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RESEARCH ARTICLE EVOLUTION OPEN ACCESS

The contribution of gene flow, selection, and genetic drift to
five thousand years of human allele frequency change
Alexis Simona,b,1 ID and Graham Coopa,b
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Genomic time series from experimental evolution studies and ancient DNA datasets
offer us a chance to directly observe the interplay of various evolutionary forces. We
show how the genome-wide variance in allele frequency change between two time
points can be decomposed into the contributions of gene flow, genetic drift, and linked
selection. In closed populations, the contribution of linked selection is identifiable
because it creates covariances between time intervals, and genetic drift does not.
However, repeated gene flow between populations can also produce directionality in
allele frequency change, creating covariances. We show how to accurately separate the
fraction of variance in allele frequency change due to admixture and linked selection in
a population receiving gene flow. We use two human ancient DNA datasets, spanning
around 5,000 y, as time transects to quantify the contributions to the genome-wide
variance in allele frequency change. We find that a large fraction of genome-wide change
is due to gene flow. In both cases, after correcting for known major gene flow events,
we do not observe a signal of genome-wide linked selection. Thus despite the known
role of selection in shaping long-term polymorphism levels, and an increasing number
of examples of strong selection on single loci and polygenic scores from ancient DNA,
it appears to be gene flow and drift, and not selection, that are the main determinants
of recent genome-wide allele frequency change. Our approach should be applicable
to the growing number of contemporary and ancient temporal population genomics
datasets.

linked selection | gene flow | time series | ancient DNA | human evolution

There is a long-standing debate about the role of genetic drift versus selection in
evolutionary change (1–7). While this debate has sometimes been contentious, the
answers to these questions are quantitative, describing the relative contributions of basic
evolutionary forces to allele frequency change and how this differs across species and
different functional categories. Estimating these contributions is complicated, in part
because selection can have direct and indirect effects, where the indirect effects include
“linked selection,” the impact of correlated selection at nearby selected sites (7–12). The
problem is made more difficult as we often rely on a single snapshot of contemporary
genomes to tease apart multiple interacting processes (gene flow, demography, hard or
soft sweeps, background selection, selective interference, etc).

Genomic time series, from museum collections and ancient DNA, offer a potent
reservoir of temporal genetic data to track the changes in allele frequencies, identify
selected loci, and understand the impact of other evolutionary forces (e.g., refs. 13–17).
Ancient human DNA has already revolutionized our view of human history, revealing
that large-scale population movement and gene flow are pervasive, with complex patterns
of allele frequency change driven by population turnover.

Unlike genetic drift, allele frequency change due to either selection or gene flow is
expected to be sustained and directional. Recent investigations have highlighted the
role of gene flow and population structure in confounding our interpretation of genetic
signals of selection in humans (18–21). Methods to look at selection at single loci and on
polygenic scores in human ancient DNA now often account for the confounding effects
of gene flow. These approaches have revealed persuasive signals of selection (13, 21–26).
However, these methods only capture outlier signals, and so cannot give us a full picture
of how gene flow, selection, and genetic drift have driven genome-wide change. Linked
selection is thought to have a critical role in shaping patterns of genetic diversity and
divergence in humans on long time scales, with an autosomal reduction in diversity
of upward of 20% from background selection alone (27, 28). Some authors have also
argued for a pervasive role of selective sweeps in shaping genome-wide patterns of diversity
(29, 30). Thus, it is an open question how much of allele frequency change genome-wide
is driven by selection in humans.
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The relative contribution of
random genetic drift and natural
selection to the change in allele
frequencies through time is a
long-standing question in
evolutionary biology. We show
through theory and simulation
how genomic time series—such
as ancient DNA datasets—can
be used to decompose the
genome-wide contributions of
selection, gene flow, and genetic
drift to allele frequency change.
We apply these methods to
two time series from ancient
Europeans and show that gene
flow accounts for most allele
frequency change over the last
few thousand years, with genetic
drift and not selection making
up much of the rest of the
contribution to genome-wide
evolutionary change.
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We set out to decompose the total variance in allele frequency
change into the contributions of linked selection, gene flow, and
drift. Unlike genetic drift, ongoing selection creates covariance in
allele frequency change between nonoverlapping time intervals.
The use of genome-wide allele frequency change covariances
in time series data has recently been proposed to identify the
proportion of genome-wide change due to selection in closed
populations (31). In a panmictic population, a genome-wide
positive covariance between a pair of time periods indicates the
compounding of allele frequency change across generations, while
negative covariance can potentially result from selection pressures
in opposite directions. Many different modes of selection are
expected to generate these covariance patterns (32, 33). This
approach has been applied to experimental evolution datasets
(33, 34) and to natural populations where temporal sampling is
available (in Mimulus, oaks and cod; 35–37). These applications,
along with related methods (38), have revealed that a reasonable
proportion of total allele frequency change, especially in artificial
selection experiments, can be attributed to widespread selection
beyond just a few outliers. However, applying these methods
when population structure and migration are present will give
biased results, as sustained gene flow across time periods can also
drive temporal covariance in allele frequency change.

Here, we develop theory and simulations to show how the
effect of gene flow can be accounted for using an admixture
model from a known set of sources to recover the genome-wide
contribution of gene flow and linked selection. We demonstrate
this approach using two European human ancient DNA time
series from the United Kingdom and the Bohemian region of
Central Europe to quantify the contributions of linked selection
and gene flow to the total variance in allele frequency change
between the Neolithic and a modern or recent time point. In
both cases, we find a major contribution of gene flow to allele
frequency change. After correcting for known gene flow in these
time transects, we do not observe any signal of genome-wide
linked selection. However, we detect a weak signal of linked
selection in levels of temporal allele frequency variance in regions
of the genome with low recombination and high gene density.

Results
Model. We consider a model of data from a population sampled
at multiple discrete time points (t ∈ [0, T ]) from an arbitrary
geographic region. This population receives gene flow, modeled
as single pulses of admixture, from other known source groups
through time. We follow the population allele frequency over
time, pt , and use Δpt , defined as pt+1 − pt , to denote the
change in allele frequency between adjacent time points. The
focal population has mean ancestry fractions �̄r,t (r ∈ [1, R])
from R source populations that will change over time due to gene
flow. We assume that allele frequencies in the source populations
are constant and that good proxy samples for these sources are
available, and discuss the implications of those assumptions later.

Given sample frequencies at some large set of SNPs, we
can calculate the empirical variance–covariance matrix of allele
frequency change for our time series, Cov(Δpi,Δpj), for all
combinations of time intervals i and j, averaged over SNPs. In
calculating these covariances we include adjustments for biases in
the variance and covariance estimates due to shared sampling
of an intermediate time point (see Materials and Methods,
Calculating the Covariance Matrix, and Appendix A).

Under our model, the total variance in allele frequency change
between the first sampled time point (0) and any following time
point (T ) in the time series can be decomposed into sums over

time intervals of the contributions due to drift, selection and
admixture:

Var(pT − p0) =
T−1∑
i=0

Var(ΔDpi)︸ ︷︷ ︸
Drift

+
T−1∑
i=0

Var(ΔSpi)︸ ︷︷ ︸
Selection

+
T−1∑
i=0

Var(ΔApi)︸ ︷︷ ︸
Admixture

+
T−1∑
i 6=j

Cov(ΔSpi,ΔSpj)︸ ︷︷ ︸
Selection

+
T−1∑
i 6=j

Cov(ΔApi,ΔApj)︸ ︷︷ ︸
Admixture

. [1]

For simplicity, here we omit an interaction between drift in one
time period that admixture in later time periods subsequently
erases, that adds an additional term to covariances (Appendix C)
that we account for.

The expected variance and covariance of allele frequency
change due to admixture follow from the expected allele fre-
quency change in ancestry proportions through time. Specifically,
if in the tth time interval admixture changes the ancestry
proportion from the rth source from �̄r,t to �̄r,t+1 (Δ�̄r,t =
�̄r,t+1 − �̄r,t ), then the expected change in frequency due to
admixture is ΔApt =

∑R
r=1 Δ�̄r,t fr , where fr is the allele

frequency in the source population r. Thus, the admixture
contribution to covariance in allele frequency change between
time periods i and j can be expressed as

Cov(ΔApi,ΔApj) = Cov

( R∑
r=1

Δ�̄r,ifr ,
R∑

r=1
Δ�̄r,jfr

)
. [2]

As we only have sample allele frequencies from proxies of
the sources of admixture, this matrix is corrected for sampling
noise biases in fr (Appendix B). With this admixture covariance
in hand, we can now calculate the contribution of gene flow
to allele frequency change, and adjust for the contribution of
admixture when looking for covariances induced by selection.

We express the estimated proportion of total variance in allele
frequency change attributable to gene flow (admixture) up to
time t (A(t)) as

A(t) ≡

∑t−1
i=0 Var(ΔApi) +

∑t−1
i 6=j Cov(ΔApi,ΔApj)

Var(pt − p0)
, [3]

where the terms in the numerator are given by Eq. 2. Note that
A(t) might be an under-estimate as it excludes the contribution
of gene flow from unmodeled sources, as well as gene flow events
that leave the admixture proportions relatively unchanged.

The proportion of total variance in allele frequency change
between 0 and t due to linked selection, G(t), is defined as
the ratio of the total covariance due to linked selection over the
total variance (31). Under our model, G(t) can be estimated by
correcting the empirical covariance by the estimated covariance
term due to admixture:

G(t) ≡

∑t−1
i 6=j Cov(ΔSpi,ΔSpj)

Var(pt − p0)

=

∑t−1
i 6=j Cov(Δpi,Δpj)− Cov(ΔApi,ΔApj)

Var(pt − p0)
. [4]
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We also report an estimate of G not controlling for admixture
(Gnc). Note that G is a lower bound on the proportion as it
does not account for the contribution of linked selection to
the variance in allele frequency change within time periods.
We attribute the residual proportion 1 − A − G of the total
allele frequency variance to drift-like allele frequency change.
This proportion of the temporal variance is consistent with
genetic drift as it excludes covariances between time periods,
which can not come from drift, and the contribution of known
gene flow.

Simulations. To illustrate our decomposition of genome-wide
allele frequency change, we simulated a simple scenario where a
population receives pulses of admixture (arrows in Fig. 1A and
SI Appendix, Fig. S1). This repeated admixture results in positive
covariances between time intervals due to the admixture-driven

allele frequency change in generations 160 to 100 (measured
before present) being in the same direction as those in generations
60 to 0 (Fig. 1 B and C ). We can remove the covariance due to
admixture (Eq. 2), resulting in covariances close to zero (Fig. 1
B and D).

We can calculate the total contribution of gene flow to allele
frequency change in our simulated time series (Eq. 3) and see
that gene flow accounts for much of the allele frequency change.
Because the repeated gene flow creates positive covariance in
allele frequency change, failing to account for this gene flow
generates a spurious signal of linked selection (large nonzero
Gnc ’s, dashed black line Fig. 1E). However, when we account
for gene flow, the signal of linked selection is almost completely
removed from our neutral simulations (G, black line, Fig. 1E).
The remaining slightly nonzero G value in our final time period
(Fig. 1E) results from a slight over-correction for the covariance

A B

C D

E F

Fig. 1. Simulation scenario of admixture (A) between two populations (0 and 1) under neutrality (B to E) and with selection (F ). (A) Ancestry proportions of
the focal admixed population through time in generations before present. Arrows indicate the migration pulses from Pop1 (at 150, 130, 110, 50, 30, and 10
generations before present). (B) Covariance between time intervals. Below diagonal values are before admixture correction, above diagonal are after admixture
correction. (C) and (D) pre- and post-admixture correction covariances. X-axis values are slightly shifted for visualization and the Bottom lines indicate point
groupings to their corresponding time. (E) Proportion of the total variance between the initial measured time (120) and t due to linked selection (Gnc and G
are pre- and post-admixture correction respectively) and to gene flow (A). Points are slightly x-shifted for visualization. (F ) Simulations for the decomposition of
variance for neutral polymorphisms with selection around a gradually moving optimum starting at generation 140 BP for three independent traits. All points
have 95% CIs of the mean, computed using 100 replicates of the simulations (here the small CIs are hidden by their points).
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due to the interaction of drift and gene flow (SI Appendix, Figs.
S2 and S3).

To illustrate the effects of selection on the covariance, we
extended the above admixture simulations to include a set of loci
underlying traits under stabilizing selection around a moving
optimum (Materials and Methods, Simulations). In these simu-
lations, we can see the proportion of neutral allele frequency
change being due to selection increasing as covariances build up
over time (black line Fig. 1D and SI Appendix, Fig. S3). The effect
of selection on the covariances in neutral allele frequencies is also
well illustrated in a model without any gene flow (SI Appendix,
Figs. S4 and S5).

AncientDNATimeTransects. We investigated two time transects
of allele frequencies in ancient humans in restricted geographical
regions, the first one in the United Kingdom (ref. 39, the England
and Wales samples), and the second in the Central European
region of Bohemia (ref. 40, samples from the current Czech
Republic) spanning periods back to ∼5,600 y ago. Both these
time series cover major migrations of people, where an initial
mixture of early-farmer-like ancestry (EEF-like) and Western
hunter-gatherer-like ancestry (WHG-like) is partially replaced by
Steppe pastoralist-like ancestry (Steppe-like). This large turnover
due to Steppe-like migration into Central and Western Europe
was followed by a progressive increase in EEF-like ancestry over
a longer time period.

We combined the Patterson et al. (39) UK data from 793
ancient individuals with the present-day GBR 1,000 genomes
samples (“people of European ancestry from Great
Britain (GBR)”), to form a time series that runs from ∼5,500 y
ago to the present day. Following Patterson et al. (39), we broke
the samples into seven time periods corresponding to transitions
in ancestry proportions (Fig. 2C ). We used the individual
ancestry proportions of Patterson et al. (39) inferred from a
qpAdm three population model. These ancestry proportions are
calculated to reflect genetic similarity to a set of samples that are
pre-specified proxies for sources of ancestry. Note that an increase
in a particular ancestry likely does not reflect gene flow directly
from that source but rather from more nearby groups who
themselves were already mixtures. In turn, each of the three major
putative source ancestries was a product of admixture in the past.

The covariance matrix of allele frequency changes between
time periods is shown in Fig. 2A. The UK time transect shows
several large negative covariances between allele frequency change
in the first time period (Δp0, 5,424 to 4,005 y ago) and
subsequent time periods (see also black points in Fig. 3A). This
negative covariance largely reflects that the initial large population
turnover due to Steppe-like migration (during the first time
period), was followed by an increase in EEF-like ancestry Fig.
2C, (39) generating allele frequency changes in the opposite
direction. After correction by admixture, covariances are strongly
reduced with only a small subset differing significantly from 0
(Fig. 3C ). In the UK time transect, most of the total variance

A B

C D

Fig. 2. Human time series covariance matrices and ancestries (UK Left column, Bohemia Right column). (A and B) Covariance matrices with covariances
significantly different from zero marked with a star. The covariances have only been corrected for sampling bias and not admixture. (C and D) Mean ancestry
proportions from the three reference populations in the time transects samples (the mean of sample ages in each period is used for the representation).
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A B

C D

E F

Fig. 3. Human time series covariance corrections and variance decomposition (UK Left column, Bohemia Right column). The Top panels show the time intervals
on the years BP axis, note that the two time series have different axes. All 95% CIs are computed through a block bootstrap procedure and represented with
vertical bars. (A and B) Covariance values pre-admixture correction. Each line corresponds to the covariance between a first time interval (Δpi , color code) and a
later time interval (Δpj , x-axis). (C and D) Covariance values post-admixture correction. (E and F ) Proportion of the total variance, between the initial measured
time (0) and time t, due to linked selection (Gnc for noncorrected and G) and to gene flow (A).

in allele frequency change across time is due to admixture-based
changes, with 60% of allele frequency change being driven by
the Steppe-like gene flow, only for the contribution of admixture
to drop gradually as the EEF-like ancestry increases due to
subsequent migration(s) (Fig. 3 A, E, and G). If we do not adjust
for admixture, our estimate of the contribution of linked selection
(G) is negative (Fig. 3E, Gnc), reflecting the negative covariances
induced by admixture. After adjusting for admixture there is no
signal of a long-term contribution of linked selection, with G not
departing from zero, as there is no consistent pattern of residual

positive covariances. Our empirical covariance results match
those produced by a UK-like neutral simulation (41) model with
UK matched admixture pulses (SI Appendix, Figs. S16 and S17).
Finally, we checked for the ascertainment bias effects on our G
and A estimates making use of the fact that the genotyping array
consists of SNP sets discovered in different ascertainment panels.
While using subsets of differently ascertained loci increases our
uncertainty in our estimates, particularly for panels from more
genetically distant samples, we find that our results are robust to
the ascertainment scheme (SI Appendix, Fig. S8).
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A B C

Fig. 4. Variation of the total covariances and variances with sampling intervals (x-axis) and recombination rates (color coded) for the Gaussian stabilizing
selection (GSS) and background selection (BGS) models. (A) Sum of covariances under the GSS model, (B) sum of covariances under the BGS model, (C) sum of
variances under the GSS model.

We investigated another time transect from the Bohemia
region (40) spanning from 5,606 to 3,037 y ago, which we
also split into seven time periods following the original paper
(Fig. 2D). The largest covariance is negative, and an order of
magnitude larger than in the UK dataset (Fig. 3B), and again
seems to be due to the large influx from a Steppe-like source
between 3,880 and 3,120 y ago (between time points 3 and 4, Fig.
2D) and subsequent recovery of EEF-like ancestry (between Δp3
and Δp4, Fig. 2D). Again this large covariance due to admixture
can be corrected for (Fig. 3D). While the older time points
have a large amount of uncertainty, due to small sample sizes
(Materials and Methods, Ancient DNA Analyses), nearly all of the
variance in allele frequency change across the full time period is
accounted for by admixture (A ∼ 0.9) and we see little evidence
of allele frequency change attributable to linked selection in this
Bohemian time series (Fig. 3F G, a result that holds over SNP
ascertainment scheme SI Appendix, Fig. S8).

In sum, we see little evidence, in either transect, of linked selec-
tion in the covariances in allele frequency change between time
intervals, suggesting that having accounted for admixture, much
of the residual change across time intervals is due to drift-like
sampling processes. One caveat is that if selection operates over
short time scales, e.g., selection pressures fluctuate or deleterious
alleles are quickly lost, selection could generate substantial allele
frequency change (variance) within time intervals but little to no
covariance between the time intervals we consider.

To address the concern about the time intervals, we first reran
our covariance analysis on the larger UK dataset splitting each
time period in half. With this finer dissection of short-term
covariances, we still see no evidence of covariance due to linked
selection (SI Appendix, Fig. S12). To further explore the effect of
time intervals we extended our simulations of Gaussian stabilizing
selection and found that the sum of covariances decreases with
the length of the time interval studied (Fig. 4A), however, this
effect is only pronounced when the recombination rate is low
(SI Appendix, Fig. S6). Temporal covariances are also generated
under models of background selection (Fig. 4B, SI Appendix,
Fig. S7, and ref. 33) and, while somewhat diminished, these
also persist with longer sampling periods. Thus our simulations
suggest that while temporal binning of ancient DNA samples will
lead to lower covariances, the signal of linked selection should
still be detectable.

One further prediction is that linked selection is expected
to have larger effects in low recombination regions than high
recombination regions, and in regions with a greater density of
functional sites patterns that are seen in human polymorphism
datasets, (27, 42, 43). In simulations, we can see this effect, with
greater temporal covariances in regions of lower recombination
(Fig. 4A) and larger variances in allele frequency changes with
lower recombination (Fig. 4C ). While the temporal covariances
decrease with longer time interval, linked selection makes a
greater contribution to the variance of allele frequency change
within time intervals, so the overall signal of linked selection
can be retained in the correlation of allele frequency temporal
variances with recombination. To empirically examine this effect
of selection we binned SNPs by their local recombination rate
and a measure of the potential strength of linked selection,
the B-value, which at each location in the genome combines
the information of recombination rates and density of coding
sites (27, 28). In both time transects, we do not observe any
significant variation in the G and A statistics recalculated in
bins of recombination rate (44) or the B-value (SI Appendix,
Figs. S10 and S14). However, in the UK transect, we do see
a significant increase in the total variance in allele frequency
change in the lowest B-value bin (corresponding to the largest
decrease in effective population size due to background selection,
Fig. 5A, first bin mean is above the genome-wide 95% CI) and
in the variances of change within some of the time intervals
(Fig. 5B). Noise in the smaller Bohemia time transect precludes
seeing such effects (SI Appendix, Figs. S13–S15). The allele
frequency temporal variance increase in the United Kingdom for
the lowest quintile B-value compared to the genome-wide mean
is of 14.8%, suggesting a fifth of this,∼3%, is an estimate of the
genome-wide contribution of linked selection to allele frequency
change.

Discussion
Here, we have shown how ancient DNA data can be used to
decompose the contribution of gene flow, linked selection, and
drift to genome-wide allele frequency change. Using two ancient
DNA time transects, our results demonstrate that gene flow is the
dominant force changing allele frequencies in the recent history of
European human populations, and that selection-driven change
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A B

Fig. 5. Temporal variances for the UK time series binned by a proxy for the strength of linked selection (B-value). (A) Total temporal variance and sum of
covariance for each quintile bin of B-values. The blue dash-dotted line and interval are the genome-wide mean and 95% block bootstrap CI for total variance
computed with 1/5th of windows sampled on each bootstrap to be comparable to the binned values. (B) Variances by bin for each time interval, normalized by
heterozygosity. B-value quintile bins: [0.536 to 0.755), [0.755 to 0.849), [0.849 to 0.902), [0.902 to 0.944), [0.944 to 0.997).

is not common across the genome. This does not necessarily
contradict the number of signals of temporal selection found to
date, as a small fraction of loci could be subject to strong selection
(e.g., refs. 13, 14, 23–26). Indeed, some of these methods apply
similar admixture adjustments as ours, but look for genome-
wide outliers and so only detect strong selection on single loci,
e.g., Mathieson and Terhorst (13) expect to be able to detect
selection coefficients >0.02. Another set of approaches looks for
ancient selection on polygenic scores constructed from genome-
wide association studies (13, 14). These approaches account for
admixture and can detect subtle shifts at loci in ancient DNA,
but rely on the fraction of genetic variation for specific traits
captured in modern-day samples (45). Thus, our genome-wide
method is complementary to both time series outlier approaches
as well as phenotype-motivated approaches.

The large contribution of gene flow to evolutionary change
in the past few thousand years is not surprising given the
dynamic picture of population movement that has emerged from
ancient DNA. Our results provide additional evidence that allele
frequency changes are well fit by relatively simple admixture
models and strengthen the view that multiple migrations events
throughout the history of European Human populations have
played a preponderant role in the composition of modern
populations. The lack of a substantial contribution of linked
selection is perhaps more surprising. Linked selection has been
estimated to account for upward of 20% reduction in long-
term patterns of human diversity under models of background
selection (27, 28), and so we should expect a similar portion of
the variance in allele frequencies to come from linked selection.
Much of this effect should manifest itself in the compounding
of positive covariances between allele frequency changes across
the generations. While this effect has been seen empirically
in selection experiments and in some natural populations, we
currently do not see any evidence of this in humans. One

possibility is that the time periods we consider are not long
enough for strong covariances to build up, as the long-term
patterns of linked selection reflect dynamics over coalescent
time scales of hundreds of thousands of years. In contrast, the
other possibility is that negative selection generating background
selection is fast enough that it does not contribute to covariances
among the time periods used here. However, under this latter
interpretation, we should see higher allele frequency variances
in regions predisposed to stronger linked selection, but we see
this effect only weakly when partitioning loci by B-value. Larger
collections of ancient DNA will allow better temporal resolution
of allele frequency covariances, which could be combined with
more individual-level approaches to avoid the need for sample
lumping in time periods. It is also possible that some signals of
linked selection may be washed out at the fine geographic scale
of our time series, as our time series approach may partially be
picking up ephemeral change which may average out over the
much larger meta-population within which our time series are
embedded.

Our approach uses ancestry proportions from ancient DNA
for the three major inferred waves of gene flow into Europe.
The sparsity of ancient DNA means that we rely on the ancestry
proportions of relatively small samples of ancient individuals
to be representative of people living in the past. However, the
periods that we divide our samples into reflect reasonably well-
established periods in the peopling of the regions. We also rely on
allele frequencies in a set of samples as proxies for sources of gene
flow. As we discuss below, the misspecification of the sources of
gene flow may appear as evolutionary change within our focal
time series. One future extension might be to use principal
components analysis to learn about major axes of population
structure involving samples in a time series and then to regress
these PCAs out of our genotypes to account for variation in
ancestry composition in a more model-free manner.
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Our admixture correction seems to perform well on time
intervals involving the large ancestry shift in Steppe-like and
EEF-like ancestry (compare black points between Fig. 3A andC ).
However, we see several negative covariances that remain after
adjustment for admixture (Fig. 3 A and C ). In principle,
these could reflect fluctuating selection, but that seems unlikely
given the general lack of other evidence of selection. Rather,
these covariances could reflect that our proxies for gene flow
sources only capture part of the allele frequency change driven
by gene flow. Indeed, the increase of EEF-like ancestry in
the UK population is driven by subsequent migration(s) from
populations similar to the UK but with a higher proportion of
EEF-like ancestry, probably from mainland Europe. Therefore,
modeling the increase of EEF-derived alleles with the ancestral
EEF allele frequencies might not fully account for the impact of
migration. More detailed modeling with admixture graphs and
tree sequences could help better resolve the sources of gene flow
in time series (e.g., refs. 25, 41, and 46, although such inferences
may currently not be fully robust, ref. 47).

We attribute residual variance after accounting for gene flow
and temporal covariances to drift-like processes. Genetic drift
from the compounded sampling of parents to form each
generation in our geographic area will obviously contribute to
this. However, as our focal geographic areas are not homogeneous
populations, small changes in ancestry composition over time not
captured by larger-scale admixture analyses might be captured as
drift-like processes. Finally, as we take a fixed sample to reflect the
allele frequencies in the sources of gene flow, change in the actual
groups contributing to gene flow can also contribute to the signal
of drift; e.g., if the allele frequencies in the source of EEF-like
ancestry early differs from those contributing EEF-like ancestry
later in the time series, that will appear as drift-like change in
our focal time series. Our drift-like change in allele frequency
is small, corresponding to relatively large estimates of temporal
effective population sizes (Materials and Methods, Ancient DNA
Analyses). However, further work is needed to separate the long-
term effect of drift and the combined contribution of other drift-
like processes to our estimates of allele frequency change.

Extensions of our approach to larger geographical areas would
allow the contributions of local genetic drift and migration among
regions to be more fully explored. Such analyses would also pose
an interesting set of modeling challenges to measure evolutionary
change across spatially spread populations experiencing both local
migration and more long-range gene flow events.

Finally, while a large body of ancient DNA work has focused
on humans, ancient DNA and museum datasets for a wide range
of other organisms are also being generated (e.g., dogs, (48);
horses, (49); sticklebacks, (50); chipmunks, (51); Amaranthus,
(52)). The spread of ancient DNA and museum DNA research
as well as more widespread usage of genome-wide sequencing
to temporally monitor contemporary natural populations will
generate a rich set of resources of time series data. This offers the
chance for comparative studies to decompose the contribution
of different forces to genome-wide evolutionary change across
systems, time scales, and ecological and selection regimes.

Materials and Methods
Calculating the Covariance Matrix. We bin our samples into a set of discrete
time points and then calculate the allele frequency change at SNP l between
adjacent time points, t and t+1,Δpt,l . We then calculate the empirical variance–
covariance matrix of these allele frequency changes for all time points averaged
across SNPs. We denote the raw covariance matrix by R. We wish to quantify
the expected contribution of admixture to this matrix, but in doing so we also

have to correct for sampling noise in both the time series allele frequencies and
sources of admixture. The corrected covariance matrix is given by

C = (R− Ss)− (A + SA)− D, [5]

Ss is the expected matrix of biases from using sample frequencies in calculating
the empirical covariance matrix (Eq. 6). Our admixture adjustment, A, is the
expected admixture variance–covariance matrix (Eq.2), where proxy samples are
used as references for the admixture sources. The matrix SA is the expected bias
in the admixture matrix due to the sample noise from using sample frequencies
in our admixture correlation (Eq. 7). Finally, D is the expected drift/admixture
interaction matrix (Appendix C).

Here we calculate the sampling biases in the specific case of pseudohaploid
data in line with the ancient DNA datasets considered in this paper (Appendix A),
using ni for the haploid sample size at time point i and p̃i,l the sample frequency
at SNP l. The sampling noise from taking a small sample of individuals inflates
the variance of allele frequency change and shared sample between adjacent
time points creates covariance

Ss,i=j = E

(
1

ni,l − 1
p̃i,l(1− p̃i,l) +

1
ni+1,l − 1

p̃i+1,l(1− p̃i+1,l)

)

Ss,j−i=1 = E

(
−

1
ni+1,l − 1

p̃i+1,l(1− p̃i+1,l)

)
, [6]

with all other terms in the matrix set to zero [Appendix A and ref. 31]. These
matrices are calculated as an average over all our SNPs. Second, sampling noise
is also present in frequencies of the samples used as proxies for admixture, and
so this biases the admixture expectation as the same reference samples are used
for multiple time points (Appendix B):

SA,i,j = E

(∑
r

Δ�r,iΔ�r,j
1

nr,l − 1
f̃r,l(1− f̃r,l)

)
, [7]

following Eq. B.3 with �r,i the admixture proportion from reference population
r at time i, and f̃r the empirical allele frequency in the reference population r.

Finally, the simple admixture covariance expectation is missing a term due
to shared drift variances between time intervals. This can be estimated as shown
in Appendix C and requires the assumption that only one parental population
is contributing to gene flow during each time interval.D is given by Eq. C.9 and
is dependent on the estimated drift variance terms in parental populations and
admixture proportions at each time step common between two time points.

Simulations. We used the Demes format to write inter-operable demographic
scenarios (53). This allowed us to run the same model with either msprime for
neutral simulations (54) or SLiM (v3.7) for simulations including selection (55).
Results were recorded as tree sequences and analyzed in Python using tskit (56).
All results are based on 100 replicates of each scenario. The simulations pipeline
was built with snakemake (57) and can be found in the zenodo archive https://
doi.org/10.5281/zenodo.8093105 and includes the version of all software used.

In the main text simple scenario, an ancestral population splits into the
source populations 1,500 generations before present (BP). All populations are
kept at a constant size of 10,000 diploid individuals. 200 generations BP our
focal population that receives the admixture pulses is created from the first
parental population (pop0). Pulses of admixture from pop1 happen at regular
20 generations interval starting at 150 and finishing at 10 generations BP.
We sample 30 individuals 10 generations before and after pulses in our focal
population. For our admixture sources, we sample 30 individuals from each
parental population at 200 generations BP for allele frequency computations.
Samples are rendered pseudohaploid to mimic ancient DNA results (though no
missing data was inserted). A census event of all populations is performed in
the source populations when the admixed population is created to allow us to
compute the admixture proportions of all descendants.

We simulated a chromosome 100 Mbp in length with a mutation rate of
1 × 10−8 per bp and per generation and a uniform recombination rate of
2× 10−8.
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To simulate linked-selection in SLiM (55), we considered three independent
polygenic traits with alleles having a random effect size of±0.01 evolving under
a model of stabilizing selection around an initial optimum of 0 for each trait.
The fitness landscape is a Gaussian function centered on the optimum with a
variance, Vs, of 1. The optimum is gradually shifted from 0 to 3 SDs between
140 generations BP to the present similarly in all extant populations (by steps
of shift/time). The ancestral population has a burn-in of 0.1N generations in
SLiM and the complete ancestral history has been recapitated with pyslim (58).
Mutations under selection are not used in the downstream analyses and neutral
mutations are added a posteriori with msprime. We note that these simulations
are not intended to mimic a particular selection scenario, as the density of loci
underlying different traits per chromosome is unknown. Rather the parameters
were chosen to generate results where both admixture and selection made
comparable contributions for illustration purposes.

Finally, to investigate the role of sampling intervals and recombination rates
we repeated the above Gaussian stabilizing selection simulations with varying
recombination rates [0.1 × 108, 0.5 × 108, 1 × 108, 2 × 108, 3 × 108]
approximately spanning the range of human recombination rates, and analyzing
the outputted tree sequences at different time sampling intervals [2, 5, 10, 15,
20]. We also simulated background selection using a model similar to Buffalo
and Coop (33) in SLiM where we use several deleterious mutations per haploid
genome per generation U = 1 and a negative selection coefficient s = −0.1.
The rest of the model and analysis pipeline is similar to the Gaussian stabilizing
selection case above.

Ancient DNA Analyses. We used two datasets from Patterson et al. (39) and
Papac et al. (40) for ancient DNA time transects in the United Kingdom and the
Bohemian region respectively. Data from those papers were downloaded from
the indicated sources and merged with a set of parental population proxies and
modern samples from the AADR v50.0 1240k dataset (59) using data from refs.
23, 48, 60–85. Modern samples were used to provide a modern time point in
the UK time transect. The data analysis snakemake pipeline can be found in
the zenodo archive https://doi.org/10.5281/zenodo.8093107 and includes the
version of all software used.

Individuals from each time period defined in the original analyses are pooled
together to compute allele frequencies and the mean estimated age is taken as
the time point date. For the UK dataset (39), we merged the published data with
AADR v50.0 (providing modern samples and parental population proxies), and
with data from Fowler et al. (86) to access 10 individuals missing from the other
datasets. Only loci with more than 10 genotypes in each time point grouping
and more than five genotypes in reference populations were kept, resulting in
474,554 SNPs kept over the initial 1,135,618. We used combined filters 0 and
1 from Table S5 of Patterson et al. (39) as our quality and relevance filtering.
This resulted in sample sizes of [37, 69, 26, 23, 273, 38, 62] for periods labeled
[“Neolithic,” “Chalcolithic/EBA,” “Middle Bronze Age,” “Late Bronze Age,” “Iron
Age,” “Post Iron Age,” “Modern”] and mean nonmissing genotypes across all
SNPs of [25.5, 46.3, 19.6, 14.8, 208.2, 25.5, 59.9]. Mean sample dates for those
periods are [5424, 4005, 3326, 2929, 2215, 1180, 0] B.P. Reference sample
sizes are [18, 21, 18] for groups labeled [“WHGA,” “Balkan_N,” “OldSteppe”] in
the dataset interpreted as WHG-like, EEF-like, and Steppe-like. Those reference
samples have mean nonmissing genotypes across all SNPs of [7.4, 15.4, 12.4]
respectively.

For the Papac et al. (40) dataset, only loci with more than two genotypes in
each time point grouping and more than two genotypes in reference samples
were kept, resulting in 461,844 SNPs kept over the initial 1,150,639. Sample
sizes in this dataset are [3, 5, 29, 14, 48, 59, 84] for periods labeled [“Neolithic,”
“Proto-Eneolithic,” “Early Eneolithic,” “Middle Eneolithic,” “Corded Ware,” “Bell
Beaker,” “Unetice”] and mean nonmissing genotypes across all SNPs of [3., 3.7,
23.4, 10.9, 33.1, 41.9, 55.1]. Mean sample dates for those periods are [5607,
5253, 4229, 3880, 3726, 3120, 3037] B.P. Reference sample sizes are [4, 17,
15] for groups labeled [“WHG,” “Anatolia_Neolithic,” “Yamnaya”] in the dataset
interpreted as WHG-like, EEF-like, and Steppe-like. Those reference samples have
mean nonmissing genotypes across all SNPs of [3.5, 13.1, 9.0], respectively.

We used admixture measures from both published papers produced by the
qpAdm method, extracted from the Table S5 from Patterson et al. (39) and
Table S9 from Papac et al. (40). In concordance with the literature on European

Human demographic history during the last 5,000 y, we consider the simplest
three-way admixture between populations genetically most similar to European
early farmers (EEF-like, early migrants from Anatolia), Western hunter-gatherers
(WHG-like) and individuals associated to the Steppe pastoralists Yamnaya culture
(Steppe-like).

We computed CIs around estimates by block bootstrap sampling of windows
of 1,000 SNPs along the genome. Statistics computed for each window were
re-sampled 104 times with replacement and a 95% CI was computed by the
pivot method as in Buffalo and Coop (33). Statistics were computed through a
weighted average to account for variability in the number of SNPs in each window
(windows at the end of chromosomes often do not contain the required number
of SNPs). When dealing with ratio statistics (likeG), we computed separately the
numerators and denominators and used the ratio of the weighted averages for
the final values.

Each dataset was transformed from the eigenstrat to the sgkit format through
a plink (87) conversion step. Sex chromosomes were removed from the datasets.
To investigate the correlation of our statistics with recombination or background
selection, we incorporated in the dataset recombination rates (44, sex-averaged
version) and B-values (28) for each SNP—by using the value of the window the
SNP was in. We split all SNPs into five quantile bins and computed G and A
proportions for each one, as well as the variance and covariances.

We can compute a simple estimate of the diploid effective population size,
2N, by equating the expected variance due to drift after t generations,

Var(pt) = p0(1− p0)

[
1−

(
1−

1
2N

)t]
, [8]

with the residual variances for each time period in the studied datasets (having
adjusted for the variance due to admixture and sampling). Using a generation
time of 30 y, and using the number of generations between the mid-points of
each time interval for the UK dataset we obtain 2N = [351,472; 3,204,693;
2,827,982; 2,041,971; 361,192; 203,114] for each time interval. For the
Bohemia dataset time intervals, we get 2N = [768,209; 2,576,065; 1,392,381;
1,181,146; 1,275,489; 1,167,632]. We note that these effective population size
estimates are only approximate as they do not account for the more continuous
distribution of sampling times present in the data.

Data, Materials, and Software Availability. No new data were produced for
this work. Analyses pipelines are available at https://doi.org/10.5281/zenodo.
8093105 for simulations and at https://doi.org/10.5281/zenodo.8093107 for
the ancient DNA data. Those analyses rely on a custom helper python module
available at https://doi.org/10.5281/zenodo.8093101. Previously published
data were used for this work (39, 40).
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Appendix
A. Pseudohaploid Sampling. Following Buffalo and Coop (33),
the observed variance in allele frequency at time t can be
decomposed with the law of total variance:

Var(p̃t) = E(Var(p̃t |pt)) + Var(E(p̃t |pt)), [A.1]
= E(Var(p̃t |pt)) + Var(pt). [A.2]

This gives us a way to correct the observed variance for sampling
noise.

Pseudohaploid representation is common in ancient DNA
data to avoid errors when calling heterozygotes. Most often,
one read (and therefore allele) is selected randomly among
the mapped reads for each individual at a given position.
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Pseudohaploid calling can be modeled as a binomial sampling.
We consider sampling nt individuals in a population with
frequency of the alternate allele pt at time t. Pseudohaploid calling
is equivalent to each individual drawing one allele from the pool
of alleles. We define Xt ∼ Binom(nt , pt) the number of alternate
alleles sampled and p̃t = Xt/nt . Then the sampling noise is

Var(p̃t |pt) =
1
n2
t

Var(Xt), [A.3]

=
1
nt
pt(1− pt). [A.4]

Correction of the variance Var(Δp̃t) is carried out by subtract-
ing both sampling variances Var(p̃t |pt) and Var(p̃t+1|pt+1). As
in Buffalo and Coop (33), the covariances between two overlap-
ping time intervals, Cov(Δp̃t ,Δp̃t+1) are negatively biased by the
shared sampling noise in pt+1, and this needs to be corrected by
adding the shared time point sampling variance Var(p̃t+1|pt+1)
back in. For these corrections, we need an unbiased estimator of
the half heterozygosity. We define the sample heterozygosity as
H̃/2 = p̃(1− p̃), then

E(H̃/2) = p(1− p)
(
n− 1
n

)
. [A.5]

Therefore

Var(p̃t |pt) =
1

nt − 1
p̃t(1− p̃t). [A.6]

Similarly, if needed, we can compute the diploid sampling bias
estimator:

Var(p̃t |pt) =
1

2nt − 1
p̃t(1− p̃t). [A.7]

B. Pseudohaploid Sampling Noise in Reference Populations.
Let’s consider the allele frequency of reference population r

f̃r = fr + �fr . [B.1]

The observed allele frequency is equal to the true allele frequency
(fr) plus sampling noise.

Therefore

ΔpA,i =
R∑

r=1
Δ�̄i,r(f̃r − �fr) = Δp̃A,i − Δ�fr,i. [B.2]

Decomposing Cov(ΔpA,i,ΔpA,j) as E(ΔpA,iΔpA,j) −
E(ΔpA,i) E(ΔpA,j) and remembering that E(Δ�fr,i) = 0,
we end up with Cov(ΔpA,i,ΔpA,j) = Cov(Δp̃A,i,Δp̃A,j) +
E(Δ�fr,iΔ�fr,j).

Therefore

Cov(ΔpA,i,ΔpA,j) = Cov(Δp̃A,i,Δp̃A,j)

+
∑
r

Δ�r,iΔ�r,j Var(�fr), [B.3]

with Var(�fr), the variance of sampling noise in the pseudohap-
loid case, equal to 1

nr−1 f̃r(1− f̃r) (similar to Appendix A).

C. Accounting for Drift in the Admixture Correction. We con-
sider a simple model where only the focal admixed population
experiences drift and parental populations from which gene flow
occurs are not. This is in line with our use of a single proxy sample
for the sources of admixture. Under this model drift happening
in any of our contributing populations is absorbed into the drift
observed in the focal population. Drift that occurs in one time
interval can partially be erased by admixture in subsequent time
intervals. This interaction between drift and gene flow generates
additional covariance that needs to be accounted for.

Let fr be the frequencies of R parental populations for a
particular SNP. At time 0, an admixed population of frequency
p0 is established with ancestry proportions qk0 from any of the R
populations. Subsequently, between time points t and t + 1, this
admixed population can receive a migration pulse from any of
the R populations, where a proportion �r,t of individuals in the
focal population are replaced by migrants. Between time intervals
t and t + 1, drift happens changing the frequency by Δdt . pt is
the allele frequency at time t of our admixed population. qr,t are
the ancestry proportions at time t of this admixed population.

We define the proportion of individuals replaced by admixture
as

At =
∑
r

�r,t , with 0 ≤ At ≤ 1. [C.1]

The change in allele frequency can then be written as

pt+1 = (1− At)pt +
∑
r

�r,t fr + Δdt , [C.2]

Δpt = pt+1 − pt , [C.3]

= −Atpt +
∑
r

�r,t fr + Δdt . [C.4]

We can expand this out in terms of the change in allele
frequency due to admixture and drift in the preceding time
periods:

Δpt =
∑
r

[�r,t − Atqr,t ] fr

+ Δdt − At

Δdt−1 +
t−2∑
k=0

t−1∏
l=k+1

(1− At)Δdk

 .

[C.5]

We can express the ancestry fraction from source r at time t in
terms of the change due to admixture in previous time periods:

qr,t = �r,t−1 +
t−2∑
k=0

�r,k
t−1∏

l=k+1

(1− Al ), [C.6]

qr,t+1 = �r,t + (1− At)qr,t
Δqr,t = �r,t − Atqr,t .

[C.7]

As a constraint, if at each time step there is only one �rt > 0,
then it simplifies to:

Δqr,t = �r,t − �r,tqr,t

�r,t =
Δqr,t

1− qr,t
,

[C.8]

allowing us to compute the admixture fraction from the ancestry
proportions.
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When computing the covariance between two time intervals i
and j (i < j), a composite drift term depending on the admixture
pulses will be shared between all time intervals between times 0
to i between the two Δpi and Δpj. This expected admixture-drift
term D can be computed as

D(Δpi,Δpj)i<j =
i∑

k=0

(−Ai)1Z>0 (i−k)

 i−1∏
l=k+1

(1− Al )

1Z>0 (i−k−1)

× (−Aj)

 j−1∏
l=k+1

(1− Al )

1Z>0 (j−k−1)

Var(Δdk)

 ,

[C.9]

with

1Z>0(x) =
{

1 if x > 0
0 else

, [C.10]

D can then be subtracted from the empirical covariance to remove
this effect.

To compute D, individual time interval drift variances need to
be estimated (Var(Δdk)). We can use the fact that the variances
at each time interval can be decomposed as a linear combination
of drift variances to solve for them. Solving is only possible when
considering that only one parental population is contributing
to gene flow at a given time to be able to estimate the values
of individual �r Eq. C.8. The system for 0 ≤ i ≤ t is of the
form:

Var(Δpi) = Var

(∑
r

[�r,t − Atqr,t ] fr

)
+ Var(Δdi)

+ A2
i

Var(Δdi−1) +
i−2∑
k=0

i−1∏
l=k+1

(1− Al )2 Var(Δdk)

 .

[C.11]
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