the VN to an internal message magnitude that is in general

different from the message magnitudes that were received by the neighboring CN.

For the example of a degree-3 CN, (2.64) computes the likelihood associated with a

message lt that is outputted from the min operation applied to the other two input messages

indexed by i and j:

lt = log

∑
{(i,j)|t=MS(i,j)} P (0, i)P (0, j) + P (1, i)P (1, j)∑
{(i,j)|t=MS(i,j)} P (1, i)P (0, j) + P (0, i)P (1, j)

. (2.64)

Note that the boxplus operation is computed as follows :

li ⊞ lj = log
P (0, i)P (0, j) + P (1, i)P (1, j)

P (0, i)P (1, j) + P (1, i)P (0, j)
. (2.65)

MinSum is an approximation to the boxplus operation, and boxplus produces a range of

message values for edges that would share the same MinSum value MS(i, j). Comparing
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Figure 2.10: Average magnitudes of l(t)v vs. iteration for BP, ABP, Min Sumand msRCQ for

Fig. 6a simulation at Eb

No
= 2.6 dB.

with (2.65), it can be seen that (2.64) applies the boxplus operation to the probability of

the group of messages that share same value for MS(i, j). Applying the boxplus operation

to the group of messages produces a value that lies between the extremes of the messages

produced by individual boxplus operations. This grouping process lowers the maximum

output magnitude and therefore decreases the message magnitude growth rate in an iterative

decoding process. As noted in [LM05], a possible indicator of the emergence of error trapping

sets may be a sudden magnitude change in the values of certain variable node messages, or

fast convergence to an unreliable estimate. Therefore, slowing down the convergence rate of

VN messages can decrease the frequency of trapping set events. Both msRCQ decoder and

A-BP in [LM05] reduce the the convergence rate of VN messages and hence deliver a lower

error floor. However, A-BP requires extra computations to calculate the average message.

On the other hand, the averaging process of msRCQ (i.e., 2.64) is inherent in R(·) and does

not require additional complexity.

The effect of averaging can be seen in Fig. 2.10, which gives the average magnitude of l(t)v

for four decoders with a noise-corrupted all-zero codeword at Eb

No
= 2.6 dB as the input. The

oscillation pattern of the BP decoder has been reported and discussed in [LM05]. As shown
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in Fig. 2.9a, ABP also outperforms belief propagation when Eb

No
is high. The oscillation

occurs as errors alternate between the variable nodes that comprise the trapping set and

their complement. Note that ABP requires extra computations to calculate the average

message. However, the implicit averaging process of msRCQ (i.e., (2.64)) is inherent in R(·).

Fig. 2.9b compares msRCQ(4,10) with other non-uniform quantization LDPC decoders.

Simulation results show that both IB [LB18b] and Min-IB [MM17] decoders exhibit an error

floor after 2.40dB. The MIM-QMS [KCH20] decoder has a similar decoding structure to

msRCQ. Note that MIM-QMS requires the determination of the internal bit width used by

the VNs before designing quantization and reconstruction parameters, so reducing the bit

width of VNs requires another design cycle. In contrast, for the purposes of HDQ discrete

density evolution design process, msRCQ assumes that the internal VN messages are real-

valued. This assumption is an approximation since the internal VN messages will have finite

precision in practical implementations. During actual decoding, the reconstruction operation

R(·) produces a high-precision representation for use in computations at the VN. We found

that assuming real-valued internal messages in the design process introduces negligible loss

for practical internal message sizes while greatly simplifying the design. Our simulation

results in 2.9b confirm that high precision internal messages have FER performance that is

very close to real-valued internal messages. Actually, for the msRCQ, it is sufficient to have

a simple clipping module at variable node, because all reconstructed values are fixed point

messages. The RCQ decoder has more efficient memory usage than LUT-based decoders.

For the investigated non-uniform LDPC code, 4-bit IB and 4-bit Min-IB require 14.43k

and 10.24k bits, respectively, for storing LUTs per iteration, whereas msRCQ(4,12) and

msRCQ(4,10) require 165 bits and 135 bits only.

2.6.2 (9472, 8192) QC-LDPC code

In this subsection we consider a rate-0.8649 quasi-regular LDPC code, with all VNs having

degree 4 and CNs having degree 29 and 30, as might be used in a flash memory controller.
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Figure 2.11: Fig. (a): FER performance of fixed point L-msRCQ decoders for (9472, 8192)

LDPC code. Fig. (b): FER performance of fixed point L-msRCQ decoders for (9472, 8192)

LDPC code.
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Table 2.1: Hardware Usage of Various Decoding Structure for (9472,8192) QC-LDPC Code

Decoding Structure LUTs Registers BRAMS Routed Nets

OMS(5,7) (baseline) 21127 12966 17 29202

layer-specific RCQ(4,8) 20355(↓ 3.6% ) 13967(↑ 7.0%) 17.5(↑ .03%) 28916(↓ 1%)

layer-specific RCQ(3,8) 17865(↓ 15.4%) 12098(↓ 6.7%) 17(−) 25332(↓ 13.3%)

We study this (9472, 8192) QC-LDPC code using various decoders with a layered schedule.

The layer number of the investigated LDPC code is 10.

Fig. 2.11a shows the FER curves of various decoders. The maximum number of de-

coding iterations of all studied decoders is 10. The layer-specific msRCQ(4,8) outperforms

msRCQ(4,10) by 0.04 dB, which shows the benefit of optimizing layer and iteration specific

RCQ parameters. The layer-specific msRCQ(3,8) delivers similar decoding performance to

msRCQ(4,10). The decoding performance of 2-bit layer-specific msRCQ has a 0.2 dB degra-

dation compared with the 4-bit layer-specific msRCQ decoder. Given that IT = 10, the

thresholds of the investigated LDPC code under 4-bits msRCQ and 2-4 bit LS-msRCQ de-

coders are 3.58 dB, 3.67 dN, 3.46 dB and 3.40 dB, respectively. Fig. 2.11a also shows a fixed

point offset Min Sum(OMS) decoder with offset factor 0.5. At a FER of 10−8, OMS(6,8)

and OMS(5,7) outperform layer-specific msRCQ(3,8) by 0.02 dB, yet are inferior to layer-

specific msRCQ(4,8) by 0.02 dB. Fig. 2.11b shows the average decoding iteration times for

some of the decoders studied in Fig. 2.11a. At high Eb

No
, the msRCQ(4,10) decoder requires

the largest average number of iterations to complete decoding. On the other hand, layer-

specific msRCQ(4,8) has a similar decoding iteration time to OMS(5,7) and BP(∞) in this

region. Layer-specific msRCQ(3,8) requires a slightly higher average number of iterations

than layer-specific msRCQ(4,8) and OMS(5,7).

We implemented OMS and layer-specific msRCQ decoders with different bit widths on

the programmable logic of a Xilinx Zynq UltraScale+ MPSoC device for comparison. Each

design meets timing with a 500 MHz clock. The broadcast method described in [TWC21a] is
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used for RCQ design. Table 2.1 summarizes the hardware usage of each decoder. Simulation

result shows that layer-specific msRCQ(4,8) has a similar hardware usage with OMS(5,7),

and layer-specific msRCQ(3,8) has more than a 10% reduction in LUTs and routed nets and

more than a 6% reduction in registers, compared with OMS(5,7).

2.7 Conclusion

This chapter investigates the decoding performance and resource usage of RCQ decoders.

For decoders using the flooding schedule, simulation results on an IEEE 802.11 LDPC code

show that a 4-bit msRCQ decoder has a better decoding performance than LUT based

decoders, such as IB decoders or Min-IB decoders, with significantly fewer parameters to be

stored. It also surpasses belief propagation in the high Eb

No
region because a slower message

convergence rate avoids trapping sets. For decoders using the layered schedule, conventional

RCQ design leads to a degradation of FER performance and higher average decoding iteration

time. Designing a layer-specific RCQ decoder, which updates parameters in each layer and

iteration, improves the performance of a conventional RCQ decoder under a layered schedule.

Layer-specific HDQ discrete density evolution is proposed to design parameters for RCQ

decoders with a layered schedule. FPGA implementations of RCQ decoders are used to

compare the resource requirements of the decoders studied in this paper. Simulation results

for a (9472, 8192) QC LDPC code show that a layer-specific Min SumRCQ decoder with

3-bit messages achieves a more than 10% reduction in LUTs and routed nets and a more

than 6% register reduction while maintaining comparable decoding performance, compared

to a 5-bit offset Min Sum decoder.
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CHAPTER 3

RCQ LDPC Decoding with Degree-Specific Neural Edge

Weights

3.1 Introduction

Low-Density Parity-Check (LDPC) codes [Gal62b] has been implemented broadly, includ-

ing in NAND flash systems and wireless communication systems. In practice, decoders for

LDPC codes with low message bit widths are desired when considering the limited hard-

ware resources on the field-programmable gate arrays (FPGAs) or application-specific in-

tegrated circuits (ASICs), such as area, routing capabilities, and power utilization. Un-

fortunately, low-bitwidth decoders with uniform quantizers typically suffer a large degra-

dation in decoding performance [LT05b]. Recently, the non-uniformly quantized decoders

[PDD13b, XVT20b, LB18a, SLB18, SBW20b, LT05b, HCM19b, WWS20b, TWC21b, WTS22]

have shown to deliver excellent performance with very low message precision. One promis-

ing decoding paradigm is called reconstruction-computation-quantization (RCQ) decoder

[WWS20b,TWC21b,WTS22].

The node operation in an RCQ decoder involves a reconstruction function that allows

high-precision message computation and a quantization function that allows low-precision

message passing between nodes. Specifically, the reconstruction function, equivalent to a

dequantizer, maps the low-bitwidth messages received by a node to high-bitwidth messages

for computation. The quantization function quantizes the calculated high-bitwidth messages

to low-bitwidth messages that will be sent to its neighbor nodes. As shown in [TWC21b],
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the 4-bit layer-scheduled RCQ decoder can have a better decoding performance than the

6-bit uniformly quantized offset MinSum (OMS) decoder.

The excellent decoding performance of RCQ decoder comes from its dynamic quantizers

and dequantizers that are updated in each layer and each iteration. However, for practical

consideration, the dynamic quantizers and dequantizers mean more look-up tables (LUTs).

What’s worse, the LUTs required for storing quantizers and dequantizers may offset the

LUTs saved by using low bit width to pass messages. As reported in [WTS22], the 4-bit

RCQ decoder has a similar LUT usage to the 5-bit OMS decoder for a (9472,8192) LDPC

code.

Recently, numerous works have been focused on enhancing the performance of message-

passing decoders with the help of neural networks (NNs) [NBB16a,LG17,NMB17,NML18,

LSW18, WJZ18, LG18, LZJ18, XVT19b, DB19, ABS19, BHP20, WWF20, LCH19, NWH21].

Nachmani et al. in [NBB16a] propose a neural belief propagation (N-BP) decoder that as-

signs NN-learned multiplicative weights to the BP messages. Nachmani et al. and Lugosch

et al. in [NML18, LG17, NBB16a] assign dynamic weights to the messages in normalized

MinSum (NMS) and OMS decoder and propose the Neural NMS (N-NMS) and Neural OMS

(N-OMS) decoder, respectively.

For the above neural decoders, each check-to-variable message and/or each variable-to-

check message is assigned a distinct weight in each iteration. These neural decoders are

impractical for long-blocklength LDPC codes because the number of required parameters

is proportional to the number of edges in the Tanner graph corresponding to the parity

check matrix. One solution is to share the weights across iterations or edges in the Tanner

graph, like in [NMB17, WWF20, ABS19, LCH19]. However, these simple weight-sharing

methods sacrifice decoding performance in different ways. Besides, the precursor works of

literature are mainly focused on the short-blocklength codes (n < 2000), which may have

resulted from the fact that the required memory for training neural decoders with long block

lengths by using popular deep learning research platforms, such as Pytorch, is larger than the
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computation resources of the researchers. However, as demonstrated in [ABS19, WCN21],

it is possible to train neural decoders by only using CPUs on personal computers for very

long-blocklength codes if resources are handled more efficiently.

3.1.1 Contribution

This paper combines the recent neural decoding with RCQ decoding paradigm and proposes

a weighted RCQ (W-RCQ) decoder. Unlike RCQ decoder, whose quantizers/dequantizers

change in each layer and iteration, the W-RCQ decoder limits the number of quantizer

and dequantizer pairs to a very small number, for example, three. However, the W-RCQ

decoder weights check-to-variable node messages using dynamic parameters optimized via a

quantized NN (QNN). The proposed W-RCQ decoder uses fewer parameters than the RCQ

decoder, requiring much fewer LUTs.

The novelties and contributions of this paper are summarized as follows:

• Posterior Joint Training Method. This paper identifies the gradient explosion issue

when training neural LDPC decoders. A posterior joint training method is proposed

in this paper to address the gradient explosion problem. Simulation results show

that posterior joint training delivers better decoding performance than simply clipping

large-magnitude gradients to some threshold value.

• Node-Degree-Based Weight Sharing. This paper illustrates that the weight values of

the N-NMS decoder are strongly related to check node degree, variable node degree,

and iteration index. As a result, this paper proposes node-degree-based weight-sharing

schemes that assign the same weight to the edges with the same check and/or variable

node degree.

• Neural-2D-MinSum decoder. By employing the node-degree-based weight sharing on

the N-NMS and N-OMS decoder, this paper proposes the N-2D-NMS decoder and

N-2D-OMS decoder. 2D represents for 2-dimensional and implies that the weights
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are shared based on two dimensions, i.e., check node degree and variable node degree.

Simulation results on the (16200,7200) DVBS-2 LDPC code show that the N-2D-NMS

decoder can achieve same decoding performance as N-NMS decoder.

• W-RCQ Decoder. This paper proposes the W-RCQ decoding paradigm. Our simula-

tion result for a (9472,8192) LDPC code on a field-programmable gate array (FPGA)

device shows that the 4-bit W-RCQ decoder delivers comparable FER performance

but with much fewer hardware resources, compared with the 4-bit RCQ decoder and

the 5-bit offset MinSum decoder.

3.1.2 Organization

The remainder of this paper is organized as follows: Section 3.2 derives the gradients for a

flooding-scheduled N-NMS decoder and shows that the memory to calculate the gradients

can be saved by storing the forward messages compactly. The derivations enable one to build

and train the NNs for the neural decoders using programmable languages such as C++. The

compact message format saves the required memory for training NNs. This section also

describes the posterior joint training method that addresses the gradient explosion issue.

Section 3.3 illustrates the relationship between neural weights of N-NMS decoder and node

degree. The node-degree-based weight-sharing scheme is presented in this section. This

section also gives neural-2D-MinSum decoders. Section 3.4 gives the W-RCQ decoding

structure and describes how to train W-RCQ parameters via a QNN. The simulation results

are presented in Section 3.5, and Section 3.6 concludes our work.

3.2 Training Neural MinSum Decoders for Long Blocklength Codes

For the neural network corresponding to a neural LDPC decoder, the number of neurons

in each hidden layer equals the number of edges in the Tanner graph corresponded to the

49



parity check matrix [NBB16a]. For the popular NN platforms, such as PyTorch, each neuron

requires a data structure that stores the value of the neuron, the gradient of the neuron, the

connection of this neuron with other neurons, and so on. Hence, there is a huge memory

requirement for PyTorch to train the neural decoders for long-blocklength LDPC codes.

(difficult for researchers with limited resources usage)

The data structure used in PyTorch is useful and convenient for conventional deep neural

network tasks but redundant to the neural LDPC decoders. One reason is that the neuron

connections between hidden layers are repetitive and can be interpreted by the parity check

matrix. This immediately reduces the required memory. This section uses N-NMS decoder

as an example to show that the memory required to calculate gradients of neural MinSum

decoders can be further reduced by storing the messages in forward propagation compactly.

3.2.1 Forward Propagation of N-NMS Decoder

Let H ∈ Fn×k
2 be the parity check matrix of an (n, k) binary LDPC code, where n is the

codeword length and k is dataword length. Denote ith variable node and jth check node

by vi and cj, respectively. For the flooding-scheduled decoder, in the tth decoding iteration,

N-NMS decoder updates the check-to-variable (C2V) message, u(t)
cj→vi , by:

u(t)
ci→vj

= β
(t)
(ci,vj)

×
∏

vj′∈N (ci)\{vj}
sgn

(
l(t−1)
vj′→ci

)
× min

vj′∈N (ci)\{vj}

∣∣∣l(t−1)
vj′→ci

∣∣∣ , (3.1)

N (ci) is the set of variable nodes that connect ci and
{
β
(t)
(ci,vj)

|i ∈ {1, . . . k}, j ∈ {1, . . . n},
H(i, j) = 1, t ∈ {1, . . . , IT}

}
is the set of trainable parameters. IT represents the maximum

iteration. The variable-to-check (V2C) message, l(t)vi→cj , and posterior of each variable node,

l
(t)
vi , of N-NMS decoder in iteration t are calculated by:

l(t)vj→ci
= lchvj +

∑
ci′∈N (vj)\{ci}

u(t)
ci′→vj

, (3.2)

l(t)vj
= lchvj +

∑
ci′∈N (vj)

u(t)
ci′→vj

. (3.3)
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N (vj) represents the set of the check nodes that are connected to vj. lchvj is the log likelihood

ratio (LLR) of channel observation of vj. The decoding process stops when all parity checks

are satisfied or IT is reached.

3.2.2 Backward Propagation of N-NMS

Before performing back propagation to calculate the gradients, define min1tci , pos1
t
ci
, min2tci

and pos2tci as follows:

min1tci = min
vj′∈N (ci)

|l(t)vj′→ci
|, pos1tci = argmin

vj′∈N (ci)

|l(t)vj′→ci
|. (3.4)

min2tci = min
vj′∈N (ci)/{pos1tci}

|l(t)vj′→ci
|, pos2tci = argmin

vj′∈N (ci)/{pos1tci}
|l(t)vj′→ci

|. (3.5)

min1tci is the minimum magnitude that ci receives in iteration t, and the minimum magnitude

is provided by the variable node pos1tci . Similarly, min2tci is the second minimum magnitude

that ci receives in iteration t, and the second minimum magnitude is provided by pos2tci .

Let J be some loss function for N-NMS neural network, for example, the multi-loss cross

entropy in [NBB16a]. Denote the gradients of loss J with respect to (w.r.t.) the trainable

weights, the C2V message and V2C message by ∂J

∂β
(t)
(ci,vj)

, ∂J

∂u
(t)
ci→vj

, and ∂J

∂l
(t)
vj→ci

, respectively.

In iteration t, ∂J

∂u
(t)
ci→vj

is updated as follows:

∂J

∂u
(t)
ci→vj

=
∂J

∂l
(t)
vj

+
∑

ci′∈N (vj)\{ci}

∂J

∂l
(t)
vj→ci′

. (3.6)

∂J

∂β
(t)
(ci,vj)

is calculated using ∂J

∂u
(t)
ci→vj

by:

∂J

∂β
(t)
(ci,vj)

=
u
(t)
ci→vj

β
(t)
(ci,vj)

∂J

∂u
(t)
ci→vj

. (3.7)

Let u(t)∗
ci→vj =

u
(t)
ci→vj

β
(t)
(ci,vj)

. Note that u(t)∗
ci→vj is the output of check node Min operation, and hence

can be calculated efficiently by knowing sgn(l
(t)
vj→ci), min1tci , min2

t
ci
, pos1tci . To see this,

sgn(u(t)∗
ci→vj

) =
∏

vj′∈N (ci)/{vj}
sgn(l(t−1)

vj′→ci
), (3.8)
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|u(t)∗
ci→vj
| =

 min2tci , if vj = pos1tci

min1tci , otherwise
. (3.9)

For all variable nodes connected to check node ci, in iteration t, only pos1(t)ci
and pos2(t)ci

receive backward information. Hence, ∂J

∂l
(t−1)
vj→ci

is computed as follows:

∂J

∂l
(t−1)
vj→ci

=



sgn
(
l
(t−1)
vj→ci

)∑
vj′∈N (ci)\{vj}

∂J

∂|u(t)∗
ci→vj′ |

, vj = pos1(t)ci

sgn
(
l
(t−1)
vj→ci

)
∂J

∂

∣∣∣∣∣u(t)∗
ci→pos1(t)ci

∣∣∣∣∣
, vj = pos2(t)ci

0 , otherwise.

(3.10)

The term ∂J

∂|u(t)∗
ci→vj

|
is calculated by:

∂J

∂|u(t)∗
ci→vj |

= sgn(u(t)∗
ci→vj

)β
(t)
(ci,vj)

∂J

∂u
(t)
ci→vj

. (3.11)

(3.6)-(3.11) indicate that the neuron values in each hidden layer can be stored compactly

with sgn
(
l
(t)
vj→ci

)
, min1tci , min2

t
ci
, pos1tci and pos1tci . The compactly-stored neural values in

the hidden layers leads to a significant memory reduction. Besides, (3.6), (3.10) and (3.11)

imply that ∂J

∂u
(t)
ci→vj

and ∂J

∂l
(t)
vj→ci

can be calculated iteratively. Hence, the memory to store

the gradients in two consecutive hidden layers, rather than all hidden layers, is sufficient

to perform back propagation and calculate ∂J

∂β
(t)
(ci,vj)

. Note that the compact message format

(3.4)-(3.5) is also used in the hardware implementation for the MinSum decoders.

3.2.3 Posterior Jointly Training

Equation (3.10) implies that in iteration t, for all variable nodes that connect check node c,

only pos1tc and pos2tc receive gradients from c. Besides, |N (c)| − 1 gradient terms flow to

pos11c . Hence, if check node c has a large degree, the gradient of J w.r.t. pos1tc can have a

large magnitude, and this large-magnitude gradient will be propagated to the neurons in the

preceding layer that corresponded to the C2V messages whose check nodes (other than c)
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Figure 3.1: Fig. (a): The average magnitude of gradients of loss J w.r.t. C2V messages

in each decoding iteration. The gradients are calculated by feeding the flooding-scheduled

(3096,1032) N-NMS decoder with an input sample and performing backward propagation.

Fig. (b): FER curves of the flooding-scheduled N-NMS decoders for a (3096,1032) LDPC

code. Gradient clipping, greedy training and posterior jointly training are used to address

gradient explosion issue. The maximum decoding iteration is 50. The belief propagation

decoder and NMS decoder with factor 0.7 are presented as comparison.
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connect pos1tc. As a result, the large-magnitude gradients are accumulated and propagated

as back propagation proceeds, which results in gradient explosion.

Fig. 3.1a shows the gradient explosion phenomenon when training a flooding-scheduled

N-NMS decoder for a (3096,1032) LDPC code. Define µ(t) as the average magnitude of the

gradients of J w.r.t. all C2V messages in iteration t. The gradients are calculated by feeding

the N-NMS decoder with some input sample and then performing backward propagation.

Fig. 3.1a plots µ(t) in each decoding iteration. The maximum check node degree and variable

node degree of the code are 19 and 27, respectively. The maximum decoding iteration of

the decoder is 50. It can be seen that the µ(t) increases exponentially with the decrease of

decoding iteration t.

(3.7) indicates that large magnitude of ∂J

∂u
(t)
(c,v)

leads to large magnitude of ∂J

∂β
(t)
(c,v)

and

hence prevents the neural network from optimizing weights effectively. To the best of our

knowledge, this paper is the first one to report the gradient explosion issue for neural LDPC

decoder training. However, there have been several techniques that solve the gradient ex-

plosion problem:

1. Gradient Clipping. Gradient explosion is a common problem in the deep learning

field such as recurrent neural network, and one way to solve this problem is gradient

clipping [GBC16]. There are various methods for gradient clipping [Mik12, PMB13].

This paper considers to simply limit the maximum gradient magnitude to be some

threshold l.

2. Greedy Training. Dai et al in [DTS21] proposed greedy training. Greedy training trains

the parameters in tth decoding iteration by fixing the pre-trained parameters in the first

t−1 iterations. Greedy training solves the gradient explosion problem because the large

magnitude gradients won’t be accumulated and propagated to the preceding hidden

layers, i.e, decoding iterations. However, greedy training requires a time complexity

that is proportional to I2T , because one must have trained the (t−1)-iterations decoder
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in order to train a t-iterations decoder.

(3.6) indicates that the gradient of J w.r.t. u(t)
ci→vj comes from two parts: the first part is

from the posterior l(t)vj , and the second part is from the V2C messages l(t)vj→c′i
, ci′ ∈ N (vj)\{ci}.

Based on the previous analysis, if any l
(t)

vj→c′i
, ci′ ∈ N (vj) \ {ci} has a large magnitude

gradient, the neuron u
(t)
ci→vj can also have a large magnitude gradient. This will result in a

large magnitude to the gradient of J w.r.t. β
(t)
(ci,vj)

, as indicated by (3.7). In this paper, we

propose posterior jointly training which calculates the gradient of J w.r.t. u(t)
ci→vj only using

the posterior l(t)vj . More explicitly, for the flooding-scheduled N-NMS neural network, ∂J

∂u
(t)
ci→vj

is calculated by:

∂J

∂u
(t)
ci→vj

=
∂J

∂l
(t)
vj

. (3.12)

Hence, the gradient of J w.r.t. β
(t)
(ci,vj)

is calculated as:

∂J

∂β
(t)
ci→vj

=
u
(t)
ci→vj

β
(t)
ci→vj

∂J

∂u
(t)
ci→vj

=
u
(t)
ci→vj

β
(t)
ci→vj

∂J

∂l
(t)
vj

. (3.13)

By calculating the gradients of neurons in the tth decoding iteration only using l(t), i.e.,

the posteriors in the tth decoding iteration, (3.12) and (3.13) prevent the large magnitudes

that are due to ∂J

∂l
(t)
vj→ci′

from propagating to the preceding hidden layers. This idea resembles

the greedy training method. However, the posterior jointly training optimizes parameters of

all decoding iterations jointly, hence it requires a time complexity that is proportional to IT .

For the layer-scheduled N-NMS decoder, the conventional back propagation calculates

the gradient of J w.r.t. u
(t)
ci→vj by:

∂J

∂u
(t)
ci→vj

=
∂J

∂l
(t)
vj

+
∑

{i′|ci′∈N (vj),i′>i}

∂J

∂l
(t)
vj→ci′

+
∑

{i′|ci′∈N (vj),i′<i}

∂J

∂l
(t+1)
vj→ci′

. (3.14)

Posterior jointly training abandons the last term in (3.14) and calculates ∂J

∂u
(t)
ci→vj

as follows:

∂J

∂u
(t)
ci→vj

=
∂J

∂l
(t)
vj

+
∑

{i′|ci′∈N (vj),i′>i}

∂J

∂l
(t)
vj→ci′

. (3.15)
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Fig. 3.1b shows the frame error rate (FER) of flooding-scheduled N-NMS decoders for a

(3096,1032) LDPC code. The maximum decoding iteration time is 50. All three methods

are implemented for preventing gradient explosion. Especially, for the gradient clipping, the

threshold for gradient magnitude is l = 10−3. The performance of BP and NMS with the same

decoding schedule and maximum decoding iteration are also given for comparison. The NMS

decoder uses multiplicative factor 0.7. The simulation result shows that greedy training and

posterior jointly training deliver a better better performance than simple gradient clipping

method. Greedy training and posterior jointly training deliver a similar performance, both

of which are 0.4 dB better than conventional NMS decoder and have a better performance

than BP at 1.6 dB. However, posterior jointly training has a lower time complexity than

greedy training.

3.3 Node-Degree-Based Weight Sharing

N-NMS and N-OMS decoder for the long-blocklength LDPC codes are impractical, because

the number of parameters of these decoders is proportional to the number of edges in the

corresponding Tanner graph. Weight sharing [XCB21] solves this problem by assigning one

weight to different neurons in the NN. Different weight sharing schemes have been proposed

to reduce the number of neural weights in N-NMS and N-OMS decoder. However, simple

weight sharing schemes, such as across iterations or edges in [WWF20,LCH19], degrade the

decoding performance in different degrees. This section proposes node-degree-based weight

sharing schemes which assign the same weights to the edges that have same check and/or

variable node degree. We call the N-NMS and N-OMS decoder with node-degree-based

weight sharing schemes by neural 2-dimensional NMS (N-2D-NMS) and neural 2-dimensional

OMS (N-2D-OMS) decoder, respectively, because they are similar to the 2D-MS decoders

in [JFD05, ZFG06]. Simulation results in Section 3.5 show that N-2D-NMS decoder can

deliver the same decoding performance with N-NMS decoder.
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Figure 3.2: Mean values of messages of a flooding-scheduled N-NMS decoder for a (3096,1032)

LDPC code in each iteration show strong correlations to check and variable node degree.
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3.3.1 Motivation

In this subsection, we investigate the relationship between the neural weights of a flooding-

scheduled N-NMS decoder and node degrees. The N-NMS decoder is trained for a (3096,

1032) LDPC code, the same one used in Section 3.2.3. The maximum decoding iteration is

10.

Define the set of neural weights of N-NMS decoder that are associated to check node

degree dc in the tth decoding iteration by B(t,dc), and B(t,dc) = {β(t)
(ci,vj)

|deg(ci) = dc}. Let

β̄(t,dc) be the mean value of B(t,dc). Fig.3.2a shows β̄(t,dc) versus decoding iteration t with all

possible check node degrees. The simulation result shows a clear relationship between check

node degree and β̄(t,dc), i.e. a larger check node degree corresponds to a smaller β̄(t,dc). This

difference is significant in the first few iterations. Additionally, β̄(t,dc) changes drastically in

first few iterations for all check node degrees.

In order to explore the relationship between the weights and variable node degrees given

a check node degree dc and decoding iteration index t, we further define B(t,dc,dv) = {β(t)
(ci,vj)

|deg(ci) = dc, deg(vi) = dv}. We denote the average value of B(t,dc,dv) by β̄(t,dc,dv). Fig.3.2b

gives the average weights corresponding to various check and variable node degrees at iter-

ation 4. Statistical results show that, given a specific iteration t and check node degree dc,

a larger dv indicates a smaller β̄(t,dc,dv).

In conclusion, the weights of N-NMS decoder are correlated with check node degree,

variable node degree, and decoding iteration index. Thus, node degrees should affect the

weighting of messages on their incident edges when decoding LDPC codes. This observation

motivates us to propose a family of N-2D-MS decoders in this paper.
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Table 3.1: Various Node-Degree-Based Weight Sharing Schemes and Required Number of

Parameters per Iteration for Two Example Codes

Type β
(t)
∗ α

(t)
∗

The Number of Required

Parameters per Iteration

(16200,7200) DVBS-2 code (3096,1032) PBRL code

No Weight Sharing [NBB16a]

0 β
(t)
(ci,vj)

1 4.8 ∗ 105 1.60 ∗ 104

Weight Sharing Based on Node Degree

1 β
(t)
(deg(ci),deg(vj))

1 13 41

2 β
(t)
(deg(ci))

α
(t)
(deg(vj))

8 15

3 β
(t)
(deg(ci))

1 4 8

4 1 α
(t)
(deg(vj))

4 7

Weight Sharing Based on Protomatrix

5 [DTS21] β
(t)(⌊

i
f

⌋
,
⌊

j
f

⌋) 1 − 101

6 β
(t)(⌊

i
f

⌋) 1 − 17

7 1 α
(t)(⌊

j
f

⌋) − 25

Weight sharing based on Iteration [LCH19,ABS19]

8 β(t) 1 1 1

3.3.2 Neural 2D Normalized MinSum Decoders

Based on the previous discussion, it is intuitive to consider assigning the same weights to

messages with same check node degree and/or variable node degree. In this subsection, we

propose a family node-degree-based weight sharing schemes. These weight sharing schemes

can be used on the N-NMS decoder, which gives N-2D-NMS decoder.
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In the tth iteration, a flooding-scheduled N-2D-NMS decoder update u
(t)
ci→vj as follows:

u(t)
ci→vj

= β(t)
∗ ×

∏
vj′∈N (ci)/{vj}

sgn
(
l(t−1)
vj′→ci

)
× min

vj′∈N (ci)/{vj}

∣∣∣l(t−1)
vj′→ci

∣∣∣ . (3.16)

l(t)vj→ci
= lchvi + α(t)

∗
∑

ci′∈N (vj)/{ci}
u(t)
ci′→vj

, (3.17)

l(t)vj
= lchvi + α(t)

∗
∑

ci′∈N (vj)

u(t)
ci′→vj

. (3.18)

β
(t)
∗ and α

(t)
∗ are the learnable weights. The subscript * is replaced in Table 3.1 with the

information needed to identify the specific weight depending on the weight sharing method-

ology. Table 3.1 lists different weight sharing types, each identified in the first column by

a type number. As a special case, we denote type 0 by assigning distinct weights to each

edge, i.e., N-NMS decoder. Columns 2 and 3 describe how each type assigns β
(t)
∗ and α

(t)
∗ ,

respectively. In this paper, we refer to a decoder that uses a type-x weight sharing scheme

as a type-x decoder.

Types 1-4 assign the same weights based on node degree. In particular, Type 1 assigns

the same weight to the edges that have same check node and variable node degree. Type

2 considers the check node degree and variable node degree separately. As a simplification,

type 3 and type 4 only consider check node degree and variable node degree, respectively.

Dai. et. al in [DTS21] studied weight sharing based on the edge type of multi-edge-type

(MET)-LDPC codes, or protograph-based codes. We also consider this metric for types 5, 6,

and 7. Type 5 assigns the same weight to the edges with the same edge type, i.e., the edges

that belong to the same position in protomatrix. In Table. 3.1, f is the lifting factor. Types

6 and 7 assign parameters based only on the horizontal (protomatrix row) and vertical layers

(protomatrix column), respectively. Finally, type 8 assigns a single weight to all edges in

each decoding iteration, as in [LCH19,ABS19].

A (3096,1032) LDPC code and the (16200,7200) DVBS-2 [ETS] standard LDPC code are

considered in this section, and the number of parameters per iteration required for various
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weight sharing schemes of these two codes are listed in column 4 and 5 in Table. 3.1,

respectively. It is shown that the number of parameters required by the node-degree-based

weight sharing is less than that required by the protomatrix-based weight sharing.

3.3.3 Neural 2D Offset MinSum Decoder

The node-degree-based weight sharing schemes can be applied to N-OMS decoder in a similar

way and lead to neural 2D OMS (N-2D-OMS) decoder. Specifically, a flooding N-2D-OMS

decoder updates u
(t)
ci→vj by:

u(t)
ci→vj

=
∏

vj′∈N (ci)/{vj}
sgn

(
l(t−1)
vj′→ci

)
× ReLu

(
min

vj′∈N (ci)/{vj}

∣∣∣(l(t−1)
vj′→ci

)
∣∣∣− β(t)

∗ − α(t)
∗

)
. (3.19)

ReLu(x) = max(0, x). The l
(t)
vj→ci and l

(t)
vj are updated using (3.2) and (3.3). For the N-2D-

OMS decoders, the constant value 1 in Table 3.1 should be replaced by 0.

3.3.4 Hybrid Neural Decoder

To further reduce the number of parameters, we consider a hybrid training structure that

utilizes a neural network combining a feed forward module with a recurrent module. The

corresponding decoder uses distinct neural weights for each of the first I ′ decoding iterations

and uses the same weights for the remaining IT−I ′ iterations. The motivation for the hybrid

decoder is from the observation that the neural weights of N-NMS decoder change drastically

in the first few iterations, but negligibly during the last few iterations, as illustrated in Fig.

3.2. Therefore, using the same parameters for the last few iterations doesn’t cause a large

performance degradation.
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Figure 3.3: Layer-scheduled Neural Offset RCQ Decoder Structure

3.4 Weighted RCQ Decoder

This section combines the N-2D-NMS or N-2D-OMS decoder with RCQ decoding paradigm

and proposes a weighted RCQ (W-RCQ) decoder. Unlike the RCQ decoder, whose quantizers

and de-quantizers are updated in each iteration (and each layer, if layer-scheduled decoding is

considered), W-RCQ decoder only uses a small number of quantizers and dequantizers during

the decoding process. However, the C2V messages of W-RCQ decoder will be weighted by

dynamic node-degree-based parameters that that are trained by a QNN.

3.4.1 Structure

Fig. 3.3 gives the decoding paradigm of a layer-scheduled weighted OMS-RCQ decoder (W-

OMS-RCQ). The offset parameters in Fig. 3.3, β
(t)
(deg(ci),deg(vj))

, use type-1 weight sharing

scheme in the Table 3.1. bc denotes the bit width of C2V message, and bv denotes the

bitwidth for V2C message and variable node posterior. lvj is the posterior of variable node

vj. In the tth iteration, a layer-scheduled W-OMS-RCQ decoder calculates the messages
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u
(t)
ci→vj′ and updates the posteriors lvj′ as follows:

l̃vj′→ci ← lvj′ − Relu
(
R
(
u(t−1)
ci→vj′

)
− β

(t−1)
(deg(ci),deg(vj′ ))

)
, ∀j′ ∈ N (ci), (3.20)

l(t)vj′→ci
= Q

(
l̃(t)vj′→ci

)
, ∀j′ ∈ N (ci), (3.21)

u(t)
ci→vj′

=

 ∏
j̃∈N (ci)\{j′}

sgn
(
lvj̃→ci

)× min
j̃∈N (ci)/{j′}

∣∣∣lvj̃→ci

∣∣∣ , ∀j′ ∈ N (ci), (3.22)

lvj′ ← l̃vj′→ci +Relu
(
R
(
u(t)
ci→vj′

)
− β

(t)
(deg(ci),deg(vj′ ))

)
, ∀j′ ∈ N (ci). (3.23)

The differences between W-RCQ decoder and RCQ decoder are:

• Reconstruction and Quantization. The reconstruction and quantization functions in a

layer-scheduled RCQ decoder are dynamic, which means that the decoder updates R(·)
and Q(·) in each decoding layer and iteration. Storing the quantizers and dequantizers

of all layers and iterations in the local variable node units (VNUs) will cost a large

number of LUTs. Hence a central control unit is considered for storing and distributing

the parameters to each VNU [TWC21b]. On the other hand, the neural RCQ decoder

only uses very few number of R(·) and Q(·) across all decoding iterations, for example,

three or less. Besides, as will be seen in the next subsection, we require that the

thresholds of quantizers and mapping values of dequantizers have the same values.

Each R(·) and Q(·) are used for several iterations. Hence, R(·) and Q(·) are possible

to be stored locally in VNUs.

• Message adjustment. W-RCQ decoder weights the reconstructed C2V messages with

additive or multiplicative parameters, which result in W-OMS-RCQ and W-NMS-

RCQ, respectively. As shown in Fig. 2.8b, a central control unit is used for storing

and distributing the weights to VNUs.
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3.4.2 Non-Uniform Quantizer

An important design choice for a W-RCQ decoder is the selection of quantization and recon-

struction (dequantization) function. The authors in [WTS22] use discrete density evolution

to design dynamic quantizers and dequantizers. In [ZS14], Zhang et. al. point that the mes-

sage magnitude of iterative LDPC decoders can exhibit exponential behavior as a function of

the number of decoding iterations, and the decoding performance of a quantized decoder can

be improved by allowing exponential growth magnitude. For example, the authors in [ZS14]

propose a (q+1)-bit quasi-uniform quantizer that uses one extra bit to efficiently increase

the dynamic range of messages. For the W-RCQ decoder, this paper considers the quantizer

and dequantizer that can be parameterized by a power function.

Let Q(x) be a symmetric bc-bit quantizer that features sign information and a magnitude

quantizer Q∗(|x|). The magnitude quantizer selects one of 2bc−1 possible indices using the

threshold values {τ0, τ1, . . . , τmax}, where τj = C
(

j
2bc−1

)γ for j ∈ {0, . . . , 2bc−1 − 1} and τmax

is τjmax for jmax = 2b
c−1 − 1. Given an input x, which can be decomposed into sign part

sgn(x) and magnitude part |x|, Q∗(|x|) ∈ Fbc−1
2 is defined by:

Q∗(|x|) =

 j, τj ≤ |x| < τj+1

2bc−1 − 1, |x| ≥ τmax

, (3.24)

where 0 ≤ j ≤ jmax. Let s(x) be the sign bit of x, which is defined as s(x) = 1(x < 0), Q(x) is

defined as Q(x) = [s(x) Q∗(|x|)]. The set of thresholds of Q∗(|x|) has a power-function form

and is controlled by two parameters. The parameter C confines the maximum magnitudes

the quantizer can take, and γ manipulates the non-uniformity of the quantizer. Specifically,

if γ = 1, Q(x) becomes a uniform quantizer.

Let d ∈ Fbc

2 be a bc-bit message. d can be represented as [dMSB d̃], where dMSB ∈ {0, 1}
indicates sign and d̃ ∈ Fbc−1

2 corresponds to magnitude. The magnitude reconstruction func-

tion R∗(d̃) = C
(

d̃
2bc−1

)γ
, and R(d) = (−2dMSB + 1)R∗(d̃). Note that both the magnitude

quantization function and magnitude reconstruction function use {τ1, . . . , τmax} as their pa-
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rameters.

The number of required quantizer/dequantizer pairs for W-RCQ decoder can vary under

different circumstances. If the code has a small variable node degree and the bit width of

the quantizer is not too low (for example, 4 bits), one quantizer/dequantizer pair is sufficient

through all decoding iterations. However, if the variable node degree of the LDPC code is

high, or the bit width of quantizer is very small, using one quantizer/dequantizer pair is not

able to accommodate the range of messages in the decoding process while providing a fine

enough resolution, and is likely to degrade decoding performance. Therefore, we consider to

use multiple quantizer/dequantizer pairs, and each pair is used for several iterations.

3.4.3 Training Quantized Neural Network

In this paper, we use the multi-loss cross entropy as the loss function and use posterior jointly

training to train the QNN that is associated to the W-RCQ decoder. The parameters of

the quantizers and dequantizers are fixed before training the neural network. One problem

of QNN is that quantization functions results in zeros derivatives almost everywhere. In

this work, we use a straight through estimator (STE) [BLC13, XVT20b] in the backward

propagation.

3.4.4 Fixed-Point W-RCQ decoder

This paper uses the pair (bc,bv) to denote the bitwidth for fixed-point decoders, where bc is

the bitwidth of C2V messages and bv is the bitwith of V2C messages and the posteriors of

variable nodes. For the W-RCQ decoders, the learnable parameters are first trained under

a floating point message representation and then quantized to bv bits.
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Table 3.2: LDPC Codes used for Simulation
Code Rate Edge distribution

(16200,7200)

DVBS-2 LDPC code

[ETS]

4
9

λ(x) = 2.06 ∗ 10−5 + 0.3703x+

0.3333x2 + 0.2963x7

ρ(x) = 0.1186x3 + 0.3332x4+

0.4445x5 + 0.1037x6

(9472,8192)

QC-LDPC code

[WTS22]

8
9

λ(x) = x3

ρ(x) = 0.3919x28 + 0.6081x29

k = 1032

PBRL LDPC code

[cls]

8
9
, 8
10
, . . . , 8

24

λ(x) = 0.1190 + 0.7940x4 + 0.0952x5+

0.0556x6 + 0.3095x12 + 0.1270x16 + 0.2143x26

ρ(x) = 0.0238x2 + 0.0635x3 + 0.0794x4+

0.1905x5 + 0.2222x6 + 0.1270x7 + 0.1429x17+

0.1508x18

3.5 Simulation Result and Discussion

This section evaluates the performance of the N-2D-NMS decoder and the W-RCQ decoder

for LDPC codes with different block lengths and code rates. The LDPC codes used in

this section are listed in Table 3.2. All the encoded bits are modulated by binary phase-shift

keying (BPSK) and transmitted through a Additive White Gaussian Noise (AWGN) channel.

3.5.1 (16200,7200) DVBS-2 LDPC code

Fig. 3.4a shows the FER performances of N-2D-NMS decoders with various weight sharing

types for the (16200, 7200) DVBS-2 LDPC code. The FER performance of BP and NMS

decoders are also given for comparison. The single multiplicative weight of NMS decoder is

0.88. All of the decoders are flooding-scheduled and maximum decoding iteration is 50. It
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(a)

(b)

Figure 3.4: Fig. (a): The FER performance of the N-2D-NMS decoders with various weight

sharing types for the (16200,7200) DVBS-2 LDPC code. Fig. (b): The FER performance

of the hybrid type-2 N-2D-NMS decoder that uses distinct weights in the first 20 iterations

and same weights in the remaining 30 iterations. Simulation result shows that the hybrid

type-2 N-2D-NMS decoder has comparable decoding performance with the type-2 N-2D-NMS

decoder that assigns distinct weights in each iteration.
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Figure 3.5: The change of weights of the type-2 N-2D-NMS decoder for (16200, 7200)

DVBS-2 LDPC code w.r.t. check node degree, variable node degree and iteration index.

Specifically, Fig. (a) gives β
(t)
(deg(ci)) for all possible check node degrees in each decoding

iteration t, Fig. (b) gives α
(t)
(deg(vj)) for all possible variable node degrees in each decoding

iteration t.

68



Table 3.3: The Quantizer/Dequantizer pairs of W-OMS-RCQ decoder for (9472,8192) LDPC

code
CN bitwidth Quantizer/Reconstruction Parameter Corresponding Decoder Iteration

4 bits C = 7, γ = 1.7 1 ∼ 10

3 bits

C1 = 3, γ1 = 1.3 1 ∼ 6

C2 = 5, γ2 = 1.3 7 ∼ 8

C3 = 7, γ3 = 1.3 9 ∼ 10

is shown that the N-NMS decoder (i.e., type-0 decoder) outperforms BP at 1.3 dB with a

lower error floor. The type-1 and 2 decoders, which share weights based on the check node

and variable node degree, deliver even a slightly better decoding performance than N-NMS

decoder.

Fig. 3.4a also shows that the FER performance degrades if only considering to sharing

weights w.r.t. check node degree (type-3) or variable node degree (type-4). Specifically, in

this example, type-4 N-2D-NMS decoder outperforms type-3 N-2D-NMS decoder, because

the variable node weights of investigated code have a larger dynamic range than check node

weights, as shown in Fig. 3.5a, and 3.5b. Fig. 3.5a and 3.5b give the β
(t)
(deg(ci)) and α

(t)
(deg(vj))

of type-2 N-2D-NMS decoder, which agree with our observation in the previous section; i.e.,

in each decoding iteration, larger degree node corresponds to a smaller value. Besides, as

shown in Fig. 3.5a and 3.5b, the weights change negligibly after 20th iteration. Thus, the

hybrid type-2 N-2D-NMS decoder with I ′ = 20 delivers similar performance to the full feed

forward decoding structure, as shown in Fig. 3.4b.

3.5.2 (9472,8192) Quasi-Cyclic LDPC code

This subsection designs 3-bit and 4-bit W-OMS-RCQ decoders for a (9742,8192) quasi-

cyclic (QC) LDPC code and compares them with the fixed-point OMS decoder and RCQ

decoders. All decoders in this subsection are layer-scheduled with maximum iteration 10.
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(a)

(b)

Figure 3.6: Fig. (a): FER performance of W-OMS-RCQ decoders, RCQ decoders, and 5-bit

OMS decoder for a (9472, 8192) QC LDPC code. Fig. (b): FER performance of 3-bit

W-OMS-RCQ decoders with two and three quantizer/dequantizer pairs. Simulation result

shows that the W-OMS-RCQ decoder with two quantizer/dequantizer pairs has an error

error floor at FER of 10−7.
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Table 3.4: Hardware Usage of Various Decoding Structure for (9472,8192) QC-LDPC Code

Decoding Structure LUTs Registers BRAMS Routed Nets

OMS(5,7) (baseline) 21127 12966 17 29202

RCQ(4,8) 20355(↓ 3.6% ) 13967(↑ 7.0%) 17.5(↑ .03%) 28916(↓ 1%)

RCQ(3,8) 17865(↓ 15.4%) 12098(↓ 6.7%) 17(−) 25332(↓ 13.3%)

W-OMS-RCQ(4,8) 17645(↓ 16.5% ) 13297(↑ 2.6%) 17(−) 25361(↓ 13.2% )

W-OMS-RCQ(3,8) 16306(↓ 22.82% ) 12104(↓ 6.65%) 17(−) 23252(↓ 20.38% )

The quantizer/reconstruction parameters for the 3-bit and 4-bit W-OMS-RCQ decoder are

given in Table. 3.3.

Fig. 3.6a compares the FER performances of W-OMS-RCQ decoders with RCQ decoders

and a 5-bit OMS decoder. The decoders in Fig. 3.6a are also implemented using an FPGA

device (Xilinx Zynq UltraScale+ MPSoC) the study of resource usage. Table 3.4 lists the

usage of lookup tables (LUTs), registers, block RAM (BRAM), and routed nets of various

decoders. For the details of FPGA implementations of the decoders, we refer the readers

to [TWC21b].

The simulation result shows the 4-bit RCQ decoder has the best FER performance. The

4-bit W-OMS-RCQ decoder and 5-bit OMS decoder have similar FER performance, which is

inferior to the 4-bit RCQ decoder by 0.01 dB. However, as shown in Table 3.4, the 4-bit W-

OMS-RCQ decoder requires much fewer resources than the 4-bit RCQ decoder and the 5-bit

OMS decoder. Compared to the 5-bit OMS decoder, the 3-bit W-OMS-RCQ and 3-bit RCQ

decoder have a 0.025 and 0.043 dB gap, respectively. Specifically, the 3-bit RCQ decoder has

a similar LUT, BRAM, and routed net usage to the 4-bit W-OMS-RCQ decoder. On the

other hand, the 3-bit W-OMS-RCQ uses much fewer resources than the 4-bit W-OMS-RCQ

decoder.

The 3-bit W-OMS-RCQ decoder in Fig. 3.6a uses three quantizers for three decoding

phases. In the first 3 iteration, most messages have low magnitudes, hence a quantizer with
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Figure 3.7: FER performance of N-2D-NMS decoders with various weight sharing types for

a (3096,1032) PBRL LDPC code compared with N-NMS (type 0) and NMS.

small C is required for a finer resolution to the low-magnitude values. However, the message

magnitudes increase with the increase of decoding iteration. As a result, the quantizers

with larger C should be used correspondingly. Fewer quantizers may not accommodate the

message magnitude growth in the decoding process and will result in performance degra-

dation. For example, Fig. 3.6b considers a 3-bit W-OMS-RCQ decoder that uses two

quantizer/dequantizer pairs, the first pair has C1 = 3, γ1 = 1.3 and is used for iteration

1 ∼ 7, the second pair has C2 = 5, γ2 = 1.3 and is used for iteration 8 ∼ 10. Simulation

result shows that the 3-bit W-OMS-RCQ decoder that uses 2 quantizer/dequantizer pairs

has an early error floor at FER of 10−7.

3.5.3 k = 1032 Protograph-Based Raptor-Like code

5G LDPC codes have the protograph-based raptor-like (PBRL) [CVD15] structure which

offers inherent rate-compatibility and excellent decoding performance. In this subsection,

we examine the performance of N-2D-NMS decoders and W-RCQ decoders for a k = 1032
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PBRL LDPC code, whose supported rates are listed in Table 3.1. The edge distribution

of the lowest-rate code, which corresponds to the full parity check matrix, is also given in

Table 3.1. All the decoders in this subsection are layer-scheduled with maximum 10 decoding

iterations.

Fig. 3.7 shows the FER performance of N-2D-NMS decoder with various weight shar-

ing types for the PBRL code with lowest code rates 1
3
. As a comparison, the decoding

performance of the N-NMS (type 0) decoder and the NMS decoder are also given. All of

the decoders use floating-point message representation. The simulation results show that

N-NMS decoder has a more than 0.5 dB improvement over the NMS decoder. N-2D-NMS

decoders with weight sharing types 1-7 are also simulated. Simulation result shows that the

N-2D-NMS decoders with weight-sharing metrics based on check and variable node degree

(i.e., type 1 and 2), or based on horizontal and vertical layer (i.e., type 5) deliver lossless

performance w.r.t. N-NMS decoder. N-2D-NMS decoders with weight sharing types 4 and

6 have a degradation of around 0.05 dB compared with the N-NMS decoder. N-2D-NMS

decoders with weight sharing types 5 and 7 have a degradation of around 0.2 dB compared

with the N-NMS decoder. Thus, for this (3096,1032) PBRL LDPC code of Fig. 3.7, assign-

ing weights based only on check nodes can gain more benefit than assigning weights only

based on variable nodes.

Fig. 3.8 gives the FER performance of fixed-point W-NMS-RCQ decoders for the k =

1032 PBRL code with rate 1
3
, 1

2
, 2

3
and 8

9
. The W-NMS-RCQ decoder assigns 4 bits to

C2V message and 10 bits to V2C message. Two quantizer/dequantizer pairs are used for

W-NMS-RCQ decoder across all investigated rates. The first quantizer has C1 = 7, γ2 = 1.7

and is used for the first 7 iterations. The second quantizer has C2 = 10, γ2 = 2.3 and is used

for last 3 iterations. We use a 6-bit OMS decoder as benchmark, because we find it delivers

a better decoding performance than the NMS decoder with same bit width. Additionally, we

didn’t consider W-OMS-RCQ decoder for this code because the 4-bit W-OMS-RCQ decoder

doesn’t perform as well as the 4-bit W-NMS-RCQ decoder.

73



0.13 dB 0.15 dB

(a)

0.1 dB0.12 dB

(b)

Figure 3.8: FER performance of 4-bit W-RCQ decoders for k = 1032 PBRL code with

different code rates. The term "rate-specific" means to design distinct decoders for each

code rate; The term "rate-compatible" means to train one decoder that matches all code

rates. The 6-bit OMS decoder is given as comparison.
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We first consider the 4-bit W-NMS-RCQ decoder with type-1 weight sharing that assigns

the same weight to the edges with same check and variable node degree. The decoder is rate-

specific; i.e., for each considered rate, a W-NMS-RCQ decoder is trained separately. The

simulation results shows that, targeting a FER of 10−6, the 4-bit rate-specific W-NMS-RCQ

decoder outperforms the 6-bit OMS decoder with 0.1∼ 0.15 dB for all considered code rates.

For the PBRL code, the proto-matrix of each possible rate is a sub-matrix of a base

proto-matrix [CVD15]. As shown in Table. 3.1, the type-5 weight sharing assigns the same

weight to the edges that correspond to the same element in the proto-matirx. Hence, it is

possible to use one trained type-5 neural decoder to match different code rates. We refer to

such decoder as a rate-compatible decoder. In [DTS21], the authors propose to training the

rate-compatible decoder by using the samples from different code rates.

Fig. 3.8 shows the decoding performance of rate-compatible type-5 W-NMS-RCQ de-

coder. Simulation result shows that for the higher rate such as 2
3

and 8
9
, the rate-compatible

type-5 W-NMS-RCQ decoder has a similar decoding performance to the rate-specific type-1

W-NMS-RCQ decoder whose parameters for each rate are separately designed. However, for

the lower rate such as 1
3

and 1
2
, the rate-compatible type-5 W-NMS-RCQ decoder method

doesn’t deliver a decoding performance as well as rate-specific type-1 W-NMS-RCQ decoder.

Besides, considering the four rates in Fig. 3.8, the number of neural weights for rate-specific

type-1 and rate-compatible type-5 W-NMS-RCQ decoder are 96 and 101, respectively.

3.6 Conclusion

This chapter proposes the W-RCQ decoder, a non-uniformly quantized decoder that delivers

excellent decoding performance in the low-bitwidth regime. Unlike RCQ decoder, which

designs quantizer/dequantizer pairs for each layer and iteration, W-RCQ decoder only uses a

small number of quantizer/dequantizer pairs and each one is responsible for several iterations.

The W-RCQ decoder uses Min operation at check node, and the C2V messages are weighted
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by multiplicative or additive parameters, which induce W-NMS-RCQ and W-OMS-RCQ,

respectively.

For the neural decoders such as W-RCQ decoder and N-NMS decoder, assigning distinct

weights to each edge in each decoding iteration is impractical for long-blocklength codes

because of huge number of neural weights. This paper proposes various node-degree-based

weight sharing schemes with lossless or lossy performance for the neural decoders, depending

on whether the weight sharing considers both check and variable node degree or only one of

them.

Additionally, this paper discusses the issues when training neural LDPC decoders. First,

training the neural LDPC decoders for long blocklength code using Pytorch or TensorFlow

could raise memory issue. This paper shows that the memory for training neural MinSum

decoders can be saved by storing feed-forward messages compactly. Second, this paper

identifies gradient explosion problem in the neural decoder training and proposes a posterior

jointly training method that addresses this problem.
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CHAPTER 4

Probabilistic Shaping for Trellis-Coded Modulation with

CRC-Aided List Decoding

4.1 Introduction

This paper explores reliable communications over the additive white Gaussian noise (AWGN)

channel with high spectral efficiency for short block lengths. To closely approach theo-

retical limits, it is helpful to use shaping so that signal points are not equally likely, not

equally spaced, or both [Gal68, FGL84, For92, KP93, LFT94, FWS01, XWS21]. Recently,

a new technique called probabilistic amplitude shaping (PAS) [BSS15, BSS19] employs a

distribution matcher (DM) [SB15] before the forward error correction (FEC) encoder and

channel-signaling mapping function to accomplish optimal or almost optimal shaping.

A PAS system as in [BSS15,BSS19] decomposes a channel input sequence into a mag-

nitude symbol sequence and a sign sequence. The magnitude symbol sequence is generated

by a DM. The output of the DM is provided as input to a systematic FEC code where the

parity check bits indicate the signs of the channel inputs. A channel-signaling mapping func-

tion maps the amplitude symbol sequence and the sign-bit sequence to the corresponding

sequence of transmitted signal points.

A distribution matcher [SB15,AB13, SS19, Sch20, PX19a, FMK18] maps a binary input

sequence onto a symbol sequence that determines the magnitudes of the transmitted symbols.

The binary input sequence typically has equally likely ones and zeros. However, the output

symbols from the distribution matcher are not equally likely. Specifically, the distribution
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Figure 4.1: Diagram of the CRC-TCM-PAS transmitter. In the diagram, s ∈ Fk
2,

a ∈ CDM ⊆ Al, g ∈ Fk0l
2 , h ∈ Fk0l+m
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. The transmission rate

of the system is k
n

bits/real channel use. The TCM in this figure uses a rate-2
3

TBCC.

matcher is designed such that the PAS system can generate channel inputs with a capacity-

approaching probability mass function (PMF).

Even though it is well-known that a continuous Gaussian probability density function

(PDF) is a capacity-achieving distribution for the power-constrained additive Gaussian

white noise (AWGN) channel, a carefully designed finite-cardinality PMF can deliver per-

formance that is almost indistinguishable from that of a Gaussian PDF and facilitates prac-

tical implementation. In [KP93], Kschischang et. al. use Maxwell-Boltzmann distribution

to optimize the PMF of equally-spaced pulse-amplitude modulation (PAM) or quadrature

amplitude modulation (QAM) constellations. Xiao et. al. use dynamic Blahut-Arimoto

(DAB) to identify minimum-cardinality capacity-approaching input PMFs for PAM constel-

lations [XWS21].

The empirical distribution of the output symbols of a good distribution matcher will

closely resemble the target PMF as determined, for example, according to [XWS21]. The

shell-mapping (SM) DM [AB13, SS19] is optimal in termes of normalized Kullback-Leibler

(KL) divergence. Schulte et al. in [SB15] propose an asymptotically optimal distribution

matcher, the constant composition (CC) DM. One advantage of CCDM is that it supports

online encoding. Some other distribution matchers include those of [Sch20,PX19a,FMK18].

As in [BSS15,BSS19], the output of the distribution matcher is provided as input to a
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systematic FEC code where the parity check bits indicate the signs of the channel inputs.

The channel-signaling mapping function maps the amplitude-bit sequence of the DM and

the sign-bit sequence of the FEC to the corresponding sequence of transmitted signal points.

The second module in the PAS transmitter is a coded modulator. Coded modulation

is a combination of error correction code and modulation. A well know coded modulation

is Underboeck’s trellis-coded modulation (TCM) [Ung82]. The coded modulation in the

PAS transmitter [Boc17] comprises a systematic error correction code and a channel-signal

mapping function.

An important design choice for a PAS system is the selection of an FEC code. In the long

blocklength regime, Böcherer et. al. in [BSS15] use low-density parity-check (LDPC) codes

for the PAS system. In the short blocklength regime, Coşkun et. al. in [CDJ19] investigate

PAS systems with various FEC choices including binary LDPC codes, non-binary LDPC

codes and polar codes.

Recently, convolutional codes with cyclic redundancy code (CRC)-aided list decoding

have shown excellent performance in the short blocklength regime [LYD19,YRW18,YLY19,

YLP22]. Yang et al. in [LYD19] show that a tail-biting convolutional code (TBCC) with

CRC-aided list decoding can achieve frame error rate (FER) performance very close to the

short-blocklength random coding union (RCU) bound [PPV10]. King. et al. in [KKY22]

provide an example where a TBCC outperforms a polar code in the AWGN channel when

both are decoded using CRC-aided list decoding.

4.1.1 Contributions

In this paper, we propose a PAS system designed for the AWGN channel in the short-

blocklength regime. The proposed PAS system uses a CRC-aided, rate- k0
k0+1

, systematic,

recursive TBCC as the FEC code. The TBCC and the channel-signal mapping function

constitute the TCM [Ung82]. We refer to the proposed PAS system as CRC-TCM-PAS. Fig.
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4.1 describes the transmitter of the CRC-TCM-PAS system. A CRC-TCM-PAS system can

be designed as follows:

1. Using [KP93] or [XWS21], identify the capacity-approaching PMF for the PAM con-

stellation under AWGN, which induces the PMF for the corresponding magnitudes.

2. Assuming an ideal distribution matcher that generates magnitude sequences whose

symbols are independent and identically distributed (i.i.d.) according to the distri-

bution calculated in 1), optimize the CRC and TBCC using the FER upper bound

developed in Section 4.4.

3. Replace the ideal distribution matcher with a practical one.

The contributions of this chapter are summarized as follows:

• CRC-TCM-PAS transmission system. This chpter presents the paradigm of the CRC-

TCM-PAS system.

• Multi-composition distribution matcher (MCDM). MCDM, which can be seen as a col-

lection of CCDMs, is proposed in this chapter. We note that the proposed distribution

matcher is a generalization of the MCDM in [PX19b], which limits the cardinality of

the output alphabet to 2. We investigate two rules to select the CCDMs, which are

related to high-probability sets and typical sets in information theory.

• CRC-TCM-PAS Decoder. We propose automorphism enabled decoding [GEE22] to

achieve near-maximum-likelihoood performance with low time complexity.

• Properties of CRC-TCM-PAS transmission system. This chapter proves that, asymp-

totically, the sign values produced by the TCM are equally likely to be positive or neg-

ative. This yields channel input symbols that have a symmetric capacity-approaching

distribution.
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• Optimization of CRC-TCM-PAS parameters. This chapter derives an upper bound on

the FER of CRC-TCM-PAS systems and uses this bound as an objective function to

jointly optimize the CRC and TBCC. The optimized CRC-TCM-PAS systems achieve

FERs below the random coding union (RCU) bound in AWGN and outperform the

short-blocklength PAS systems with various other forward error correction codes stud-

ied in [CDJ19]. Simulation results show that the optimized CRC-TCM-PAS systems

can exceed RCU bound and outperforms PAS systems with various other FEC codes

explored in [CDJ19].

4.1.2 Organization

The remainder of this chapter is organized as follows: Section ?? reviews CCDM and presents

MCDM. The performance of these distribution matchers are compared in this section. Sec-

tion 4.2 presents CRC-TCM-PAS system architecture. Section 4.3 proves the symmetric

capacity-approaching distribution of the output of the CRC-TCM-PAS system. Section 4.4

derives the FER upper bound, and Section 4.5 presents the simulation results of CRC-TCM-

PAS systems with different input lengths and transmission rates. Section 4.6 concludes our

work.

4.1.3 Notation

In this chapter, we use the italic upper case letter A to denote a random variable. We use

Al = [A1, . . . , Al] to denote a random vector. We use the italic lowercase letter a to denote

a realization of A or a variable. We use the straight bold lowercase letter a to denote either

a realization of Al or a column vector. Specifically, [a]m is a vector that contains last m

elements in a. Finally, we use the straight, bold upper case letter A to denote a matrix.
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4.1.4 Preliminaries

Let S be a random variable that obeys Bernoulli
(
1
2

)
, and Denote the random sequence of

S with length k by Sk, and the random sequence of A with length l by Al. Specifically,

Sk = [S1, . . . , Sk] and Al = [A1, . . . , Al]. Let A be a random variable with alphabet A =

{0, 1, . . . , |A| − 1}.

A fixed-to-fixed distribution matcher is an injective function fDM that maps a binary

length-k source sequence s ∈ Fk
2 to a length-l symbol sequence a ∈ Al, i.e.,

fDM : {0, 1}k → Al. (4.1)

A = {0, 1, . . . , |A|− 1} is the output symbol set. In this chapter, we limit log2 |A| = k to be

some integer. The range of fDM is the codebook of the distribution matcher, which is denoted

by CDM. Note that CDM ⊆ Al. Because fDM is an one-to-one mapping, it has |CDM| = 2k.

Additionally, because the input bits of the DM are equally likely, it has PAl(a) = 2−k, for

a ∈ CDM. Let P (Ā) be the empirical distribution of a DM with codebook CDM. P (Ā) is

calculated as follows:

PĀ(i) =
1

2kl

∑
a∈CDM

l−1∑
j=0

1(aj = a), a = 0, ..., |A| − 1. (4.2)

A good distribution matcher has a P (Ā) that is close to the desired distribution, P (Â).

The quality of a DM can be measured as its KL divergence with a theoretically optimal

DM, which is referred to as a random DM. The random DM uses the construction method of

Shannon’s random code [TJ06]. Given the desired probability P (Â), in each transmission,

the random DM randomly generates a codebook that contains 2k codewords of length l

according to the distribution PÂl(a) =
∏l

i=1 PÂ(ai). The KL divergence between a practical

DM with CDM and a random DM is calculated by [SB15]:

DKL

(
P (Al)||P (Âl)

)
=

1

2k
log2

( ∑
a∈CDM

1

PÂl(a)

)
− k, (4.3)
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In this paper, we follow the convention in [SB15], and use the normalized KL divergence,
1
l
DKL

(
P (Al)||P (Âl)

)
, as the metric to evaluate the distribution matcher.

A DM with a small normalized KL divergence is desired. One well-known DM with

simple encoding and decoding algorithm is CCDM, whose codebook, CCCDM, contains the

sequences that have the same type, which is defined as follows [TJ06, Chapter 11]:

Definition 1. The type (or empirical distribution) Pa of a sequence a = [a0, a1, . . . , al−1] is

the relative proportion of occurrence of each symbol in A, i.e., Pa(i) =
∑l−1

j=0 1(aj=i)

l
, i ∈ A.

Define the set of sequences of length l and type P as set class of P , denoted by T l
P :

T l
P = {a ∈ Al : Pa = P}. (4.4)

Based on Definition 1, the codebook of CCDM is a subset of a set class of some type

P . The type P is chosen such that 2k ≤ |T l
P |, and normalized KL divergence is minimized

in the meanwhile. Because all codewords in CCCDM have the same type P , the empirical

distribution of CCDM P (Ā) = P. There are two major advantages to CCDM. First, the

CCDM is asymptotically optimal, i.e., liml→∞
1
l
DKL

(
P (Al)||P (Âl)

)
= 0. Second, a CCDM

can use arithmetic coding to sequentially generate the codewords in CCCDM [SB15]. However,

the normalized KL-divergence of CCDM is large in the short-blocklength regime [SB15].

4.1.5 Multi-Composition Distribution Matcher

In this section, we propose a multi-composition distribution matcher (MCDM) that delivers

a small normalized KL divergence in the short blocklength regime. The MCDM codebook

can been seen as a union of multiple CCDM codebooks. The codebook of an MCDM, CMCDM,

has the following properties:

1. CMCDM is a union of τ disjoint children codebooks, i.e., CMCDM =
⋃τ

i=1 Ci, and Ci
⋂ Cj =

∅, for i ̸= j.
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2. The codewords in a child codebook have the same type, i.e., Ci ⊆ T l
PAi

, i = 1, 2, . . . , τ .

No two different children codebooks share the same type.

3. Let ki =
⌊
log2(TPAi

)
⌋

for i = 1, . . . , τ , then |Ci| = 2ki , for i = 1, 2, . . . , τ − 1, and

|Cτ | = 2k −∑τ−1
i=1 2ki .

Hence, the MCDM encoding consists of two steps: choose Ci and perform arithmetic

encoding with type PAi
. Let bi be the cardinality of the union of the first i codebooks, i.e.,

bi =
∑i

m=1 |Ci|, where i = 1, . . . , τ . Specifically, define b0 = 0. Given a binary input s, the

encoding algorithm for MCDM is summarized as follows. First, choose the child CCDM Ci
associated with input sequence s, i is selected such that bi−1 ≤ s < bi, where s is the decimal

representation of s. Second, Calculate the child CCDM input as c = [s − bi−1]ki , where bi

to denote the binary representation of bi and the operator [·]ki returns last ki bits. Finally,

Perform CCDM encoding with the child CCDM Ci using input c, and generate the output

sequence.

The MCDM decoding process is as follows: For any a ∈ Al, the decoder first checks

whether the type of a is one of the types in CMCDM. If so, the decoder checks whether a is

in CMCDM. Otherwise, the decoder declares that a /∈ CMCDM.

An important design question regarding MCDM is the selection of children codebooks

Ci, i = 1, ..., τ . Given a target distribution P (Â), we investigate two rules for choosing Ci,
namely, high-probability rule and typical-set rule:

Rule 1: High-probability Rule:

P (Ai) = argmax
P (A∗)∈P\{P (A1),..,P (Ai−1)}

|A|∑
a=1

PA∗(a) logPÂ(a). (4.5)

Rule 2: Typical-set Rule:

P (Ai) = argmin
P (A∗)∈P\{P (A1),..,P (Ai−1)}

DKL(P (A∗)||P (Â)). (4.6)
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Table 4.1: Comparion of various DMs targeting for distribution

P (Â) = (0.072, 0.165, 0.321, 0.442).All DMs have 96 input bits and 63 output symbols.

ESS MCDM with CHP MCDM with CTS CCDM

normalized KL divergence 0.074 0.077 0.096 0.213

required storage (bits) 3.6e5 3e5 3e4 24

P is the set of all possible types of length-l symbol sequences. Rule 1 chooses the types

whose sequences occur with the highest probability according to P (Â). On the other hand,

rule 2 chooses the types that are most similar to P (Â). The codebooks built using rules

1 and 2 are related to the concept of high-probability set and typical set in information

theory [TJ06, Chapter 3.3], respectively. We use CHP and CTS to denote the codebooks built

using high-probability and typical-set rules, respectively.

4.1.6 Comparison

In this subsection, we compare the performance of various distribution matchers in terms

of the normalized KL divergence and required memory. We design the distribution matcher

with 96 input bits and 63 output symbols from an 4-ary alphabet. The target distribution

is P (Â) = (0.072, 0.165, 0.321, 0.442).

Additional to the MCDM and CCDM, we also consider a DM called enumerative sphere

shaping (ESS) [AGG19]. ESS has an excellent performance in the short block length regime.

Given a symbol sequence a = [a1 . . . al], the energy of a is defined as
∑l

i=1 a
2
i . ESS con-

siders the sequences whose energies are less than or equal to a threshold Emax as codeword

candidates of the distribution matcher. Given an Emax, ESS indexes the qualified sequences

lexicographically, and an energy-bounded trellis is built to index the sequences.

Table 4.1 gives the normalized KL divergence of CCDM, MCDM, and ESS. CCDM

delivers the largest normalized KL divergence, while ESS delivers the smallest normalized

KL divergence. The MCDM with CHP delivers a comparable normalized KL divergence with
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ESS, and the MCDM with CTS is slightly larger than that of MCDM with CHP.

We also compare the required memories for these four DMs. For the CCDM, it suffices

to only store the type of codewords. For the ESS, the node values in the trellises are

needed [AGG19]. The MCDM needs to store all of the types of children CCDMs and the

binary thresholds b. As shown in Table 4.1, CCDM only needs 24 bits for storing the

codeword type. The MCDM with CHP requires a little bit less memory than ESS. The

memory for the MCDM with CTS is an order of magnitude smaller than the memory for the

MCDM with CHP, because it uses fewer children CCDMs. In this example, CHP requires 2535

children CCDMs and CTS requires 327.

4.2 CRC-TCM-PAS System

This section presents the transmitter structure and the decoding algorithms for the proposed

CRC-TCM-PAS transmission system.

4.2.1 CRC-TCM-PAS Transmission System Structure

Fig. 4.1 illustrates the diagram of the proposed CRC-TCM-PAS transmitter. As shown in

Fig. 4.1, CRC-TCM-PAS takes k bits and generates n real-valued channel input symbols.

Hence, the transmission rate is k/n bits per channel use. The CRC-TCM-PAS system

consists of three encoding procedures. First, a length-k binary source sequence s ∈ Fk
2 is

encoded to a length-l symbol sequence a ∈ CDM by a distribution matcher. Then, the binary

representation g of a with k0 bits per symbol, g ∈ Fk0l
2 , is encoded by a systematic m-

bit CRC with generator polynomial p(x). The proposed system implicitly requires that k0

divides m. Finally, the TCM module encodes the CRC output and maps the encoded bits to

a length-n channel input sequence x ∈ X n, where X denotes the AM constellation set and

n = l + m
k0

. The TCM module includes a systematic, rate- k0
k0+1

TBCC, and a channel-signal

mapping function which maps each k0+1 encoded bits onto one of 2k0+1 symbols in the AM
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constellation set X .

The transmission rate of the CRC-TCM-PAS system is k
n

bits/real channel use. The

remainder of this subsection introduces TBCC and the channel-signal mapping function for

TCM.

4.2.1.1 Tail Biting Convolutional Code

A convolutional code with ν memory elements that takes a k0-bit input symbol and generates

a γ0-bit output symbol in one stage is denoted by an (γ0, k0, ν) convolutional code. We refer

to each input symbol as a data frame, and each output symbol as a code frame. This paper

is focused on (k0 + 1, k0, ν) convolutional code. The convolutional code in Fig. 4.1 has

k0 = 2. Let U = {0, 1, . . . , 2k0 − 1} be the set of input symbols and O = {0, 1, . . . , 2γ0 − 1}
be the set of output symbols. Denote the input symbol and output symbol in stage t by

ut and ot, respectively. A convolutional code with n data frames can be described as an

n-stage trellis. Denote the set of vertices (or states) at time instant t by Vt. Let vt be

the state at time t. Denote an edge that starts with vt, ends at vt+1 and has an output

ot by a 3-tuple (vt, ot, vt+1). Let Et be the set of edges in stage t. In this paper, we let

Vt = V = {0, 1, . . . , 2ν − 1}, and Et = E . Let the sequence (v0, o0, v1, o1, . . . , on−1, vn) be a

valid path in the trellis, a tail-biting path requires v0 = vn. Denote the TBCC trellis by T ,

and denote the TBCC sub-trellises whose starting and ending state are i, i ∈ V , by Ti. This

chapter considers recursive, rate- k0
k0+1

, systematic TBCCs.

4.2.1.2 Mapping Rule

In order to maximize free Euclidean distance (ED) of TCM, Ungerboeck in [Ung82] proposed

a mapping rule called "mapping by set partitioning". Ungerboeck’s set partitioning map-

ping rule follows from the successive partitioning of a channel-signal set into subsets with

increasing minimum distance between the signals in these subsets. With set partitioning,
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Figure 4.2: Labeling of 8-AM channel signals from (a) magnitude perspective and (b) coset

perspective. The least significant two bits identify the coset. The most significant two bits

indicate the magnitude. The exclusive-or of all three bits indicates the sign.

the coded bits serve as coset labels so that "uncoded errors" are guaranteed to have at least

minimum distance between elements in the same coset.

Our design has an additional requirement that the systematic bits identify the magnitude

of the symbol as produced by the distribution matcher. Fig. 4.2 gives binary labels for the

equidistant 8-AM constellation set using a labeling that achieves both of these objectives.

In this labeling, the sign is negative when the exclusive-or of all three bits is one. The two

most significant bits are the systematic bits that identify the magnitude, and one may view

the least significant bit as selecting the sign. The two least significant bits identify the coset,

and one may view the most significant bit as selecting the sign.

4.2.2 Decoding Algorithms

The channel observation at the receiver over an AWGN channel is y = x + z, where z ∼
N (0, σ2I) is the noise vector and σ2 is the noise variance. This subsection introduces various

decoding algorithms with varied complexity and error correction performance. We first give

the definition of the codeword of a CRC-TCM-PAS system:

Definition 2. x ∈ X n is a CRC-TCM-PAS codeword if it satisfies all of the following

conditions:
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1. x is a codeword of TCM.

2. The dataword of TCM that generates x, h, passes the CRC check.

3. The information bits g of the CRC codeword h, are the binary representation of a

codeword in CDM.

Denote the codebook of CRC-TCM-PAS by CCTP, which has cardinality |CCTP| = 2k.

4.2.2.1 Maximum Likelihood (ML) Decoder

For AWGN, the ML decoder finds x̂ ∈ CCTP that has smallest Euclidean distance with y,

i.e.:

x̂ = argmin
x∈CCTP

||x− y||22. (4.7)

The ML decoder minimizes the FER, i.e., the probability of a codeword error, in AWGN. The

decoding rule of (4.7) can be realized by serial list Viterbi decoding (SLVD) [SS94]. SLVD

first finds the most likely path in tail-biting trellis T . If the constellation point sequence

corresponding to this path is not a codeword in CCTP , then SLVD is used again to find

the next most likely path. If a path belongs to the sub-trellis Ti, the trellis-tree algorithm

(TTA) [SH90] for Ti is used for tracing back that path.

The ML decoding complexity can be decomposed into two parts. First, the initialization

step calculates the metrics of local best paths in each of 2ν sub-trellises. Second, if a path in

Ti needs to be traced back, a data set of TTA for Ti needs to be constructed and maintained

[SH90].

4.2.2.2 β-States Decoder

One solution to reduce the complexity of ML decoder is to consider only a subset of 2ν states

as the possible start/end states. We denote the subset by Ṽ ⊆ V and the cardinality of Ṽ
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Figure 4.3: The diagram of an AE decoder with M parallel β-States decoders, i.e.,

AED(M ,β).

by |Ṽ|. In this paper, we refer to a β-States decoder as a decoder that considers β states as

start/end states, i.e., |Ṽ| = β. Let v(x) be the TBCC initial state of the codeword x. The

β-States decoder solves the following problem:

x̂ = argmin
x∈CCTP

v(x)∈Ṽ

||x− y||22. (4.8)

The set Ṽ is identified using one iteration of the wrap-around Viterbi algorithm (WAVA)

[SLF03].

4.2.2.3 Automorphism Ensemble (AE) Decoder

Ensemble decoding algorithms [GEE22] employ M parallel independent and identical sub-

optimal decoders, with each proposing a codeword estimate. From among these M pro-

posed codewords, the ensemble decoder selects the most likely candidate as the decoder

output [GEE22]. One category of ensemble decoding utilizes automorphism groups. An

automorphism group is a set of permutations such that the permuted sequence of any code-

word is still a codeword. When an automorphism group of the codes is known, identical
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constituent decoders decoding permuted versions of the channel output may be used, yield-

ing the so-called Automorphism Ensemble (AE) decoding [GEE22].

The cyclic shifts δi, i = 0, ..., n−1, are elements of an automorphism group of the TBCC,

where δi indicates the cyclic shift of a sequence by i positions. Hence, as illustrated in Fig.

4.3, an AE decoder for the CRC-TCM-PAS system is constructed by employing M parallel

β-States decoders for the channel observations that are cyclic-shifted by {δi1 , . . . , δiM}. The

ith β-States decoder either provides a shifted estimation candidate or declares an erasure.

The final decoding result of the AE decoder is the candidate that has the smallest Euclidean

distance from the channel observation. We denote an AE decoder with M parallel decoders

with cyclic shifts {i1, . . . , iM}, where each decoder utilizes β starting states obtained by

WAVA as the decoder AED(M , β). In this paper, the cyclic shifts {i1, . . . , iM} are uniformly

sampled from {0, . . . , n− 1}.

The M independent β-States decoders of AED(M , β) can be run in parallel, so the

AED(M , β) has the same time complexity with a single β-States decoder but provides more

potential codewords. However, the AED(M , β) requires more hardware resources than a

single β-States decoder.

4.3 Channel Input Distribution of CRC-TCM-PAS System

This section proves that the distribution of the channel input X of the CRC-TCM-PAS

system is symmetric, i.e., PX(x) = PX(−x) for x ∈ X , where X is the PAM constellation

set. We begin the proof with a theorem that shows the CRC check bits in the CRC-TCM-

PAS system are asymptotically uniform, even though the input bits of the CRC encoder are

not.
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4.3.1 Uniformity of CRC bits

Denote the random variable that represents a DM output symbol by Ā with PMF P (Ā). Be-

cause the cardinality of output symbol set is 2k0 , Ā can be represented by k0 bits, which are

denoted by Bi, i = 0, . . . , k0−1. Since Ā is not uniform, Bi, i = 0, . . . , k0−1, may have differ-

ent distributions. Let a ∈ A be a realization of Ā, and let b(a) = [bk0−1(a), . . . , b1(a), b0(a)] ∈
Fk0
2 be the binary representation of a. The PMF of Bi is calculated by:

PBi
(b) =

|A|−1∑
a=0

PĀ(a)1 (bi(a) = b) , (4.9)

b = 0, 1, i = 0, 1, ..., k0 − 1. 1(·) is the indicator function. As shown in Fig. 4.1, the

binary converter maps a length-l symbol sequence to a length-k0l binary sequence. Let

Gk0l = [G0, . . . , Gk0l−1] be the random vector representing the binary sequence. Assume that

the DM generates i.i.d. symbols, the Gi’s that correspond to the same symbol bit position

have the same distribution, i.e.:

P (Gi) = P (Bi (mod k0)) , i = 0, . . . , k0l − 1. (4.10)

Let g ∈ Fk0l
2 be a realization of Gk0l, and denote the polynomial form of g by g(x) =∑k0l−1

i=0 gix
i.

An m-bit CRC is specified by a degree-m binary polynomial p(x) =
∑m

i=0 pix
i. Let

the polynomial form of the output of the CRC encoder be h(x) =
∑k0l+m−1

i=0 hix
i. h(x) is

calculated by

h(x) = xmg(x) + xmg(x) (mod p(x)). (4.11)

The following theorem proves that the CRC check bits, hi, i = 0, . . . ,m − 1, can be

arbitrarily close to be equally likely, with a proper choice of l.

Theorem 1. For a length-l random vector Al whose elements Ai, i = 0, . . . , l− 1, are i.i.d.

random variables with alphabet |A| = {0, 1, 2, . . . , 2k0 − 1} and distribution P (A). Let Gk0l
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be the binary representation of Al and Hk0l+m be the CRC output sequence by encoding Gk0l

with some degree-m CRC polynomial p(x). For any 0 < ϵ < 0.5, there exists an l such that

|PHi
(0)− 0.5| < ϵ, i = 0, 1, . . . ,m− 1.

Proof. Define the set of random variables in Gk0l that belong to the jth symbol bit position

by Gj, i.e., Gj = {Gk0i+j, i = 0, . . . , l − 1}, j = 0, . . . , k0 − 1. Based on (4.10), the random

variables in the same set have same distribution. Let PGi
(0) = pj, if Gi ∈ Gj.

A CRC code is a linear block code. Let Ii, i = 0, . . . ,m−1, be the set of information bits

that are constrained by ith parity check. Let Ji,j be the number of the elements belonged to

both Ii and Gj, i.e., Ji,j = |Ii
⋂Gj|, where i = 0, . . .m− 1 and j = 0, . . . , k0 − 1. The PMF

of ith parity check bit, P (Hi), can be calculated by: P (Hi) = ⊛Gj∈Gi
P (Gj), where ⊛ denotes

circular convolution. Using the discrete Fourier transform, PHi
(0) = 1

2
+ 1

2

∏k0−1
j=0 (1−2pj)

Ji,j .

PHi
(0) is calculated by:

PHi
(0) =

1

2
+

k0−1∏
j=0

(1− 2pj)
Ji,j . (4.12)

Because |1− 2pj| < 1, and Ji,j gets larger with the increase of l, there exists an l such that

for i = 0, ...,m− 1,
∣∣∣∏α−1

j=0 (1− 2pj)
Ji,j

∣∣∣ < ϵ.

Note that Theorem 1 can be generalized to any systematic linear block code, and it

validates the uniform check bit assumption in [BSS15].

Example 1. Let P(A)=(0.072,0.165,0.321,0.442). For a degree-5 CRC with p(x) = x5 +

x4 + x2 + 1, the minimum l that gives |PHi
(0)− 0.5| < 10−4, i = 0, . . . , 4, is 20.

Remark. Theorem 1 can be generalized to any systematic linear block code, and it validates

the uniform check bit assumption in [BSS15].
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4.3.2 Symmetry of Channel Input Distribution

Consider a length-n, rate- k0
k0+1

, systematic, and recursive TBCC with ν memory elements.

Denote the input symbol in stage t by ut ∈ U , t = 0, ..., n− 1 , and denote the state at time

instant t by vt ∈ V , t = 0, . . . , n. Let ut ∈ Fk0×1
2 and vt ∈ Fν×1

2 be the binary representation

of ut and vt, respectively. Based on the state-space representation of convolutional code

[WBR01,FW99], vt+1 is a function of vt and ut, i.e., vt+1 = Avt + But, where A ∈ Fν×ν
2

and B ∈ Fν×k0
2 . The initial state v0 of a recursive TBCC codeword can be determined by

the following equation:

v0 = (An + Iν)
−1v[zs]

n , (4.13)

where Iν is a size ν identity matrix and An + Iν is an invertible matrix [WBR01]. The term

v
[zs]
N is referred to as zero-state solution and is the final state by encoding the dataword with

initial state 0. The encoding of tail-biting convolutional code has two steps:

1. Run encoding process first time by setting v0 = 0 and record v
[zs]
n .

2. Run encoding process second time by setting v0 using (4.13) and generate output

symbols.

Therefore, in order to study the distribution of the output symbols of a recursive TBCC,

we need to know the distribution of v[zs]n by analyzing the first encoding process.

For the CRC-TCM-PAS system, the data frames, i.e., input symbols, of TBCC are the

outputs of CRC encoder. Because the CRC encoder is systematic, the first n − m
k0

input

symbols of TBCC have DM output symbol distribution P (Ā). Based on Theorem 1, the last
m
k0

input symbols have uniform distributions. This subsection uses state-space representation

of convolution code in [WBR01,FW99] to analyze the PMF of the state in time instant t,

Vt. The PMF of Vt, is calculated by:

PVt(vt) =
∑

vt−1∈V
P (vt−1)

∑
(vt−1,ot

, vt) ∈ EP (ot, vt|vt−1). (4.14)
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Let ut = g−1 (vt−1, ot, vt) ∈ U be the input symbol that associates to the edge (vt−1, ot, vt).

Hence, P (ot, vt|vt−1) = PUt (g
−1 (vt−1, ot, vt)). If the convolution code is systematic, the input

corresponded to (vt−1, ot, vt) can be solely determined by

ccoutputrealizet, we use g−1(ot) = g−1 (vt−1, ot, vt) as a simplification. Define the matrix

Ct−1 ∈ R|V|×|V| as follows:

Ct−1(vt, vt−1) = P (vt|vt−1) =
∑

(vt−1,ot,vt)∈E
P (ot, vt|vt−1). (4.15)

Let pt = [PVt(0) . . . PVt(2
ν − 1)]T , (4.14) can be rewritten as:

pt = Ct−1pt−1 =

(
t−1∏
i=0

Ci

)
p0, t = 1, 2, ..., n. (4.16)

(4.15) implies that Ct−1 is a left stochastic matrix, i.e., each column in Ct−1 is a prob-

ability vector. Moreover, Ct−1 is also right stochastic, meaning that each row has a sum of

1. To see this, for the trellis of a convolutional code, for each vt ∈ V , there are 2k0 edges

that connect vt and each edge associates a distinct input in U . As a result, Ct−1 is a doubly

stochastic matrix.

Theorem 2. For an (γ0, k0, ν) convolutional code with any initial state distribution P (V0),

if the data frames are i.i.d. random variables with PMF P (U) and PU(u) > 0 for any

u ∈ U . Let Vt be the state at time instant t, then the random sequence V0, V1, . . . converges

in distribution to a uniform random variable Vuni, i.e., Vt
d−→ Vuni.

Proof. Because all the data frames have the same distribution, it has Ct = C. Hence, (4.16)

can be rewritten as pt = Ctp0. C is not only a doubly stochastic matrix but also a regular

matrix. For a convolutional code, any state vi ∈ V can always reach any state vj ∈ V with a

finite-length path. C retains this property, because PU(u) > 0, for any u ∈ U . As a result,

C is regular. Based on Perron-Frobenius theorem [Gan00], the non-negative and regular

matrix C has the following properties:
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1. C has λ1 = 1 as an eigenvalue of multiplicity 1, and the normalized right eigenvector

corresponded to eigenvalue 1 is q∗ =
[

1√
2ν

1√
2ν

. . . 1√
2ν

]T
.

2. For all other eigenvalues λj, j = 2, ..., q, it has |λj| is strictly smaller than 1, i.e.,

|λj| < 1.

Let J = Q−1CQ be the Jordan canonical form of C. Based on Perron-Frobenius theo-

rem, J = diag(1,J2, . . . ,Jq), where J2, . . . ,Jq are Jordan block matrices that correspond to

eigenvalues λ2, . . .,λq, respectively. Let Q = [q1 . . .q2ν ] and, q1 is the eigenvector associated

to eigenvalue 1, q1 = αq∗
1, α ∈ R. Let p0 =

∑2ν

i=1 ciqi = Qc, it has pt = Ctp0 = QJtc.

Because limt→∞ Ji = 0 for j = 2, . . . , 2ν , it has limt→∞ pt = c1αq
∗
1 =

[
1
2ν

. . . 1
2ν

]T .

Example 2. Consider the (3,2,3) convolution code shown in Fig. 4.1. Let the initial state

be 0 and P (U) = (0.5742, 0.3188, 0.01642, 0.09048). When t = 12, |PV12(v) − 1
8
| < 10−4,

v = 0, . . . , 7.

Besides, if the state distribution at time t is uniform, the state distribution at time t+ 1

is also uniform, no matter what P (Ut) is. Hence, the zero-state solution, as well as the initial

state of TBCC, have a uniform distribution. As indicated in (4.13), the TBCC initial state

is a one-to-one mapping of zero-state solution, thus the initial state of TBCC has uniform

distribution. As a result, the states at all n + 1 time instants in second encoding process

have uniform distribution.

Now, we show that if the state at time instant t is uniform, then the (k0 + 1, k0, ν)

systematic recursive TBCC generates an equally likely parity check bit in stage t. First of

all, the following theorem gives that distribution of output symbol in stage t.

Theorem 3. Consider a (k0+1, k0, ν) systematic recursive convolutional code that is defined

by state set V, edge set E, input set U , and output set O. If the state distribution at time

instant t is uniform, i.e., pt =
[

1
2ν

1
2ν

. . . 1
2ν

]T , then the output symbol distribution in stage t,

POt(ot) =
1
2
PUt (g

−1(ot)), ∀ot ∈ O.
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Proof. Define matrix Dt ∈ R|O|×|V| with Dt(ot, vt−1) = P (ot|vt−1), where ot ∈ O and vt−1 ∈
V . Define qt = [POt(0) . . . POt(|O| − 1)]T . qt can be calculated by qt = Dt−1pt.

Because the TBCC is systematic, Dt(ot, vt−1) = PUt(g
−1(ot)). Hence, one property of Dt

is that the non-zero elements in each row have the same value.

The other property is that Dt contains 2ν−1 non-zero elements for each row, i.e., given

any output ot ∈ O, there are only 2ν−1 possible states from which ot can be generated. This

is because for a rate- k0
k0+1

, systematic, recursive convolution code, the register adjacent to

the output is determined by ot, hence the freedom of vt−1 is reduced by 1. Based on the two

properties of D, for any ot ∈ O, it has: POt(ot) =
∑2ν

i=1 D(l, i)PVt(i) =
1
2
PUt(g

−1(ot)).

Theorem 3 implies that, if the state distribution at time t is uniform, then the parity

bit generated by the convolutional code at stage t is uniform. Because the sign value of the

channel input symbol at stage t, Xt, is determined by parity bit, it has PXt(x) = PXt(−x),
for x ∈ X . Note that one rule of channel-signal mapping function in CRC-TCM-PAS is that

information bits indicate magnitude and parity check bit indicates sign.

Because the states of each time instant of TBCC have uniform distribution, the channel

inputs in each stage have symmetric distributions. Besides, the magnitude distributions of

first n− m
k0

and last m
k0

channel inputs follow P (Ā) and uniform distribution, respectively.

4.4 FER Upper Bound for CRC-TCM-PAS System

In this section, we derive the FER upper bound for the CRC-TCM-PAS system with the spec-

ified CC, CRC, and an ideal distribution matcher that generates length-l symbol sequences

with the desired distribution P (Âl). The upper bound is computed using the generating

function of an equivalent convolutional code whose error events correspond exactly to the

undetectable error events of the concatenation of the original CRC and CC.
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4.4.1 Equivalent Code for CRC-Aided Convolutional Code

As shown in Fig. 4.1, the binary representation of the symbol sequence generated by a

distribution matcher is encoded by a CRC and a TBCC serially. We begin our analysis

by replacing the CRC and convolutional encoder with a single convolutional encoder whose

input is the quotient of dividing the CRC codeword by the CRC polynomial.

Let h be a length-(l̃ + m) CRC codeword with polynomial form h(x) =
∑l̃+m+1

t=0 htx
t.

Based on the notation in Fig. 4.1, l̃ = k0l. For a rate- k0
k0+1

convolutional code, there are k0

input branches. Let the input of the ith branch be h(i), and let the corresponding polynomial

be h(i)(x). h(i) = [hi hk0i . . . hl̃+m−k0+i] is obtained by sampling h every k0 positions starting

from ith position, and h(i)(x) =
∑(l̃+m)/k0−1

t=0 hk0t+ix
t, i = 0, . . . , k0 − 1.

Let q be the quotient of dividing the CRC output by the CRC polynomial. The polyno-

mial form of q, q(x), is calculated by

q(x) := h(x)/p(x). (4.17)

Theorem 4. Consider an m-bit CRC encoder which is specified by an m-degree polynomial

p(x). Let the number of input bits be l̃. Let k0 be an integer that divides m + l̃. Then

for any codeword polynomial h(x), its k0-split polynomial vector, hk0(x) can be calculated by

hk0(x) = qk0(x)Peq(x).

hk0(x) = qk0(x)Peq(x), (4.18)

where qk0(x) is the k0-split polynomial vector of q(x) = h(x)/p(x) and Peq(x) ∈ F2[x]
k0×k0

is a k0 × k0 square binary polynomial matrix.
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Proof. Based on the relationship h(x) = p(x)q(x), the tth bit of hj, h(j)
t is calculated by:

h
(j)
t = hk0t+j =

m∑
s=0

qk0t+j−sps (4.19)

= qk0t+jp0 +

m/k0−1∑
ℓ=0

k0∑
s′=1

qk0t+j−k0ℓ−s′pk0ℓ+s′ (4.20)

=

m/k0−1∑
ℓ=0

j∑
i=0

qk0(t−ℓ)+ipk0ℓ+j−i +

m/k0∑
ℓ=1

k0−1∑
i=j+1

qk0(t−ℓ)+ipk0ℓ+j−i + qk0t+j−mpm (4.21)

Let p
(i)
t = pkt+i, h

(j)
t can be rewritten as:

h
(j)
t =

j∑
i=0

m/k0−1(i ̸=j)∑
ℓ=0

q
(i)
t−ℓp

(j−i)
ℓ

+

k0−1∑
i=j+1

m/k0−1∑
ℓ=0

q
(i)
t−ℓ−1p

(j−i+k0)
ℓ+1 . (4.22)

Define p(i)(x) =
∑m/k0−1(i=0)

t=0 pk0t+ix
t. The h(j)(x) can be calculated by:

h(j)(x) =

j∑
i=0

q(i)(x)p(j−i)(x) +

k0−1∑
i=j+1

xq(i)(x)p(j−i+k0)(x) . (4.23)

(4.23) implies that, by choosing the polynomial of ith row and jth column of Peq(x) as:

Peq(x)i,j = p(j−i)(x)1(i ≤ j) + xp(j−i+k0)(x)1(i > j), (4.24)

it has

hsplit(x) = qsplit(x)Peq(x). (4.25)

As a result, the concatenation of a CRC with generator polynomial p(x) and a rate- k0
k0+1

convolutional code with generator matrix G(x) is equivalent to a convolutional code with

generator matrix Geq(x), which is defined as follows:

Geq(x) = Peq(x)G(x). (4.26)
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The error events of the equivalent convolutional code correspond exactly to the error events

of the original concatenation of CRC and convolutional code. Because the concatenation

of a CRC expurgates the original TBCC by removing the codewords whose corresponding

messages do not pass the CRC, the remaining codewords all meet the tail-biting condition

so that the equivalent convolutional code is still tail-biting.

4.4.2 FER Upper Bound

This subsection bounds the FER for the CRC-TCM-PAS system. Based on the analysis

in the previous subsection, the CRC-aided TBCC can be replaced by an equivalent TBCC

with the generator matrix given in (4.26). The final computation of FER requires the

output symbol distributions. For the purposes of this analysis, we assume a distribution

matcher that generates l i.i.d. symbols with the target symbol distribution P (A). After the

distribution matcher, n− l CRC symbols are appended to the sequence. Based on Theorem

1, these CRC symbols should be approximated as having a uniform distribution rather than

P (A). The output symbol distributions for the analyzed system of the equivalent TBCC

with the generator matrix given in (4.26) with our idealized distribution matcher are thus l

output symbols distributed according to P (A) and n−l output symbols distributed according

to a uniform distribution.

Let CT ⊂ X n be the codebook of TCM. Let xc ∈ CT be the transmitted codeword, and

let y be the channel observation over AWGN channel. Let εxc denote the event that, given

observation y, an ML decoder selects x̂ ̸= xc. Let exc,xe denote the event that, given y,

codeword xe is more likely than codeword xc. The FER of CRC-TCM-PAS transmission
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system Pe is upper bounded by the union bound:

Pe =
∑

xc∈CCT

P (Xn = x)P (εxc) (4.27)

=
∑

xc∈CCT

P (Xn = x)P

 ⋃
xe∈CCT
xc ̸=xe

exc,xe

 (4.28)

≤
∑
xc∈CT

P (Xn = xc)
∑
xe∈CT
xe ̸=xc

P (exc,xe) . (4.29)

The probability P (exc,xe) is referred as the pairwise error probability (PEP). With the

assumption of i.i.d. symbols of distribution matcher, and based on the analysis on CRC

bits and channel inputs, Because the input symbols are independent, it has P (Xn = x) =∏n
i=0 P (Xi = xi). Not that the distributions of P (Xi), i = 0, ..., l − 1 can be derived from

P (Ā) and last m
k0

symbols in x have uniform distribution.

Because P (Xn) is non-uniform1, choosing the codeword that has the smallest Euclidean

distance with the channel observation is no longer optimal. Let uc,ue denote the convolu-

tional inputs corresponding to outputs xc,xe, exc,xe happens if PXn|Y n (xe|y) > PXn|Y n (xc|y),
this condition is equivalent to:

log (f(y|xe)PXn(xe)) > log (f(y|xc)PXn(xc)) (4.30)

⇐⇒ ||xc − y||22 − ||xe − y||22 > 2σ2 log

(
PXn(xc)

PXn(xe)

)
(4.31)

⇐⇒ 2 ⟨y − xc,xe − xc⟩ − ||xc − xe||22 > 2σ2 log

(
PXn(xc)

PXn(xe)

)
. (4.32)

⟨·, ·⟩ represents the inner product and || · ||2 represents l2-norm.

Define z′ as follows:

z′ =
⟨y − xc,xe − xc⟩
||xc − xe||2

, (4.33)

1In a practical CRC-TCM-PAS system, the codewords are uniform, specifically, PXn(x) = 1
2k
1(x ∈

XCTP).
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it can be proved that z′ ∼ N (0, σ2). Manipulating (4.32) reveals that exc,xe occurs if the

following inequality is satisfied:

z′ >
1

2
||xc − xe||2 +

σ2

||xc − xe||2
log

(
PXn(xc)

PXn(xe)

)
(4.34)

≜
1

2
d(xc,xe). (4.35)

Note that d is not a metric as d(xc,xe) ̸= d(xe,xc).

Applying (4.34) yields

P (exc,xe) = Q

(√
d2 (xc,xe)

2σ

)
, (4.36)

where

d2(xc,xe) =||xc − xe||22 + 4σ2 log

(
PXn(xc)

PXn(xe)

)
+

(
2σ2

||xc − xe||2
log

(
PXn(xc)

PXn(xe)

))2

. (4.37)

Define d2prox(xc,xe) by neglecting the last squared term in (4.37), i.e.:

d2prox(xc,xe) = ||xc − xe||22 + 4σ2 log

(
PXn(xc)

PXn(xe)

)
. (4.38)

Because d2prox(xc,xe) ≤ d2(xc,xe), the PEP P (exc,xe) is upper bounded by:

P (exc,xe) = Q

(√
d2(xc,xe)

2σ

)
≤ Q


√
d2prox(xc,xe)

2σ

 . (4.39)

Hence, Pe is further bounded by:

Pe ≤
∑
xc∈CT

P (Xn = xc)
∑
xe∈CT
xe ̸=xc

Q


√
d2prox(xc,xe)

2σ

 . (4.40)

Based on the ideal DM assumption and our analysis of CRC and TBCC encoding, the

output symbols of the CRC-TCM-PAS system are independent of each other. Hence,

d2prox(xc,xe) =
n∑

i=1

d2prox (xc,i, xe,i) , (4.41)
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where xc,i and xe,i are the ith element in xc and xe, respectively, and

d2prox (xc,i, xe,i) = (xc,i − xe,i)
2 + 4σ2 log

PXi
(xc,i)

PXi
(xe,i)

. (4.42)

Besides, the omitted term (
2σ2

||xc − xe||2
log

(
p(uc)

p(ue)

))2

∼
(
σ2
)2

. (4.43)

As a result, d2prox approaches d2 quadratically with SNR.

4.4.3 Generating Function with State-Reduction Method

This subsection derives the generating function of non-uniform-input TCM using Biglieri’s

product state method [Big84], with state-reduction method as described in [Wes04]. The

product state diagram [Big84] is built by replacing each state in the error state diagram

with a complete encoder state diagram. Hence, for a convolutional code that has ν memory

elements, there are totally 22ν states in the product state diagram. Wesel in [Wes04] reduces

the total number of states by proposing an "equivalence-class encoder" with νx memory

elements. Because νx < ν, the state-reduction method requires fewer states than the product

state diagram.

For an equivalence-class encoder, denote the set of output by Oeq. Let q ∈ Oeq be an

output of the equivalent-class encoder. Let eo ∈ O be a symbol error. As a reminder, O
is the set of TBCC output symbols. Let xq, xqeo be any constellation point that belongs

to equivalent class q and the constellation point that xq moves to because of eo. We define

d2prox(q, eo) as follows:

d2prox (q, eo) = (xq − xqeo)
2 + 4σ2 log

PX(xq)

PX(xqeo)
. (4.44)

We follow the notations in [Wes04] to describe the state-reduced product state diagram.

Denote the set of equivalence-class encoder states and the set of error states by Sq and Se,
respectively. The pair (sq, se) ∈ S∗ = Sq × Se describes where the states "should be" if
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there is no error occurs, and where the state is "drifted to" because of some error event.

The notation "×" means Cartesian product. Let (sq, se), (s
′
q, s

′
e) ∈ S∗, we label the state

transition (sq, se)→ (s′q, s
′
e) with

P
(
sq → s′q

)∑
eo

∑
q̃

P
(
q̃|sq → s′q

)
W d2prox(q̃,eo), (4.45)

where sq → s′q is the event that the state of the equivalent class encoder transits from sq

to s′q. The first summation is over all possible symbol error e0 due to error state diagram

transition se → s′e, and the second summation is over all possible equivalent class q′ due to

equivalent-class encoder state diagram transition sq → s′q.

Based on the channel-signal mapping rule, the constellation of TCM output is symmetric

with respect to 0 and the equivalence class is determined by the systematic bits. Thus,

one generator polynomial matrix of the minimal equivalent-class encoder for the rate- k0
k0+1

,

systematic TBCC in TCM is simply a size-k0 identity matrix. Thus, by Theorem 1 in

[Wes04], it is sufficient to use the error state diagram to compute the transfer function, and

the label of transition se → s′e is
∑

eo

∑
q∈Oeq

P (q) W d2prox(q,eo). The equivalent class q of the

constellation of TCM output is associated with the magnitude of the constellation point,

which has either capacity-approaching distribution P (A) for the first n − l output symbols

or uniform distribution for the last l output symbols. In the proposed transmission system,

the magnitudes of the channel inputs are provided by either distribution matcher or CRC

bits. Hence, P (q) is either the empirical distribution of distribution matcher P (Ā) or the

uniform distribution Puni, depending on whether q is correspond to the distribution matcher

symbols or the CRC symbols.

Define |Se| × |Se| matrices GA(W ) and Guni(W ) that enumerate all possible state tran-

sitions with equivalent-class PMFs of P (A) and uniform distribution as follows:

GA(W )se,s′e =
∑
eo

∑
q

PA(q)W
d2prox(q,eo), (4.46)

Guni(W )se,s′e =
∑
eo

∑
q

1

|A|W
d2prox(q,eo). (4.47)
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We define the generating function as

TTBCC(W ) = −1 +
Se∑
i=0

eiG
l
A(W )Gn−l

uni (W )eTi , (4.48)

where ei is a length |Se| indicator vector where ei,j = 1(j = i). For the TBCC, the error

events must be tail-biting paths, vi selects the starting/ending state of the error events.

Define the free distance, dfree = minxc,xe∈CT dprox (xc,xe). With the inequality:

Q


√
d2prox(xc,xe)

2σ

 ≤ Q

(√
d2free
2σ

)
exp

(
d2free − d2prox(xc,xe)

8σ2

)
, (4.49)

Pe in (4.40) is further bounded by:

Pe ≤ Q

(√
d2free
2σ

)
exp

(
d2free
8σ2

)
×

∑
xc∈CT

∑
xe∈CT
xe ̸=xc

n∏
i=1

[
exp

(
−d2prox (xc,i, xe,i)

8σ2

)
PXi

(xc,i)

]
.

(4.50)

Note the (4.49) can be proved by Q(
√
x+ y) ≤ Q(

√
x)e−

y
2 , for x, y ≥ 0. The double

summation term in (4.50) can be rewritten as follows:

∑
xc∈CT

∑
xe∈CT
xe ̸=xc

[
exp

(
−d2prox (xc,xe)

8σ2

)
PXn (xc)

]
, (4.51)

=
∑
xc∈CT

∑
xe∈CT
xe ̸=xc

[
W d2prox(xc,xe)PXn (xc)

]∣∣∣
W=e

− 1
8σ2

, (4.52)

=
∑

xc,xe∈CCT

[
W d2prox(xc,xe)PXn (xc)

]∣∣∣
W=e

− 1
8σ2
−
∑

xc∈CCT

[
W d2prox(xc,xc)PXn (xc)

]∣∣∣
W=e

− 1
8σ2

(4.53)

=
∑

xc,xe∈CCT

[
W d2prox(xc,xe)PXn (xc)

]∣∣∣
W=e

− 1
8σ2
−
∑

xc∈CCT

[
W 0PXi

(xc,i)
]

(4.54)

=
∑

xc,xe∈CT

[
W d2prox(xc,xe)PXn (xc)

]∣∣∣
W=e

− 1
8σ2
− 1, (4.55)
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Table 4.2: Optimized Convolutional Code and CRC Pairs. All the parameters are optimized

while SNR equals 11 dB.

H0(D) H1(D) H2(D) p(x)
FER

bound

ν = 3

m = 2

Ung. 13 04 00 7 6.65e-4

Opt. 13 06 00 5 5.80e-4

ν = 5

m = 2

Ung. 45 10 00 5 8.20e-5

Opt. 43 26 00 5 6.58e-5

ν = 7

m = 2

Ung. 235 126 000 5 1.15e-5

Opt. 211 142 000 5 8.96e-6

=
∑
q∈On

eq
e∈Cn

T

n∏
i=1

[
W d2prox(qi,ei)P (qi)

]∣∣∣
W=e

− 1
8σ2
− 1, (4.56)

=

|Se|∑
i=0

eiG
l
A(W )Gn−l

uni (W )eTi

∣∣∣
W=e

− 1
8σ2
− 1. (4.57)

As a result, the FER upper bound can be calculated using the generating function by

Pe ≤ Q

(√
d2free
2σ

)
exp

(
d2free
8σ2

)
TTBCC

(
W = e−

1
8σ2

)
. (4.58)

4.5 Simulation results

This section evaluates the performance of the CRC-TCM-PAS system over AWGN channel

with different DMs and decoding methods. The CRC-TCM-PAS systems use degree-2 CRCs

and rate-2/3 TBCCs. The channel inputs are equidistant 8-PAM symbols. We use the

magnitudes (0.449, 1.348, 2.247, 3.146) with the PMF (0.5877, 0.3120, 0.0144, 0.0859) that

is optimized for an SNR of 8 dB using a version of DAB that constrains the points to be

equally spaced [XWS21]. The capacity-approaching amplitude distribution P (Â) that DMs

target is optimized using the DAB algorithm [XWS21] at an SNR of 8 dB.
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Figure 4.4: The upper bounds and FER simulations of the simplified CRC-TCM-PAS system

with a degree-2 CRC. The simplified system takes length-64 i.i.d. 4-ary amplitude symbol

sequences and generates length-65 8-AM symbol sequences.

Fig. ?? considers a CRC-TCM-PAS system with k = 87 input bits and n = 65 output

symbols. We use the FER upper bound derived in Section 4.4 as an objective function to

jointly optimize the CRC and TBCC. As a baseline, we adopt the convolutional codes opti-

mized in Ungerboeck’s paper [Ung82], and the CRC is optimized by fixing the convolutional

code. We consider the number of memory elements of the convolutional code ν = 3, 5, and

7. Table 4.2 lists the optimized TBCCs and CRCs in octal form. All the parameters are

optimized for an SNR of 11 dB. Table 4.2 also provides the FER upper bounds at 11 dB.

For the joint optimization, the optimized CRC polynomial is p(x) and the optimized TBCC

generator matrix is  1 0 H2(D)/H0(D)

0 1 H1(D)/H0(D)

 . (4.59)

Fig. 4.4 presents analytical upper bounds and simuulation results that compare FERs for
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Figure 4.5: The FER curves of the practical CRC-TCM-PAS transmission system that uses

MCDM with CHP. This system takes 87 input bits and generates 65 8-AM symbols.

the optimized convolutional codes to Ungerboeck’s convolutional codes for a CRC-TCM-PAS

system that assumes an ideal DM. Hence, the system input "messages" are length-64 i.i.d.

magnitude symbol sequences according to the PMF P (Â). The magnitude sequences are

encoded and modulated by CRC-aided TCM to length-65 8-AM symbol sequences. Simula-

tion results show that maximizing the FER upper bound finds slightly better convolutional

codes than those in Ungerboeck’s paper. Note that in both cases the FER upper bound was

used to optimize the CRC polynomial.

The system uses TBCCs and CRCs from Table 4.2. The receiver uses an ML decoder.

Shannon’s 1959 sphere packing (SP) bound [Sha59] and Polyanskiy’s random coding union

(RCU) bound [PPV10] are also shown. Note that the last channel input of the CRC-TCM-

PAS system is uniform [WSA22]. When calculating the RCU bound, we assume all channel

inputs have the DM output distribution. Fig. 4.5 shows that, when a practical DM is

considered, the optimized convolutional codes deliver a slightly better performance than

Ungerboeck’s convolutional codes. When ν = 7, the FER performance of the CRC-TCM-
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Figure 4.6: The FER curves and RCU bounds of the CRC-TCM-PAS system and TCM-PAS

system. The gap between the two curves indicates the contribution of the 2-bit CRC. This

system takes 87 input bits and generates 65 8-AM symbols.

PAS system with optimized CRC and TBCC is better than RCU bound by 0.55 dB at the

FER of 10−6. Note that the FER curves from the simulation with the ideal DM in Fig. 4.4

are similar to those with the real DM in Fig. 4.5.

Fig. 4.6 evaluates the contribution of the 2-bit CRC of the CRC-TCM-PAS system with

ν = 7 TBCC in Fig. 4.5. We refer to the system without CRC as the TCM-PAS system.

Hence, the TCM-PAS system takes 87 input bits and generates 64 8-AM symbols. The FER

curve and the RCU bound for the two systems are given in Fig. 4.6. It can be seen that the

CRC-TCM-PAS system outperforms the TCM-PAS system by about 0.3 dB at the FER of

10−5, which implies the importance of the 2-bit CRC.

Fig. 4.7 investigates the CRC-TCM-PAS system that uses various DMs and two decoders,

ML decoding and a sub-optimal but less complex AED(5,2) decoder. The system in Fig. 4.7

has k = 96 input bits and n = 64 output symbols, and the transmission rate is 1.5 bits/real

channel use. The CRC-aided TCM uses the jointly optimized ν = 7, rate-2/3 TBCC, and

109



(a)

E
x
p
ec

te
d
 L

is
t 

S
iz

e

(b)

Figure 4.7: The performance of a CRC-TCM-PAS transmission system with various DMs

and decoders. The system takes 96 input bits and generates 64 output symbols. Fig. (a)

and (b) give the FER and expected list size, respectively.
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Figure 4.8: (a): The FER curves of PAS systems with different FECs. All the PAS systems

generate 64 8-AM symbols with a transmission rate of 1.5 bit/real channel use. The CR-

C-TCM-PAS system utilizes CCDM and MCDM with CTS as the DM. The decoder of the

CRC-TCM-PAS system is AED(5,2) with a maximum list size of 100. (b): The FER curves

of CRC-TCM-PAS systems with various rates. The CRC-TCM-PAS systems generate 64

8-AM symbols, with transmission rates of 1.25, 1.5, and 1.75 bit/real channel use, respec-

tively.
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the 2-bit CRC in Table 4.2. Fig. 4.7a and 4.7b give the FER performances and expected

list sizes, respectively.

We first investigate the performances of the CRC-TCM-PAS systems with various DMs

and the ML decoder. The simulation results show that the four considered distribution

matchers, i.e., ESS, CCDM, MCDM with CHP and CTS deliver similar FER performances

under ML decoding. However, the CCDM requires more list size than the other three DMs.

Fig. 4.7 also presents the FER performance when the AED(5,2) is used. The maximum list

size of all 2-States decoders in AED(5,2) is 100. As shown in Fig. 4.7, when AED(5,2) is

used as the decoder, the CRC-TCM-PAS system with CCDM delivers the worst FER and

largest expected list size. On the other hand, the CRC-TCM-PAS systems that use the

MCDM with CHP and CTS deliver the near-optimal FER performance and outperform the

system that uses ESS.

Fig. 4.8a compares the decoding performance of CRC-TCM-PAS system with other PAS

systems that use various FEC codes in [CDJ19, Fig.14]. All systems have 96 input bits, and

the transmission rate is 1.5 bits/real channel use. For the CRC-TCM-PAS, two distribution

matchers are considered, i.e., MCDM with CTS and CCDM. The decoder uses AED(5,2)

with a maximum list size of 100. The details of other PAS systems are described in [CDJ19].

The simulation results show that the CRC-TCM-PAS system with MCDM delivers the best

performance and outperforms the CRC-Polar-PAS system by nearly 1dB. Since the CRC-

Polar-PAS system uses CCDM as the distribution matcher, the gain of CRC-TCM-PAS over

CRC-Polar-PAS can come from two factors: the choice of DM or the coded modulation

scheme. As shown in Fig. 4.8a, with CCDM as the distribution matcher, the CRC-TCM-

PAS system still outperforms the CRC-Polar-PAS system but does not perform as well as

CRC-TCM-PAS with MCDM. Notably, the CRC-TCM-PAS system doesn’t display the error

floor of the CRC-Polar-PAS system, which shows an error floor at FER of 10−5. Hence, the

gap between the FER curves of the CRC-TCM-PAS with CCDM and the CRC-Polar-PAS

with CCDM can be treated as the gain of CRC-TCM code over CRC-Polar code, and the
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gap between the FER curves of the CRC-TCM-PAS with CCDM and the MCDM can be

treated as the gain of MCDM over CCDM.

The error floor seen in the CRC-Polar-PAS with CCDM could be due to a variety of

factors. One factor is the sub-optimality in the decoder. Serial list Viterbi decoding of

CRC-TBCC either chooses the ML codeword or reports an erasure with each growing list

size. In contrast, successive cancellation list (SCL) decoding of CRC-polar codes sometimes

selects non-ML codewords with a fixed list size of 32. Thus, CRC-polar codes decoded using

adaptive list sizes will display an error floor if the initial list size is small. If the list size is

fixed at a value such as 32, then performance will be limited by that small list size. For polar

codes, list sizes larger than 32 are typically not considered because of complexity limitations.

The error floor could also be due to a CRC that is too short, not optimized for high SNR,

or otherwise sub-optimal.

Fig. 4.8b evaluates the CRC-TCM-PAS system with various transmission rates. We

design three CRC-TCM-PAS systems that take 80, 96, and 112 information bits, respectively,

and generate 64 8-AM symbols. The resultant transmission rates are 1.25, 1.50, and 1.75

bits/real channel use, respectively. We design the MCDM with CHP for all three transmission

rates as distribution matcher. All three transmission rates employ the ν = 7 CC and the

2-bit CRC in Table 4.2. AED(5,2) with a maximum list size of 100 is used as the decoder.

Fig. 4.8b gives the FER curves, as well as the RCU bound and Shannon’s 59 SP bound, of all

three transmission rates. The simulation result shows that the FER curves for all three rates

lie between the RCU and the SP bound, which indicates excellent decoding performance.

4.6 Conclusion

Shannon’s proof of the channel coding theorem [Sha48] generates a random codebook that

has an optimal distribution and then performs an expurgation to improve the codebook. The

CRC-TCM-PAS system described in this paper follows that paradigm. The DM plays the
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role of random codebook generation and the selection of that TCM and CRC polynomials

expurgates that code to make it stronger. While there are many recent PAS systems, CRC-

TCM-PAS allows the use of the tight FER upper bound derived in this paper for a precise

expurgation of the codebook produced by the DM. The TCM and CRC can be jointly se-

lected to optimize FER performance. This also paper proposes a new multi-composition DM

(MCDM), which allows codewords with different compositions. The new MCDM provides

a significant benefit when decoding complexity is limited. Simulation results show that the

optimized CRC-TCM-PAS system with MCDM exceeds the RCU bound for various rates

and outperforms the PAS systems with various FEC codes studied in [CDJ19].
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CHAPTER 5

Conclusion

This dissertation investigates two topics in channel coding theory: 1) low-complexity decoder

design for low-density parity-check (LDPC) codes (Chapters 2 and 3); 2)reliable communica-

tion in the short-blocklength regime (Chapter 4). The investigated topics cover the practical

and theoretical aspects of channel coding theory. Below we discuss the open problems and

direction in each topic.

Chapter 3 describes the optimization of degree-specific weights by training the associated

neural network. The open problems in this topic are: 1) why the neural network can be used

to train the weights? 2) Why the weights associated with larger node degrees are smaller?

For the second problem, we can intuitively answer that the larger a node’s degree, the more

uncertainty. Thus, the decoder assigns smaller weights to the nodes with a larger degree. It

would be great if this observation could be mathematically proved. For the W-RCQ decoder,

we first fix the quantizer/dequantizer parameters and then train the neural weight. One

interesting direction is jointly optimizing the neural weights and the quantizer/dequantizer

parameters.

Chapter 4 presents the CRC-TCM-PAS transmission system. One limitation of this sys-

tem is that the system only has an excellent performance in the short-blocklength regime.

The performance of the CRC-TCM-PAS system degrades for the moderate block length,

for example, 200. One conjecture is that longer CRCs could help improve decoding perfor-

mance. However, the search space of CRC is exponential to the number of CRC bits, and

besides, the list decoder’s expected list size also grows when the CRC is increased. Hence,
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an efficient CRC searching algorithm and low-complexity decoders are desired to improve

the performance of the CRC-TCM-PAS system for moderate (or even longer) block length.
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