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Abstract

Scour of rock is a challenging and interesting problem that combines rock 
mechanics and hydraulics of turbulent flow. On a practical level, rock erosion
is a critical issue facing many of the world’s dams at which excessive scour 
of the dam foundation or spillway can compromise the stability of the dam 
resulting in significant remediation costs, if not direct personal property 
damage or even loss of life. This interaction between the blocky rock mass 
and water is analyzed by directly modeling the solid and fluid phases—the 
individual polyhedral blocks are modeled using the discrete element method 
(DEM) while water is modeled using the lattice Boltzmann method (LBM). The
LBM mesh is entirely independent of the DEM discretization, making it 
possible to refine the LBM mesh such that transient and varied fluid 
pressures acting on the rock surfaces are directly modeled. This provides the
capability to investigate the effect of water pressure inside the fractured rock
mass, along potential sliding planes, and can be extended to rock falls and 
slides into standing bodies of water such as lakes and reservoirs. Results 
show that the coupled DEM–LBM implementation is able to accurately 
capture the interaction between polyhedral rock blocks and fluid by 
analytically solving for the solid volume fraction in the coupling computations
using convex optimization and simplex integration; however, further 
performance improvements are necessary to simulate realistic, field-scale 
problems. Particularly, adaptive mesh refinement and multigrid methods 
implemented in a parallel computing environment will be essential for 
capturing the highly computationally intensive and multiscale nature of rock–
fluid interaction.

Keywords Rock scour · Fluid–solid interaction · Discrete element method · 
Lattice Boltzmann method · Linear programming · Simplex integration

1 Introduction

Erosion of rock by hydraulic forces—scour and plucking—is an important 
element of natural evolution of the landscape and this process can have 
significant impact on engineered structures. Unlined dam spillways, bridge 
abutments, and tunnels are all subject to water erosion and the resulting 
damage can cost millions of dollars to repair and, in the worst case, cause 
loss of life.



A recent example of the impact of rock scour and the speed with which it can
occur is the Oroville Dam, located in the foothills of the Sierra Nevada in 
Northern California. In early February, 2017, the concrete chute of the flood 
control spillway failed and the underlying rock experienced rapid erosion as 
water was discharged at high velocity and volumes up to 100,000 cubic feet 
per second. Figure 1 shows the extent of the damage caused to the spillway 
and the erosion of the underlying rock mass by hydraulic scour and plucking 
in roughly 2 weeks.

This incident has made dam owners acutely aware of the risk posed by the 
potential for rock scour and the need to re-evaluate the safety of these 
structures. This requires an understanding of the mechanisms involved and 
the ability to fully analyze the hydraulics of the problem. As outlined by 
George and Sitar (2016), currently used empirical methods of scour analysis 
tend to over simplify the three-dimensional nature of fractured rock masses 
and may miss the influence of geologic structure on rock mass erodibility.

In our effort to develop a simulation tool capable of capturing the three-
dimensional nature of the problem, we chose to adopt the discrete element 
method (DEM) (Cundall and Strack 1979; Cundall 1988; Hart et al. 1988). The
explicit, decoupled nature of DEM makes it attractive because the scale of 
the numerical problem necessitates parallel computations. Only information 
on blocks’ immediate neighbors is required to calculate contact forces after 
which the motion of each block can be updated independently. Additionally, 
the three-dimensional formulation for polyhedral blocks is relatively 
straightforward.

Capturing the interaction between the blocky rock mass and the water 
flowing over and through it requires coupling between the numerical models 
for the solid and the fluid phases. This means that the hydrodynamic forces 
and moments exerted on the blocks need to be accounted for when 



integrating the equations of motion for the solid phase while the effect of the
particles in and moving through the fluid also needs to be incorporated into 
the fluid solver. Simulations that capture this interaction generally follow two
approaches. The first approach incorporates fluid–solid interaction based on 
a locally averaged interaction between the two phases (Anderson and 
Jackson 1967; Tsuji et al. 1993; Xu and Yu 1997; Tsuji et al. 2008; Mikito and 
Daisuke 2014) while the second approach directly simulates hydrodynamic 
forces on the solid particles (Noble and Torczynski 1998; Holdych 2003; 
Owen et al. 2010; Strack and Cook 2007). In the locally averaged approach, 
the fluid–solid coupling is performed by averaging the interactions over a 
representative volume and all particles within a local region experience the 
same hydrodynamic forces. This makes the method less computationally 
expensive compared to direct simulation since the number of solid particles 
is greater than the number of fluid cells. This approach may be appropriate 
in applications where only the averaged fluid–solid interaction is of interest, 
but it does not offer sufficient resolution when trying to establish the 
hydrodynamic interaction for individual blocks. Direct simulation of the fluid–
solid interaction attempts to overcome this shortcoming by having a much 
higher density fluid mesh compared to the number of solid particles. This 
approach is able to capture the variation in hydrodynamic forces on 
individual particles, but it does come at a much higher computational cost.

Since the individual behavior of rock blocks is important for the kinematic 
response of fractured rock, the direct simulation of rock–fluid interaction is 
necessary. Methods conventionally used in computational fluid dynamics 
(CFD), such as the finite element method (FEM) (Zienkiewicz et al. 2014) and
the finite volume method (FVM) (LeVeque 2002), are able to directly solve 
the hydrodynamic forces and moments acting on solid particles. However, 
when blocks are allowed to move through the mesh, these methods can be 
computationally prohibitively expensive due to the need to remesh based on 
updated positions of the blocks. In comparison, the lattice Boltzmann method
(LBM) (McNamara and Zanetti 1988; Succi et al. 1989) allows for fluid–solid 
coupling quite efficiently. Additionally, LBM is localized in its formulation, 
making it amenable to adaptive remeshing and parallel computing—a 
necessity for direct simulation of fluid–solid interaction. Consequently, LBM 
was selected to model rock–water interaction. In this paper, we give an 
overview of the modeling methodology while concentrating on the 
implementation and example applications. Sections 2 and 3 provide 
background on DEM and LBM, respectively. Section 4 provides details on the 
fluid–solid coupling algorithm, which synthesizes MRT LBM, constrained 
optimization and simplex integration. Section 5 provides validation of our 
implementation and presents example applications.

2 Solid Phase Model

Given the inherent blocky nature of jointed and fractured rock masses, DEM 
(Cundall 1988; Hart et al. 1988) provides a convenient approach for explicitly
modeling the polyhedral shape of the individual blocks. The DEM formulation 



considers the motion of each block individually, incorporating the interaction 
of the block with its neighbors through contact forces. Once the contact 
forces between blocks are established, the motion of each block can be 
updated independently.

2.1 Contact Detection

Contact detection consists of two separate steps: neighbor search and 
contact resolution. During the neighbor search, the blocks that are close 
enough to possibly be in contact within a given time period or step are 
identified. Each of the nearest neighbors is then checked to resolve if the 
blocks are physically in contact. We have implemented the CGRID algorithm 
(Williams et al. 2004) to perform the neighbor search. CGRID falls within the 
spatial binning class of neighbor search algorithms which generally are O(N).
CGRID is able to maintain performance even when the sizes of particles in 
the simulation differ significantly, as is often the case for fractured rock, and 
the method is readily adaptable to three dimensions.

Next, the contact resolution phase determines which blocks do physically 
contact. To avoid unnecessary computations, the bounding spheres of the 
neighboring blocks are first checked for overlap. If they do not overlap, the 
blocks are not in contact. If they do, further computations are required. We 
have used a contact detection algorithm based on linear programming (Boon
et al. 2012). This algorithm simplifies the contact detection process through 
use of the normal to each of the block faces and the distance of each face 
from a local origin.

The polyhedral block shape, shown in Fig. 2, is defined by N bounding planes
such that



where ai represents the normal vector to the ith plane bounding the block 
and di is the distance of that plane from some local origin—the origin can be 
at any location as long as all distances, di, are referenced to the same 
location. Contact between two blocks is then established by solving the 
following linear program:

where NA and NB are the number of planes of the two neighboring blocks. 
The two blocks are in contact if s<−ε, where ε is a specified numerical 
tolerance. If the blocks are in contact, the contact point is taken as the 
analytic center of the region of overlap between the two contacting blocks. 
The analytic center, shown in Fig. 2, is calculated using the log-barrier 
method with Newton’s method. The contact point, along with “potential 
particles” (Houlsby 2009) located entirely inside the blocks, are used to 
calculate the contact normal and overlap.

2.2 Contact Forces and Moments

The contact normal and overlap calculated in the contact resolution phase 
are used to establish the interaction forces between the blocks. In this 
research, the force and moments acting on the blocks were calculated 
following the approach outlined by Hart et al. (1988). Once the forces and 
moments due to inter-particle contacts have been calculated, the block 
positions are updated with the equations of motion for an individual block 
given by

where  and  are the translational and rotational acceleration of block i;
Fi and Mi are the total force and moment acting on block i; α is a damping 
constant; mi and Ii are the mass and moment of inertia of block i; and gi is 
the gravitational acceleration block i. The block translation is integrated 
using a velocity Verlet finite difference approach (Swope et al. 1982), which
is used in most DEM implementations, while the rotational motion is 
updated using a quaternion-based fourth-order Runge–Kutta approach 
(Johnson et al. 2007). The quaternion-based rotation integrator avoids the 
need to re-orthogonalize the rotation matrix, while also offering decreased 
memory usage and number of floating point operations.

3 Fluid Phase Model

The LBM arrives at the solution of the Navier–Stokes equations by describing 
the mesoscopic behavior of the fluid by considering the behavior of 



distributions of particles rather than the macroscopic velocity and density or 
the behavior of individual particles. The physical basis of LBM is rooted in the
Boltzmann equation, but it can be linked to the macroscopic behavior of fluid
(Succi 2001), in effect solving the weakly compressible Navier–Stokes 
equations. LBM is attractive for modeling fluid–solid interaction because of 
the localized nature of the method and the ease with which complex shapes 
moving through the fluid domain can be accommodated. As a solid particle 
moves through the fluid domain, the status of the nodes that the solid 
interacts with is updated. Based on the status of the node, the presence of 
the solid is accounted for in the fluid solution and the effect of the fluid on 
the solid is also considered. Depending on the type of problem, there may 
not be a need for remeshing and the change in the status of each node is 
incorporated in the computations locally. In its formulation, LBM solves a 
discrete form of the Boltzmann equation—the so-called lattice Boltzmann 
equation (LBE) (McNamara and Zanetti 1988)—to arrive at the solution of 
various problems in fluid dynamics:

where ci is the discrete set of velocities which limits the continuous particle 
velocity to a carefully selected subset. In this research, the D3Q27 velocity 
set (Suga et al. 2015), as shown in Fig. 3, was implemented. Equation 4 
describes the streaming of particle populations fi(x,t) moving with velocity ci 
to a neighboring point located at x+ cit and the redistribution of particles 
through the collision operator iΩi at each point—this redistribution of 
particles models particle collisions. Streaming and collision constitute the 
fundamental concepts of the LBE, essentially advection and diffusion.



The macroscopic fluid mass density and momentum are then calculated 
through weighted sums in velocity space, known as moments, of fi:

The most commonly used collision operator is the Bhatnagar–Gross–Krook 
(BGK) collision operator (Bhatnagar et al. 1954):

This equation states that all populations fi decay, or relax, to their 

equilibrium state  at the same rate τ. The discrete form of the equilibrium

distribution function  is (Luo 1998)



where u and ρ are the fluid velocity and density, ci and wi are the discrete 
velocity and weight from the velocity set, and cs is the speed of sound. For 

the D3Q27 lattice, . The BGK collision operator relaxes all 
moments at the same rate, which leads to reduced numerical accuracy, 
particularly at large viscosities, and reduced stability, particularly at small 
viscosities (Krüger et al. 2017). However, the moments can all be relaxed at 
different rates using the multiple-relaxation-time (MRT) collision operator 
(d’Humières et al. 2002). Relaxing the moments at different rates achieves 
better stability and accuracy. The MRT form of the LBE is given by 
(d’Humières et al. 2002)

where M is the transformation matrix that transforms the distribution 

functions from velocity space to moment space; and  is the diagonal 

collision matrix: . The values along the diagonal of

 are relaxation parameters for the different moments.

The transformation matrix M for the chosen velocity ordering was calculated 
using the orthogonal moment set from Geier et al. (2015) and the relaxation 

parameters along the diagonal of  for the D3Q27 lattice were set to the 
optimized values proposed by Suga et al. (2015). The macroscopic Navier–
Stokes behavior is recovered when the kinematic shear viscosity ν is related 

to the corresponding components of :

3.1 Body Forces

The inclusion of body forces in LBM manifests itself as an additional source 
term, Si:

The forcing scheme proposed by Guo et al. (2002) was implemented in this 
research where the equilibrium and macroscopic fluid velocity are defined as



where F is the force density; F=ρg in the case of a gravitational force. The 
forcing source term takes the following form:

where u is the fluid velocity and τ is the BGK relaxation time. The approach 
proposed by Li et al. (2005) was used to include the relaxation parameters 
based on an MRT collision operator. The macroscopic fluid velocity is 
calculated by

3.2 Turbulent Flow

Modeling turbulent flow requires special treatment because the grid scale 
may not be sufficiently small to capture all scales of the different flow 
features. The large eddy simulation (LES) approach is commonly used to 
account for this difference in the scale of flow structures—eddies greater 
than the grid scale are solved for directly while subgrid-scale flow structures 
are accounted for through a subgrid-scale (SGS) eddy viscosity, νSGS.

The wall-adapting local eddy viscosity (WALE) model (Nicoud and Ducros 
1999) was implemented in our approach to calculate νSGS. In this model, the 
subgrid-scale viscosity is a function of the velocity gradient tensor, which can
be calculated using second-order finite differences—this requires only 
knowing the fluid velocity of the nearest neighboring nodes. A full description
of the method is provided in Nicoud and Ducros (1999). For the D3Q27 MRT 
model used, the subgrid-scale eddy viscosity calculated by the WALE model 
is added to the kinematic viscosity as follows (Suga et al. 2015):

4 Fluid–Solid Coupling

The interaction between the fluid and solid phases requires coupling of two 
models, DEM and LBM, through exchange of information. The coupling 
process is achieved through a boundary condition based on the volume 
fraction of solid present in fluid cells. This approach allows polyhedral blocks 
to move through the fluid mesh while maintaining a similar form of the LBE.



The partially saturated method (Noble and Torczynski 1998), here referred to
as the volume-fraction approach to avoid confusion with partially saturated 
soil mechanics, accounts for the presence of complex-shaped solids within 
the fluid mesh by considering the volumetric solid content of each of the 
lattice cells. As a block moves through the fluid mesh, it may partially or 
completely cover fluid cells, as shown in Fig. 4. The LBE is modified to 
accommodate the solid phase by introducing an additional solid collision 
operator:

where εs is the volumetric solid fraction for each block intersecting the fluid 
node and B(εs,Ωfluid) is a weighting function. B(εs,Ωfluid) ranges from 0 (pure 
fluid) to 1 (pure solid). When B(εs,Ωfluid)=0 the standard LBE is recovered, 
while for B(εs,Ωfluid)=1 only the solid collision operator participates in the 
collision step. The collision operator for solid nodes is

where us is the velocity of the solid block at time t+Δt at the fluid node. This 

form of  is based on the bounce-back of the non-equilibrium portion of 
the particle distributions (Zou and He 1997) while the weighting function 
depends on the volumetric solid fraction and the fluid collision operator 



parameters. For the D3Q27 MRT collision operator used, the weighting 
function is expressed as

The hydrodynamic force and torque acting on a block moving through the 
fluid mesh is calculated as

where xn are all the lattice nodes that are interacting with the block and xCM 
is the location of the center of mass of the block. The summation i runs over 
all directions of the particular lattice velocity set in use—27 in the case of 
this research.

4.1 Volumetric Solid Fraction

The behavior of the fluid–solid interaction in the case when a fluid cell is 
neither pure fluid or pure solid—boundary fluid or boundary solid cells as 
shown in Fig. 4—is dictated by the weighting factor B. The value of the 
weighing function is influenced by the collision operator parameters and, to a
greater extent, the volumetric solid content of the cell. Therefore, it is 
important that the volumetric solid content be calculated as accurately and 
efficiently as possible. We compute the volumetric solid content for the 
polyhedral rock blocks moving through the fluid mesh analytically using 
linear programming and simplex integration, as described below.



When a block overlaps with a fluid cell, as shown in Fig. 5, a fraction of the 
volume in the cell will be occupied by the solid block. To calculate what this 
fraction is, it is first necessary to establish whether the fluid cell and block 
overlap. This is identical to the contact detection problem in DEM and is 
conveniently solved using the same linear programming algorithm as 
described in Sect. 2.1:

where NS is the number of faces that define the particle and NF is the number
of faces that define the fluid cell—four faces for a square in two dimensions 
and size faces for a cube in three dimensions. The particle and fluid cell 
overlap if s<−ε, where ε is a specified numerical tolerance. If the fluid cell 
and block do not overlap, the volumetric solid content is 0. If they do 
overlap, it is first necessary to establish what volume of the fluid cell is 
covered by the solid particle. As shown in Fig. 5, this region of overlap is fully
described by a subset of the faces NS+NF. This subset of faces can be 
identified by checking all faces of the block and fluid cell for redundancy. To 
check a particular face nTx≤d for redundancy in the set NS+NF, the following 
linear program is solved:

The face is not redundant if . With this minimal set of faces, 
the volume fraction of solid can be calculated through simplex integration 
(Shi 1997):



Equation 21 describes the summation of the volumes of tetrahedra Si that 
together form the three-dimensional particle. The vertices P1,…,Pn describing 
each of the faces of the particle should be oriented counterclockwise relative
to the outward normal of the face and be specified relative to a local origin 
P0. In this case, P0 is set to the location of the center of the fluid cell in 
question. The volumetric solid content, εs, is the ratio of the volume of 
overlap, Voverlap, and volume of the fluid cell. The value of the weighting 
function, B, can then be calculated using Eq. (17) with εs.

5 Implementation Validation and Performance Evaluation

The discrete element method and the LBM were implemented in C++ and 
coupled as described in Sect. 4. Beyond simple unit tests, integration testing 
was performed to verify if the implementation is able to match analytical 
solutions as well as produce observed response compared to experimental 
data. Since the resolution needed to resolve the fluid pressures acting on 
individual blocks requires many more fluid nodes than solid particles, in the 
present implementation only the fluid computations have been accelerated 
using parallel computing. The parallelization was performed using Kokkos 
(Edwards et al. 2014), a C++ library designed for performance portability. By
abstracting both parallel execution and memory layout, the same source 
code can be compiled to target a particular architecture based on the 
machine where the program will be executed, utilizing central processing 
units (CPUs) or/and graphics processing units (GPUs). The LBM parameters 
were set to the optimized values presented in Suga et al. (2015). For the 
DEM, the normal and shear contact stiffness were 60.0 GPa and 30.0 GPa, 
respectively. The specific gravity of the solid particles was set to 2.65 while 
the damping factor was set to 0.0%.

5.1 Validation

This section provides comparisons of the numerical solutions given by our 
implementation of the coupled DEM–LBM formulation with both analytical 
and experimental data, as shown below.

5.1.1 Sliding Block Analysis

For polyhedra, the simplest analytical test case is that of a block sliding 
down an inclined plane. This tests the ability of the implementation to 



properly capture the friction force and the gravitational acceleration. For a 
given gravitational force, the inclination of the plane and the angle of friction
between the block and sliding surface will dictate whether the block slides 
down the plane and, if it does, at what rate it will accelerate. In the case 
where sliding does occur, the position of the block on the plane is given by

where x is the position of the block at time t, x0 and v0 are the initial position 
and velocity of the block and a is the constant gravitational force acting on 
the block. The acceleration is given as a function of the slope and friction 
angles by

where θ is the slope angle and ϕ is the angle of friction between the block 
and the sliding plane.



Figure 6 shows the comparison of the numerical results with the analytical 
solution. The numerical results match the analytical solution very well. The 
case where the slope angle and friction angle match was also tested—in this 
case no sliding should occur—and sliding did not occur in the numerical 
analysis. All these tests used a linear elastic contact model with Coulomb 
friction for the contact between the block and sliding plane.

5.1.2 Toppling and Slumping Slope Failure

The orientation of fractures and discontinuities within rock relative to slope 
configuration govern how failure modes develop (Goodman and Kieffer 
2000). Any discontinuous numerical model needs to be able to capture this 
phenomenon if it is to be used for analyzing fractured rock. To ensure our 
implementation of DEM functions correctly, we compared the results from a 
three-dimensional DEM analysis with that of a two-dimensional discontinuous
deformation analysis (DDA) (Sitar et al. 2005) that illustrates how geometry 
of discontinuities affects kinematic behavior of rock slopes.

In this analysis, a valley or cut in pervasively jointed rock is shown to have 
two different failure modes on either side of the valley—the failure mode is 
governed by the orientation of the joints relative to the failure plane. Figure 
7 shows the initial configuration from Sitar et al. (2005) alongside the initial 
configuration used in this analysis. Through-going joints dip at 30°, forming 
the sliding plane on either side of the valley. The friction angle along the 
sliding plane is 32° and the friction angle between the individual rock blocks 



is 22°. If the rock mass was considered as a single wedge on either side of 
the valley, the analysis would conclude that both slopes are safe against 
sliding. However, as shown in Fig. 8, the slope on the right fails by toppling 
while the slope on the left fails by slumping (Sitar et al. 2005). Both of these 
modes are captured in a single analysis, illustrating the capability of DEM to 
capture the kinematics governing failure for different slope configurations. 
This is an essential feature for analyzing more complex landslides where 
different failure modes may initiate as the slope failure progresses.

5.1.3 Wedge Sliding



Wedge sliding is a typical failure mode in blocky rock masses. For this type of
failure, as shown in Fig. 9, a rock block slides without rotation along two non-
parallel planes along their line of intersection. This type of failure is typical in
blocky rock masses with multiple, continuous, non-parallel joint sets 
(Goodman and Kieffer 2000). Block theory (Goodman and Shi 1985) offers an
analytical solution for determining whether a block will fail in this mode. The 

force F required to stabilize a block sliding along two planes with normals  

and  due to the resultant r of all forces acting on the block is given by

where ϕi and ϕj are the angles of friction on the two sliding planes. When F is 
negative, the block is stable, when F is positive the block is unstable. If F is 
zero, the block is in equilibrium and the factor of safety is essentially 1.0. 
When only gravitational loading is considered, r=⟨0.0,0.0,−W⟩, where W is 
the weight of the block.



To verify the ability of the DEM implementation to correctly capture the 
three-dimensional kinematic behavior of blocky rocks, the results from 
several wedge failure analyses were compared with the analytical solution 
from block theory. Table 1 shows the comparison of the numerical results 
with the predicted values from Eq. (24). The same set of joints was used for 
all analyses while modifying the angle of friction on the sliding planes. The 
numerical analysis captures the transition from stable to sliding very well 
and matches the results from block theory. For the cases where F was very 
small and negative—indicating the block is stable, but not by a great amount
—the block displaced only very slightly at the beginning of the simulations. 
However, once enough frictional resistance was mobilized, the block stopped
sliding and remained stationary for the remainder of the simulation time.

5.1.4 Couette Flow

Couette flow is a particular case of simple parallel-plate flow where one plate
is fixed while the other plate moves with a constant velocity while a viscous 
fluid fills the space between the two plates. Figure 10 illustrates this situation
and shows the steady-state solution. Couette flow demonstrates shear-driven
fluid motion and, by modeling this numerically, the ability of the LBM 
implementation to correctly capture the viscous behavior of fluid.



The PDE describing the evolution of velocity between the two parallel plates 
is (Batchelor 2000)

with initial condition and boundary conditions

The solution to this PDE is given by Lei et al. (2016)

Figure 11 shows the comparison of numerical results with the analytical 
solution at different times. The numerical results match the analytical 



solution very well and illustrate the ability of the LBM implementation to 
capture shear-driven flow correctly.

5.1.5 Gravity-Driven Plane Poiseuille Flow

The validity of the body force implementation is tested by modeling gravity-
driven plane Poiseuille flow. For this type of flow, two infinite plates are 
separated by a constant distance, as shown in Fig. 12, with a body force gg 
acting on the fluid. The PDE describing this type of flow is given by

with initial condition and boundary conditions



The solution for gravity-driven plane Poiseuille flow is given by (Fukuchi 
2011)

where

The comparison between the analytical solution and numerical results is 
shown in Fig. 13. This shows excellent agreement between the numerical 
results and the analytical solution at various stages as the flow evolves.



5.1.6 Uplift Forces on Hydraulic Structures

Hydraulic uplift forces at the cracks and joints on slabs in hydraulic 
structures can pose a major risk to their safe and reliable operation. Offsets 
in the joints or cracks can cause the hydraulic pressures to be transmitted 
underneath the slabs causing uplift or erosion of the foundation materials 
(Frizell 2007). The stagnation pressure and flow patterns associated with 
offset joints were modeled using the coupled DEM–LBM implementation to 
verify its ability to reproduce experimental observations. For these 
simulations, 1/2, 1/4, 1/8, 1/16, and 1/32 in. joints with 1/8 in. offset between
slabs were modeled, similar to the physical and numerical experiments 
performed by Frizell (2007). Figure 14 shows the domain for the simulations. 
The two slabs are separated in the center of the domain by a joint where the 
offset between the two slabs can be clearly seen. The left boundary is the 
upstream side where fluid enters the domain at a constant velocity of 50 ft/s 
and flows toward the right side of the domain where flow is forced upward by
the offset joint.



Two different cases were evaluated to show how the flow characteristics 
change depending on whether the joint is open—water can flow underneath 
the slabs—or sealed. For sealed case, the uplift pressure is observed to 
decrease as the horizontal gap between the two slabs is increased. This 
observation is consistent with particle image velocimetry (PIV) 
measurements from the lab experiments conducted by Frizell (2007), where 
it was postulated that the decrease in pressure may be caused by the 
formation of a driven recirculation zone at the point of the gap entrance. 
Figure 15 shows stream tracers colored by the pressure for all the joint gaps 
modeled. Here, it can be seen how a zone of recirculation starts to form as 
the horizontal gap increases, blocking transmission of the full stagnation 
pressure in the gap between the slabs. These results are in excellent 
agreement with the experimental observations presented by Frizell (2007).



Comparison between the open and sealed cases shows a decrease in the 
uplift pressure for the open compared to the sealed case, as shown in Fig. 16
for a horizontal gap of 1/8 in. The decrease in uplift pressure is consistent 
with the characteristics presented by Frizell (2007) where it was noted that 
both the geometry and the drain system intercepting flow through the gap 
will affect the uplift pressure. In the case of our simulations, the boundary is 
modeled using a characteristic boundary that allows fluid to exit the system 
while effectively eliminating returning flow. This is consistent with the 
experimental setup where gap geometry controlled the flow into the gap.



5.2 Performance

The general form of the coupled DEM–LBM formulation has potential 
application for analysis of a wide range of problems involving fluid–solid 
interaction—from wind loading on buildings to scour of bridge foundations. 
Herein we focus on providing illustrative example applications to rock 
engineering, specifically rock erosion and transport of polyhedral particles. In
that context, we address the computational demand for various classes of 
applications and on identifying areas where future improvement is warranted
or needed.

5.2.1 Rock Erosion



The principal motivation for this research was the development of capability 
to simulate the erosion of individual rock blocks from a fractured rock mass. 
In these simulations, the fractured rock mass was generated using a parallel 
3-D block cutting algorithm implemented in SparkRocks (Gardner et al. 2017)
with the joint set data from an unlined dam spillway in the Sierra Nevada in 
Northern California. This joint set data, along with the flow characteristics, 
are based on lab and field experiments investigating rock scour conducted 
by George & Sitar (George 2015; George et al. 2015).

First, the dry condition was tested to ensure that the rock mass was stable 
prior to any interaction with water. Figure 17a shows the initial configuration 
of the fractured rock with one joint set dipping unfavorably downslope. The 
block on the top of this unfavorable joint was unstable and failed in sliding, 
as shown in Fig. 17b, and it was removed prior to running analyses with fluid.
The remaining rock mass was stable in the dry condition. The bottom and 
side boundaries were modeled as rigid, frictional boundaries.

The coupled fluid–solid simulation was then performed to investigate the 
potential for further erosion due to hydrodynamic loading. The upstream 
boundary was held to a constant velocity varying linearly from 0 m/s at the 
bottom of the channel to 9 m/s at the top of the domain. The downstream 
boundary was modeled as an outlet using a non-reflecting characteristic 
boundary. The fluid in the remainder of the domain was initially at rest and 
was allowed to come to equilibrium due to the velocity boundary on the 
upstream side and gravitational acceleration as the water flowed downslope.
During the course of the simulation, 6.0 s model time, one additional block 
was eroded due to hydrodynamic loading. Figure 18 shows the displacement 
of the block as well as the velocity magnitude along a section of the incline. 
Figure 19 shows a closer view of the opening fractures as the block 
displaces. The velocity vectors in this figure illustrate how flow through 
fractures increases as they open up.





This example problem illustrates the ability of the coupled LBM–DEM 
program to capture hydrodynamic loading on the fractured rock as it flows 
over and against the rock. However, it also highlights a significant challenge 
in modeling this class of problems—the difference in the scales required to 
capture flow both over the rock mass and through the rock mass. Only once 
the block has sufficiently displaced does water begin to flow through the 
fractures. This is a numerical issue as water most definitely flows into and 
through the fractures long before they have dilated as much as seen in the 
numerical simulations.



Numerically, in the DEM formulation blocks are allowed a slight overlap, 
hence resulting in completely closed fractures. A partial solution to this 
numerical issue is to define a “virtual fracture aperture” where the block 
faces are set back by some amount such that the effective sizes of the 
blocks manifested in the fluid mesh are slightly smaller and the fluid mesh is 
fine enough for a sufficient number of nodes to be present in the virtual 
fracture. This setback can be adjusted to match the effective fracture 
aperture in the rock mass based on observed flow. This approach is effective 
in the current implementation of the method only when the simulation 
domain is small enough that gross mesh refinement is able to capture the 
scale of the fractures before the memory demands for such a fine mesh 
exceed available hardware capacity.

The computational bottleneck in this type of simulation is the fluid–solid 
coupling computations—each of the fluid nodes identified as a being on the 
fluid–solid boundary needs to be checked for volumetric solid content. In the 
current code implementation the coupling computations are still computed in
serial while the rest of the fluid computations are executed in parallel. As the
fluid mesh is refined or the size or number of the blocks is increased, the 
number of fluid cells that need to be checked for volumetric solid content 
increases rapidly. As a result, the coupling computations may take anywhere
from 30 to 60% of the total computation time depending on the problem 
configuration.

5.2.2 Transport of Polyhedral Particles

A different type of simulation problem is the transport of polyhedral particles,
such as sand transport and the movement of particles along a stream bed. In
these simulations, a polyhedral block is dropped onto an inclined plane and 
moves down the plane under the influence of gravity considering three 
different conditions. First, the block was allowed to roll down the plane 
without any water present—essentially modeling a rock fall. Next, the block 
started from the same initial position, but it is surrounded by stationary fluid.
Lastly, the block was again dropped from its initial position, but this time 
within a fast-moving fluid flowing down the inclined plane with a constant 
inlet velocity and an outflow boundary at the bottom of the slope.

Figure 20a shows the initial block position and Fig. 20b shows a comparison 
of the block displacements for the different cases. The coupling correctly 
captures the interaction between the block and fluid: the block in stationary 
fluid rolls down the slope at a slower rate compared to the dry case duo to 
buoyancy while the fast-moving fluid carries the block downslope at a faster 
rate than the block in stationary fluid but it does not bounce as high as the 
dry case. Figure 20c shows the block displacements over time for all three 
cases. The inflection points in the displacement plot occur when the particles
impact and bounce off of the lower boundary. Here, the buoyant effect of the
water can be clearly seen through the offset in impact times for the three 



different cases. Figure 21 shows how stream tracers bend round the 
polyhedral block as it rolls and is pushed down slope by the fluid.



5.3 Computational Considerations

Table 2 contains relevant details about the hardware and simulation 
configurations for examples presented herein. Computationally it is 
important to consider the simulation time and mesh density needed for the 
simulations. 726,291 fluid nodes were used in the flume model in Sect. 5.2.2 
while 33,201 fluid nodes were used in the rock erosion problem presented in 
Sect. 5.2.1. The computation time required for 0.1 s of model time for the 
block rolling down the incline was approximately 10 min while it took 
approximately 63 min of computation time to simulate 0.1 s for the rock 
erosion example on a computer with 2 Intel Xeon E5-2630 CPUs (6 cores 
each) and 20 GB of memory. This difference in computation time illustrates 
the computational demand of the fluid–solid coupling computations and the 
need to accelerate them in the source code. For the block rolling down the 
incline, doubling the size of the domain increases the total computation time 
less than if the domain size was held constant but the mesh refined by one 
order of magnitude. For these two cases the number of nodes is the same, 
but the number of fluid–solid boundary nodes is greater in the case where 
the mesh is refined. The computation time increases by a factor of 
approximately 1.4 for the increased domain size while it increases by a 
factor of 4.63 for the refined mesh case, though the number of nodes in the 
simulations is exactly the same. This illustrates that the bottleneck in the 
fluid–solid coupling computations is exacerbated in cases when a greater 
fraction of the fluid nodes interact with solids as opposed to just having more
fluid nodes overall.



For the analysis presented in Sect. 5.1.6, the volumetric solid fraction only 
needs to be calculated once at the beginning of the simulation since the 
slabs are kept stationary during the analysis. This greatly improves the 
performance since the volumetric solid does not need to be evaluated at 
every time step. For the same size time step and approximately the same 
number of nodes, simulating 0.1 s of model time can be completed roughly 
20 times faster for these analyses than the simulations of a block rolling 
down an incline described in Sect. 5.2.2.

6 Conclusion

The objective of this research is the development of tools for the evaluation 
and modeling of the potential for rock erosion and rock transport by fast 
flowing water in rock channels as these processes have been shown to have 
a significant impact on the performance of unlined dam spillways and other 
structures. The natural jointing within the rock leads to fractured rock 
masses comprised of irregularly shaped polyhedral blocks. The orientation of
the blocks relative to slope geometry has been shown to govern the 
kinematic response of the rock mass (Goodman and Kieffer 2000). This 
inherent geometric complexity and discontinuous nature of the rock mass 
require numerical methods that can model the discrete interactions between
individual blocks. Additionally, the shape and orientation of the individual 
blocks within the rock mass need to be explicitly accounted for when 
modeling rock–water interaction—the hydrodynamic forces acting on each 
block need to be modeled directly—which is highly computationally 
intensive. Therefore, it is necessary to develop tools that can capture the 
kinematics of the rock mass response and that take advantage of parallel 
computing.

Accordingly, a new coupled DEM–LBM program was developed to analyze the
interaction between a blocky rock mass and fluid. The DEM implementation 
is able to correctly capture the rock mass kinematics by considering the 
shape and orientation of each individual block. The contact detection 
algorithm used for the DEM computations is based on a linear programming 
approach (Boon et al. 2012) which is able to consider three-dimensional 
polyhedral blocks. The coupling between DEM and the weakly compressible 
LBM is achieved through application of a volume-fraction approach that is 
able to consider three-dimensional polyhedral blocks interacting with fluid 



(Gardner and Sitar 2018). Additionally, the fluid computations are 
accelerated using the C++ library Kokkos (Edwards et al. 2014) such that 
computations can be executed on both the CPU and GPU.

The capabilities of the coupled DEM–LBM implementation were explored by 
evaluating the performance characteristics of the program in modeling 
different types of problems involving solid–fluid interaction. The examples 
illustrate that the implementation is capable of simulating the complex 
interaction between rock and water. However, the capability to model full-
scale problems is still elusive due to the enormous computational effort 
dictated by the multiscale nature of such problems. Therefore, significant 
future effort is required to improve the computational speed and model 
efficiency to allow realistic representation of natural settings.

Solid–fluid interaction in rock scour is a multiscale problem and 
improvements to better capture this are necessary. The required mesh 
resolution to accurately resolve hydrodynamic forces of water flowing over 
and around rock blocks is significantly less than the mesh resolution required
to capture the interaction between the fractured rock mass and water 
flowing through the discontinuities. Clearly, the size of the mesh within the 
fractures would have to be much finer compared to the rest of the domain 
and simply applying that fine of a mesh to the entire simulation domain is 
not feasible in terms of memory demands. Additionally, once the blocks start
displacing the mesh density requirements would change as the fractures 
open up and the blocks begin to move through the fluid mesh. Adaptive 
meshing and multigrid methods would be ideal for capturing these different 
scales of interaction.

Lastly, the high computational and memory demands for three-dimensional 
direct simulation of rock–water interaction requires parallel computing and 
efficient use of computing resources. The fluid computations have been 
accelerated to use shared memory parallelism on both the CPU and GPU; 
however, the DEM–LBM coupling and DEM computations are currently 
executed in serial. Accelerating this portion of the computations would 
greatly improve performance and enhance the capability for simulating fluid–
solid interaction at a greater scale. Though the current parallelization has 
been implemented using shared memory, future acceleration should also 
consider including distributed memory parallelism such that more 
computational resources can be brought to bear on increasingly large 
simulations.
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