UC San Diego
UC San Diego Previously Published Works
Title
EXISTENCE OF -ANALOGS OF STEINER SYSTEMS

Permalink

https://escholarship.org/uc/item/30w233vp

Authors

BRAUN, MICHAEL
ETZION, TUVI
ÖSTERGÅRD, PATRIC RJ
et al.

Publication Date

2016
DOI
10.1017/fmp.2016.5

Peer reviewed

EXISTENCE OF q-ANALOGS OF STEINER SYSTEMS

MICHAEL BRAUN, TUVI ETZION, PATRIC R. J. ÖSTERGÅRD, ALEXANDER VARDY, AND ALFRED WASSERMANN

Abstract

Let \mathbb{F}_{q}^{n} be a vector space of dimension n over the finite field \mathbb{F}_{q}. A q-analog of a Steiner system (briefly, a q-Steiner system), denoted $\mathcal{S}_{q}[t, k, n]$, is a set \mathcal{S} of k-dimensional subspaces of \mathbb{F}_{q}^{n} such that each t-dimensional subspace of \mathbb{F}_{q}^{n} is contained in exactly one element of \mathcal{S}. Presently, q-Steiner systems are known only for $t=1$, and in the trivial cases $t=k$ and $k=n$. In this paper, the first nontrivial q-Steiner systems with $t \geqslant 2$ are constructed. Specifically, several nonisomorphic q-Steiner systems $\mathcal{S}_{2}[2,3,13]$ are found by requiring that their automorphism groups contain the normalizer of a Singer subgroup of $\mathrm{GL}(13,2)$. This approach leads to an instance of the exact cover problem, which turns out to have many solutions.

1. Introduction

Let V be a set with n elements. A $t-(n, k, \lambda)$ combinatorial design (or t-design, in brief) is a collection of k-subsets of V, called blocks, such that each t-subset of V is contained in exactly λ blocks. A $t-(n, k, 1)$ design with $t \geqslant 2$ is called a Steiner system, and usually denoted $S(t, k, n)$. Nontrivial t-designs exist for all t, while nontrivial (meaning $t<k<n$) Steiner systems are known to exist for $2 \leqslant t \leqslant 5$; see [11, Part II], for example.

It was suggested by Tits [40] in 1957 that combinatorics of sets could be regarded as the limiting case $q \rightarrow 1$ of combinatorics of vector spaces over the finite field \mathbb{F}_{q}. Indeed, there is a strong analogy between subsets of a set and subspaces of a vector space, expounded by numerous authors-see [12, 19, 41] and references therein. In particular, the notions of t-designs and Steiner systems have been extended to vector spaces by Cameron [9, 10] and Delsarte [14] in the early 1970s. Specifically, let \mathbb{F}_{q}^{n} be a vector space of dimension n over the finite field \mathbb{F}_{q}. Then a $t-(n, k, \lambda)$ design over \mathbb{F}_{q} is a collection of k-dimensional subspaces of \mathbb{F}_{q}^{n} (k-subspaces, for short), called blocks, such that each t-subspace of \mathbb{F}_{q}^{n} is contained in exactly λ blocks. Such t-designs over \mathbb{F}_{q} are the q-analogs of conventional combinatorial designs. A t - $(n, k, 1)$ design over \mathbb{F}_{q} is said to be a q-Steiner system, and denoted $\mathcal{S}_{q}[t, k, n]$.

The first examples of nontrivial t-designs over \mathbb{F}_{q} with $t \geqslant 2$ were found by Thomas [38] in 1987. Today, following the work of many authors [8, 32, 33, 36, 37, 39, numerous such examples are known.

[^0]The situation is very different for q-Steiner systems. They are known to exist in the trivial cases $t=k$ or $k=n$, and in the case where $t=1$ and k divides n. In the latter case, q-Steiner systems coincide with the classical notion of spreads in projective geometry [30, Chap. 24]. Beutelspacher [6] asked in 1978 whether nontrivial q-Steiner systems with $t \geqslant 2$ exist, and this question has tantalized mathematicians ever since. The problem has been studied by numerous authors [3, 18, 31, 35, 38, 39, without much progress toward constructing such q-Steiner systems. In particular, Thomas [39] showed in 1996 that certain kinds of $\mathcal{S}_{2}[2,3,7] q$-Steiner systems (the smallest possible example) cannot exist. In 1999, Metsch [31] conjectured that nontrivial q-Steiner systems with $t \geqslant 2$ do not exist in general.

Our main result is the following theorem.
Theorem 1. There exist nontrivial q-Steiner systems with $t \geqslant 2$.
In fact, we have discovered over 400 nonisomorphic $\mathcal{S}_{2}[2,3,13] q$-Steiner systems. For more on this, see Section 3; however, let us briefly outline our general approach here. We begin by imposing a carefully chosen additional structure on a putative $\mathcal{S}_{2}[2,3,13] q$-Steiner system \mathcal{S}. Specifically, we construct a group $A \leq \mathrm{GL}(13,2)$ as the semidirect product of the Galois group $\operatorname{Gal}\left(\mathbb{F}_{2^{13}} / \mathbb{F}_{2}\right)$ and a Singer subgroup C_{α} of $\operatorname{GL}(13,2)$, and then insist that the automorphism $\operatorname{group} \operatorname{Aut}(\mathcal{S})$ contain A. Next, we make use of the well-known Kramer-Mesner method, and consider the Kramer-Mesner incidence structure between the orbits of 2-subspaces of \mathbb{F}_{2}^{13} and the orbits of 3 -subspaces of \mathbb{F}_{2}^{13} under the action of A. Given the corresponding Kramer-Mesner matrix \mathbf{M}^{A} with 105 rows and 30705 columns, we reformulate the search for \mathcal{S} as an instance of the exact cover problem, which we solve using the dancing links algorithm of Knuth.

As corollaries to the existence of $\mathcal{S}_{2}[2,3,13]$, we obtain a number of related results. Starting with $\mathcal{S}_{2}[2,3,13]$, we use [18, Theorem 3.2] to construct a Steiner system $S(3,8,8192)$. Steiner systems with these parameters were not known previously. $\mathcal{S}_{2}[2,3,13]$ also leads to new diameter-perfect codes in the Grassmann graph [3, 35]. Finally, we note that q-Steiner systems have applications for errorcorrection in networks, under randomized network coding, as shown in [17, 27. Thus we find that the maximum number of codewords in a subspace code over \mathbb{F}_{2}^{13} of constant dimension $k=3$ and minimum subspace distance $d=4$ is 1597245 .

The rest of this paper is organized as follows. In Section 2 we consider automorphisms of q-Steiner systems, and introduce the normalizer of a Singer subgroup, which is the group of automorphisms we choose to impose on $\mathcal{S}_{2}[2,3,13]$. In Section 3, we briefly outline the Kramer-Mesner method, and describe the computer search we have carried out based upon the results of Section 2, We give an explicit set of 15 orbit representatives for the 1597245 subspaces of one $\mathcal{S}_{2}[2,3,13] q$-Steiner system, thereby proving Theorem 1. We also present several negative results that establish nonexistence of q-Steiner systems of certain kinds, extending the work of [18, 28, 39]. We discuss the connection to difference sets in Section 4, and compile a number of related results. In Section [5, we conclude with a brief discussion of open problems, and formulate a specific conjecture regarding the existence of an infinite family of q-Steiner systems.

2. Automorphisms of q-Steiner systems

Let G be the group of bijective incidence-preserving mappings from the set of subspaces of \mathbb{F}_{q}^{n} onto itself. We know from the fundamental theorem of projective geometry [4, Chap. 3] that G is the general semilinear group $\Gamma \mathrm{L}(n, q)$. This group is isomorphic to the semidirect product of the general linear group $\mathrm{GL}(n, q)$ and the Galois group $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$, where p is the characteristic of \mathbb{F}_{q}. Unless stated otherwise, we will henceforth assume that q is prime, in which case G reduces to the general linear group $\mathrm{GL}(n, q)$. Basic familiarity with the main properties of $\mathrm{GL}(n, q)$ is assumed; an in-depth treatment of this group can be found, for example, in [22].

The action of $\mathrm{GL}(n, q)$ on subspaces of \mathbb{F}_{q}^{n} extends in the obvious way to sets of subspaces, and thereby to q-Steiner systems. Given a set \mathcal{S} of subspaces of \mathbb{F}_{q}^{n} and a group element $g \in \mathrm{GL}(n, q)$, we denote the image of \mathcal{S} under the action of g by \mathcal{S}^{g}. We say that two sets of subspaces \mathcal{S}_{1} and \mathcal{S}_{2} are isomorphic if there exists an element $g \in \mathrm{GL}(n, q)$ such that $\mathcal{S}_{2}=\mathcal{S}_{1}^{g}$. An element $g \in \mathrm{GL}(n, q)$ for which $\mathcal{S}^{g}=\mathcal{S}$ is called an automorphism of \mathcal{S}. The automorphisms of a set \mathcal{S} of subspaces form a group under composition, called the automorphism group and denoted $\operatorname{Aut}(\mathcal{S})$. A subgroup of $\operatorname{Aut}(\mathcal{S})$ is called a group of automorphisms. We note that, since GL (n, q) acts transitively on the set of k-subspaces of \mathbb{F}_{q}^{n} for any fixed k, the automorphism group of a nontrivial q-Steiner system is necessarily a proper subgroup of GL (n, q).

A well-known approach to constructing combinatorial objects is to prescribe a certain group of automorphisms A and then search only for those objects whose automorphism group contains A. For an overview of the theory and applications of this method to combinatorial designs, the reader is referred to [24, Sect. 9.2]. Prescribing a group of automorphisms simplifies the construction problem, sometimes rendering intractable problems tractable, but choosing the right groups can be a challenge. We shall now discuss certain apposite subgroups of $\mathrm{GL}(n, q)$.

A Singer cycle of $\mathrm{GL}(n, q)$ is an element of order $q^{n}-1$. Singer cycles can be constructed, for example, by identifying vectors in \mathbb{F}_{q}^{n} with elements of the finite field $\mathbb{F}_{q^{n}}$. Since multiplication by a primitive element $\alpha \in \mathbb{F}_{q^{n}}$ is a linear operation, it corresponds to a Singer cycle in $\mathrm{GL}(n, q)$. In fact, there is a one-to-one correspondence between Singer cycles in $\operatorname{GL}(n, q)$ and primitive elements in $\mathbb{F}_{q^{n}}$. Given a primitive element $\alpha \in \mathbb{F}_{q^{n}}$, the subgroup of $\mathrm{GL}(n, q)$ generated by the corresponding Singer cycle is cyclic of order $q^{n}-1$, and its elements correspond to multiplication by α^{i} for $i=0,1, \ldots, q^{n}-2$. We denote such groups by C_{α} and call them the Singer subgroups of GL (n, q).

Another group of importance to us is generated by the Frobenius automorphism $\phi: \mathbb{F}_{q^{n}} \rightarrow \mathbb{F}_{q^{n}}$, defined by $\phi(\beta)=\beta^{q}$ for all $\beta \in \mathbb{F}_{q^{n}}$. The Frobenius automorphism ϕ is the canonical generator of the Galois group $\operatorname{Gal}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right)$, which is cyclic of order n.

The normalizer of a subgroup $H \leq G$ is the set of elements of G that commute with H as a whole. That is, $N_{G}(H)=\{g \in G: g H=H g\}$. The following wellknown result can be found, for example, in [22, pp. 187-188].

Theorem 2. Let A_{α} be the normalizer of a Singer subgroup C_{α} in $\operatorname{GL}(n, q)$. Then A_{α} has order $n\left(q^{n}-1\right)$ and is isomorphic to the semidirect product of the Galois group $\operatorname{Gal}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right)$ and C_{α}.

The following theorem follows from a more general result by Kantor 23]. It is stated explicitly in 15 .

Theorem 3. Let n be an odd prime. Then the normalizer of a Singer subgroup is a maximal subgroup of $\mathrm{GL}(n, q)$.

In Section 3, we will search for q-Steiner systems \mathcal{S} whose automorphism group $\operatorname{Aut}(\mathcal{S})$ contains the normalizer of a Singer subgroup. We observe that Singer subgroups and normalizers of Singer subgroups have been used when prescribing automorphisms for various types of q-analog structures in [8, 17].

We already noted that $\operatorname{Aut}(\mathcal{S})<\mathrm{GL}(n, q)$ for nontrivial designs over \mathbb{F}_{q}. Thus for odd primes n, it follows from Theorem 3 that if $\operatorname{Aut}(\mathcal{S})$ contains A_{α}, then A_{α} is the full automorphism group of \mathcal{S}, namely $\operatorname{Aut}(\mathcal{S})=A_{\alpha}$. In turn, the fact that $\operatorname{Aut}(\mathcal{S})=A_{\alpha}$ makes it possible to say much more. In particular, we will show that distinct nontrivial designs whose automorphism group contains A_{α} are necessarily nonisomorphic. First, we need the following lemma.
Lemma 4. The normalizer A_{α} of a Singer subgroup is self-normalizing in $\operatorname{GL}(n, q)$. That is, $A_{\alpha}=N_{\mathrm{GL}(n, q)}\left(A_{\alpha}\right)$.
Proof. Let $g \in N_{\mathrm{GL}(n, q)}\left(A_{\alpha}\right)$. Then $g^{-1} C_{\alpha} g \leq g^{-1} A_{\alpha} g=A_{\alpha}$. The conjugate of a Singer subgroup is also a Singer subgroup. On the other hand, it is known [13, Proposition 2.5] that A_{α} contains a unique Singer subgroup. In conjunction with $g^{-1} C_{\alpha} g \leq A_{\alpha}$, this implies that $g^{-1} C_{\alpha} g=C_{\alpha}$. This, in turn, implies that $g \in A_{\alpha}$, and therefore $N_{\mathrm{GL}(n, q)}\left(A_{\alpha}\right)=A_{\alpha}$.
Theorem 5. Suppose that $n \geqslant 3$ and q are primes, and let A_{α} be the normalizer of a Singer subgroup in $\mathrm{GL}(n, q)$. Then distinct nontrivial q-Steiner systems $\mathcal{S}_{q}[t, k, n]$ admitting A_{α} as a group of automorphisms are nonisomorphic.

Proof. Let \mathcal{S}_{1} and \mathcal{S}_{2} be two distinct $\mathcal{S}_{q}[t, k, n] q$-Steiner systems, both admitting A_{α} as a group of automorphisms. Then

$$
\begin{equation*}
\operatorname{Aut}\left(\mathcal{S}_{1}\right)=\operatorname{Aut}\left(\mathcal{S}_{2}\right)=A_{\alpha} \tag{1}
\end{equation*}
$$

by Theorem [3, Assume to the contrary that \mathcal{S}_{1} and \mathcal{S}_{2} are isomorphic, that is $\mathcal{S}_{1}^{g}=\mathcal{S}_{2}$ for some $g \in \mathrm{GL}(n, q)$. Let $a \in A_{\alpha}$. Then it follows from (1) that

$$
\begin{equation*}
\mathcal{S}_{2}^{g^{-1} a g}=\mathcal{S}_{1}^{a g}=\mathcal{S}_{1}^{g}=\mathcal{S}_{2} \tag{2}
\end{equation*}
$$

and therefore $g^{-1} a g \in \operatorname{Aut}\left(\mathcal{S}_{2}\right)=A_{\alpha}$. Since (2) holds for all $a \in A_{\alpha}$, we conclude that g must belong to the normalizer of A_{α}, which is A_{α} itself by Lemma 4. But for $g \in A_{\alpha}$, we have $\mathcal{S}_{1}^{g}=\mathcal{S}_{1}$ by (1). Hence $\mathcal{S}_{2}=\mathcal{S}_{1}$, a contradiction.

We next show how to classify the subspaces of \mathbb{F}_{q}^{n} into orbits under the action of various groups of interest. Fix a primitive element α of $\mathbb{F}_{q^{n}}$, and write a k-subspace X of \mathbb{F}_{q}^{n} as $X=\left\{\mathbf{0}, \alpha^{x_{1}}, \alpha^{x_{2}}, \ldots, \alpha^{x_{m}}\right\}$, where $m=q^{k}-1$ and $x_{1}, x_{2}, \ldots, x_{m} \in$ $\mathbb{Z}_{q^{n}-1}$. For $x \in \mathbb{Z}_{q^{n}-1}$, let $\rho(x)$ be the minimal cyclotomic representative for x, that is $\rho(x)=\min \left\{x q^{i} \bmod \left(q^{n}-1\right): 0 \leqslant i \leqslant n-1\right\}$. We define

$$
\begin{aligned}
\operatorname{inv}_{F}(X) & \stackrel{\text { def }}{=}\left\{\rho\left(x_{i}\right): 1 \leqslant i \leqslant m\right\} \\
\operatorname{inv}_{S}(X) & \stackrel{\text { def }}{=}\left\{x_{i}-x_{j}: 1 \leqslant i, j \leqslant m \text { with } i \neq j\right\} \\
\operatorname{inv}_{N}(X) & \stackrel{\text { def }}{=}\left\{\rho\left(x_{i}-x_{j}\right): 1 \leqslant i, j \leqslant m \text { with } i \neq j\right\}
\end{aligned}
$$

Lemma 6.

(1) If two k-subspaces X, Y of \mathbb{F}_{q}^{n} are in the same orbit under the action of the Galois group $\operatorname{Gal}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right)$ then $\operatorname{inv}_{F}(X)=\operatorname{inv}_{F}(Y)$.
(2) If two k-subspaces X, Y of \mathbb{F}_{q}^{n} are in the same orbit under the action of the Singer subgroup C_{α} then $\operatorname{inv}_{S}(X)=\operatorname{inv}_{S}(Y)$.
(3) If two k-subspaces X, Y of \mathbb{F}_{q}^{n} are in the same orbit under the action of the normalizer A_{α} of the Singer subgroup C_{α} then $\operatorname{inv}_{N}(X)=\operatorname{inv}_{N}(Y)$.
Proof. Let $X=\left\{\mathbf{0}, \alpha^{x_{1}}, \alpha^{x_{2}}, \ldots, \alpha^{x_{m}}\right\}$ be a k-subspace of \mathbb{F}_{q}^{n}, with $x_{1}, x_{2}, \ldots, x_{m}$ in $\mathbb{Z}_{q^{n}-1}$. The action of the generator of C_{α} on X increases $x_{1}, x_{2}, \ldots, x_{m}$ by one modulo $q^{n}-1$, thereby preserving the differences between them. The action of the Frobenius automorphism ϕ on X multiplies each x_{i} by q modulo $q^{n}-1$, thereby leaving it in the same cyclotomic coset.

3. Kramer-Mesner computer search

Constructing t-designs over \mathbb{F}_{q} is equivalent to solving certain systems of linear Diophantine equations. Let \mathbf{M} be a $\{0,1\}$ matrix with rows and columns indexed by the t-subspaces and the k-subspaces of \mathbb{F}_{q}^{n}, respectively; there is a 1 in row X and column Y of \mathbf{M} iff t-subspace X is contained in k-subspace Y. With this definition, a $t-(n, k, \lambda)$ design over \mathbb{F}_{q} is precisely a $\{0,1\}$ solution to

$$
\begin{equation*}
\mathbf{M} x=(\lambda, \lambda, \ldots, \lambda)^{T} \tag{3}
\end{equation*}
$$

Unfortunately, for most parameters of interest, finding solutions to the resulting large systems of equations is outside the realm of computational feasibility.

However, if we impose a prescribed group of automorphisms A on a putative solution, thereby reducing the size of the problem, the situation can still be described in terms of a system of linear equations. In this case, the rows and columns of the matrix \mathbf{M}^{A} correspond to A-orbits of t-subspaces and k-subspaces; the entries of \mathbf{M}^{A} are nonnegative integers, possibly greater than 1 . This is analogous to a well-known technique in design theory that is called the Kramer-Mesner method after its developers [29]. For more details on applications of the Kramer-Mesner method in the context of designs over \mathbb{F}_{q}, see [8].

There are several group-theoretic algorithms that, given a prescribed group A acting on a set of finite structures, compute the orbits under A and produce the corresponding Kramer-Mesner matrix. For more details, see [8, 34]. In our case, the Kramer-Mesner matrix \mathbf{M}^{A}, where A is the normalizer of a Singer subgroup, can be also computed directly using the invariants in Lemma 6

In order to find a solution to (3) for a given Kramer-Mesner matrix \mathbf{M}^{A}, we observe that when $\lambda=1$, the system of equations in (3) reduces to an instance of the exact cover problem [26. That is, we wish to find a set \mathcal{S} of columns of \mathbf{M}^{A} such that for each row of \mathbf{M}^{A}, there is exactly one column of \mathcal{S} containing 1 in this row. The exact cover problem can be solved efficiently using the dancing links algorithm of Knuth. For more on this, see [25, 26].

We now specialize the above to the case of the q-Steiner system $\mathcal{S}_{2}[2,3,13]$. At first, the matrix \mathbf{M} in (3) has $\left[\begin{array}{c}13 \\ 2\end{array}\right]=11180715$ rows and $\left[\begin{array}{c}13 \\ 3\end{array}\right]=3269560515$ columns, where $\left[\begin{array}{l}n \\ k\end{array}\right]$ is the q-binomial coefficient with $q=2$. We need to find an exact cover of the rows of \mathbf{M} consisting of some $\left|\mathcal{S}_{2}[2,3,13]\right|=\left[\begin{array}{c}13 \\ 2\end{array}\right] /\left[\begin{array}{c}3 \\ 2\end{array}\right]=1597245$ columns. However, the resulting instance of the exact cover problem is well beyond the domain of feasibility of existing algorithms. Instead, we prescribe the normalizer A_{α} of a Singer subgroup of GL $(13,2)$ as a group of automorphisms. Specifically, we have used the Singer subgroup generated by the primitive element $\alpha \in \mathbb{F}_{2^{13}}$ which
is a root of the polynomial $x^{13}+x^{12}+x^{10}+x^{9}+1$. We note that the specific choice of the primitive element is unimportant in the sense that the set of Singer subgroups (and, thereby, also the set of their normalizers) forms a conjugacy class of subgroups of $\mathrm{GL}(n, q)$. By Theorem 2, we have $\left|A_{\alpha}\right|=13\left(2^{13}-1\right)=106483$. The orbits of 2 -subspaces and 3 -subspaces under the action of A_{α} are all full-length, resulting in a Kramer-Mesner matrix $\mathbf{M}^{A_{\alpha}}$ with $\left[\begin{array}{c}13 \\ 2\end{array}\right] / 106483=105$ rows and $\left[\begin{array}{c}13 \\ 3\end{array}\right] / 106483=30705$ columns. As all the orbits have full length $\left|A_{\alpha}\right|$, we need to find an exact cover consisting of $\left|\mathcal{S}_{2}[2,3,13]\right| /\left|A_{\alpha}\right|=15$ columns of $\mathbf{M}^{A_{\alpha}}$. One such sets of columns corresponds to the 15 subspaces of \mathbb{F}_{2}^{13} listed below:

\[

\]

Each 3-subspace $\left\{\mathbf{0}, \alpha^{x_{1}}, \alpha^{x_{2}}, \ldots, \alpha^{x_{7}}\right\}$ is specified in (4) in terms of the exponents $\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ of its nonzero elements. The A_{α}-orbits of the 15 subspaces in (4) form a q-Steiner system $\mathcal{S}_{2}[2,3,13]$, thereby proving Theorem 1 .

The first solution to the exact cover problem instantiated by the Kramer-Mesner matrix $\mathbf{M}^{A_{\alpha}}$ was found in about two hours on a personal computer. After about a month, we have found 401 distinct solutions. By Theorem 5, these solutions give rise to 401 nonisomorphic $\mathcal{S}_{2}[2,3,13] q$-Steiner systems. We note, however, that classifying all the solutions to the exact cover instance specified by $\mathbf{M}^{A_{\alpha}}$ does not appear to be computationally feasible.

Inspired by the positive results for $\mathcal{S}_{2}[2,3,13]$, we have searched extensively for other q-Steiner systems, with various parameters, while imposing certain groups of automorphisms. We were able to resolve definitively the seven cases listed below. Unfortunately, in all these cases the outcome was negative. Our results show that q-Steiner systems with the following parameters and automorphisms do not exist:

$$
\begin{align*}
& \mathcal{S}_{2}[2,3,7], \text { Galois group } \operatorname{Gal}\left(\mathbb{F}_{2^{7}} / \mathbb{F}_{2}\right) \text { (order } 7 \text {) } \\
& \mathcal{S}_{2}[3,4,8], \text { Singer subgroup (order } 255 \text {) } \\
& \mathcal{S}_{2}[2,4,10] \text {, normalizer of Singer subgroup (order } 10230 \text {) } \\
& \mathcal{S}_{2}[2,4,13] \text {, normalizer of Singer subgroup (order } 106483 \text {) } \tag{5}\\
& \mathcal{S}_{2}[3,4,10] \text {, normalizer of Singer subgroup (order } 10230 \text {) } \\
& \mathcal{S}_{3}[2,3,7] \text {, Singer subgroup (order } 2186 \text {) } \\
& \mathcal{S}_{5}[2,3,7] \text {, normalizer of Singer subgroup (order } 546868 \text {) }
\end{align*}
$$

This extends upon the previous work on nonexistence of q-Steiner systems [18, 28, 39]. For example, it was shown in [28] that a q-Steiner system $\mathcal{S}_{2}[2,3,7]$ admitting a Singer subgroup as a group of automorphisms does not exist.

4. Related Results

Obviously, an $\mathcal{S}_{2}[2,3,13] q$-Steiner system gives rise to an $S(2,7,8191)$ Steiner system: simply represent each subspace of \mathbb{F}_{2}^{13} by the characteristic vector of the
set of its nonzero elements. We observe that Steiner systems with these parameters were already known [2, Table 3.3]. Notably, however, it follows from [18, Theorem $3.2]$ that $\mathcal{S}_{2}[2,3,13]$ also gives rise to an $S(3,8,8192)$ Steiner system. No $S\left(3,2^{k}, 2^{n}\right)$ Steiner systems with $2^{k} \geqslant 8$ were previously known [11, 18 . The new $S(3,8,8192)$ Steiner system can be used in various constructions (e.g., those of [5, 7, 11, 21) to produce new $S(3,8, v)$ Steiner systems for many other values of v.

Following [17, 27, we let $\mathcal{A}_{q}(n, d, k)$ denote the size of the largest subspace code in \mathbb{F}_{q}^{n} of constant dimension k and minimum subspace distance d. Then the existence of $\mathcal{S}_{2}[2,3,13]$ implies that $\mathcal{A}_{2}(13,4,3)=1597245$ (the upper bound $\mathcal{A}_{2}(13,4,3) \leqslant 1597245$ follows from [17, Theorem 1]).

The new $\mathcal{S}_{2}[2,3,13] q$-Steiner systems found in Section 3 also produce new diameter-perfect codes in the corresponding Grassmann graph. Precious few examples of such codes are known. For more on the connection between q-Steiner systems and diameter-perfect codes in a Grassmann graph, see [3, 35].

In the remainder of this section, we expound upon the connection between q Steiner systems and difference families. Recall from [1] that a (v, k, λ) difference family over an additive group G of order v is a collection $B_{1}, B_{2}, \ldots, B_{s}$ of k-subsets of G such that every nonidentity element of G occurs exactly λ times in the multiset $\left\{a-b: a, b \in B_{i}, a \neq b, 1 \leqslant i \leqslant s\right\}$.
Theorem 7. Let k and n be coprime, and suppose there exists an $\mathcal{S}_{2}[2, k, n] q$-Steiner system admitting a Singer subgroup C_{α} as a group of automorphisms. Then there exists a $\left(2^{n}-1,2^{k}-1,1\right)$ difference family over the group $\mathbb{Z}_{2^{n}-1}$.

Proof. Fix a primitive element α of $\mathbb{F}_{2^{n}}$, and let φ be the bijective homomorphism from the multiplicative group of $\mathbb{F}_{2^{n}}$ to $\mathbb{Z}_{2^{n}-1}$ defined by $\varphi\left(\alpha^{i}\right)=i$. We extend φ to subspaces $X=\left\{\mathbf{0}, \alpha^{x_{1}}, \alpha^{x_{2}}, \ldots, \alpha^{x_{m}}\right\}$ of \mathbb{F}_{2}^{n} in the obvious way, by defining $\varphi(X)=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \subseteq \mathbb{Z}_{2^{n}-1}$. Now let \mathcal{S} be an $\mathcal{S}_{2}[2, k, n] q$-Steiner system admitting C_{α} as a group of automorphisms. Partition the subspaces of \mathcal{S} into orbits under the action of C_{α}. Since k and n are coprime, all such orbits have full length $\left|C_{\alpha}\right|$, so that the number of orbits is given by

$$
s=\frac{\left|\mathcal{S}_{2}[2, k, n]\right|}{\left|C_{\alpha}\right|}=\frac{2^{n-1}-1}{\left(2^{k}-1\right)\left(2^{k-1}-1\right)}
$$

We choose (arbitrarily) one subspace from each orbit. Let $X_{1}, X_{2}, \ldots, X_{s}$ be the resulting set of orbit representatives. We claim that $\varphi\left(X_{1}\right), \varphi\left(X_{2}\right), \ldots, \varphi\left(X_{s}\right)$ is a $\left(2^{n}-1,2^{k}-1,1\right)$ difference family over $\mathbb{Z}_{2^{n}-1}$.

Indeed, consider an arbitrary nonzero element $a \in \mathbb{Z}_{2^{n}-1}$. Observe that a can be obtained as a difference of two group elements in exactly $2^{n}-1$ ways: $(a+i)-i$ for $i=0,1, \ldots, 2^{n}-2$. To each pair $\{a+i, i\}$, there corresponds a 2 -subspace $\left\{\mathbf{0}, \alpha^{i}, \alpha^{a+i}, \alpha^{i}+\alpha^{a+i}\right\}$, and to each such 2-subspace, there corresponds a unique k-subspace of \mathcal{S}. All such k-subspaces of \mathcal{S} are in the same orbit under the action of C_{α}, and every k-subspace in this orbit contains $\left\{\mathbf{0}, \alpha^{j}, \alpha^{a+j}, \alpha^{j}+\alpha^{a+j}\right\}$ for some j. It follows that a occurs at least once as a difference of two elements of $\varphi(X)$, where X is the representative of the corresponding orbit. But the total number of differences in the set $\left\{a-b: a, b \in \varphi\left(X_{i}\right), a \neq b, 1 \leqslant i \leqslant s\right\}$ is given by $s\left(2^{k}-1\right)\left(2^{k}-2\right)=2^{n}-2$, which completes the proof.

In fact, the following more general result is true: if k and n are coprime, then an $\mathcal{S}_{q}[2, k, n] q$-Steiner system that admits a Singer subgroup as a group of auto-
morphisms gives rise to a $\left(\left(q^{n}-1\right) /(q-1),\left(q^{k}-1\right) /(q-1), 1\right)$ difference family over $\mathbb{Z}_{\left(q^{n}-1\right) /(q-1)}$. We omit the proof, which is similar to the proof of Theorem 7

In order to obtain an $(8191,7,1)$ difference family from the 15 sets in (4), first adjoin to each such set $\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ the 12 sets $\left\{2^{i} x_{1}, 2^{i} x_{2}, \ldots, 2^{i} x_{7}\right\}$ modulo 8191, for $i=1,2, \ldots, 12$ (thereby accounting for the action of the Galois group). The resulting $15 \cdot 13=195$ sets indeed form an $(8191,7,1)$ difference family over \mathbb{Z}_{8191}. We observe that $(8191,7,1)$ difference families over \mathbb{Z}_{8191} were already known. They were obtained in [20] using a modification of a construction due to Wilson [42].

5. Discussion and open problems

There is no good reason to believe that many q-Steiner systems, other than $\mathcal{S}_{2}[2,3,13]$, would not exist. In particular, we conjecture as follows.

Conjecture 8. If $n \geqslant 13$ is a prime such that $n \equiv 1(\bmod 6)$ then there exists a q-Steiner system $\mathcal{S}_{2}[2,3, n]$.

The apparent large number of isomorphism classes of $\mathcal{S}_{2}[2,3,13] q$-Steiner systems suggests that an $\mathcal{S}_{2}[3,4,14]$-Steiner system might exist. A more general open question is whether nontrivial q-Steiner systems $\mathcal{S}_{q}[t, k, n]$ exist for parameters other than $q=2, t=2$, and $k=3$.

In fact, in light of our results, the main question is no longer whether q-Steiner systems exist but rather how they can be found. Not only should computer-aided searches be carried out, but one should also consider algebraic and combinatorial constructions of either specific q-Steiner systems or even infinite families of q-Steiner systems (e.g., in the framework of difference sets).

Acknowledgments

The authors are grateful to the organizers of the conference "Trends in Coding Theory," held in Ascona, Switzerland, between October 28, 2012, and November 2, 2012, where the final pieces of this work were put together. The COST Action IC1104, "Random network coding and designs over GF (q) " gave some of the motivation for gathering four of the authors together in Ascona. The authors also thank Don Knuth for making available his dancing links software. Last, but certainly not the least we are grateful to Eimear Byrne who checked our results and found that we wrote the wrong primitive polynomial in an earlier version.

References

[1] R.J.R. Abel and M. Buratti, Difference families, in C.J. Colbourn and J.H. Dinitz, Eds., Handbook of Combinatorial Designs, 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, pp. 392-410.
[2] R.J.R. Abel and M. Greig, BIBDs with small block size, in C.J. Colbourn and J.H. Dinitz, Eds., Handbook of Combinatorial Designs, 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, pp. 72-79.
[3] R. Ahlswede, H.K. Aydinian, and L.H. Khachatrian, On perfect codes and related concepts, Des. Codes Cryptogr. 22 (2001), 221-237.
[4] R. BaER, Linear Algebra and Projective Geometry, Academic Press, New York, 1952.
[5] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Volume I, 2nd ed., Cambridge Univ. Press, Cambridge, 1999.
[6] A. Beutelspacher, Parallelismen in unendlichen projektiven Raumen endlicher Dimension, Geom. Dedicata 7 (1978), 499-506.
[7] J.L. Blanchard, A construction for Steiner 3-designs, J. Combin. Theory Ser., A 71 (1995), 60-66.
[8] M. Braun, A. Kerber, and R. Laue, Systematic construction of q-analogs of designs, Des. Codes Cryptogr. 34 (2005), 55-70.
[9] P. Cameron, Generalisation of Fisher's inequality to fields with more than one element, in T.P. McDonough and V.C. Mavron, Eds., Combinatorics, London Math. Soc. Lecture Note Ser. 13, Cambridge Univ. Press, Cambridge, 1974, pp. 9-13.
[10] P. Cameron, Locally symmetric designs, Geom. Dedicata 3 (1974), 65-76.
[11] C.J. Colbourn and J.H. Dinitz, Eds., Handbook of Combinatorial Designs, 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007.
[12] H. Cohn, Projective geometry over \mathbb{F}_{1} and the Gaussian binomial coefficients, Amer. Math. Monthly 111 (2004), 487-495.
[13] A. Cossidente and M.J. de Resmini, Remarks on Singer cyclic groups and their normalizers. Des. Codes Cryptogr. 32 (2004), 97-102.
[14] P. Delsarte, Association schemes and t-designs in regular semilattices, J. Combin. Theory Ser. A 20 (1976), 230-243.
[15] R.H. Dye, Maximal subgroups of symplectic groups stabilizing spreads II, J. London Math. Soc. (2) 40 (1989), 215-226.
[16] T. Etzion, Covering of subspaces by subspaces, preprint available as arXiv: 0805.3528, Des. Codes Cryptogr., to appear.
[17] T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory 57 (2011), 1165-1173.
[18] T. Etzion and A. Vardy, On q-analogs for Steiner systems and covering designs, Adv. Math. Commun. 5 (2011), 161-176.
[19] J.R. Goldman and G.-C. Rota, On the foundations of combinatorial theory IV: Finite vector spaces and Eulerian generating functions, Stud. Appl. Math. 49 (1970), 239-258.
[20] M. Greig, Some balanced incomplete block design constructions, Congr. Numer. 77 (1990), 121-134.
[21] H. Hanani, A class of three-designs, J. Combin. Theory Ser. A 26 (1979), 1-19.
[22] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin, 1967.
[23] W.M. Kantor, Linear groups containing a Singer cycle, J. Algebra 62 (1980), 232-234.
[24] P. Kaski and P.R.J. Östergård, Classification Algorithms for Codes and Designs, SpringerVerlag, Berlin, 2006.
[25] P. Kaski and O. Pottonen, libexact user's guide, version 1.0, HIIT Technical Reports 2008-1, Helsinki Institute for Information Technology HIIT, 2008.
[26] D.E. Knuth, Dancing links, in J. Davies, B. Roscoe, and J. Woodcock, Eds., Millennial Perspectives in Computer Science, Palgrave Macmillan, Basingstoke, 2000, pp. 187-214.
[27] R. Koetter and F.R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory 54 (2008), 3579-3591.
[28] A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, in J. Calmet, W. Geiselmann, and J. Müller-Quade, Eds., Mathematical Methods in Computer Science, Lecture Notes in Comput. Sci. 5393, Springer-Verlag, Berlin, 2008, pp. 31-42.
[29] E. Kramer and D. Mesner, t-designs on hypergraphs, Discr. Math. 15 (1976), 263-296.
[30] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, 2nd ed., Cambridge Univ. Press, Cambridge, 2001.
[31] K. Metsch, Bose-Burton type theorems for finite projective, affine and polar spaces, in J.D. Lamb and D.A. Preece, Eds., Surveys in Combinatorics, 1999, London Math. Soc. Lecture Note Ser. 267, Cambridge Univ. Press, Cambridge, 1999, pp. 137-166.
[32] M. Miyakawa, A. Munemasa, and S. Yoshiara, On a class of small 2-designs over GF (q), J. Combin. Des. 3 (1995), 61-77.
[33] D.K. Ray-Chaudhuri and N.M. Singhi, q-analogues of t-designs and their existence, Linear Algebra Appl. 114/115 (1989), 57-68.
[34] B. Schmalz, The t-designs with prescribed automorphism group, new simple 6-designs, J. Combin. Des. 1 (1993), 125-170.
[35] M. Schwartz and T. Etzion, Codes and anticodes in the Grassmann graph, J. Combin. Theory Ser. A 97 (2002), 27-42.
[36] H. Suzuki, 2-designs over GF $\left(2^{m}\right)$, Graphs Combin. 6 (1990), 293-296.
[37] H. Suzuki, 2-designs over GF(q), Graphs Combin. 8 (1992), 381-389.
[38] S. Thomas, Designs over finite fields, Geom. Dedicata 21 (1987), 237-242.
[39] S. Thomas, Designs and partial geometries over finite fields, Geom. Dedicata 63 (1996), 247253.
[40] J. Tits, Sur les analogues algébriques des groupes semi-simples complexes, in Colloque d'Algébre Supèrieure, tenu á Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques Établissements Ceuterick, Louvain, Paris: Librairie Gauthier-Villars, 1957, pp. 261-289.
[41] J. Wang, Quotient sets and subset-subspace analogy, Adv. Appl. Math. 23 (1999), 333-339.
[42] R.M. Wilson, Cyclotomy and difference families in elementary abelian groups, J. Number Theory 4 (1972), 17-47.

Darmstadt University of Applied Sciences, Darmstadt, Germany
E-mail address: michael.braun@h-da.de
Technion, Haifa, Israel
E-mail address: etzion@cs.technion.ac.il
Aalto University, Aalto, Finland
E-mail address: patric.ostergard@aalto.fi
University of California San Diego, La Jolla, CA
E-mail address: avardy@ucsd.edu
University of Bayreuth, Bayreuth, Germany
E-mail address: Alfred.Wassermann@uni-bayreuth.de

[^0]: The research of T. E. was supported in part by the Israeli Science Foundation (ISF), Jerusalem, Israel, under Grant 10/12.

 The research of P. R. J. Ö. was supported in part by the Academy of Finland under Grant No. 132122.

