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Multiancestry genome-wide association study of 520,000 
subjects identifies 32 loci associated with stroke and stroke 
subtypes

A full list of authors and affiliations appears at the end of the article.

Abstract

Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We 

conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 

cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We 

further found shared genetic variation with related vascular traits, including blood pressure, 

cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk 

scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and 

pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate 

mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk 

variants and genes accomplished through bioinformatics analyses using extensive functional 

datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.

Stroke is the second leading cause of death and disability-adjusted life years worldwide1,2. 

Characterized by a neurological deficit of sudden onset, stroke is primarily caused by brain 

infarction (ischemic stroke) and, less often, by intracerebral hemorrhage (ICH). Common 

etiological subtypes of ischemic stroke include large-artery atherosclerotic stroke (LAS), 

cardioembolic stroke (CES), and stroke caused by small-vessel disease (small-vessel stroke 

(SVS)), which is also the leading cause of ICH. Previous genome-wide association studies 

(GWAS) in predominantly European-ancestry groups have identified ten loci robustly 

associated with stroke3–12. In most instances, the associations with stroke were attributed to 

individual subtypes of ischemic stroke, such as LAS5,8,9, CES3,4, and SVS10,12, or of ICH6, 
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although some loci were associated with two or more stroke subtypes7,9,11,13 or with any 

stroke10. We hypothesized that combining a substantially larger sample size with a 

transancestral analytic approach would identify additional risk loci and improve fine 

mapping of causal variants. Hence, we combined all available stroke samples with published 

or unpublished GWAS data, including samples of non-European ancestry that were 

underrepresented in previous GWAS. We further hypothesized that stroke shares genetic 

influences with vascular risk factors, intermediate phenotypes for stroke (for example, 

carotid artery plaque (cPL)), and related phenotypes (for example, coronary artery disease 

(CAD)) and that a systematic approach to identify genetic influences shared among these 

traits would provide insights into stroke pathophysiology.

Results

We tested ~8 million SNPs and indels with minor-allele frequency (MAF) ≥ 0.01 in up to 

67,162 stroke cases and 454,450 controls for association with stroke. One analysis involved 

European participants only (40,585 cases; 406,111 controls), and a second involved 

participants of European, East Asian (17,369; 28,195), African (5,541; 15,154), South Asian 

(2,437; 6,707), mixed Asian (365; 333), and Latin American (865; 692) ancestry (Fig. 1). 

Participants were drawn from 29 studies with genome-wide genotypes imputed to 1000 

Genomes Project (1000G) phase 1v3 or similar14 (MEGASTROKE consortium; 

Supplementary Note and Supplementary Tables 1 and 2). Ancestry-specific meta-analyses 

and subsequent fixed-effects transancestral meta-analyses and MANTRA transancestral 

meta-analyses were conducted15. Analyses were performed for any stroke (AS), comprising 

ischemic stroke, ICH, and stroke of unknown or undetermined type (n = 67,162); any 

ischemic stroke (AIS) regardless of subtype (n = 60,341); and ischemic stroke subtypes 

(LAS, n = 6,688; CES, n = 9,006; SVS, n = 11,710).

New genome-wide-significant stroke loci

We identified 32 genome-wide significant loci, 22 of which were novel (Table 1, Fig. 2, 

Supplementary Tables 3 and 4, and Supplementary Figs. 1–7). Of the 22 novel loci, 18 were 

identified by transancestral meta-analyses (fixed-effects <5.0 ×10−8 or MANTRA 

log10(Bayes factor (BF)) >6) (Fig. 2 and Supplementary Figs. 1–5), and the remaining four 

loci were identified by the ancestry-specific meta-analysis in European samples (fixed-

effects P <5.0 ×10−8) (Fig. 2 and Supplementary Figs. 1–5). Apart from two novel loci with 

a MAF between 0.01 and 0.05 and large effect-size estimates (odds ratios (ORs) of 2.33 and 

1.95), the remaining 20 novel loci contained common variants (MAF 0.16–0.48) with 

observed ORs between 1.05 and 1.20 (Table 1). Comparison of the 32 loci across Europeans 

and East Asians, the two largest ancestral subgroups, demonstrated significant correlations 

of risk-allele frequencies and ORs between populations (Supplementary Fig. 8), although six 

loci exhibited population-specific association (defined as P <5.0×10−8 in Europeans and P 
>0.05 in East Asians or MAF in East Asians <0.01) (Supplementary Table 5). Estimates for 

the phenotypic variance explained by the 32 lead variants ranged between 0.6% and 1.8% 

(Supplementary Table 6).
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Gene-based tests using VEGAS2 (ref. 16) (Supplementary Fig. 9) confirmed the loci 

identified by the GWAS analyses above and yielded a novel significant (P <2.02 ×10−6, 

Bonferroni corrected for the number of genes) association of the neighboring genes ICA1L 
and WDR12 with SVS (Supplementary Table 7 and Supplementary Figs. 9 and 10). Prior 

studies have demonstrated that variants in this region are associated with white-matter 

hyperintensity (WMH) burden17, a brain magnetic resonance imaging marker of small-

vessel disease (SVD).

Twenty-one additional loci met a less stringent threshold for suggestive evidence of 

association (log10(BF) >5.0 or P <1.0 × 10−6 in the transancestral fixed-effects analysis) 

(Supplementary Table 8), including three loci previously implicated in Mendelian stroke 

(HTRA1, COL4A1, and COL4A2)18–21.

Associations with etiological stroke subtypes

Genome-wide significance was reached for 18 loci (12 novel) for AS, 20 (12 novel) for AIS, 

6 (3 novel) for LAS, 4 (2 novel) for CES, and 2 (ICA1L–WDR12 novel, discovered in gene-

based tests) for SVS (Fig. 2, Table 1, and Supplementary Figs. 1–5 and 10). Several loci 

reaching genome-wide significance for one of the ischemic stroke subtypes were also 

genome-wide significant for AIS or AS, whereas none reached genome-wide significance 

for multiple ischemic stroke subtypes (Fig. 2 and Supplementary Table 9). For some novel 

loci, the association was strictly confined to a single subtype (P >0.5 for other stroke 

subtypes): EDNRA and LINC01492 showed association with LAS only, thus suggesting 

mechanisms limited to atherosclerosis, and NKX2-5 showed association with CES only, thus 

suggesting that the association may be primarily mediated by cardioembolism. We also 

found subtype specificity for previously described loci (TSPAN2 for LAS and PITX2 for 

CES). We further investigated shared genetic influences of individual loci on different stroke 

subtypes by using gwas-pw analyses22, which estimate the posterior probability that a 

specified genomic region influences two different traits. By applying a posterior-probability 

cutoff of 90% for shared contribution at a given locus (model 3), we found shared genetic 

influence between LAS and SVS at SH2B3, and between LAS and CES at ABO 
(Supplementary Table 10 and Supplementary Fig. 11).

Conditional analysis to identify independent signals within loci

When conditioning all SNPs in a ±0.5-Mb window on the lead SNPs in the Europeans-only 

analysis, we found two additional independent genome-wide signals at the PITX2 locus for 

CES, in agreement with known multiple independent loci at PITX2 for atrial fibrillation 

(AF)23, thus suggesting that a similar genetic architecture at this locus influences both 

conditions (Supplementary Fig. 12). We further found suggestive independent signals at 

MMP12, SH2B3, and HDAC9-TWIST1 that did not reach genome-wide significance 

(Supplementary Table 11).

Association of individual stroke risk variants with related vascular traits

Several of our loci are in the genomic vicinity of established risk loci for vascular risk 

factors (for example, blood pressure (BP)), and related vascular phenotypes affecting the 

heart (for example, CAD), vasculature (for example, carotid intima media thickness 
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(cIMT)), or the brain (WMH). To systematically explore the genetic overlap between stroke 

and these traits, we surveyed published GWAS for BP, blood lipids, type 2 diabetes (T2D), 

cIMT, cPL, AF, venous thromboembolism (VTE), CAD, and WMH, assembled through the 

IGEN-BP24, ENGAGE25, DIAGRAM26, CHARGE27,28, AFGen29, INVENT30, and 

CARDIoGRAMplusC4D31 consortia (Supplementary Table 12). When constructing sets of 

index SNPs of the nonstroke phenotypes (Bonferroni-adjusted P <1.3 ×10−4 = 0.05/32 

loci/12 related vascular traits) and SNPS in high linkage disequilibrium (LD) (r2 >0.9 in the 

1000G European-ancestry dataset (EUR)) with those index variants, 17 of the 32 stroke lead 

variants showed overlap with these sets (Fig. 3 and Supplementary Table 13). Fourteen loci 

reached genome-wide significance (P <5.0 ×10−8) for association with one or more of the 

following phenotypes: BP (five loci), CAD (five loci), AF (two loci), VTE (two loci), low-

density liproprotein (LDL) cholesterol (two loci), cPL (one locus), and WMH (one locus). 

Among the 21 additional subthreshold loci for stroke (Supplementary Table 8), six loci have 

previously been associated with related vascular traits, including AF (PRRX and CAV1–

CAV2)32, VTE (F11)30, CAD (SWAP70 and LPA)31, blood lipids (LPA)31, and WMH 

(ICA1L–WDR12)28.

Association of genetic risk scores of related vascular traits

Second, we generated weighted genetic risk scores (wGRS) for VTE, BP-related traits, 

blood lipids, T2D, and CAD by using the lead SNPs from published GWAS and tested these 

wGRS for association with each stroke phenotype, implementing the inverse-variance 

weighting approach (Methods and Supplementary Table 14). We found significant 

associations (P <5.6 ×10−3, correcting for nine independent phenotypes; Methods) with 

wGRS for all traits examined, except for triglyceride and LDL-cholesterol levels, and 

observed clear differences between stroke subtypes (Fig. 4). The strongest association was 

between the wGRS for CAD and LAS, in agreement with shared pathophysiology through 

atherosclerosis. We further found associations of all stroke subtypes with wGRS for BP 

traits. The wGRS for VTE was significantly associated with both LAS and CES (all P <1.0 

×10−4) but not SVS. The wGRS for high-density lipoprotein (HDL) cholesterol showed a 

significant inverse association with SVS.

In the present setting, the wGRS analysis was used primarily to explore the genetic overlap 

with related vascular traits rather than as a tool for establishing causal inference. In 

sensitivity analyses, we conducted an MR–Egger regression to explore whether any of the 

significant associations between vascular wGRS and stroke might be partly driven by 

directional pleiotropy. There was no indication of directional pleiotropy except for the 

association between the SBP wGRS and AS (MR–Egger intercept estimate P = 0.015), 

which was no longer significant after removal of 6 of 37 SNPs appearing as outliers from the 

leave-one-out analysis (Methods), thus leading to causal estimates in broad agreement across 

regression techniques (Supplementary Table 15).

Shared genetic contribution to stroke and related vascular traits genome wide

Third, we applied LD-score regression to quantify the extent of shared genetic contributions 

between traits at a genome-wide level33,34. Using available GWAS results from individuals 

of European ancestry, we found significant positive correlations (rg >0; P <5.6 × 10−3, 
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correcting for nine independent phenotypes), mostly corroborating the wGRS results (Fig. 4 

and Supplementary Table 16). In addition, we found significant genetic overlap between 

triglyceride levels and AIS, and similar results were obtained in available GWAS datasets 

from individuals of East Asian ancestry (Supplementary Table 16). The results did not 

substantially change after removal of genome-wide signals for stroke and related vascular 

traits and their proxies (r2 >0.8 in 1000G EUR).

Global epigenetic patterns at the 32 stroke risk loci

To test for cell-specific enrichment in chromatin marks that were previously shown to be 

phenotypically cell-type specific in the Encyclopedia of DNA Elements (ENCODE)/

RoadMap (histone H3 modifications H3K4me1, H3K4me3, and H3K9ac)35, we 

implemented the epigwas tool35 and the narrow peak information from the latest RoadMap 

dataset (127 tissues)36. Epigwas estimates the enrichment score (ratio of the height of the 

nearest narrow peak to the distance to the peak) for the lead variant and proxies (r2 ≥0.8 in 

the 1000G cosmopolitan panel) and calculates statistical significance by examining the 

relative proximity and specificity of the test SNP set with 10,000 sets of matched 

background. The analysis showed significant enrichment of enhancer and promoter sites 

(marked by H3K4me1 and H3K4me3) in mesenchymal stem cells, embryonic stem cells, 

epithelial cells, and blood and T cells, and of active promoters (marked by H3K9ac) in 

embryonic stem cells and digestive tissue (Supplementary Table 17).

Pathway analyses

To identify pathways overrepresented in the stroke association results, we used the DEPICT 

gene-set enrichment tool37, using all SNPs with log10(BF) >5 for the respective stroke 

subtype. We found three gene sets to be significantly (false discovery rate (FDR) <5%) 

associated with AS: enlarged heart, decreased cardiac muscle contractility, and oxaloacetate 

metabolic process (Supplementary Table 18). Next, we used Ingenuity Pathway Analysis 

(IPA; URLs), examining genes within the 53 stroke loci with log10(BF) >5. The extended 

gene list (r2 >0.5 in 1000G Europeans or East Asians, or located within 50 kb of the lead 

SNP) consisted of 214 genes. We found the coagulation system to be the most significant 

canonical pathway, followed by cardiomyocyte differentiation via bone-morphogenetic-

protein receptors (FDR of 5%) (Supplementary Table 19). Finally, we tested enrichment of 

VEGAS2-derived gene-based P values in expert-curated and computationally predicted 

Biosystem gene sets38, adapting VEGAS2Pathway39, and identified significant association 

with 18 pathways, including various cardiac pathways, muscle-cell fate commitment, and 

nitric oxide metabolic process with CES (FDR of 5%) (Supplementary Table 20).

Fine mapping derived from credible SNP-set analyses

To decrease the number of candidate variants per locus to the most noteworthy associations, 

we constructed 95% credible SNP sets for each of the 32 loci (lead SNP and proxy SNPs r2 

>0.1 in 1000G panels), assuming one causal SNP per locus and uniform priors40. Credible 

SNP sets were generated in all stroke phenotypes and for European, East Asian, and African 

ancestries separately. We found a marked decrease in credible SNP sets for most loci, a 

result expectedly most pronounced for the phenotype showing the strongest association 

signal (Supplementary Table 21). The greatest refinement was observed at RGS7, HDAC9–
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TWIST1, and SH2B3, where the lead SNP was the only SNP contained in the 95% credible 

set for the stroke phenotype showing the strongest association.

Stroke loci with nonsynonymous or predicted deleterious variants

To determine SNPs with protein-altering effects, we annotated all SNPs by using 

ANNOVAR41. Of the 32 lead SNPs, three were exonic, of which two were nonsynonymous: 

rs3184504 (p.Arg262Trp) in SH2B3 and rs1052053 (p.Gln75Arg) in PMF1. SH2B3 

p.Arg262Trp is a loss-of function variant that leads to expansion of hematopoietic stem cells 

and enhanced megakaryopoiesis in humans42. Both variants are predicted to be benign or 

tolerated by PolyPhen43 and SIFT44. In addition, we identified a proxy SNP (r2 = 0.99 in 

1000G EUR) for another lead SNP that was nonsynonymous, rs6050 (p.Thr331Ala) in FGA, 

also predicted to be benign or tolerated.

Investigation of eQTLs, meQTLs, and pQTLs in different tissues

To determine whether stroke risk SNPs influenced the cis regulation of nearby genes, we 

interrogated genome-wide quantitative information (expression quantitative trait loci 

(eQTLs), methylation quantitative trait loci (meQTLs), and proteinexpression quantitative 

trait loci (pQTLs)) in extensive publicly and nonpublicly available datasets. These datasets 

encompass numerous tissues and cell types, including cardiac, vascular, and brain tissue; 

circulating cells; and vascular endothelial cells (Methods). These comprised the following: 

for eQTLs, GTEx V6 (ref. 45), an expanded version of GRASP2 (refs 46,47), HGVD48, 

BIOS49, Blueprint epigenome project (subset)50, STARNET51, and the human aortic 

endothelial cell study52; for meQTLs, the Blueprint epigenome project (subset)50 and the 

ARIC cohort53; and for pQTLs, the KORA cohort54. Only cis eQTLs, meQTLs, and pQTLs 

were considered.

We found that in 18 of the 32 stroke risk loci, the lead stroke risk variant either overlapped 

or was in moderate to high LD (r2 >0.8) with the most significant QTL variant for a nearby 

gene in at least one tissue or cell type (Supplementary Tables 22 and 23). For seven loci, we 

observed association of the lead SNP and proxies with expression of a single gene (or 

methylation or protein level), sometimes the nearest gene (LRCH1, CDK6, CDKN2B, 
PRPF8, and MMP12), and sometimes a more distant nearby gene (ZCCHC14 for the 

ZCCHC14 locus, and TWIST1 for the HDAC9–TWIST1 locus), within the datasets 

explored. Associations were found primarily in stroke-relevant tissues and cell types, 

including vascular tissues, aortic endothelial cells, brain, blood, and immune cells. In most 

instances (11 loci, 61.1%), the risk SNP affected expression of multiple genes, thus 

suggesting that at individual loci, pleiotropic mechanisms, which might differ according to 

tissue/cell type, may in some instances influence stroke susceptibility55,56. For several of 

these loci, there was a clear predominance of eQTL associations with one gene in stroke-

relevant tissues, such as ZNF318 (6p21), AL049919 (12q24), and FES (15q26) in brain 

tissues (Supplementary Tables 22 and 23).

At some loci, meQTLs and eQTLs provided complementary information on the regulatory 

pattern. For instance, for the SH3PXD2A locus, SNPs in high LD with the lead stroke risk 

variant were found to be eQTLs for multiple genes (SH3PXD2A, SLK, GSTO1, GSTO2, 
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and LOC729081), whereas several high-LD proxies (r2 >0.96) functioned as the most 

significant meQTL for CpG probes located in the promoter region of SH3PXD2A and not 

any of the other genes.

For the 149 genes located in the 32 genome-wide-significant loci (r2 >0.5 in Europeans or 

East Asians, or located ±50 kb from the lead SNP; Methods), we assigned an empirical 

functional score based on the presence and number of eQTLs, meQTLs, pQTLs, and other 

biological criteria57,58 (Methods and Supplementary Table 24), reasoning that genes with a 

higher functional score would be more likely to be causal, although this score requires 

validation by experimental data.

Joint modeling of epigenetic marks and association statistics

In an additional approach to identify the most plausible causal variants and genes, we used 

RiVIERA59, which jointly models summary association statistics and corresponding 

epigenetic regulatory information in a Bayesian framework to estimate the posterior 

probability of association (PPA). RiVIERA uses the RoadMap epigenome data of 127 tissue 

types and information on chromatin (H3K4me1, H3K4me3, H3K36me3, H3K27me3, 

H3K9me3, H3K27ac, and H3K9ac) and DNA-accessibility (DNase I) marks. Three of the 

stroke risk loci (PMF1–SEMA4A, SH3PXD2A, and EDNRA) displayed a pattern in which 

the association statistics and epigenetic regulatory information jointly contributed to the 

modeling of the RiVIERA credible SNP set (the minimum number of SNPs whose PPA, 

accounting for both association statistics and epigenetic regulatory information, sum to ≥ 

95%) (Supplementary Fig. 13). The variants identified by RiVIERA as having the highest 

PPA were in moderate to high LD in the 1000G cosmopolitan panel with the respective lead 

SNP (rs7534434 for PMF1-SEMA4A, r2 = 0.79 with lead SNP; rs11191829 for 

SH3PXD2A, r2 = 0.99 with lead SNP; rs4835084 for EDNRA, r2 = 0.35 with lead SNP). 

Two of these (at PMF1–SEMA4A and SH3PXD2A) were significantly enriched in RNA 

polymerase II binding in ENCODE cell types60, including H1 human embryonic stem cells 

(Supplementary Fig. 13).

Enrichment in drug-target genes

Given the previous evidence of the utility of GWAS in drug discovery and drug 

repositioning57,61,62, we evaluated the overlap between stroke-associated genes and known 

drug targets. Among the 149 genes located within the 32 stroke risk loci, 16 (11%) were 

registered as targets of currently approved drugs in the DrugBank database and the 

Therapeutic Target Database (Supplementary Table 25). Of these, two genes (FGA and 

PDE3A) were targets of approved drugs for antithrombotic therapy (ATC B01), i.e., 

alteplase, tenecteplase, reteplase, and anistreplase for FGA, and cilostazol for PDE3A 
(enrichment OR = 5.46, P=0.0369; Fig. 5). This enrichment was strengthened after removal 

of the locus with the largest number of genes (SH2B3, 73 genes) (OR = 8.89, P=0.0166) and 

after addition of 65 genes in 21 suggestive stroke risk loci (OR = 7.83, P = 0.00606).
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Discussion

The current transancestral meta-analysis more than triples the number of stroke risk loci and 

identifies novel loci for AS, AIS, and all major subtypes of ischemic stroke. Our results 

highlight several major features of stroke genomics: (i) Approximately half of the identified 

stroke loci showed shared genetic association with other vascular traits, and the largest 

genetic correlation was found for blood pressure. We also identified shared genetic 

association with VTE, and distinct patterns of individual stroke subtypes provided further 

mechanistic insight. (ii) Eleven of the novel stroke risk loci (ANK2, CDK6, KCNK3, 
LINC01492, LRCH1, NKX2-5, PDE3A, PRPF8, RGS7, TM4SF4–TM4SF1, and WNT2B) 
suggest mechanisms not previously implicated in stroke pathophysiology; some of these 

suggest a strong link with cardiac mechanisms beyond those expected from established 

sources of cardioembolism. (iii) The 32 stroke risk loci were significantly enriched in drug 

targets for antithrombotic therapy—one for an approved thrombolytic drug (alteplase) and 

the other for an antiplatelet agent (cilostazol) approved for stroke prevention in Asia. (iv) 

Through incorporation of extensive functional datasets and bioinformatics analyses, we 

provide detailed information on prioritization of stroke risk variants and genes as a resource 

for further experimental follow-up.

Most of the genome-wide associations were identified with both AS and AIS. Although this 

result relates in part to a greater statistical power compared with that in subtype analysis, we 

also found shared genetic influences between stroke subtypes, as exemplified by the gwas-

pw analyses (SH2B3 and ABO). A notable finding was the identification of PMF1-
SEMA4A as a risk locus for AIS. PMF1–SEMA4A is an established risk locus for nonlobar 

ICH6 and thus is, to our knowledge, the first reported locus reaching genome-wide 

significance for ischemic as well as hemorrhagic stroke. PMF1–SEMA4A further reached 

genome-wide association for WMH burden28 (Fig. 3), an established marker for SVD, and 

showed a strong signal in the SVS subtype, thus suggesting that the association with stroke 

is at least in part mediated by SVD. The underlying biological pathways do not seem to 

involve known vascular risk factors and may thus identify new targets for stroke prevention.

Among the novel loci showing associations restricted to specific stroke subtypes, EDNRA is 

consistent with atherosclerotic mechanisms, given its association with LAS, cPL27, and 

CAD31 (Fig. 3). LINC01492 and the previously reported TSPAN2 locus likewise displayed 

associations restricted to LAS but showed no association with related phenotypes in our 

look-ups and in prior literature, thus evidencing mechanisms more specific for LAS. 

NKX2-5, showing association restricted to CES, has previously been reported as a genome-

wide risk locus for heart rate and PR interval63,64 but not consistently for AF63,65, thus 

implicating cardiac mechanisms other than AF.

Although the number of loci reaching genome-wide significance for association with SVS 

remained low, our results suggest an important role of common genetic variation in SVS. 

First, several of the associations with AS or AIS, including those at novel loci (CASZ1, 
LOC100505841, SH3PXD2A, and ICA1L–WDR12), showed predominant association with 

the SVS subtype (Supplementary Tables 7 and 9). Second, three of the top loci (PMF1–
SEMA4A, LOC100505841, and SH3PXD2A) showed genetic overlap with loci for WMH. 
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Third, several suggestive loci (log10(BF) ≥5) for AS and SVS contained genes implicated in 

monogenic SVD (HTRA1, COL4A1, and COL4A2) (Supplementary Table 8).

Our extensive exploration of shared genetic variation between stroke and related vascular 

traits found the most widespread correlations with BP phenotypes, in agreement with 

epidemiological data showing that high BP is the leading risk factor for stroke. A quarter of 

the 32 genome-wide-significant stroke loci were BP loci, most of which were novel with 

respect to stroke risk and showed association with risk of AS or AIS. Aside from the 

expected genetic overlap between LAS and CAD, we identified significant overlap between 

a wGRS for VTE and both LAS, and CES, but not SVS (Fig. 4 and Supplementary Table 14) 

despite a greater statistical power for this subtype, thus potentially suggesting that 

thrombotic processes play a less important role in SVS.

Three of our novel loci (NKX2-5, ANK2, and LRCH1) have previously been associated 

with cardiac pacing63,64,66. NKX2-5 and ANK2 have been further implicated in familial 

forms of cardiac disease67–70, but none of the three loci were associated with AF or CAD in 

the latest published GWAS31,65. Apart from NKX2-5, these loci were not specifically 

associated with CES, thus possibly indicating an involvement of the underlying genes in 

roles beyond cardiac development and function. rs9526212, the lead variant in LRCH1, was 

an eQTL for LRCH1 in multiple tissues, including the left ventricle, atherosclerotic aorta, 

atherosclerotic-lesion-free arteries, and blood (Supplementary Table 22). Pathway analyses 

further supported a strong link with cardiac mechanisms.

The extensive in silico functional annotation of identified stroke risk loci provides 

informative elements for future prioritization and follow-up of the most compelling 

biological candidates. In some instances, the eQTL, meQTL, and pQTL information 

strongly supports involvement of one gene over others in the region, for example, for 

SH3PXD2A, encoding SH3 and PX-domain-containing protein 2A, an adaptor protein 

involved in formation of invadopodia and podosomes as well as extracellular-matrix 

degradation. For some loci, joint analysis of epigenetic regulatory effects and association 

statistics enabled prioritization of credible SNPs. When exploring the overall epigenetic 

patterns of identified stroke risk loci, we observed some enrichment in enhancer and 

promoter sites in developmental tissues, thus suggesting that some associations may be 

driven by developmental effects, as has recently been proposed for the FOXF2 locus10.

RGS7 and TM4SF4–TM4SF1 showed low MAFs, high heterogeneity, poor imputation 

quality in non-Europeans, and large effect-size estimates, and they must therefore be 

interpreted with caution. Moreover, although our extensive functional exploration provides 

guidance on gene prioritization for further exploration, additional experiments are required 

to identify the causal genes and variants. Several studies have provided limited information 

on stroke subtypes. Hence, the sample sizes for ischemic stroke subtypes were still relatively 

small. In addition, the proportion of the phenotypic variance explained by the 32 lead SNPs 

was relatively small but comparable to that in other complex diseases71. Collectively, these 

aspects highlight the potential for gene discovery in the future.

Malik et al. Page 9

Nat Genet. Author manuscript; available in PMC 2018 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In conclusion, we identified 22 novel stroke risk loci and demonstrated shared genetic 

variation with multiple related vascular traits. We further identified new loci offering 

mechanisms not previously implicated in stroke pathophysiology and provided a framework 

for prioritization of stroke risk variants and genes for further functional and experimental 

follow-up. Stroke risk loci were significantly enriched in drug targets for antithrombotic 

therapy, thus highlighting the potential of stroke genetics for drug discovery. Collectively, 

these findings represent a major advance in understanding the genetic underpinnings of 

stroke.

URLs

Ingenuity Pathway Analysis, https://www.qiagenbioinformatics.com/products/ingenuity-

pathway-analysis/.

Methods

Methods, including statements of data availability and any associated accession codes and 

references, are available at https://doi.org/10.1038/s41588-018-0058-3.

Methods

Study design and phenotyping

A detailed description of the study design, participating studies, and phenotype definitions 

for stroke and stroke subtypes is provided in the Supplementary Note. Characteristics of 

study participants are shown in Supplementary Table 2 for each study. All participants 

provided written informed consent, and local research ethics committees and institutional 

review boards approved the individual studies.

Genotyping, imputation, and quality control

Genotyping platforms and imputation methods for each participating study are described in 

Supplementary Table 2. All studies used imputed genotypes based on at least the 1000G 

phase 1 multiancestral reference panel and conducted logistic regression analyses (or Cox 

regression for longitudinal population-based cohort studies) for five stroke traits (AS, AIS, 

LAS, CES, and SVS) with all measured and imputed genetic variants in dosage format by 

using appropriate software under an additive genetic model with a minimum of sex and age 

as covariates. Information on additional covariates is given in Supplementary Table 2.

Before ancestry-specific meta-analysis, QC was performed on each study by two 

independent researchers following a standardized protocol based on the suggestions of 

Winkler et al.74. Marker names and alleles were harmonized across studies. Meta-analyses 

were restricted to autosomal biallelic markers from the 1000G phase 1 v3. Duplicate 

markers were removed from each study. P–Z plots, QQ plots and allele-frequency-plots were 

constructed for each study. After visual inspection, analysis and QC were repeated if deemed 

necessary. QC was conducted independently for all participating studies in at least two sites.

Individual study-level filters were set to remove extreme effect values (β > 5 or β <−5), rare 

SNPs (MAF <0.01) and variants with low imputation accuracy (oevar_imp or info score 
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<0.5). The effective allele count was defined as twice the product of the MAF, imputation 

accuracy (r2, info score or oevar_imp), and number of cases. Variants with an effective allele 

count <10 were excluded74. The number of SNPs passing QC for each study is given in 

Supplementary Table 26.

Genome-wide-association meta-analyses

The overall analytical strategy is shown in Fig. 1. We first conducted fixed-effects inverse-

variance-weighted meta-analysis with METAL75 in each ancestral group (EUR, EAS, AFR, 

SAS, LAT, and other ASN), then performed meta-analysis of the ancestry-specific meta-

analysis results. We constructed two versions of each meta-analysis: one with single 

genomic control applied and one without genomic control (for LD-score regression 

analysis).

The EUR-specific and transancestral fixed-effects meta-analyses were further filtered for 

heterogeneity (Phet <5.0 × 10−8) and for the number of cases included for a specific marker 

(<50% of stroke cases were excluded). In addition, we ran a transancestral GWAS meta-

analysis, using MANTRA15, which was based on ancestry-specific meta-analysis results. 

The final MANTRA results were filtered for a MANTRA posterior-probability 

heterogeneity P <0.95. SNPs with log10 (BF) >6 were considered to be genome-wide 

significant, whereas SNPs with 6 > log10(BF) >5 were considered to show suggestive 

association. We used a method based on summary statistics76 to estimate the variance in 

liability explained by each lead variant. Disease prevalence was set to 5.5% for AS, to 4.4% 

for AIS, and to 0.11% for IS subtype in Europeans77. Disease prevalence was set to 2.97% 

for AIS, to 0.91% for LAS, to 0.24% for CES, and to 1.76% for SVS in East Asians 

(Hisayama study, J. Hata unpublished data and ref. 90). We used summary statistics from the 

Europeans-only fixed-effects meta-analysis and the East Asian–only fixed-effects meta-

analysis. Genomic inflation was calculated as lambda in the GenABEL package (available 

through CRAN repositories). In addition, we calculated the LD-score-regression intercepts 

for the Europeans-only fixed-effects meta-analysis, using European LD scores.

Shared genetic influences of individual loci on mechanistically defined stroke subtypes

We used gwas-pw22 to detect shared genetic influences of LAS, CES, and SVS, aiming to 

identify genetic variants that influence respective pairs of these traits. Gwas-pw estimates 

the PPA for four models. Model 3 is the model in which a given genomic region contains a 

genetic variant that influences both traits. We used the fixed-effects transancestral meta-

analysis results as input, transforming results into signed Z scores based on the P value and 

sign of the log(OR). The chunk size (number of SNPs included in each chunk analyzed) was 

set automatically by using an approximately independent block file (ld-select), as provided 

by the software. Correlation was set to reflect the overlap in controls. We deemed the results 

of model 3 with a PPA >0.9 significant22.

Conditional analysis

We used GCTA-COJO78 to perform conditional association analysis in each of the stroke 

loci in Europeans. We first fit a stepwise joint regression model including all SNPs with joint 

P <5.0× 10−8. In instances in which regions included only one SNP, we fit a model including 
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the top two SNPs from each region. The models made use of (i) summary statistics from the 

Europeans-only meta-analysis presented herein and (ii) genotype data for 3,291 stroke cases 

and 11,820 controls of North European ancestry from NINDS-SiGN as an LD reference for 

each region.

Gene-based analysis

We performed gene-based tests by using the VEGAS approach79 implemented in VEGAS2 

software16. We used 24,769 autosomal refseq genes to perform gene-based association 

studies. To perform gene-based association tests, we used the 1000G phase 3 super 

populations African (AFR), East Asian (EAS), European (EUR), American (AMR) and 

South Asian (SAS) as a reference to compute the pairwise LD between variants residing 

within a gene. We performed gene-based tests, using the ‘-top 10’ parameter in VEGAS2, 

which tests enrichment of the top 10% of association P values within a gene. To maintain 

specificity while including cis-regulatory variants, we included variants located within 10 kb 

of a gene’s 3′ and 5′ UTRs. We performed 1 × 106 simulations to compute empirical P 
values for association with each gene. For genes with P <1× 10−5, we increased the number 

of simulations to 1 × 108 to increase the accuracy of the association P values. For individual 

stroke subtypes, we performed ancestry-specific gene-based association followed by meta-

analysis of gene association P values by using Stouffer’s method, based on sample size.

Association of individual stroke risk variants with related vascular traits

We systematically explored genetic overlap with AF, CAD, cIMT, cPL, diastolic BP, systolic 

BP, HDL-cholesterol levels, LDL-cholesterol levels, triglyceride levels, T2D, VTE, and 

WMH. First, we acquired summary statistics from the appropriate consortia (Supplementary 

Table 12). For each of the nonstroke phenotypes, we constructed a SNP set including the 

index variant of the nonstroke phenotype with P <1.3 × 10−4 plus all variants in high LD (r2 

in 1000G EUR >0.9 with this index variant). If the MEGASTROKE lead SNP was included 

in this set of SNPs, we deemed the overlap with the nonstroke phenotype to be significant. 

We show two different tiers: (i) variants that showed genome-wide significance in the related 

vascular trait (P <5.0 × 10−8) and (ii) variants that were not genome-wide significant but 

passed Bonferroni correction (P = 1.3 × 10−4).

Association of genetic risk scores of related vascular traits with stroke and stroke 
subtypes

Genetic risk scores generated from variants shown to have genome-wide association with 

various vascular risk factors (VTE, DBP, SBP, MAP, PP, HTN, HDL cholesterol, LDL 

cholesterol, triglycerides, T2D, and CAD) were used to estimate the overlap between 

vascular traits and stroke and its subtypes. The effect allele for each risk-factor variant was 

defined as the allele associated with increased risk-factor levels. The corresponding allele 

information, β coefficients and standard errors from different stroke subtypes were extracted 

and used as input. Association was tested with the inverse-variance weighting (IVW) 

method implemented as an R package gtx V 0.0.8 (available through CRAN repositories).

We further conducted sensitivity analyses, using the MR-Egger method implemented as an R 

package (TwoSampleMR, available through CRAN repositories)80, which, unlike the IVW 
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method, estimates the intercept term as part of the analysis. An intercept term significantly 

differing from zero suggests the presence of directional pleiotropy. We used a conservative 

significance threshold of P <0.05 for the intercept. In the presence of directional pleiotropy, 

leave-one-out analysis was carried out by retesting the association of the vascular GRS with 

the outcome (stroke), leaving out each SNP in turn to determine whether a single SNP drives 

the association. We manually identified outlier SNPs that might drive the observed 

directional pleiotropy and then repeated the analyses (IVW and MR-Egger) after excluding 

the variants exhibiting directional pleiotropy.

The selection of SNPs for the vascular GRS was based on literature (PubMed) searches and 

the GWAS catalog (http://www.ebi.ac.uk/gwas/), and was used to identify studies that 

performed GWAS of the various risk factors. The most recent and largest GWAS of each risk 

factor was selected, and the associated variant details were retrieved. For the GRS analysis, 

only independent variants (r2 <0.01, based on the 1000G EUR panel) were used for the 

analysis (Supplementary Table 27). Risk-variant selection for BP traits (SBP, DBP, MAP, 

and PP) was further extended to studies with gene-centric chips. We used β coefficients 

extracted from the summary statistics of the International Consortium of BP GWAS81,82 as 

weights for this GRS analysis. A P-value <5.6 × 10−3 correcting for nine independent 

phenotypes was considered significant. The number of independent vascular phenotypes, 

taking into account the correlation between the phenotypes considered, was estimated on the 

basis of individual-level data from the 3C study by using the online tool matSpDlite (http://

neurogenetics.qimrberghofer.edu.au/matSpDlite/).

Shared genetic contribution to stroke and related vascular traits at the genomewide level

We used LD-score regression to estimate the genetic correlation between stroke and related 

vascular traits33,34. We conducted analyses on the European and East Asian stroke GWAS 

summary statistics only. Summary statistics from the GWAS meta-analyses for vascular risk 

factors and intermediate or related vascular phenotypes (BP, blood lipids, T2D, cIMT, cPL, 

AF, VTE, CAD, and WMH) were acquired from the respective consortia, as detailed in 

Supplementary Table 12. For LD-score regression in East Asians, we further received 

prepublication access to summary statistics of GWAS for blood lipids conducted in BioBank 

Japan 91, as described in the Supplementary Note. For each trait, we filtered the summary 

statistics to the subset of HapMap 3 SNPs to decrease the potential for bias due to poor 

imputation quality. Analyses were performed separately by using summary statistics from 

the European- and East Asian–specific meta-analysis. We used the European or East Asian 

LD-score files calculated from the 1000G reference panel and provided by the developers. A 

P value <5.6 × 10−3 correcting for nine independent phenotypes was considered significant. 

All analyses were performed with the ldsc package (https://github.com/bulik/ldsc/).

Global epigenetic patterns at the 32 stroke risk loci

We used the epigwas tool35 to test for cell-specific enrichment in chromatin marks that have 

previously been shown to be phenotypically cell-type specific in ENCODE and/or RoadMap 

epigenome data (H3K4me1, H3K4me3, and H3K9ac)35, leveraging the recent release of 

ENCODE/RoadMap epigenome data from 127 tissue types36. Histone ChIP–seq data for 

narrow contiguous regions of enrichment were used to calculate the enrichment score 
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(height of the nearest tall peak/distance to the peak) for the lead variant and proxies (r2 >0.8 

in the 1000G cosmopolitan panel). Significance was estimated by examining the relative 

proximity and specificity of the test SNP set with 10,000 sets (permutation) of matched 

background. In addition, Bonferroni correction for the number of chromatin marks tested 

was applied.

Pathway analyses

To identify pathways overrepresented in the stroke association results, we used data-driven 

expression-prioritized integration for complex traits (DEPICT37), IPA (https://

www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/), and 

VEGAS2Pathway39. DEPICT version 1 release 194 was used to identify biological 

pathways, tissues, and cell types enriched among suggestive associations (log10(BF) >5) for 

any stroke and stroke subtypes in the MANTRA transancestral GWAS. Results are presented 

for the MANTRA transancestral analysis. We deemed DEPICT pathways with an FDR 

<0.05 statistically significant.

IPA was conducted by using an extended list comprising 214 genes located in the boundaries 

defined by r2 >0.5 with the lead SNP in Europeans or East Asians, or located +50 kb from 

the lead SNP, for all suggestive loci reaching P <1.0 × 10−5 or log10(BF) >5 (Supplementary 

Table 25). This gene list was taken as an input for IPA using only findings from human and 

experimentally verified results. Otherwise, standard parameters were used for the analysis. 

We corrected canonical pathway P-value analysis with the Benjamini–Hochberg method and 

deemed an FDR <0.05 significant.

We performed gene-wide gene-set enrichment analysis, using the VEGAS2Pathway 

approach39 to test which Biosystem terms38 were enriched with VEGAS2-derived gene 

association P values for stroke subtypes. VEGAS2Pathway performs a competitive gene-set 

enrichment test while accounting for gene density in LD blocks (or correlated association P 
values of neighboring genes), SNP density, and pathway size by using a resampling strategy.

For individual stroke subtypes, we performed separate ancestry-specific geneset enrichment 

analysis. Next, we combined the gene-set-enrichment association P values across ancestries 

by using Stouffer’s method for sample-size-weighted combinations of P values. For each 

stroke subtype, we tested the association of 9,981 Biosystem gene-set terms.

Fine mapping derived from credible SNP-set analyses

We implemented the method of Maller et al.83, converting our ancestry-specific meta-

analysis P values to Bayes factors through Wakefield’s approximation40 in all stroke 

phenotypes in the EU-only, EAS-only, and AFR-only analysis. We used all SNPs in LD with 

the lead SNP (r2 >0.1, ancestry specific). The Bayes factors were then used to calculate 

posterior probabilities on the basis of the assumption of a single causal SNP in each region. 

For all regions, we constructed 95% credible sets of potentially causal SNPs.
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Investigation of eQTLs, pQTLs, meQTLs, and regulatory marks in different tissues

The following datasets, covering a large variety of tissue and cell types, were interrogated 

for eQTLs, pQTLs, and meQTLs:

1. The Genotype-Tissue Expression (GTEx-V6) project data, providing significant 

eQTL information from 44 postmortem tissues (449 individuals) (http://

biorxiv.org/content/early/2016/09/09/074450/), with significance based on a 

gene-specific P-value threshold that is permutation-adjusted for multiple SNPs 

per gene

2. The Genome-wide Repository of Associations between SNPs and Phenotypes, 

build 2.0 (GRASP2)46,47, as well as a collected expression and epigenetic QTL 

database of > 100 sources covering a wide range of cell and tissue types 

(Supplementary Note), using P <5× 10−6 as a significance threshold for 

association with expression of a transcript in the original study

3. The Human Genetic Variation Database (HGVD)48, providing eQTL information 

from peripheral-blood cells in a Japanese population (n = 1,208), with 

significance defined by FDR <5%

4. The Biobank-based Integrative Omics Studies (BIOS), providing eQTLs from 

peripheral-blood RNA-seq data in 2,116 unrelated individuals49, with 

significance defined by FDR <5%

5. A subset of the Blueprint epigenome project50 with eQTL, meQTL, and histone-

modification data (H3K4me1 and H3K27ac) in CD14+ monocytes, CD16+ 

neutrophils, and CD4+ naive T cells from 197 individuals; these were mapped 

through the classical QTL association test, allele-specific-expression test, and 

combined haplotype test, with significance defined by FDR <5%

6. The Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study 

(STARNET)51, providing eQTL data from vascular and metabolic tissues in 600 

patients with CAD, with Benjamini-Hochberg-corrected association P values (P 
<0.05)

7. The aortic endothelial cell study52, providing eQTL data from human aortic 

endothelial cells in 147 individuals, with Bonferroni multiple testing correction 

for the number of independent SNPs (P <1.0 × 10−4)

8. The ARIC cohort53, providing meQTL information from peripheral blood in 794 

individuals of European ancestry and 784 individuals of African American 

ancestry, with multiple testing correction for the number of unique CpG probes 

in the look-up

9. The Cooperative Health Research in the Region of Augsburg (KORA) cohort, 

with pQTL information from the human blood plasma proteome54, measuring 

1,124 proteins on the SomaSCAN platform in 1,000 participants; significance for 

each association was set at P <5.0 × 10−8
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In each of these datasets, we report the most significant cis-QTL, meQTL, or pQTL 

surpassing a study-specific predefined significance level or FDR, considering only QTLs in 

LD with the lead stroke SNP at an r2 >0.8 (in 1000G, as well as queries of multiple builds of 

SNAP84 and SNiPA85), thus suggesting high concordance. The results are presented grouped 

per tissue or cell type (Supplementary Table 23), or per stroke risk locus (Supplementary 

Table 22). In addition, we also systematically report the association of the top QTL with 

stroke risk and of the lead stroke risk variant with the corresponding transcript expression, 

methylation level, or protein level (Supplementary Table 23).

In addition, we used a subset of the Blueprint epigenome project in CD14+ monocytes, 

CD16+ neutrophils, and CD4+ naive T cells from 197 individuals50 and Haploreg V4 (ref. 
86) to annotate the lead variants and proxies for enrichment in specific histone-modification 

marks for the chromatin state, on the basis of ChIP-seq data from multiple cell/tissue types 

from ENCODE87 and NIH RoadMap epigenome36. The results for each of the lead SNPs 

and its proxies are displayed in detail in Supplementary Table 22.

Integration of association statistics and in silico functional information in RiVIERA-beta

To identify the most plausible causal variants and genes, we used RiVIERA software59, 

which jointly models the summary association statistics and the corresponding epigenetic 

regulatory information in a Bayesian framework to estimate the PPA. The empirical prior of 

a variant to be associated with the respective trait through regulatory features was generated 

by using the 848 tissue-specific epigenomic data in seven chromatin (H3K4me1, H3K4me3, 

H3K36me3, H3K27me3, H3K9me3, H3K27ac, and H3K9ac) and DNA-accessibility 

(DNase I) marks from the ENCODE/RoadMap epigenome data. Binary epigenomic 

annotation matrices of a variant overlapping the narrow peaks were generated. For inferring 

the causal region, RiVIERA-beta performs a repeated (n = 1,000) random-sampling step per 

locus, with the step size set to 1.0 × 10−4. Iteration is performed until convergence 

(acceptance rate >60%) is achieved, which is critical for the accurate estimation of PPA. We 

generated 95% credible sets in each region on the basis of the PPA. Regional plots were 

generated by using the association statistics and the PPA. Epigenetic enrichment over a fixed 

window size (50 bp) per tissue group was generated by taking the cumulative sum of 

empirical prior weighted global epigenetic enrichment. Tissues were divided into 19 groups, 

as defined in the NIH RoadMap epigenome project.

Scoring method

To prioritize the most likely biological-candidate genes, we integrated functional and 

biological information into an empirical score for each of the genes residing in the 32 

genome-wide-significant loci. These comprised 149 genes within the region defined by an r2 

>0.5 in any of the 1000G European or East Asian populations or physical distances of ±50 

kb from the lead SNP of the respective locus (Supplementary Table 25). A score of 1 was 

assigned for being the nearest gene to the lead SNP, for containing a missense variant, for 

containing histone-mark H3K4me3, H3K9ac, and H3K4me1 peaks in cell types that showed 

significant enrichment in epigwas analysis, and for functioning as an eGene for an eQTL, 

meQTL, or pQTL (one point for each) in at least one study and one cell/tissue type. In 

addition, a score of 1 was assigned for each stroke phenotype showing evidence of being a 
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drug-target gene in the DrugBank database (ATC-C and ATC-B01) and the Therapeutic 

Target Database (Supplementary Table 25), and for overlap with biological pathways in 

DEPICT, IPA, or VEGAS2 (Supplementary Tables 18–20).

Drug-target gene-enrichment analysis

For each locus containing a variant with log10(BF) >5 in the MANTRA analysis, we 

annotated the genes by considering LD structures (r2 >0.5 in any of 1000G EUR or ASN 

populations) or physical distances (±50 kb) from the lead SNP of the respective locus. Drug-

target genes were extracted from the DrugBank database88 (considering those registered as 

pharmacological active targets; https://www.drugbank.ca/) and Therapeutic Target 

Database89 (TTD; http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp), thus resulting in a 

list of 1,123 genes (and corresponding proteins) annotated to currently approved drugs 

indicated for any diseases (Supplementary Table 25). Drugs indicated for antithrombotic 

therapy (n = 69) and cardiovascular diseases (n = 324) were curated from Anatomical 

Therapeutic Chemical (ATC) codes (Supplementary Table 25). Enrichment of overlap 

between stroke-associated genes with drug targets for antithrombotic therapy and 

cardiovascular diseases was assessed with Fisher’s exact test.

Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Data availability

The datasets generated and/or analyzed during the current study are available from the 

corresponding authors upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. MEGASTROKE study design
Variants were retained that passed central quality control (QC) criteria (Methods). The 

numbers of cases and controls are listed for each ancestry group. HRC, Haplotype Reference 

Consortium; imp, measure of imputation quality (Methods); FE, fixed effects; EUR, 

European ancestry; AFR, African ancestry; EAS, East Asian ancestry; SAS, South Asian 

ancestry; ASN, mixed Asian ancestry; LAT, Latin American ancestry; Phet, heterogeneity P 
value; PPhet, posterior probability of heterogeneity. *The ASN and LAT ancestries were 

composed of a single study and hence did not require ancestry-specific meta-analysis.
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Fig. 2. Association results of the transancestral GWAS meta-analysis and the prespecified 
ancestry-specific meta-analysis in European samples
Shown are novel (red) and known (black) genetic loci associated with any stroke or stroke 

subtypes. Top, Manhattan plot from the MANTRA transancestral GWAS meta-analysis for 

any stroke. The dotted line marks the threshold of statistical significance (log10(BF) >6.0).
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Fig. 3. Genetic overlap between stroke and related vascular traits at the 32 genome-wide-
significant loci for stroke
a, Association results from the look-ups in published GWAS data for related vascular traits. 

Symbol sizes reflect P values for association with the related trait. b, Venn diagram. Loci 

reaching genome-wide significance for association with stroke subtypes are marked with a 

dagger symbol (for CES), underlined (for LAS), or marked with an asterisk (for SVS). 

Novel loci are in bold. SH3PXD2A, WNT2B, PDE3A, and OBFC1 have previously been 

associated with AF (SH3PXD2A)65, or diastolic (WNT2B and PDE3A)24,72 or systolic 

(OBFC1)73 BP, but the respective lead SNPs were in low LD (r2 <0.1 in the 1000G 

cosmopolitan panel) with variants associated with stroke in the current GWAS. MRI, 

magnetic resonance imaging; IMT, intima-media thickness; LDL, low-density lipoprotein; 

HDL, high-density lipoprotein. The lead variant for TBX3 is not included in the original 

datasets for BP traits (SBP and DBP). Results are based on a perfect proxy SNP (rs35432, r2 

= 1 in the European 1000G phase 3 reference).
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Fig. 4. Shared genetic contribution between stroke and related vascular traits
Contributions determined by weighted genetic risk scores (wGRS, top) and LD-score 

regression analysis (bottom). Effect sizes and significance levels are represented by color 

and symbol size. β, wGRS effect size; R(g), genetic correlation. DBP, diastolic blood 

pressure; SBP, systolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure; 

HTN, hypertension, TGL, triglyceride level. Sample sizes for related vascular traits are 

displayed in Supplementary Table 12. NS, nonsignificant.
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Fig. 5. Connection between stroke risk genes and approved drugs for antithrombotic therapy
Shown are the connections among lead SNPs at stroke risk loci, biological stroke risk genes, 

and individual targeted drugs. Lead SNPs reaching suggestive evidence for association 

(MANTRA transancestral meta-analysis log10(BF) >5) are shown in gray.
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