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LONGITUDINAL DISPERSION IN SOLVENT-EXTRACTION COLUMNS: 
MATHEMATICAL THEORY 

Terukatsu Miyauchi 

Radiation Laboratory and Department of Chemical Engineering 
University of California, Berkeley, California 

August 15, 1957 

ABSTRACT 

The influence of longitudinal dispersion of fluid in continuous counter-

current solvent-extraction columns has been analyzed theoretically, by 

application of.a simplified model which utilizes mean diffusivities and mean 

velocities for both continuous and dispersed phases. From the mathematical 

treatment of the model, it has been found that the influence of the longitudinal 

dispersion on the extent of extraction can be expressed as a function of four 

dimensionless parameters. These parameters include, as variables, the rates 

of longitudinal dispersion, the over-all mass-transfer coefficient, the 

equiUbriiim partition ratio, and the rates of fluid flow. Solutions for various 

special cases of mixing behavior have been presented, which apply directly to 

• specific types of apparatus. 

The longitudinal dispersion has an undesirable effect, especially when a 

high degree of extraction is desired. The theory developed shows, .that 

there will be arnaximum attainable extent of extraction, under any given 

pattern of longitudinal dispersion. This means that the extent: of extraction 

is limited by this phenomenon, even if the over-all coefficient of mass transfer 

is increased to infinity. It is necessary to define three kinds of over-all 

HTU; two of these, used previously, include the effect of the longitudinal 

dispersion. 
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LONGITUDINAL DISPERSION INSOLVENT -EXTRACTION COLUMNS: 
MATHEMATICAL THEORY 

Terukatsu Mi,yauch '  

Radiation Laboratory and Department of Chemical Engineering 
Unive rsity of California, Berkeley, California 

August 15, 1957 

INTRODUCTION 

In continuous countercurrent solvent-extraction columns, it is widely 

recognized that the effective coefficient of mass -transfer is lowered by 

longitudinal dispersion in either phase This effect should be particularly 

large, in such apparatus as the Mixco column reported by Oldshue and Rushton, 8 

the rotating-disc column reported by Reman and Olney, and pulsed columns' ° '11 ' 14  

Attempts have already been made to obtain mass-transfer coefficients by 

measuring concentration distributions within an extractor. This approach 

should be more accurate than the alternative of using a logarithmic mean 

driving force computed only from the end concentrations of the incoming and 

outgoing streams Recently, a theoretical approach that permits evaluation 

of local behavior of pulsed columns has been reported from this laboratory by 

Lane, Lehman, and Rubin, 14 
 and experimental measurements of dispersion in 

packed columns are now being made by Jacques and Vermeulen 

In order to interpret the behavior of continuous solvent-extraction columns, 

it is desirable to analyze the interrelation between such variables as the true 

coefficient of mass transfer, the rate of longitudinal dispersion of fluid in each 

phase, the flow rate of each stream, the partition ratio of the transferring com-

ponent, and the extent of extraction This paper has been developed so as to 

combine these variables with over-all behavior of continuous extraction columns 

A simplified model of flow behavior has been used, similar to one assumed 

previously2' 4, 5,16 in relation to one -dimensional homogeneous -phase flow 

systems 

For homogeneous systems with noticeable longitudinal dispersion, this 

model has already been found by Yagi and Miyauchi 16  to give a better re-

presentation of the Mixco and related columns than the concept of "equivalent 

completely mixed stage" reported recently by Young 17 

On leave from Department of, Chemical Engineering, University of 

Tokyo, Tokyo, Japan 
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BASIC EQUATIONS• 

Basic Differential Equations 

For homogeneous continuous -flow systems Damkhier has given an 

equation of continuity, 

a /a 9 = - div ( -Egrad d) - div (ij + 4 (c. 1 ), 

where u is the linear velocity of the fluid and c7 i is the concentration of 

the ith component, at the point of interest. 	For one-dimensional steady- 

state flow systems, in which a mean diffusivity and a mean velocity of the ith 

component are assumable, Damkhler's equation becomes 

E. d2  d./d 2  -. u. dã./dz - (c) = 0 

For one -dimensional counte rcurrent two -phase mas s-transfer processes, 

this equation is modified as.follows by introducing a void fraction E for each 

phase, and substituting the mass-transfer term for 

E:: d 2 c:::/d 	- F:: dc/d 	- K a (d:.;, - nd ) = 0 
x x x 	x x 	x x 	y 

EJEd.d/dz 2 +Fd/dz+Ka(c -m)=O 
y y 	y 	y y 	x 	x 	y 

whe.re the direction of mass transfer is taken from phase X to phase Y, 

and a linear-distribution equilibrium (with m as the partition coefficient) is 

assumed; K represents the over-all mass -transfer coefficient relative to 

phase X, a is the interfacial area per unit volume,, and F is the superficial 

velocity of the designated phase. 

These equations are based on a simplified model which assumes that 

the two liquid phases flow in opposite directions, with each phase undergoing 

longitudinal dispersion, as shown in Fig. 1. Accordingly, the 'process of 

mass transfer is assumed to take place across the phase boundary, PQ. 

However, in an actual extractor, one phase is dispersed into the other as 

shown in Fig 2. 	 .. 	 . . 
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Fig. 1. Proposed model 
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Fig. 2. Actual situation in an extractor 
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Fig. 3. Concentration distribution in an extractor. Curve 
• 	ABDE, actual distribution of c ; curve FGHK, same 

for c 	Curve AVE, apparent âistribution of c, 
asSuiing piston flow; curve FH'K, same for c'.. 
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If the droplets coalesce and break up so rapidly that there is no 

fluctuation in their concetratiorL at any particular point, the two models be-

come identical. 

If not, the concentration variations between droplets at a section will 

reflect the gradint of average conèentration under conditions of constant 

and E. This point is discussed in Appendix 1; it is concluded that the 

simplified model provides a sound and workable approach. 

Rearranging the equations into dimensionless form, we have 

• 	 d 2 C /dz 2  - P B dC/d - N P B(C -mC ) 0 
X 	 X X 	 OXX X 	y 

• 	 d 2 C /dz 2  + P B dC /dZ + N P B(C -mC ) = 0 
y 	 y 	Y. 	..oyy 	x 	y 

where C = c /c 0 C = c /c 0 , p = u d/E , P u d/E , N x• 	x•. x 	y 	y •x 	x 	x 	x 	y 	y •y 	ox 

K 
x 
 aL/F

x 
 , N oy 
	x 	y 
= K aL/F , B = L/d, u x = F 

x 
/E  x , u y = F 

y 
 /e  y , and Z = z/L. 

.  

Boundary Conditions 

The rate of longitudinal dispersion in an extractor is assumed to be much 

higher than that in the incoming and outgoing streams away from the extractor. 

The suitable boundary conditions are given as follows. Integration of Eq. .1 

for phase X, over an arbitrary length of column, Q, gives 

EE 	[(dc) 	(dc 

 ) 0 
	dx) - 	0, 

where c. 	(c• z • 	.c,= (c'x)z_ 	and. n is the total amount of 

component (in moles) transferred from phase X to phase Y between the point 

of interest and the X inlet. 
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At the X-inlet end of the column, the net flow is given in dimensionless 

terms by the sum 

• 

	(dZ

dcX
c

P 	Jo 
Outside the column, the net flow is 

-• 	
, or 1, because P.S. -' &and 

(dC/dZ)o - 0. for the model assumed. Equatin the net flows, at Z = 0, 

gives 

• 	 /dC\ 

	

- _..2c) 	
EXB (1 	 (3a) 

At the X-outlet end, a comparison of the net flows inside and outside yields the 

• 	 relation 

• 	
fAZI 

 
1  c = 	-c 1  

xi 	x
PB 	:—m------' 

• 	
where C1. =(C 	1' and C' is the concentration of outgoing phase X. 

•  The coefficient 1/PXB  is always positive or zero, At the boundary, 

the concentration gradient calculated from the left-hand term is opposite in 

sign to the gradient given by the right-hand term. Thus the only condi.tion 

allowed by this equation is 

C 	= xl 	x 	x C 
l, 
 (dC /dz) 	0. 	• 	 (3b) 

Because the boundary region is small, mass transfer in this regionis 

negl&cted, and the boundary condition becomes identical with the result given 

by Danckwets. 2 
	• 	 .• 

• The boundary conditions for phase Y are derived from the similar con-

sideration described above. Thus the boundary conditions for phase X and 

phase Y are 

Z = 0: - (dC/dZ) = PB (1 	 - (dC y/dZ) = 0 	1 	(4) 
Z = 1: 	(dC/dZ) = 0, - (dC /dZ) = P B (C 	- C 1) 

x 	 y 	y 	yl 	y 
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Solutions 

Eliminating the term C from Eq. (2) gives a single linear differential, 

equation of fourth order, 

d4c/dz4  - a d 3 C /dZ 3 	d 2 G /dZ2 - y dC/dZ = 0, 	 (5) 

where a, p, andy are constants independent of Z, as defined below. 

GéneràlCàse 

• 	By solving jEq. (5) so as to satisfy the boundary conditions, one obtains 

the following solutions: 6 

C -mC 1  

	

X A1e 1 +A2e  2  + A 
3  e 	+ A 4  e 

1-mC' 
y 	 (6) 

m(C - C') 	 X 1 Z 	 X Z Z 	XZ 	 X4 Z 
y 	Y =  a 1 A 1 e 	+a 2A 2e 	+a 3A 3e 	+a4A 4e 

l-mC' 
y 

where 

A1 DA1/DA,  A2 = DAZ/DA. A3 = DA3/DA A4  =DA4/DA 
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X 2 a 2 	3a3 	X 4a4  

A.4  

	

X 3  e 	
K4e 

X 	 X 2 

A 	A 	 A 	A 	A4  
(1 + 	a2e 2 	(1 +, 	) a 3 e 	i + - ) a4 e 

PB 	
PB 	 PB 

y 

A3a3 	
•44 

H. A2 A 3 	 A4  
X 3 :e 

A 2a 2  

DA3 = 	/ 5 	
/ 	 and 	DA4 

2 	 4 X 2e 	 A4e 

a.=1+A./N-X/N PB 
3 	3 OX 	3 	OXX 

(j = 1,2,3, and 4) 

= a/3 + 2Vcos  (u/3) 

= a/3 + 2Vcos  (u/3 + 2ir/3) 

A4  = a/3+ 2Vpcos  (u/3 + 47r/3) 

X2a 2 	X 3 a 3  

X 2e 2  X3e3 j 

I.1 
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• 	 N Ø, PB :PB (1 - / \) 	• • 	 J• 	 • 	 • 	 • • 

The solutions are obtained as Eq (6) only for 

- p3 = ____ 	
- a 22/4 + 9 ay/2 - 

	
+ 27y2/4) < 0 

27 

This relation is satisfied for ordinary extraction operations, except when both 

phases are perfectly mixed In this case, the relation becomes zero The 

terminal values of C and n-iC are given as follows: x 	y 	 • 

C 	-inC 1. xO 
._=A +A +A +.A 

1-inC1 	 2 	3 
y 

C -mC' 	X 	X xl 	
=A 1 e 	+Ae. 

2 
 +A 2 e 	+e 

1-mC 	 ' 
y 

1 
m(C -cYO 

a 1 A + a2A 2  + a 3A 3  + a4A 4  
1-mG 	 • 

y 	 ., 

m(C 	-c .') 	• •x 	 X • 	x 
y' 	y= a,A1 1 + a2A 2  2 + a 3A 3e 	+ a4A4e 

1-mG 
y 

S 
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Result with Linear Extraction Coëfficiènt. 

For y = 0 or mF/1  = A = 1, the solution of Eq. (5) takes a different 

form:' 	 ' 

C -. mC 
Y =B 1 +B 2 Z+B 3e 	+B4e 

1-mG 1  
(7) 

m(C 	CL) 	 p.3z 
_________ = B 1 . + B 2/N + B 2 Z + b 3 B 3e 	+ b4B 4e 

1-mC' 	 ' 	} y 

where 

B1 = DB1/DB, B2 = DBZ/DB', B3 = DB3/DB, and B4 = DB4/DB ,  

b 3  = 1 + 	- 

b4  1 + 	-. /NPB 

= a/2 	a/2)2 + 

= a/2 -(a/Z) 2  + 
and 

I ' 	, 	
- 1/ PB (1 - p 3/PB) (1 - p4/PB) 

DB = DB.l - 	1 	b 	 ' 

F3 
1 	p. 3e 	 jL4e 

	

. 	1 	 b 3  

D 	= 1 	 ii. 3e 3  

	

Bi 	 3 (1 + 11N 	+ 1/PB'. (1 + iJ. 3/P.B).b 3 eox  = 
 - l

b P3 	b4 p.4  

I.L 3 e 3 	I.L 4e'4 

DB3= (e4 - b4) i4 

= -(e' -  b 3 ) 3 	' 

b4ii.4 
tie 4  r.4 

IL4  
(1 +1.4/PB)b4e 
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RELATION BETWEEN APPARENT AND TRUE HTU AND NTU 

Definition of HTU 

There should be three kinds of HTU (height of transfer unit), depending 

on the definition of the concentration driving force. 

"True" values 	. 	 . 

By. the original definition of HTtJ, 3 "true" HTU is the ratio of volumetric 

flow rate across a:unit cross section to the true over-all coefficient of mass 

transfer: 	 .. 	 . 	 ... 	 . 

H 	=F/Ka: 	. 	. 	. 	. 	 . 	 (8) 

	

• 	ox 	x x 	- 

Likewise, the true number of over-all transfer unjts(NTU) is 

N = ox 	x 	x 
K a L/F 	 . 	 . 	 (8a) 

"Measured" values 	 . 	. . 	.. . 	. 	 . 

When an extractorbehaves in .the same manne.r as the proposed model, . 

the actual concentration distributiorrfor the X phase in the extractor is given 

by curve ABDE of Fig. 3 andfor theY phase by curve FGHK, These two curves 

can be known by measuring the concentration distribution in the extractor. The 

number of transfer units defined from these measured values is 

C (xl 	
dC 

	

NM 	 . . 	X . 	
. 	 ( 9) . ox 

I 	C-mG 
IC' 	X 	y 

JxO 	 . 

From this definition of NTU, an apparent HTU is derived at 

H 	=L/N oxM 	oxM (9a) 

"Piston-flow." values 	. . . . 	.. 	 . 

Another apparent NTU Js defined in terms of'the logrithmic-meân driving 

force computed from the exterior incoming and outgoing concentrations at both 

ends of the extractor: 	 . 



	

-15- 	 UCRL3911 

dC 
(10) 

C P  mC 

	

j 	 x 

Integration of the righthand side of this equation gives Eq.(15) and (17). 

The corresponding apparent HTU is defined as 

H 	=L/N . 	 . 	 . 	 (10a) 
oxP 	oxP 

H oiM 	oiP 
and H 	should include the effect of longitudinal dispersion of the 

transferring ñaterial. In general, one will find HOIP,HOiM.~ HOI 

	

Relations Between.H , H 	, and H 
ox oxM 	oxP 

Mox and HOXP  
.t rom Jq. (6.a), the outlet concentrationC 1  is given as 

	

1 	4 
C 1 	mC 	

A. 	3;  (j = 1,2,3, and 4)  

1 - mC' 	j=1 
y 

where A. and X. are the functions of N 	for given values of mF/F 
1 	 1 	

. 	

ox 	 x y 
P B, and P B and independent of C 	On the other hand, C is given as x 	

. y 	 y 	. 	 xl 
follows from Eq. (15), for the case in which the X- and Y-phases are assumed 

to follow piston flow: 

C -mC' 	 A.X x1 	y 	= (1 .-/\ )e 	 .. 	

. 	 (iLa) 

l mC 
1 	

l j 
A e  x 

- 	 . 

where X 	N0p  (1 A ). 

Comparison ofEqs.(11) and (iha) gives an explicit relation between 

N andN 	, 	 . 

ox 	oxP 

*ForA = 1, Aise Eq. (17) instead of Eq. (15). 
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4 
."• (1-A)e - 	--- L 	,e 

(') 

J=i 

This equation shows that the relation between N and N 	is independent of ox 	oxP 
• Accordingly, the ratio H 	/H 	is determined orSbv 	P B 	and y 	 oxP 	ox x 

P B, and is not influenced by CI • y 	 y 

H 	andH 
ox 	oxM 

** 
Equation 6 gives• 

4 

C-mC 	=(1-mC 1 ). 	(1a.)A.e 3  y 	y 
j= 1  

dC 	=(1mC 1 ) 
x.z. 

A..e 3 	dZ. 
X 	 y 33 

j= 1  

Accordingly one has 

X. 

N M 

= f A 	e / 

[ 
(1aAeui 

 
dZ 	(12) 

This equation gives us the value of H 	The ratio H 	/H 	is equal to 
oxM 	 oxM 	ox 

N 	/N 	and is larger than I. 	These ratios are also independent of C ox 	oxM 
because 	X., 

	

A., 	and a. 	do not includeC 

	

3 	 3 3 	 y 

** 
F or A 	1, use Eq. (7) instead of Eq. (6). 
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Numerical Example 

The following parameters can be considered for illustration:  

P B = P B = 4, N 	= 5, C ' = 0. 	The concentration distribution is given by 
x 	y 	ox 	y 

C 	= 0.8110. - 0.5176 Z + 0 386210 	e7 49Z  + 0.0209 e7 49Z 

mC y  = 0.7080 - 0.5176 Z - 1.168,10 	e749Z  0.0691  e_749Z 

The resulting 	nurnri.ca1 values are shown in Table I. 

Table I 

Calculated concentration distributions 

Z 0 	 0.1 	0.3 	05 	0.7 0.9 1.0 

C 0.832 	0.769 	0.658 	0.554 	0.455 0.376 0.362 x 

mC 0.638 	0.624 	0.545 	0.447 	0.342 0.231 0.168 
y 

C 	- mC 0.194 	0.145 	0.113 	0.107 	0.113 0.145 0.194 x 

1/(C 	- mC y) 5.15 	6.90 	8.85 	9.34 	8.85 6.90 5.15 

Graphical integration gives 

0.832 dC
X. N 	= 	foxM 	

=3.87. 
C -mC 

/0.362 	- 
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Calculation from Eq. (7), below, gives 

C 	1+N 	1 0.362,orN 	.1.76; 

	

xl 	ox.t-' 	 oxP 

Accordingly one finds 

	

H 	H 	t H 	N 1  N' : 
OX 	oxM 	oxP 	ox . oxM oxP 

= 1.0 : 1.29 2.84 

	

This result shows that H 
oxM 	oxP 

and H.. 	express apparent HTU values 

	

• 	 ..  

that include the effect of fluid mixing, while }T 	gives the true coefficient 
Ox 

mass transfer, As :N increases., the ratio of H 	IH ... increases always ............................................. ox: 

more rapdly than the rato of H 
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SOLUTIONS FOR SPECIAL CASES 

Solutions for various special cases are obtained by simplification of the 

basic equations. Table II summarizes these cases and indicates the physical 

situations to which they correspond. 

Table II 

Special solutions corresponding to limiting values of the parameters 

PB PB .A Case Equation Type of application 

finite 

• 

finite . 	1 (6), (6a) Mixco., pulsed, rotating-disc, and 
packed* columns. 	Gas bubbles thro 
a long column with mechanical 
agitation. 

- 1 G 2  (7) 

o 

o 
co 

finite 

00 

0 
finite 

o 

w 
0 

00 

finite 

finite 
0 

1 1 (14),(15) Perfect countercurrent 
piston-flow operation - 1 2 (16); (17) 

all 3  Perfect mixing 

all .4  Large gas bubbles through a 
mixing tank* all  

.6  Dispersed phase in non- 
coalescing free flow through a long 
column, without mechanical 
agitation 

1 7 (22). 
1 8 (24) 

= 	1 9 (25) 

all 
all 

10 
11 

 
 

Small gas bubbles through a 
mixing tank 

*See Appendix 1 

gh 

•1 
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Case .1.. PB - 	, PB- 	; A 	1. 

From Eq. (2), we have 

dC /dZ + N (C 	mC ) = 0 1 

	

X 	 OX X 	
(13) 

dC /dZ + N (C -  mC ) 0 J 

	

y 	oy'x 	y 

and 

• 	C 	= 1, C 	= C' 

	

xO 	y.l 	y 

The solutions are 

	

•C -mC' 	XZ 
e 

1-mC1 	

= 	

1 	AeX 

 

m(C -C 1 ) 	XZ 
y 	y _(e 	- 

 

e). 

	

1- mC 1 	• 	1 - A eX 

where 

ox 

The terminal (product) values of C and C are given by 

C 1  - mC' 
	0 - 	) e 	• 

1-mC 1  

 

m (C 0  - C')  

1-mC' 	1- 
y 
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Case 2 PB -oo, PB -oo, 

From Eq (13) we have 

d 2 C/dZ 2  0. 

Solution of the equation so as to satisfy the boun ,dary conditions yields 

	

- mC' 	= 1 + N(l - Z) 

	

1-mG' 	 l+N 

	

OX 	 (16) 

m (C - C') 	N (1 - Z) 
y 	y 	ox 

	

1-mC 1 	1+N 

	

y 	 OX 

1 
C .-mC xl 	y 	 1 

	

1-mG' 	1 + N 

	

y 	 ox 
(17) 

m(C -C') 	N 
yO 	y - 	.ox 

	

p1 	1 + N 

	

y 	 .ox 

Equations (14) through (17) correspond to the well-known Kremser or 

Underwood equations for counter-current continuous operations. 

Case 3. P B -  0; P B -* 0. 
y 

In this case, both phases undergo perfect mixing Equations (1) reduce to 

	

u E (c 0-  c ) = u E (c 	- c' ) =<aL (c 	- mc ) x x x 	xl 	y y yO 	y 	 xl 	yO 

or 
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1-C xl 	ox xl 
=N (C 	-mCyO )  

C 	-C'.=N (C 	-mC ) yO 	y 	oy xl 	yO 

These equations give, for C, 1  and C O3  

.0 	'rnC' 	l+N 	(A) 	. xl 	y - 	ox 

1 - 	 1 + N (1 + 
OX 	

. 	 ( 18)' 

m(C -C') 	N 
yo 	y. = 	ox• 

1 - mC 1 	1 + N(1  

Case4. PB-*0; PB -'oo. x 	 y 

The basic equations are 

dC /dz + N (C -  mC ) = 0 y 	oy.xl 	y 	 . 

C 1  = 1 - (F/F) (C r0  - C 1 ) 

C 	C l
= 

yl 	y 

The solutions is.  

C 	-mC' 	 'A 	. xl 	y 	- 	I' 

1 - mC 	' - (1-e A NoX) 

 

m(C. 	- C') 	. - AN0  . 	 .. 	 .. 

y0 	y 	(1-e 	. , 

1 -mC' 	(1-é' ANOX),.+ A 	. 	. ' 
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The soiutor is 

C -mC 1 	 z 	 z 	XZ 

	

F 1 e 	+ F 2 e 	+ F 3e 

1 - n-ic; 	
(Zia) 

ni(C - c') 	). Z 	X Z 	)l Z 
y 	y_- 	f 1 F 1 e 	+f2F2e 2 +f3F3e  3. 

1-mC 1  
y 

with 

F1 = DF1/DF F2 	F2/DF , and F = DF3/DF 

DF =Fl + 1 	 1 - X3/PB 

	

X 2e 	 'K 3e 

DF1 XZe 	 D 	 : F 	3 

12e 	f3e. 	DF3 ..-X2e 

and 

f. = 1 - x /N P B 1 	 1 ox 	i 	ox x 

• 	 (1 = 1,2, and 3) 	 • 

x l =o 

= (a/Z) + V(a/?-)7  + b 

= (a/2) _2)2 + b 	 • 

a=PB +(A)Nox  

	

b =(1-/\NpB 	 • 
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Case 8. 	PB 	; PB finite; A 	..i. 	•. 	.' .. .... 

The basic equations are 	.. 

dC/dZ 	 - .mC) = 0ox 

d 
2  C /dZ 2 :+ P y 
	 oy y 	x 
R. d.0 /dZ +N P B.(C - mG 

y 
 ) 0 	..• .  

Dimensionless boundary conditions are 

C 0  = 1, 	(dCy/dZ)z = 0 0 

- (dCy/dZ)z = 1 = PB (C r1  - C) J 
By a procedure similar to Case 7, the basic equations can be combined to 

give 

d 3C/dZ 3  + h d2C/dZ 	k dC/dZ = 0, 	 . . 

where 

h=N + P B ox 	,y 	 . 	 . 

k=NPB(1-A ) ox 

The solutions depend.. upon whether k 	0. or 	= O. For k . 	0 

or 	1, the solution is 

C -mG' 	 . 	Z 	xz 
X 	

= H1e 1 . + H 2 e 	+ H 3 
 e 

1 - mC 	 , 	 (24) 

m(C - mC: 	 \ Z . 	) Z . . 
__ = h1H,e)%1Z + h2H2e 2  + hH3e 

1-mC 
y 
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where 

H1 = DH1/DH , H2= DHZ/DHI  and H3 = DH3/DH 

and 

DH = Dj 	+ ( 3 ) 3  - h 2 X 2 ) 

DH1 -h22 	 h 33  

1 ( 1  + 2/PB)e 2h 2  (1 + X 3/PB) e 3h 3  

= h 3 X 3 . 	; D 3  = - h2 X 2 . 

1 	
W iIN  ox 

(i 	1,2, and3) , 

l=o 
- (h/2) +V(h/2)2_-k 

= - (h/2) -h/2) - k 

h=N + P B 	 1 ox 	y 
k=N P(1 oxy B  

Case 9. P x B 	; P y B finite;  

Eq (23) becomes 

d 3 C/dZ 3  + h d2 C /dZ 2  = 0 

The final solution is  

C -mC' x 	Y = 	+ j2z + j e hZ 

1-mC 1  
y 

m(C -C ' ) 
. J 1  + J2/N 	+ J2 Z (1 - h/NI J 3 e 	•• 

1-mC 	 J y 

(25) 
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where 

J i  = D J1 /DJ  J2. = D j2/Dj; 	4 J3 .= 

and.- 

= 1 + 

= 	- 1 	 (1 _h/N) h 

	

(1 + 1/N + 1/PB) 	e 	

. J D 2  = (1 - h/N) h, and 	= 1 , I 

Case 10. P B = 0; P B finite. 
x 	y 

The basic equations are 

d 
y  

2C /dzZ + P 
y 
 B dCy 	oy y xl 	y 

/dz + N P B(C - nC ) = 0 

C 	is constant throughout the column. xl 

The boundary conditions are 

- (dC/dz)z =o = 0 	 1 

(dC/dZ)z = 1 = PB(C 1  - C) f 
The solutions are: 

C -mC 1 

mC = 	A + ( 1 + 	) 

m(C 	C l 0 	
- *A4(1+ZL) 	. 

1 - mC1 	A + ( 1 + 

x1z 	X2 Z 	 .. 	.... 
1. 	A 	 Xe 	-Xe 

m(C - C.  
Y 	 - 	i\ (1+ 

1 - mC' 	A + ( 1 + 	 ) 	

) 

(26) 
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whe re 

D 

= 	

B )2e') ~ 	
) 

(e' - e 2 ) 

	

= [__ 	) + NP B 
OXT 	 .1 

= 
- (PB )JPYB + NPB 

'A 	J 

	

2 	

2

Case 11. P B finite; P B. = 0 x 	 y. 

The basic equations are 

d2C x  /dZ 2  - x P BdC x 
	ox x 	x 	yO 
/dZ - N P B (C - mC 

) 
0 

mC 
yo 

 is constant throughout the column. 

The boundary conditions are 

(dC/dZ)z = = PB(1 C 0 ) 

•(dC/dZ)zi = 0 

The solutions are 	 . . 

•1 ) 
C - mC 	- 	 1 - (Xe 	1 

- X 1 e 	)/D 2   

	

1 	
- 1 

- 	
(-X) 

	

1-mC . 	 1+1-- 	 e 

	

1 	 .. 	

(X1+X2) 
C1 - mC 	- 	 1 .+ . 1 -X) e 	/D 

1  1-mG 	. 	 1.+1+ 	 e 

	

Y 	. 	 D 

(27) 
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CHARACTERISTICS OF THE PROPOSEDMODEL 

Figures 4, 5, and 6 show the concentration distributions calculated 

for three particular sets of parameters. Comparison of Fig. 5 with Fig. 4 

shows the effect of increasing N0 . Comparison of Fig. 6 with Fig. 4 

shows the effect of decreasing the extraction  coefficient ir FX/FY 

From these figures, some particular characteristics are seen,as 

follows 

1. The concentration driving force between two phases is obviously lowered 

by back-mixing of fluid, but notso much as was expected. At both ends of an 

extractor, the concentration driving force becomes higher than that in piston 

flow for the same N 
ox 

2.. The concentration of incoming streams increases or decreases abruptly 

at the time the streams enter the extractor. In contrast, the concentration 

curve for outgoing streams becomes flat as they approach the outlet, and 

no discontinuity in concentration occurs at the exit 

3. When extraction is accompanied by back-mixing of fluid, the extent of 

extraction is lowered in comparison with the case of piston flow, especially 

at high values of N and low values of P B or P B. This lowering of the 
ox 	 x 	y 

yield is at-ributabIe pa-rt-Iyto the decrease of concentration driving force, 

and partly to back-mixing of the transferring component. 

•These characteristics are shown further in. Figs. 7 through 10.. Figure 

7 shows the effects of P B and N on C . , the dimensionless concentration x 	 xO ox  
of phase X just inside the inlet. 

As N 
ox 

 increases, C xO 	 . 	 . 
gradually becomes insensitive to ox N and is 

controlled by the Pc1et.group, P 	(or. PB). 	. 	... 	. 	 . 

Figure 8 shows the effect of N and P B on C, the concentration of 
ox 	x 	xl 

outgoing X phase. C also becomes insensitive to N . From these facts, 

an.approximate valuef PB  may be estimated by measuring C 1  and 

experimentally, if the effect of mass transfer at the phase boundary between 

heavier and lighter phases at settling sections is properly corrected for. 

,Figure 9 shows the influence of P B and N on the ratio of H 	/H 
x 	ox 	. 	 toxp OX. 

These ,:numerc:al, values are computed from Eq. (11.b) at mF/F=  1 and P, B 

PyB The ratio increases with decreasing P6clet group, and increasing Nox 
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Fig. 7. Variation of c inside column at inlet end 
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Figure 10 illustrates local accumulation or depression of a transferring 

component in the X phase due to longitudinal dispersion, fluid flow, and mass 

transfei. 

More complete numerical computations are in progress and will be 

presented in a later paper. 

EXTENT OF EXTRACTION AT AN INFINITE MASS- 
TRANSFER COEFFICIENT 

As is evident from Figs. 5 and 8, the extent of extraction approaches 

a certain value as N orincreases, at given values of P B and P B. 
ox 	 x 	y 

It is interesting to examine how the extent of extraction is limited.by  the 

Icrigitudinal dispersion of each phase, under the limiting condition of an 

infinite value of the true over-all coefficient of mass -transfer. 

If the N0  included in Eqs.(6) and (7) is increased to infinity, the 

following solutions are finally derived. 

Case iz A 	1; .N 	(X) 

For the slution given by, Eq. (6), the ratio 
q/p3/2 

 decreases to zero, 

and u approaches ir/Z. If q is positive, 
q/p3/2 

 is also positive and u 

approaches ir/Z in the first quadrant. (If q is negative, a similar end 

result is obtained.) The difference, (.r/Z) -u, is positive and approaches zero. 

That is, 

. cosu=sin(ir/2-u)= 	/ -' q/p 	0+ 

On the other hand, one obtains 

sin (ir/2 - u) = (rr/2 - u), if (rr/2 - u) <l. 

Accordingly., one obtains 

U = q/p 3/2  

or 
3/ z 

u/3 = (ir/6 - q/3p 
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From this value of u, V . 	 V  

= a/3 +1JCOS ( 	/6 
- q/ 3 3/Z )  

with  

cos ( 	/6 - q/3p3/2) = COB (1T/6) cos (q/3p3) 
+ sin ( ir/6) sin( qj3p 3/ 2 ) 

3/ 2 + ( q/3p 3/ 2)/Z 

= a/3 + q/3p 

Similarly, = a/3 + q/3p  --~F3p 

= a./3 - 2(q/3p) 

Substitution for a 	In the8e equations yields 

V  

:E(p.B).A(pB)2  
X 

2  L 	PB + 'APB J 
= 	[::.AP;r 2 ] - 

V  

- l)FBP 
V 

1 B+ :APyB 
Substituting these roots into Eq 	(6), and setting N0  - 	

co, gives 

a 1 =a4 =1, . 

V 	 a 2  = a 3  = 
- 'A. V  (PB/ PB) . 
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Introducing these values in Eq 	(6), and eliminating I.nogligible terms, 

we obtain finally . . 	 .. 

- m C 1  = {A 	- exp Z)J 

1 	mC 1  - exp . x 
- 

[ P.B+ 'AP B . 	. x i\ 	y  

If 	Z = 1, Eq 	(28) (below) results 	From Eq 	(28), Eq 	(29) or (30) can be 

derived easily by setting PBor PB equal to infinity.  

P B finite, 	P B fiiüte: 	. 	. . 	. 	. x 	. y , . 

- mC 
 A' 	(A 	1 

B PB (28) 

1-mC ø2exp /\X rP A)P 
y 

y 
B+'APB 

P B finite, 	P B. 	: 	 . 	.. 
X 

. 	. 	. 
y 

- 

1 -mC - 4tY 	-exP 
)PB1 

C. 	PB-.00, 
x 

PBfinite: 	 . 
y 

. 
. 

C 1  - mC A = 

1 - mC A2 - exP[(1 A ) Pyj 



UCRL-3911 

Case 13 	= 1, N - co ox 

For the solution given by Eq. (7), the final solutionscan be derived 

from the 'following' approximations: 

= a/2 +ja/2)2 + -/' when N 	-'k infinity,
ox  

p.4  = a/2 - 	/21+ 3 - 	when N - infinity,
ox  

The solution is 

C -mC 1 	(PB+PB)+PBPB(lZ) x 	y  

1-mG 1 
	

2PB+PBPB+2PB 
X 	X 	Y 	Y. 

from which we can derive the following equations, setting Z = 1. 

P 
X 	 y 
B finite, P B finite: 

C - mC ' 	 PB+PB 
Xl 	 - 	x 	y 	 '31 

1-mG 	 ZPB+PBPB+ZPB 
y 	 x 	x y. 	y 

PBfinite, PB -* 

C -mC i  xl 	y 	= 	1 	
(32) 

1-mC 	2 + P B 
y 	 x 

P B - oo, P B finite: x 	 y 	 ' 

C -mC' xl 	y = 	1 

1-mG 1 
	

2 + P B 
y 	 y 

(33) 
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Equations (28) through (33) are shown graphically in Figs. 11 through 

13. As 	/\ decreases, the extent of extraction approaches unity. This 

limiting case of 	- 0 corresponds to.the behavior of continuous-flow 

homogeneous-phase reactors with first-order reaction 

The limiting cases described in this section (Eqs.(28) through (33))are 

useful in estimating the suitability of a given extractor for a given separation 

requirement. 
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CONCLUSIONS 	.. 

1 A general theoretical treatment based on the proposed model has been 

presented, so as to permit evaluation of the over.-all behavior of counter-

current solvent-extraction columns, taking into consideration the effect of 

longitudinal dispersion of both fluids The behavior is expressed as a 

function of four dimensionless parameters. Solutions for various special cases 

of the pattern of longitudinal dispersion hav been presented and their actual 

applic ations are indicated. 

Three kinds of over-all height of transfer unit have been distinguished, 

and the interrelation between them is shown. It is indicated that two of them, 

used in previous work, reflect the influence of longitudinal dispersion. 

Illustrative numerical examples are.given, which indicate that longitudinal 

dispersion produces an extremely undesirable effect when a high degree of 

extraction is desired, and that the lowering of the extent of extraction is 

attributable partly to a lowering of the concentration driving force and partly. 

to longitudinal dispersion of the transferring component. 

Finally, it is made clear that there is a maximum attainable extent of 

extraction under a given pattern of longitudinal dispersion. Solutions for this 

maximum extent of extraction have been derived by use of an infinite value for 

the true over-all mass-transfer coefficient. 
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NOMENCLATURE 	 UCRL-3911 

a Interfacial area between two phases, per unit column volume (ém 2/cm 3 ) 

B L/d (dimensionless) 

c 1  Concentration of a transferring component in i phase (mole/cm 3 ) 

Initial concentration of the incoming 	x phase (mole/cm 3 ) 

cxO (c ) z 	0 	(mole/cm 3 ) 

Initial concentration of the incoming 	y phase (mole/cm 3 ) 

• 	 c 
• 	 yL  

(c 	(mole/cm3) y)z-L  

d A representative length (cm) 

m Equilibrium distribution coefficient of a transferring component 

between x and 	y phase (dimensionless) 

U. F1/E 1 ; 	True mean linear velocity of the 	i 	phase (cm/sec) 

z Distance along the mean flow (the x-phase inlet is taken as the original 

point) (cm) 

: 

C xO 
c 

xO 	x 
1 

C 
j,O 

1cic 
y rx 

c 
yl 

0 
c 	c 	•. 
yl

, 

 x 
- 	fE1 

Diffusivity of a transferring component in the direction of mean flow 
2 

(cm /sec) 

F1  Superficial volumetric flow rate of i phase across a unit cross section = 

2 
u1 E. (cm /cm 	see) 	• 	 • 

H 1  L/N 	= F1/Ka = 	E/Ka, True HTU (cm)oi  

H.M:Apparent •HTU based on the measured concentration distribution in 

an extractor = L/N 	M(cm) 	 ••. 

H.. • Apparent HTU based on terminal concentration values, assuming 

piston flow for x and y phase (cm) 
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Over -all coefficient of mass transfer (cm/sec) 

L 	Effective length of an extractor in the direction of the mean flow (cm) 

N 1 	aL/F1 =L/(H) . (dimensionless) 

C 

jXC

xdC  
N 	L /H 	 dimensionless

oiM 	oiM 
	 -mCC

X

O 

Px1. 
dC xP 

N 	L/H 	= J 	(dimensionless) 

	

oiP 	oiP 	
mC 

P. 	u.d/E: Pclet Number (dimensionless) 

z 	z/L (dimensionless) 

e. 	Void fraction of i-phase. (dimensionless) 

c() Volumetric rate of reaction (mole/cm 3 . sec) 

A Extraction factor, mFx/Fy  (dimensionless) 

Subscripts x and y refer to x and y phase respectively and i to, 

ith component or phase. 
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APPLICABILITY OF THE MODEL 

The basic equations are derived from the :simplified model shown in 

Fig. 1. In an actual extractor, however, one phase ('Y) is dispersed into 

a second phase (X) as shown in Fig, 2. 

The basic equation expressing the behavior of the continuous phase is 

to be suitable for Mixco and similar type columns There is more 

question as to the conditiàns under which the model fits the dispersed phase, 

because the basic equation requires that all droplets at a given cross section 

have the same concentration. 

There are two typical mechanisms that may cause longitudinal dispersion 

of the dispersed phase One is longitudinal back-mixing of liquid droplets 

caused by local eddy motion of the mixed phases; the other is an apparent 

dispersion caused by a velocity distribution for the droplets, without any 

accompanying back-mixing of droplets In the following descrtion, the former 

is named "the eddy mechanism", and the latter "the velocity-distribution 

mechanism" The mathematical treatment expressed by Eq (1) is called 

"the apparent -diffusivity. method' 1 . 

Two criteria exist for the applicability of the model assumed here One 

is the residence -time distributibn and the other the extraction behavior. The 

former can be measured by transient behavior - e.g. , the outle.t response to 

a delta (or pulse) function introduced at the extractor inlet - and is determined 

only by the longitudinal dispe rsion of the droplets. 

On the other hand, the: extraction behavior is influenced both by mass 

transfer between the droplets and the continuous phase and by the residence - 

time behavior of each phase 
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I Eddy Mechanism 

A mechanically agitated column is the typical example. All droplets 

are presumed to have the same mean diameter, which will depend on the 

mixing geometry and power input .• 

	

• Residence-Time Behavior 	 •• 	 '• 

If local eddy motion of the mixed phases is superimposed upon a rising 

(or descending) motion of droplets, the apparent-diffusivity method provides a 

satisfactory approximation for the eddy mechanism, because reasonable mean 

diffusivities can be assumed in each phase. In addition, E may be of the 

same order of magnitude as Ex  and may remain nearly unchanged throughout 

the column. fti the approach to the ideal case, PB is proportional to the 

column height. 

Under mixing conditions that favor rapid coalescence and redispersion 

of droplets, the physical situation becomes susceptible to the .apparent 

diffusivity method, because the behavior of the dispersed phase approaches 

that of a second continuous phase through the equalization of all the droplets 

at any one le'!el in the extractor. • 

Extraction Behavior 	• • • • 	• 	 • • 	• 	 . 

In the case of negligible coalescence and redispersion of the droplets, 

they behave independently of one anbther. The concentration of different 

droplets at any given cross section is, therefore, not the same 

There are four parameters, PB,  PyB  Nox  and A. which determine 

the extraction behavior. The applicability of the apparent -diffusivity method 

can be discussed in terms of all these parameters, except PB,  for the • 

following cäses 	 • 

(A) PB 	0. Under this condition, the mean concentration of phase Y is 

constant throughout the column. Accordingly, the extraction behavior 

corresponds to that of the homogeneous-phase flow reactors with first-order 

i.eaction. • The model is applicable for all values of PB, N, and A 
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In this 'case, there is negligible back-mixing of the disper.sed 

phase Therefore, the apparent-diffusivity method is applicable to all values 

of P B, N , and A.
ox 

PB finite. Under this conditioi, the concentration driving force between 

a droplet and the continuous phase changes from time to time owing to eddy 

motion of the droplet. This change reflects the concentration distribution of 

phase X and the magnitude of N (which is proportional to the mass-transfer 
ox 

rate). 

The re - are thr extreme cases under which the apparent-diffusivity method 

is applicable. The method probably remains valid under intermediate con-

ditions, but this case needs further investigation.: 

(1) N0  and Ka very high. Owing to the 'high rate., the droplets are always 

nearly in equilibrium with the surrounding continuous phase.. Hen'ce there is 

little effect of back -mixing of droplets on the extraction behavior. 

(2)' N andKa very low. Lengthwis.e gradient for the driving 'force
ox  

is .:very 'small compared with the total driving force.. So there i's again little 

effect of back-mixing of the dispersed phase. 

(3) PB 0. Because the concentration distribution of phase X is con-

stant throughout the column, the extent of extraction of each droplet is de-

termined by the length of residence time. . This comes from the assumption 

that the rate of extraction is expressed by.a rate equation of the first order 

(2). 
The extent of extraction of the dispersed phase may be calculated by the 

apparent-diffusivity method for any values of P yB N,and A. 
ox 

For moderate values of N 
ox 

., there is a possibility that the calculations 
' 

based on the apparent_diffusivity method deviate from the exact solution. 

When A is around 1, this deviation may not be serious, because the con-' 

centration gradient in phase X and phase Y is fairly linear, and d ZC y/dZ 2  

is small. When coalescence and redispersion of droplets occur, the behavior 

of the dispersed phase becomes more favorable to the apparent-diffusivity 

method, for the reason described for residence -time behavior, There is a 

positive indication of coalescence and redispersion of liquid droplets for 

agitated liquid-liquid extractors,. 12, 13 

In conclusion, the apparent-diffusivity method is applicable to the eddy 

mechanism except perhaps in the range where PB and N0  are finite and 

A is not around 1. Further experimental or theoretical study is needed 

for this range. Even here, however, it is entirely permissible to apply the 

apparent -diffusivity method, if enough. coalescence and redispe rsion occur. 
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II. Velocity-Distribution Mechanism 

A typical example is noncoalescing free flow of the dispersed phase 

through a long column without 'mechanical agitation. The residence -time 

distribution depends on the velocity distribution of droplets, which is nearly 

constant throughout the column height; hence the superficial Pclet group 

(PyB)u determined from transient behavior remains unchanged with changing 

column height.  

Under the following restrictions, the extent of extraction in the case, of 

the velocity-distribution mechanism can be computed from the apparent-

diffusion method. 	 . 	. 

For (PB) >50, and 	around 1, 

when (N 
ox)u 

 is smaller. than 20, the extent of 'extraction is given 

by Eq. (6), using P B and (P B) , 
x 	Yu 

when (N ox) u 
 is greater than 20, the extent of extraction is given 

by the apparent diffusion method, using the measured .PB,  and 

an infinite value for PyB irrespective of the measured value of 

(PB).  
yu 

For (PB) 	50.1 the apparent-diffusion method is not generally 

applicable without serious error. 

When the eddy mechanism is superimposed on the velocity-distribution 

mechanism, the following treatment is recommended. 

Contribution of the velocity-distribution mechanism to the over-all 

longitudinal dispersion effective to extraction is apparently expressed by a 

superficial mean diffusivity D, for (PyB)u >" 50. Assuming additivity of 

the superficial diffusivities that came from the different mechanisms, one 

obtains the over-all diffusivity or the diffusivity Eym  measured experimentally 

by the transient method from 

E 	=E -  ED 
ym y yu 

or 

= 1/PyB + l/(PyB) u  

where E y  and PB are the mean diffusivity and Pclet group of the eddy. 

mechanism. 	 ' 



	

-55- 	 UCRL-3911 

When (PyB)m  is measured as a function of column height, we may have 

such a relation as 

	

(P B) 	En for 0 n 1, 
ym 

because (P yB) u  remains unchanged with B, and PB. is proportional. to B. 

The possible values of n, giving the lowest limit under which the apparent 

diffusion method cannot be applied, without serious error, are as follows: 

	

(P B) 	10 	20 	30 	40 	50 ym 	' 
n 	0.8 	0.6 	0.4 	0.2 	0.0 

For example, when (PyB)m  is around 30 and n is greater than 0.4, 

the extent of extraction may safely be calculated bythe apparent-diffusion 

method, using (PyB)m  as the effective P(let group for phase Y in the range 

of(N ox u ) <20, 
, 

Note: 

The special notations used here are as follows: 

(Nox) u  = (Ka)L/F,  

(Ka) 	= over-all coefficient of mass transfer,, when all 

droplets have an equal velocity, and.pass through 

.a column in'plug flow, 	 , 

(PB) = (Uyd/Dyu) (L/d). 

To determine (PB) from the transient behavior it is recommended 

that the width of the residence-time distribution curve be used (i.e., the 

outlet response to the delta function) at the mid-point of its maximum . 

7  height. 	 . 	 . 	 .' 
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