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ABSTRACT

Despite the advantage of global coverage at high spatiotemporal resolutions, satellite remotely sensed pre-

cipitation estimates still suffer from insufficient accuracy that needs to be improved for weather, climate, and

hydrologic applications. This paper presents a framework of a deep neural network (DNN) that improves the

accuracy of satellite precipitation products, focusing on reducing the bias and false alarms. The state-of-the-art

deep learning techniques developed in the area ofmachine learning specialize in extracting structural information

from amassive amount of image data, which fits nicely into the task of retrieving precipitation data from satellite

cloud images. Stacked denoising autoencoder (SDAE), a widely used DNN, is applied to perform bias correction

of satellite precipitation products. A case study is conducted on the Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) with

spatial resolution of 0.088 3 0.088 over the central United States, where SDAE is used to process satellite cloud

imagery to extract information over a window of 153 15 pixels. In the study, the summer of 2012 (June–August)

and the winter of 2012/13 (December–February) serve as the training periods, while the same seasons of the

following year (summer of 2013 and winter of 2013/14) are used for validation purposes. To demonstrate the

effectiveness of the methodology outside the study area, three more regions are selected for additional validation.

Significant improvements are achieved in both rain/no-rain (R/NR) detection and precipitation rate quantifica-

tion: the results make 33% and 43% corrections on false alarm pixels and 98% and 78% bias reductions in

precipitation rates over the validation periods of the summer and winter seasons, respectively.

1. Introduction

Weather forecasts, climate variability, hydrology, and

water resources management require sufficient infor-

mation about precipitation, one of the most important

variables in the natural water cycle. Precipitation obser-

vation, monitoring, and analysis tools provide funda-

mental information needed in order for society to cope

with increasing extreme hydrometeorological events in

recent decades. Satellite-based precipitation products

mainly estimate precipitation indirectly based on infor-

mation collected from multiple wavelengths. Common

choices include visible (VIS) and infrared (IR) wave-

length images of cloud albedo and cloud-top brightness

temperature from geosynchronous satellites (Hsu et al.

1997; Nasrollahi et al. 2013). Another popular data

source is passive microwave (PMW) images from sensors

on board low-Earth-orbiting (LEO) satellites. PMW

images provide information about the atmospheric

constituents and hydrometeorological profiles, which

is more directly related to the ground precipitation

rate (Joyce et al. 2004; Kidd et al. 2003). One unde-

sirable part of PMW is its relatively low temporal

resolutions (Marzano et al. 2004).

Several operational satellite precipitation products

are available for public use through their open websites.

TheClimate PredictionCenter (CPC)morphing technique

(CMORPH), developed by the National Oceanic and

Atmospheric Administration (NOAA), uses precipitation

Corresponding author address: Yumeng Tao,Department of Civil

and Environmental Engineering, University of California, Irvine,

E4130 Engineering Gateway, Irvine, CA 92697.

E-mail: yumengt@uci.edu

MARCH 2016 TAO ET AL . 931

DOI: 10.1175/JHM-D-15-0075.1

� 2016 American Meteorological Society

mailto:yumengt@uci.edu


estimates derived from low-orbiter satellite PMW and

IR data as a means to transport the PMW precipitation

features during periods when microwave data are not

available at a given location (Joyce et al. 2004). The

Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis (TMPA) blended IR

information and PMW estimates, as well as available

rain gauge analyses, to produce the final product with a

calibration traceable back to the single ‘‘best’’ satellite

estimate (Huffman et al. 2007). The Precipitation Esti-

mation from Remotely Sensed Information Using Ar-

tificial Neural Networks (PERSIANN) product takes

advantage of machine learning techniques to estimate

precipitation rates with features extracted from IR grids

and a window of grids surrounding them (Hsu et al.

1997). Similarly, the PERSIANN Cloud Classification

System (PERSIANN-CCS), a revised PERSIANN prod-

uct with finer resolution, also applies artificial neural net-

works to classify clouds based on IR information and then

estimate precipitation (Hong et al. 2004). Other satellite-

based precipitation products include the PMW-calibrated

IR algorithm (PMIR; Kidd et al. 2003), the Self-Calibrating

Multivariate Precipitation Retrieval (SCaMPR) algorithm

(Kuligowski 2002), and the Naval Research Laboratory

Global Blended-Statistical PrecipitationAnalysis (NRLgeo;

Turk and Miller 2005).

Despite the efforts of linking multisatellite informa-

tion to surface precipitation, the accuracy of satellite-

based products still remains insufficient (Boushaki et al.

2009). To deal with this problem, a variety of bias cor-

rection methods have been developed, mainly by in-

corporating additional available datasets, such as rain

gauge or radar information (Boushaki et al. 2009;

McCollum et al. 2002). However, ground measurements

are only available in specific regions with a sufficient

number of instruments. Therefore, several proposed

bias correction methodologies are limited to a regional

scale and are very difficult to extend to global applica-

tions. On the other hand, research also requires more

satellite datasets to help reduce biases in the products.

For instance, Behrangi et al. (2009) used multispectral

data from the Geostationary Operational Environ-

mental Satellite (GOES) and proved their effectiveness

in precipitation detection. Li et al. (2007) and Nasrollahi

TABLE 1. Input features extracted for PERSIANN-CCS.

Coldness features of cloud patch Min temperature of a cloud patch

Mean temperature of a cloud patch

Geometric features Cloud-patch area

Cloud-patch shape index

Texture features Std dev of cloud-patch temperature

Mean value of local std dev of cloud temperature

Std dev of local std dev of cloud

Gradient of cloud-top brightness temperature

Gray-image texture (max angular second moment)

TABLE 2. Description of verification measures used.

Verification measures Formulas Descriptions Remarks

POD
POD5

TP

TP1MS

Fraction of events that are

classified correctly

Where TP is the number

of true positive

events, MS is the

number of missing

events, FP is the

number of false posi-

tive events, and TN is

the number of true

negative events

FAR
FAR5

FP

TP1MS

Fraction of estimated

events (positive) that

are misclassified

HSS HSS5
2(TP3TN2FP3MS)

(TP1MS)(MS1TN)1 (TP1FP)(FP1TN)
Fractional improvement

of the forecast over the

standard forecast

FBI FBI5
TP1FP

TP1MS
Bias of the binary forecast

Bias bias5 x2 y Differences between esti-

mations and observa-

tions over validation

period

Where x is the estima-

tion average, y is the

observation average,

xi is the pixel estima-

tion, yi is the pixel

observation, and N is

the amount of

observations

MSE MSE5
1

N
�(xi 2 yi)

2 Closeness between esti-

mations and observa-

tions over validation

period

Variance variance5MSE2 bias2 Random errors within the

estimation
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et al. (2013) showed the value of the Moderate Reso-

lution Imaging Spectroradiometer (MODIS) in identi-

fying high clouds and thus reducing false alarms.

However, several studies emphasize that the key to

making the best use of these datasets is promoting ad-

vanced methods that assist in the extraction of valuable

information from the raw data (Nasrollahi et al. 2013;

Sorooshian et al. 2011). In recent years, multiple novel

techniques for deep learning have been developed in

the scientific discipline of machine learning, which is a

breakthrough for dealing with large and complex data-

sets, especially for feature extraction from a large amount

of image data (Bengio 2009; Hinton et al. 2006). The

techniques have proved to be effective in dealing with

many real-world data mining problems (Glorot et al.

2011a; Hinton et al. 2006; Lu et al. 2013; Vincent et al.

2008; Zhang et al. 2015). One particular advantage of a

deep neural network (DNN) is that it helps extract

FIG. 1. FARandPODof the PERSIANN-CCS precipitation data over the centralUnited States (308–458N, 908–1058W): (a),(b) summer

(June–August 2013) and (c),(d) winter (fromDecember 2013 to February 2014). The threshold used is 0.1mmh21. The white color means

that less than 50 precipitation pixels in the location are observed within corresponding periods.
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representative features automatically and further assists

estimation. The power of deep learning for image pro-

cessing and feature extraction provides an opportunity to

improve the accuracy of satellite precipitation estimation.

As an initial step, we incorporate a modern DNN,

stacked denoising autoencoder (SDAE), to perform the

following tasks: 1) develop a bias correction system fo-

cusing on overestimation and false alarms, with a case

study on the PERSIANN-CCS product; 2) demonstrate

the effectiveness of deep learning for precipitation in-

formation extraction from satellite infrared imagery

without adding any extra data from other sources; and

3) evaluate and analyze the case study results in the

summer and winter seasons, respectively.

The remainder of this paper is organized as follows.

Section 2 illustrates the bias in satellite precipitation

estimation with a focus on false alarms and over-

estimations. Specific deep learning techniques are in-

troduced and explained in detail in section 3. Section 4

describes the experimental design for the study, in-

cluding the data used and model setup. Section 5

presents a comparison between the output of this study

and the original satellite product. Finally, the main

conclusions are summarized in section 6.

FIG. 2. Monthly precipitation observation (mmh21) and averaged bias (mmh21) of PERSIANN-CCS precipitation data over the

central United States (308–458N, 908–1058W): (a),(b) summer (June–August 2013) and (c),(d) winter (from December 2013 to February

2014). The ranges of the biases are from 20.5 to 0.5mmh21 for summer and from 20.25 to 0.25mmh21 for winter.
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2. Bias in satellite precipitation estimation

One source of the bias in satellite precipitation esti-

mation is that most precipitation products fail to extract

the maximum amount of useful precipitation in-

formation buried in the satellite imagery. For example, a

few statistics of an IR image, such as mean and standard

deviation of nearby pixels, do not provide as much

information as the raw image itself, where the full cloud-

shape information is contained. In addition, some criti-

cal assumptions within the algorithms also lead to bias

that cannot be ignored. For instance, PERSIANN-CCS

has the assumption in the regression step that higher

precipitation corresponds to lower brightness tem-

perature Tb for pixels in a cloud patch. However, in

reality, for convective storms, heavy precipitation

events actually occur at the edges of the cloud patch,

where the Tb is not necessarily lower than that inside the

patch. Various validation studies have been conducted

to address the errors in satellite-based precipitation

products and to investigate potential approaches to

improve the algorithms (AghaKouchak et al. 2011;

Bellerby and Sun 2005; Moazami et al. 2014; Tian et al.

2009). Overestimation with many false alarms is iden-

tified as a common drawback for most satellite-based

precipitation products, especially in warm seasons

(Sapiano and Arkin 2009). In addition, precipitation

from low clouds is often missed in satellite-based prod-

ucts (Behrangi et al. 2009; Nasrollahi et al. 2013).

To investigate the bias in satellite-based products,

common validation measurements are used to assess

PERSIANN-CCS (Hong et al. 2004) with the National

Centers for Environmental Prediction (NCEP) stage IV

radar and gauge precipitation data (Baldwin andMitchell

1996; Lin and Mitchell 2005). PERSIANN-CCS and

NCEP stage IV data are compared at 0.088 3 0.088
(latitude 3 longitude) and hourly resolutions. The

PERSIANN-CCS algorithm (Hong et al. 2004) manu-

ally designed and extracted nine features (Table 1) from

IR cloud patches and applied an artificial neural net-

work to estimate precipitation from these features.

Table 2 gives the specific definitions of the validation

measurements used in this paper.

Figure 1 shows the false alarm ratio (FAR) and

probability of detection (POD) of both summer (June–

August) of 2013 and winter (December–February) of

2013/14 over the central United States (308–458N, 908–
1058W), mainly including the states of Nebraska, Iowa,

Kansas, Missouri, Oklahoma, Arkansas, and Texas.

FIG. 3. A four-layer, fully connected DNN. The first layer is the

visible/input layer, where the information is known. The second

two layers are hidden layers, where each node is called a hidden

node. The last layer is the output layer, which directly links to the

target value that the model attempts to predict.

FIG. 4. Experimental design process. The input to the neural network is the IR image, and the

output is the difference between the PERSIANN-CCS estimates and the NCEP stage IV

measurements.
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High FARs can be observed for these regions, especially

in the winter season, which is consistent with the results

of previous studies (Nasrollahi et al. 2013; Tian et al.

2009). Similarly, POD is higher for summer than winter,

while the number of precipitation events is fewer for

winter than summer. Maps of monthly averaged pre-

cipitation rates and bias of the product are shown in

Fig. 2. In the bias maps, the red colors indicate over-

estimation, while the blue colors indicate underestima-

tion. For both seasons, the majority of the area shows

overestimation, and few underestimation pixels could be

detected. In addition, the warm season shows more

overestimation compared to the cold season, though it

has higher POD and lower FAR. Moreover, the region

of the high bias corresponds to the region with relatively

high monthly precipitation.

3. Methodology

This study develops a DNN framework that is capable

of extracting ‘‘deeper’’ information automatically and

effectively from satellite IR imagery to reduce bias in

satellite precipitation products. One significant differ-

ence between DNNs and traditional artificial neural

networks is that DNNs aim to automatically extract in-

formation at multiple levels of abstraction to allow a

system to learn a complicated functional mapping of the

input to the output directly from the data while tradi-

tional neural networks tend to use manually designed

features. It is achieved by applying the pretraining

techniques to initialize weights to preserve information

that better reconstructs the raw data (Bengio 2009). A

more complete overview of the development of DNNs

can be found in Bengio (2009).

Figure 3 presents a four-layer, fully connected artifi-

cial neural network, as used in this study. The network

consists of neurons (or nodes) organized in layers

through connections between nodes. A node receives

inputs from connections, sums them, and passes the

summation through a transformation function (or acti-

vation function) to produce an output delivered to nodes

in the next layer. In the network, nodes in the first (top)

layer receive input data; nodes in the last layer send

outputs. The layers between input and output layers are

called hidden layer(s). Connections between nodes have

different strength or weights to determine various input–

output relationships. To possess a required functional

mapping, a deep architecture must assign a specific value

to each weight (parameters); this is accomplished auto-

matically by training the networkwith available input and

output data samples.

Training techniques are essential in order for deep

architectures to avoid getting stuck in local optima with

poor performance (Bengio et al. 2007). SDAE, a widely

used technique to train DNNs that was introduced by

Vincent et al. (2008, 2010), has shown the capability to

learn useful high-level representations from natural

image patches and has thus been applied in several im-

age recognition and other data mining studies (Glorot

et al. 2011a; Lu et al. 2013; Xie et al. 2012; Zhou

et al. 2012).

By taking advantage of this machine learning frame-

work, valuable information is extracted from the input

data, which helps to improve estimation. The method

involves: 1) initializing parameters with an unsupervised

greedy layer-wise pretraining process and 2) fine-tuning

parameters of all layers globally to minimize a loss

TABLE 3. Training, test, and validation period information and

corresponding basic statistics for the warm season.

Dataset

Training and test Validation

Period June–August 2012 June–August 2013

Sample 1 680 080 2 305 141

Avg precipitation (mmh21)

PERSIANN-CCS 0.100 0.185

NCEP stage IV 0.077 0.116

Max precipitation (mmh21)

PERSIANN-CCS 55.0 75.2

NCEP stage IV 85.1 112.0

TABLE 4. Training, test, and validation period information and corresponding basic statistics for the cold season.

Dataset

Training and test Validation

Period From December 2012 to February 2013 From December 2013 to February 2014

Sample 820 776 902 037

Avg precipitation (mmh21)

PERSIANN-CCS 0.104 0.100

NCEP stage IV 0.080 0.040

Max precipitation (mmh21)

PERSIANN-CCS 51.2 62.56

NCEP stage IV 48.4 34.1
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function. A brief description of the SDAE is presented

next. A more detailed explanation of the method can be

found in appendix A.

4. Experimental design

The design of the process is presented in Fig. 4. In this

study, the input data for the DNN are IR imagery col-

lected by GOES, the same raw information used by

PERSIANN-CCS. The dataset is at a spatial resolution

of 0.088 3 0.088 and an hourly temporal resolution. IR

imagery provides cloud-top brightness temperature and

has been used for multiple near-real-time precipitation

estimation products (Hong et al. 2004; Hsu et al. 1997;

Huffman et al. 2007; Joyce et al. 2004). In PERSIANN-

CCS, nine features of IR imagery in a cloudpatch (Table 1)

are used to predict precipitation rates at the (target)

pixels within the cloud patch. Instead of using cloud im-

age features designed by researchers, we allow the neural

network to extract a useful representation for precipita-

tion estimation itself. As shown in Fig. 4, the input to

DNN is a matrix T15 3 15 containing the IR image in a

15 3 15 pixel window centered in pixel t8,8, at which

PERSIANN-CCS indicates a positive precipitation rate

rp. To produce a training data pool, the window is moved

across the image sequentially, shifting location one grid

box at a time in each hourly IR image of the study region.

The outputs/targets (at the same spatiotemporal res-

olutions as the input data) are the differences between

the PERSIANN-CCS estimates and the NCEP stage IV

observations. The output is the value of the centered

pixel of the 15 3 15 pixel window. That is, it is the ad-

justed quantity needed in order for the PERSIANN-

CCS estimate to match the NCEP stage IV observed

precipitation rate rs at pixel t8,8 (Dr 5 rp 2 rs). The

reason we choose the differences, instead of directly

estimating the NCEP stage IV precipitation rates, is that

PERSIANN-CCS, as well as other satellite-based

products, has successfully screened out a large number

of no-rain (NR) pixels (Hong et al. 2007). Therefore, the

input data are much more balanced and thus benefit the

training process. However, the disadvantage of this de-

sign is that it will not help in reducing missing cases in

PERSIANN-CCS. To cope with it, we are currently

working on adjusting the model design to estimate

precipitation directly instead of the difference. In addi-

tion, both inputs and outputs of the training data are

normalized before training to shrink the range of the

quantity and make it easier to operate.

After properly trained, DNN will produce cDr (esti-

mated difference) given IR imagery, without in-

formation from NCEP stage IV and PERSIANN-CCS.

With this property, the model can potentially apply to

areas without NCEP stage IV information and thus can

offer global bias correction. On the other hand, the use

of Dr (real difference) is during the training process,

which optimizes the mean-square error (MSE) between
cDr and Dr as shown in Fig. 4. Last, when producing

FIG. 5. Maps of selected additional validation regions.

TABLE 5. Hyperparameters considered for SDAE in the study.

Hyperparameter Description Considered value

nHLayers Number of hidden layers 1, 2, and 3

nHNodes Number of hidden nodes 500, 1000, and 2000

pCorruption Percentage of corruption for pretraining 0.1, 0.2, and 0.4
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adjusted precipitation, all negative values will be forced

to zero.

The study periods are the summer (June–August) of

2012 and 2013 and winter (December–February) of

2012/13 and 2013/14. The study area is the central

United States (308–458N, 908–1058W), as described in

section 2. The summer and winter seasons are treated

separately to account for different climate conditions

and to improve model accuracy. To properly validate

the methodology, we divided the data into training, test,

and validation datasets for the summer and winter sea-

sons, respectively. During the training process, the

training and test datasets are used to calibrate the pa-

rameters and prevent overfitting. They are randomly

selected from the same time periods (summer 2012 and

winter 2012/13, respectively) in a ratio of 75:25. On the

other hand, validation datasets for SDAE performance

evaluation are taken from the same seasons of the next

year. More detailed information and some basic statis-

tics of the training, test, and validation datasets of both

seasons are shown in Tables 3 and 4. The number of

sample points in training and test datasets for both sea-

sons are considerable and are expected to accommodate

the automatic feature-extraction process. Moreover, to

demonstrate the effectiveness of the methodology with

variability in space, three regions with NCEP stage IV

measurements outside the study area are selected for

additional validation. These regions are 1) the Colorado

area (358–408N, 1058–1108W), 2) the Arizona area (308–
358N, 1108–1158W), and 3) the Georgia area (308–358N,

808–858W). The maps of the regions are shown in Fig. 5.

The objective function of SDAE to set the optimal

weight values is the MSE on the output. In addition, in

this study, we use the rectified linear activation function,

which is a most popular choice for real-value estimation

(Glorot et al. 2011b). After various combinations were

tested and compared, a four-layer neural network with

1000 hidden nodes for each hidden layer with 40% input

corruption in the training was selected for this study.

Table 5 gives some common hyperparameters needed

for training a DNN with SDAE. The choices considered

TABLE 6. The R/NR classification performance of PERSIANN-

CCS and DNN-corrected precipitation. Values in parentheses are

the relative performance of DNN corrected and PERSIANN-CCS.

Summer Winter

No. of precipitation pixels (h21)

NCEP stage IV 533 358

PERSIANN-CCS 694 (30% more) 681 (90% more)

DNN corrected 516 (3% less) 409 (14% more)

No. of false positive pixels (h21)

PERSIANN-CCS 395 598

DNN corrected 264 (33% corrected) 339 (43% corrected)

No. of misclassified pixelsa (h21)

PERSIANN-CCS 629 873

DNN corrected 545 (13% corrected) 627 (28% corrected)

HSS

PERSIANN-CCS 0.478 0.148

DNN corrected 0.473 0.174

FBI

PERSIANN-CCS 1.27 1.86

DNN corrected 0.93 1.09

a Includes both false positive (false alarm) and false negative

(missing) events.

FIG. 6. Averaged bias (mmh21) of DNN-corrected output over the central United States (308–458N, 908–1058W): (a) summer (June–

August 2013) and (b) winter (from December 2013 to February 2014). The ranges of the biases are from20.5 to 0.5mmh21 for summer

and from 20.25 to 0.25mmh21 for winter.
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in this study are typical choices for the corresponding

parameters (Vincent et al. 2010). Note that, here, we

only considered neural networks with an equal number

of hidden nodes at all hidden layers for processing

convenience. The result should not be fundamentally

different from other possible combinations. Other po-

tential hyperparameters, such as learning rate and

training iterations, were decided manually to optimize

the result within the training process.

5. Results and discussion

The results presented here show the performances of

the SDAE model in the validation periods (summer of

2013 and winter of 2013/14) in comparison with the

original PERSIANN-CCS data. The evaluation includes

both detection of rain/no-rain (R/NR) pixels and in-

tensity of the precipitation amount for warm and cold

seasons, respectively. In addition, as an example, results

of the rainfall event on 4 August 2014 are analyzed and

compared with both PERSIANN-CCS estimation and

NCEP stage IV observation. In this section, ‘‘DNN

corrected’’ refers to the bias-corrected precipitation

using SDAE.

Table 6 provides the binary R/NR detection perfor-

mance of PERSIANN-CCS and DNN-corrected pre-

cipitation, including the averaged hourly number of

precipitation pixels, false positive pixels, and mis-

classified pixels. The performance is evaluated for

hourly estimation on the study area and averaged over

the validation periods for warm and cold seasons sepa-

rately. The bias correction process is very effective at

identifying false alarm pixels and balancing the number

of precipitation pixels. Specifically, the averaged hourly

number of false alarm pixels drops from 395 to 264 and

from 598 to 339 for summer and winter (i.e., 33% and

43% correction), respectively. The model properly re-

duced the overestimation of the number of pixels with

precipitation in PERSIANN-CCS (30%more to 3% less

and 90% more to 14% more relative to NCEP stage IV

observations). The overall number of misclassified

pixels is reduced for both warm and cold seasons (i.e.,

13% and 28% correction), respectively. The Heidke

skill score (HSS) of DNN corrected is similar to

PERSIANN-CCS in summer and slightly better in

winter. The model’s incapability of dealing with missing

cases may prevent it from improving the score and thus

shows the necessity of moving on to a DNN that directly

estimates precipitation from IR imagery. Moreover, the

frequency bias (FBI) shows that the forecast biases are

reduced for both seasons compared to PERSIANN-

CCS. This suggests that the model is capable of identi-

fying false alarm pixels in the original PERSIANN-CCS.

Raw R/NR results on the validation periods can be

found in appendix B.

Figure 6 presents maps of the bias of DNN-corrected

precipitation over the study region averaged in thewarm

and cold validation periods, respectively, which is the

same region and time used in Fig. 2. The white color

indicates very small bias and shows that the DNN

model has made relatively significant corrections to

the PERSIANN-CCS precipitation pixels, especially

in the summer season. The overestimation produced

by the PERSIANN-CCS product is mostly removed.

Specific calculations are displayed in Table 7. The aver-

aged biases are only 0.002 and 0.012mmday21 after

bias correction, compared to 0.091 and 0.054mmday21

before bias correction for summer and winter (i.e., 98%

and 78% correction), respectively.

Similar results can be seen in Fig. 7, which shows the

MSE of PERSIANN-CCS and DNN-corrected precipi-

tation over the study region, averaged over the validation

periods. The warm colors indicate strong differences

compared to NCEP stage IV observations, while the cold

colors indicate small differences. The heavy errors shown

in PERSIANN-CCS over the summer validation period

(Fig. 7a) are strongly reduced by the model (Fig. 7b).

Similar results can be observed for the winter period

(Figs. 7c,d). However, as Table 7 illustrates, over 30%

correction in averagedMSE is observed for both seasons,

TABLE 7. Averaged bias, variance, and MSE of PERSIANN-CCS and DNN-corrected precipitation. Values in parentheses are the

relative performance of DNN corrected and PERSIANN-CCS.

Summer Winter

Averaged bias (mmh21)

PERSIANN-CCS 0.091 0.054

DNN corrected 0.002 (98% corrected) 0.012 (78% corrected)

Averaged variance [(mmh21)2]

PERSIANN-CCS 2.330 0.442

DNN corrected 1.596 (31% corrected) 0.306 (31% corrected)

Averaged MSE [(mmh21)2]

PERSIANN-CCS 2.338 0.445

DNN corrected 1.596 (32% corrected) 0.306 (31% corrected)
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and the absolute improvement in summer is more sig-

nificant. The results indicate themodel’s ability to correct

the bias of overall precipitation intensity for both warm

and cold seasons by automatically extracting useful fea-

tures from satellite data.

To demonstrate how SDAE has significantly improved

estimates of individual precipitation events, Fig. 8 and

Table 8 present the analysis of a rainfall event on

4 August 2014. The event is randomly selected from

noticeable rainfall events within the validation periods.

The cumulative amounts of the rainfall event for

PERSIANN-CCS, DNN-corrected, and NCEP stage IV

precipitation are all displayed in Fig. 8. It can be seen

that overestimation in the original PERSIANN-CCS is

reduced remarkably, while the rainfall distribution pat-

tern is also adjusted toward the observation to some

extent. This effect is quantified in Table 8 for bothR/NR

detection and intensity. As for detection performance,

the number of precipitation pixels in PERSIANN-CCS

is reduced from 22% overestimated to just 2%, while

FIG. 7. Averaged MSE [(mmh21)2] of (left) PERSIANN-CCS and (right) DNN-corrected output over the central United States

(308–458N, 908–1058W): (a),(b) summer (June–August 2013) and (c),(d) winter (from December 2013 to February 2014).
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around 23% of false positive pixels are corrected. Raw

R/NR results on the validation periods can be found in

appendix B. As for intensity, averaged bias and MSE

decrease from 0.398 and 8.267 to 0.164 and 4.875 (i.e.,

58% and 41% correction), respectively. This example

demonstrates the effectiveness of the model to help

improve precipitation estimation for typical storm

events. Meanwhile, notice that the scheme is unable to

deal with the missing precipitation of the original

PERSIANN-CCS. An area of future research for us will

be to apply themethod to direct precipitation estimation

to start addressing this issue.

To validate the effectiveness of the methodology when

the coefficients are applied in other locations, Table 9

summarizes averaged bias, variance, and MSE of DNN-

corrected and PERSIANN-CCS precipitation over three

areas outside of the study region on the warm and cold

validationperiods, respectively.Generally, themodelworks

effectively to reduce bias and variance of the original

PERSIANN-CCS. For the Colorado area (358–408N, 1058–
1108W) and the Arizona area (308–358N, 1108–1158W),

MSEs are improved at least 29% for both warm and cold

seasons, while improvement is only around 4% for summer

for the Georgia area (308–358N, 808–858W). One possible

reason for this is that the original PERSIANN-CCS has a

relatively large amount of missing and underestimation in

this area. Therefore, our model will not be helpful in those

situations, as discussed above.

6. Conclusions

The aim of this paper is to apply a deep neural net-

work framework to satellite-based precipitation estimation

products to correct the estimation bias in a data-driven

manner by extracting more useful features from satellite

imagery. More specifically, SDAE, a popular technique

in image recognition, is employed to improve the

PERSIANN-CCS product. The model is trained in

2012–13 and evaluated during the 2013 summer and

2013/14 winter seasons.

Verification studies show improved results in both

R/NR detection and precipitation intensity over the

validation period for both seasons. Binary R/NR de-

tection resulted in the correction of a significant number

of false alarm pixels, especially in the cold season. For

precipitation intensity, the averaged daily biases are

corrected by as much as 98% and 78% in the validation

warm and cold seasons, respectively. These results are

also illustrated for a specific rainfall event on 4 August

2014, for which visualization of the cumulative rainfall

FIG. 8. Cumulative precipitation amounts (mmday21) of PERSIANN-CCS estimation,DNN-corrected estimation, andNCEP stage IV

observation on 4 Aug 2014, over the central United States (308–458N, 908–1058W): (a) PERSIANN-CCS, (b) DNN corrected, and

(c) NCEP stage IV.

TABLE 8. Performance of PERSIANN-CCS andDNN-corrected

precipitation on 4 Aug 2014. Values in parentheses are the relative

performance of DNN corrected and PERSIANN-CCS.

No. of precipitation pixels (h21)

NCEP stage IV 1433

PERSIANN-CCS 1732 (22% more)

DNN corrected 1450 (2% more)

No. of false positive pixels (h21)

PERSIANN-CCS 805

DNN corrected 622 (23% corrected)

No. of misclassified pixelsa (h21)

PERSIANN-CCS 1311

DNN corrected 1227 (6% corrected)

Averaged bias (mmh21)

PERSIANN-CCS 0.398

DNN corrected 0.164 (58% corrected)

Averaged MSE [(mmh21)2]

PERSIANN-CCS 8.267

DNN corrected 4.875 (41% corrected)

a Includes both false positive (false alarm) and false negative

(missing) events.
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amount demonstrates the model’s ability to correct false

alarms and overestimation.

The results verify that useful information is available

in IR imagery and can help improve the quality of sat-

ellite precipitation products with respect to detecting R/

NR pixels and quantifying the precipitation rates. More

important, such useful information for precipitation es-

timation can be extracted automatically by deep neural

networks. Moreover, the methodology can be easily

integrated into near-real-time operational precipitation

estimation products and can help extract additional

features from satellite datasets to reduce bias. Mean-

while, the application of the technique is not limited to

IR imagery, but should be extendable to multiple sat-

ellite datasets because of its ability to automatically

extract information. The case study of PERSIANN-

CCS proves its advantage compared to a few manually

designed features.

In addition, our results suggest that GOES cloud IR

imagery still contains valuable information that has not

been utilized by most satellite precipitation retrieval

algorithms. Our experiment demonstrates that the cloud

IR image from a 15 3 15 pixel window is more infor-

mative than the nine IR statistic features used in

PERSIANN-CCS as the input data for precipitation

estimation. Such information can be extracted auto-

matically by a well-designed deep neural network. The

next step for this work will be to explore the possibility

of using deep learning techniques to produce a precipita-

tion estimation product directly instead of bias correction.

Moreover, we believe that these data-driven method-

ologies can benefit many fields of weather forecasting,

climate variability, hydrology, and water resources

management.
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APPENDIX A

SDAE Calibration Scheme

The SDAE involves 1) initializing parameters (i.e.,

weights) with an unsupervised greedy layer-wise pre-

training process and 2) fine-tuning parameters of all

layers globally to minimize a loss function.

a. Greedy layer-wise pretraining

The denoising autoencoder (DAE) method is used

as a layer-wise pretraining technique to initialize the

weights for each layer of the DNN. Initialization is

often a crucial component of successful algorithms for

deep architectures (Bengio 2009). An autoencoder (AE),

structured as in Fig. A1, is an unsupervised learning

process that trains the weights to reconstruct the input x

using its internal representation (hidden nodes) h

TABLE 9.Averaged bias, variance, andMSEof PERSIANN-CCS andDNN-corrected precipitation over areas outside of the study region.

Values in parentheses are the relative performance of DNN corrected and PERSIANN-CCS.

Summer Winter

Colorado area

Averaged bias (mmh21) PERSIANN-CCS 0.091 0.062

DNN corrected 0.002 (99% corrected) 20.005 (92% corrected)

Averaged variance [(mmh21)2] PERSIANN-CCS 0.738 0.722

DNN corrected 0.498 (32% corrected) 0.421 (42% corrected)

Averaged MSE [(mmh21)2] PERSIANN-CCS 0.746 0.725

DNN corrected 0.498 (33% corrected) 0.421 (42% corrected)

Arizona area

Averaged bias (mmh21) PERSIANN-CCS 0.028 0.085

DNN corrected 0.004 (86% corrected) 0.002 (98% corrected)

Averaged variance [(mmh21)2] PERSIANN-CCS 0.331 0.778

DNN corrected 0.235 (29% corrected) 0.437 (44% corrected)

Averaged MSE [(mmh21)2] PERSIANN-CCS 0.332 0.785

DNN corrected 0.235 (29% corrected) 0.437 (44% corrected)

Georgia area

Averaged bias (mmh21) PERSIANN-CCS 20.039 0.017

DNN corrected 20.052 (33% worse) 20.016 (6% corrected)

Averaged variance [(mmh21)2] PERSIANN-CCS 0.911 0.862

DNN corrected 0.875 (4% corrected) 0.655 (24% corrected)

Averaged MSE [(mmh21)2] PERSIANN-CCS 0.911 0.862

DNN corrected 0.878 (4% corrected) 0.657 (24% corrected)
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(Bourlard and Kamp 1988; Hinton and Zemel 1993).

The representation is called the encoder:

h5 f (x)5 s(W
12
x1 b

1
) ,

where f (�) is a deterministic mapping function; s is a

nonlinear operator, known as an activation function;

W12 denotes the weights between the input and hidden

layers; and b1 is an offset vector. Common choices for s

include the sigmoid function, hyperbolic tangent func-

tion, and rectified linear function. The loss function to

minimize is typically a reconstruction error (RE) given

the hidden nodes h, such as the MSE:

RE5 jjx2 x̂jj2 ,

where x̂ is the reconstructed estimate of x, given by

x̂5 g(h)5 s(W
23
h1 b

2
) ,

where g(�), with a similar form to f (�), is called the de-

coder;W23 denotes the weights between the hidden and

output (reconstruction) layers; and b2 is an offset vector.

In deep architectures, overcomplete (meaning that it is

of a higher dimensional than on x) but sparse repre-

sentations are widely used to help extract useful sparse

features (Le et al. 2011; Lee et al. 2007; Ranzato

et al. 2007).

However, AE methods with overcomplete represen-

tations are unable to guarantee the extraction of useful

features because they can lead to the obvious solution:

‘‘simply copy the input’’ (Vincent et al. 2010). To over-

come this problem, DAE extracts robust representa-

tions by reconstructing the input from a noisy version of

it. As indicated by Vincent et al. (2008), the useful

higher-level information should be rather stable and

robust under perturbation of the input. One typical way

to do so is called ‘‘masking noise,’’ which randomly

forces a fraction of the input elements to be zero. For

example, for an image, the input used will be a ‘‘broken’’

version of the raw image. Starting from the input layer,

DAE is applied to initialize weights between layers

sequentially, except the last layer, which is the output

layer.

b. Supervised fine tuning

Learning the weights one layer at a time is computa-

tionally efficient but does not provide the optimal

weights for the overall prediction task (Hinton et al.

2006). Instead, these weights can be treated as an ini-

tialization, followed by a traditional supervised learning

process used to fine-tune all of the weights simulta-

neously to further optimize the whole neural network.

The backpropagation (backward propagation of errors)

algorithm, which performs gradient descent, is com-

monly used for training artificial neural networks to

minimize the loss function (Rumelhart et al. 1986). MSE

is used as the loss function in this project because it is a

common choice for real-valued output. In this step, the

complete raw input is used to produce higher levels of

representations (Vincent et al. 2010).

APPENDIX B

Table B1 provides raw R/NR results on the validation

periods and 4 August 2014.

FIG. A1. An autoencoder. The structure is similar to a regular

neural network as shown in Fig. 3, but its output layer is a re-

construction of the input layer. Therefore, AE is an unsupervised

learning structure without a target value associated with it.

TABLE B1. Raw R/NR classification results of PERSIANN-CCS and DNN-corrected precipitation of the validation periods and on

4 Aug 2014.

True positive False positive False negative True negative

Summer 2014 (h21)

PERSIANN-CCS 299 395 234 34 228

DNN corrected 252 264 281 34 359

Winter 2014 (h21)

PERSIANN-CCS 83 598 275 34 200

DNN corrected 70 339 288 34 459

4 Aug 2014 (h21)

PERSIANN-CCS 927 805 506 32 918

DNN corrected 828 622 605 33 101
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