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Abstract

Loss of speech after paralysis is devastating, but circumventing motor-pathway injury by directly 

decoding speech from intact cortical activity has the potential to restore natural communication 

and self-expression. Recent discoveries have defined how key features of speech production 

are facilitated by the coordinated activity of vocal-tract articulatory and motor-planning cortical 

representations. In this Review, we highlight such progress and how it has led to successful 

speech decoding, first in individuals implanted with intracranial electrodes for clinical epilepsy 

monitoring and subsequently in individuals with paralysis as part of early feasibility clinical trials 

to restore speech. We discuss high-spatiotemporal-resolution neural interfaces and the adaptation 

of state-of-the-art speech computational algorithms that have driven rapid and substantial progress 

in decoding neural activity into text, audible speech, and facial movements. Although restoring 

natural speech is a long-term goal, speech neuroprostheses already have performance levels that 

surpass communication rates offered by current assistive-communication technology. Given this 

accelerated rate of progress in the field, we propose key evaluation metrics for speed and accuracy, 

among others, to help standardize across studies. We finish by highlighting several directions 

to more fully explore the multidimensional feature space of speech and language, which will 

continue to accelerate progress towards a clinically viable speech neuroprosthesis.
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Introduction

Losing the ability to speak drastically hinders communication and, as a result, substantially 

reduces quality of life1. Diseases that cause injury to descending motor-neuron tracts in the 

brainstem, such as amyotrophic lateral sclerosis and brainstem stroke, can leave individuals 

paralysed, with little-to-no voluntary muscle control2–4. In some cases, this can result in 

incomplete or total locked-in syndrome, in which almost all forms of natural communication 

are precluded.

Augmentative and alternative communication (AAC) devices leverage residual voluntary 

motor function, such as eye or head movements, to allow individuals with paralysis to 

spell out intended messages, albeit through slow and effortful interfaces5. Communication 

neuroprostheses that decode cortical activity into attempted cursor movements6–8 or 

handwriting9 have made strides in achieving faster spelling in individuals with paralysis. 

However, communication rates for neuroprostheses controlled by attempted hand 

movements remain slower and less expressive than natural speech10.

A speech neuroprosthesis is a device that uses algorithms to translate brain activity during 

intended speech into communication signals, for example, text (such as words or sentences 

on a screen), acoustics (such as vocalized sounds or phrases) or facial movements that 

accompany speech. Speech neuroprostheses have the potential to not only enable more 

natural communication of words and sentences but also restore other expressive components 

of communication that convey meaning, such as intonation, loudness and facial gestures11. 

Advancements in speech neuroscience, neural-interface technology and machine learning 

have accelerated progress towards the goal of a clinically viable speech neuroprosthesis (Fig. 

1). Studies furthering our basic understanding of the cortical encoding of speech features, 

notably motor control of the vocal-tract articulators during speech, laid the groundwork for 

a speech neuroprosthesis that decoded text in the form of words and sentences from the 

cortical activity of an individual with incomplete locked-in syndrome who relied on AAC 

methods to communicate12. Subsequent work has expanded this initial demonstration by 

directly decoding cortical activity into audible speech13,14 and allowing more generalizable 

and rapid text decoding14–16 in individuals with vocal-tract paralysis (Fig. 1).

In this Review, our main goal is to provide readers with an overview of the rapidly 

progressing field of speech neuroprosthetics. We first discuss characteristics and features 

of speech that set it apart from other modes of communication. Next, we briefly overview 

advances in the understanding of the cortical encoding of these speech features, which 

have driven much progress in the field. Then, we discuss in depth the leading approaches 

used in speech decoding and the corresponding metrics used to quantify their performance. 

Finally, we also propose evaluation guidelines and future directions towards a clinically 

viable speech neuroprosthesis.

Neurological speech disorders impairing communication

Speech enables efficient and rapid communication at rates of around 150–200 words per 

minute (WPM) in conversational settings10. This is driven by millisecond-level coordination 
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of more than 100 vocal-tract muscles that articulate speech sounds to express language. 

Speech is distinct from language; speech refers to how vocal-tract muscles — speech 

articulators — are used to produce sounds, but it is part of the broader domain of language, 

which also includes meaning (semantics) and syntax. Current speech-decoding applications 

from brain activity are primarily aimed at restoring communication to individuals with both 

limb and vocal-tract paralysis14–16. For these individuals, their paralysis precludes typical 

communication methods, such as speaking, writing and typing, with AAC technology 

often being a slow and effortful means of communicating. Conditions that cause these 

deficits, including amyotrophic lateral sclerosis (ALS) and brainstem stroke (Box 1), disrupt 

descending motor-neuron pathways to cranial nerves that innervate muscles in the vocal tract 

(Box 1).

Individuals with these conditions are often diagnosed with dysarthria, a motor-speech 

disorder characterized by impaired neuromuscular control over the vocal tract that results 

in a limited ability to produce intelligible speech. In severe cases, they may be diagnosed 

with anarthria, which is the complete inability to articulate intelligible speech (Box 1). 

Importantly, in individuals with dysarthria or anarthria, cerebral cortex neuronal populations, 

which contain representations of articulatory movements used to produce sounds, may 

remain intact. These persisting neural representations provide a substrate for decoding 

intended articulation and vocalization, even if these motor commands no longer reach 

their destination in the vocal tract. Disorders of language (aphasias) can also affect the 

ability of a person to understand or produce speech and result from stroke in, lesion to 

or neurodegeneration of cortical regions, including the superior temporal gyrus (STG), 

supramarginal gyrus (SMG) and precentral gyrus, among others (Box 1). However, it is 

unclear whether intended articulatory representations can be recovered from the cortex of 

individuals with aphasia (see Box 1 for discussion of the challenges posed by differences in 

cortical representations in language versus speech-motor disorders).

Overview of speech features

Although a thorough discussion of speech features and the speech-production pathway is 

beyond the scope of this Review, we focus on the points that are critical for understanding 

current speech-decoding approaches (Fig. 2). Namely, we aim to provide the background 

necessary to understand the methodology and principles in decoding cortical articulatory 

representations into intended speech as discussed in the subsequent sections.

Neural populations in the ventral sensorimotor cortex (vSMC) and the middle precentral 

gyrus (midPrCG) control the millisecond-level movements of the vocal-tract articulators 

(lips, tongue, jaw and larynx) that give rise to speech sounds17,18 (Fig. 2a). Axons from the 

vSMC and midPrCG descend through the corticobulbar tract to the brainstem, terminating 

in cranial nerve nuclei. Cranial nerves then project out of the brainstem to innervate speech 

articulator muscles, the final step in translating cortical commands into continuous muscle 

movements that give rise to speech (Fig. 2a). These articulator movements are coordinated 

with expiration of air to produce the sound waves of speech19. In natural conversation, 

meaning is primarily conveyed with speech. What features of speech are important for 

producing and conveying that information? We consider three broad categories of speech 
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features: articulatory, acoustic and linguistic, emphasizing those that have informed speech-

decoding approaches.

Articulatory features relate directly to how the vocal tract is shaped to transform airflow 

from the respiratory system into speech sounds20. During continuous speech, the vocal-tract 

muscles move rapidly between different configurations that may be grouped as labial, front 

tongue, back tongue and vocalic21 (Fig. 2b) on the basis of where air is constricted in 

the vocal tract. For example, a labial configuration involves bringing the lips forward, 

together and then back to articulate a ‘/b/’, ‘/p/’ or ‘/m/’ sound. Similarly, a front-tongue 

configuration involves raising the tip of the tongue to the roof of the mouth and bringing it 

back to make, for example, a ‘/t/’, ‘/d/’, or ‘/n/’ sound (Fig. 2b). These configurations are not 

a complete description of vocal-tract dynamics; further distinctions in produced sound occur 

based on whether air passes through the nasal cavity (nasals; /n/, /m/) and whether the vocal 

tract is partially (‘/s/’, ‘/f/’) or completely (‘/t/’, ‘/p/’) closed. A complementary approach 

to defining discrete vocal-tract configurations is to measure the location of individual 

vocal-tract articulators continuously over time, using imaging techniques and biosensors22 

or inference from the produced sound23–26 (Fig. 2c). These features can be continuously 

measured, defining kinematic trajectories for individual articulators or different points in the 

vocal tract.

Acoustic features relate directly to the characteristics of audible speech. Speech sound 

waves may be represented over time either as an acoustic waveform (amplitude-based) or a 

speech spectrogram (frequency-based). The envelope of the acoustic waveform illustrates 

the intensity of speech over time (Fig. 2d), which is an important measurement that 

correlates with speech rate, global stress patterns and loudness11. Often, a mel-frequency 

scale — in which frequency is logarithmically transformed — is used to visualize the 

speech spectrogram, as this emphasizes power in perceptually salient frequency bands that 

better correspond to how the human auditory system processes sound27 (Fig. 2e). Individual 

speech sounds can be defined by their spectrotemporal (time–frequency) features in the mel-

spectrogram (allowing visualization of recurring speech sound patterns). Another important 

acoustic feature is the fundamental frequency at which the laryngeal vocal folds resonate 

during speech, which forms the basis of pitch and can be estimated from the acoustic 

waveform, using algorithms that infer the periodicity of a temporal signal28,29 (Fig. 2e). 

Pitch can be modulated over the course of a phrase to convey additional meaning to the 

produced words (phrasal prosody), such as whether an utterance is a statement or question 

(rise in pitch at the end of the phrase)11. In tonal languages, such as Mandarin, the meaning 

of individual words depends on their associated pitch contour (lexical tone)30. In addition, 

pitch is an important aspect of the uniqueness and expressivity of the voice of a person31.

Linguistic features are created by assigning categorical labels to speech sound patterns 

and are abstracted from purely articulatory or acoustic features alone (Fig. 2f). Phonemes 

are defined as the smallest perceptually distinct units of sound that form a language (39 

unstressed phonemes exist in English)32,33. Phonemes can be grouped on the basis of 

similarities in their sound patterns, and their articulatory features — the place of articulation 

of a phoneme in the vocal tract — provide one important grouping category21. Sequences 

of phonemes form the basis of words (~170,000 exist in English) and sentences, which have 
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associated semantic meanings. Phonemes are particularly useful for text decoding, given that 

they form a discrete, low-dimensional representation of speech (~39D in English) that can 

be scaled to produce the much larger vocabularies of words and sentences21.

Cortical encoding of speech features

Cortical and subcortical brain structures, known as the corticobulbar system, are involved 

in the neural control of speech, but an exhaustive discussion of these is beyond the scope 

of this Review. Thus, in this section, we focus on how cortical representations of the 

articulatory, acoustic and linguistic speech features previously described are encoded.

One particularly important region in the corticobulbar system is the speech sensorimotor 

cortex (SMC), composed of the precentral and postcentral gyri (separated by the central 

sulcus). Years of work focused on mapping premotor and primary motor representations on 

the precentral gyrus and central sulcus, revealing a somatotopic organization in which neural 

control of muscle groups is represented along the ventral–dorsal axis34–38. Specifically, 

the corticobulbar system is involved in controlling the speech articulators and has been 

localized to the vSMC and midPrCG. Located directly dorsal to this area is the region of 

cortex involved in controlling hand movements18,39 (Fig. 2a). The postcentral gyrus, which 

is primarily responsible for encoding somatosensory information, is also somatotopically 

organized by body area; however, a growing body of work points to additional postcentral 

gyrus involvement in motor control40–42.

Bouchard et al.17 first demonstrated the dynamics of somatotopic speech-articulator 

representations in the SMC for the jaw, lips, tongue and larynx during speech production of 

syllables (Fig. 1; Bouchard et al. 2013). Subsequent work discovered that SMC populations 

encode articulatory kinematic trajectories and vocal-tract configurations43 during continuous 

speech24,39,44,45 (Fig. 1; Mugler et al. 2018, Chartier et al. 2018 and Dichter et al. 2018). 

Chartier et al.24 discovered that the SMC encodes a large variety of low-dimensional 

movement trajectories of the vocal tract (also called gestures), which could be directly 

related to all consonants and vowels. Dichter et al.44 defined dorsal and ventral laryngeal 

cortical representations, with the dorsal one controlling vocal pitch for prosodic intonation 

in English44 and, interestingly, lexical tone production in Mandarin46. Furthermore, the 

midPrCG is involved across many speech functions and does not appear strongly tuned 

to — that is, consistently and exclusively activated by — a single articulatory group or 

movement (Fig. 2a), potentially instead having a critical role in speech-motor planning47–

50. Interestingly, at the neuronal level, locations on the anterior precentral gyrus in 

orofacial or hand areas contain single neurons tuned to movements of the whole body, 

including key speech articulators15,51,52. Thus, although the ventral–dorsal axis of the SMC 

issomatotopically arranged in brain areas at the level of neural populations, at the single-

neuron level, it may have a more heterogeneous and distributed arrangement.

In addition to articulatory features, acoustic features may be critical for not only speech 

perception but also speech production. Neural activity in the STG encodes acoustic features 

— for example, recurring speech sound patterns in the mel-spectrogram — during speech 

perception53,54 and may be used to reconstruct perceived speech55,56. Beyond providing 
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auditory feedback to one’s own vocalized speech (which may not be present for silently 

attempted speech), the role of the STG during speech production is less clear, although 

evidence suggests that acoustic representations may also be used to form and plan targets 

for speech production57,58. Along these lines, when able speakers are instructed to imagine 

speaking or hearing a word, neural activity in the STG can be used to decode those words 

with above-chance accuracy59–63. Furthermore, when an individual with anarthria silently 

attempted to speak — that is, was asked to attempt to ‘mime’ with no audible output from 

that attempt — select neural populations in the STG contributed to decoding performance14. 

The SMG is another region that may contribute to acoustic representations for speech 

production64–66 (Fig. 1; Wandelt et al. 2022).

The cortical encoding of higher-order language features such as semantics and syntax is 

less clearly understood. Semantics appear to be encoded in a distributed manner, across 

many cortical regions including prefrontal, speech and language association cortices67,68 

(Fig. 1; Tang et al. 2023). Converging evidence suggests that Broca’s area, although 

classically posited as critical for speech production, may not have a critical role in speech 

articulation15,69,70 but may instead be involved in word retrieval and grammar71,72, although 

this is an active research area71. Thus, speech and language features encoded in the STG, 

SMG and Broca’s area could potentially be leveraged for speech decoding in disorders in 

which articulatory representations on the SMC are not intact (Box 1).

In summary, early neurosurgical-stimulation studies provided some of the first insights into 

the somatotopic layout of the sensorimotor cortex. Recent studies using direct intracranial 

recordings have been instrumental to define a functional organization of the SMC and the 

precise cortical dynamics for speech movements17,24,43,44 (Fig. 1; Bouchard et al. 2013, 

Mugler et al. 2018, Chartier et al. 2018 and Dichter et al. 2018). At the cellular level, 

the anterior precentral gyrus in hand and orofacial cortex contains single neurons tuned to 

multiple vocal-tract articulator movements15,51,52. Together, these studies all highlighted a 

large region of cortex, primarily on the SMC, that has been subsequently targeted in the first 

clinical trials of speech neuroprostheses.

Decoding speech from articulatory features

The core goal of a speech neuroprosthesis is to transform neural activity during intended 

speech into communication units, such as text, audible sounds or orofacial movements 

(Fig. 3). This necessitates choices regarding the neural-recording interface, targeted speech 

features and nature of the final decoded communication units. In this section, we first 

discuss neural-recording interfaces that have been used to capture neural activity needed to 

decode speech features. Then, we review two commonly used approaches to modelling 

speech features from neural activity: decoding words and phrases (text decoding) and 

directly decoding the speech waveform (speech synthesis).

Neural-recording interfaces

An ideal neural interface for a speech neuroprosthesis (Fig. 3a) should have three key 

characteristics. First, it should be safe to implant (and explant) with minimal damage 

to neural tissue and minimal risk to the patient. Second, it should have sufficient 
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spatiotemporal resolution to facilitate high-performance speech decoding. Third, it should 

enable stable acquisition of neural signals over the course of several years, ideally decades. 

Together, neural interfaces with these three characteristics could facilitate speech-decoding 

systems moving from academic research environments to widespread clinical use.

Non-invasive technologies, such as scalp electroencephalography (EEG), 

magnetoencephalography (MEG) and functional magnetic resonance imaging (MRI), do 

not require surgical implantation and therefore are very safe for users. EEG and MEG 

use non-invasive sensors to measure electric and magnetic fields, respectively, that are 

generated by neural activity in the brain. These techniques have relatively high temporal 

resolution but lack spatial specificity, with each sensor recording from a large area of 

the brain73. Functional MRI, by contrast, has higher spatial specificity but lower temporal 

resolution than EEG and MEG as it measures changes in cerebral blood flow as a correlate 

of neural activity74. Although these non-invasive techniques have facilitated decoding of 

limited vocabularies of imagined words, syllables and speech sounds75,76 and reconstruction 

of semantic content of speech68 (Fig. 1; Tang et al. 2023), they are not portable — with the 

exception of EEG — and low spatial or temporal resolution has hindered scaling decoding 

to larger vocabularies and longer speech segments (sentences). Although efforts to mitigate 

these limitations and increase portability are ongoing77–80, this Review focuses on invasive 

recording techniques that have demonstrated spatiotemporal resolution sufficient to enable 

high-performance speech decoding.

Invasive recording techniques require implantation surgery and directly record extracellular 

electric field potentials from the cortex via electrodes, affording both high spatial and 

temporal resolution. However, all invasive recording techniques share risks related to 

the anaesthesia, craniotomy and dural opening in the implantation surgery and the 

possibility of infection81. Exact placement of invasive electrodes depends on the technique: 

intracortical microelectrode arrays (MEAs) are inserted within cortical tissue whereas 

electrocorticography (ECoG) electrode arrays are placed directly on the brain surface, 

without penetrating the pial or arachnoid meningeal layers82.

Intracortical MEA recordings are used to measure neural activity at the level of single 

neurons or neuron clusters83. MEAs typically record high-fidelity signals from a small (a 

few square millimetres) area of cortex. The first efforts towards a speech neuroprosthesis 

for an individual with vocal-tract paralysis, developed by Phil Kennedy and Frank Guenther, 

used an intracortical neurotrophic microelectrode placed in the precentral gyrus, which 

allowed above-chance synthesis of vowel formants84 and decoding of phonemes85 (Fig. 1; 

Guenther et al. 2009 and Brumberg et al. 2011).

ECoG electrodes are placed directly on the cortex and record local field potentials from 

spatially distinct neural populations. The high-γ band of the local field potential (70–150 

Hz) correlates with neuronal firing rates underneath each ECoG electrode86,87 and captures 

cortical representations of acoustic and articulatory features relevant to speech17,88,89 (Fig. 

1; Crone et al. 1998, 2001). ECoG implantation can cover broad areas of cortex relevant for 

speech, such as the vSMC, midPrCG and STG, with a single array.
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ECoG has been used clinically for decades for localizing seizures and for brain mapping 

in surgical work-up for epilepsy treatment90. The discovery of the high-γ band catalysed 

the use of the ECoG for neuro-scientific research in individuals with epilepsy88, leading 

to advances in understanding cortical representations of speech (see ‘Cortical encoding 

of speech features‘) and the first successful demonstrations of speech decoding from 

brain activity (see ‘Modelling speech features from neural activity‘). Importantly, those 

demonstrations in able speakers with epilepsy served as a proof-of-principle for future 

applications in individuals with vocal-tract paralysis that led to the first clinical trial 

for a speech neuroprosthesis using a chronically implanted 128-electrode ECoG array12. 

Previously, data on the long-term safety and stability of ECoG primarily came from its 

application in epilepsy82,90–92, including the paddle-style surface strip electrodes with 

the Neuropace responsive neurostimulation system, which has demonstrated safety and 

signal stability for at least 9 years92. Although ECoG electrodes do not penetrate the 

cortex, they may be associated with subdural fibrosis93 with minimal or no cortical injury. 

Despite this, durable stability has enabled ECoG-based neuroprostheses without the need 

for daily calibration by the user12,14,94,95. Furthermore, a 253-electrode ECoG array with 

increased channel count and density led to substantial gains towards high-performance 

speech decoding14. Thus, the stable acquisition, broad coverage and high performance of 

ECoG make it a strong candidate for a clinically viable neuroprosthesis.

On the basis of findings from a first proof-of-concept chronic ECoG trial to restore speech 

to a person with vocal-tract paralysis12, intracortical MEA-based approaches have been re-

visited with higher channel counts in speech-motor cortex using the Utah MEA96,97. Recent 

studies have also achieved high-performance speech-decoding results15,16 by measuring 

relevant single-unit and multi-unit neuronal activity from multiple small (4 × 4 mm2 (ref. 

83)) cortical regions on the anterior precentral gyrus15,16,52,98. Previous demonstrations 

of intracortical insertion of MEAs showed injury and neuronal loss at the implantation 

location99, as well as signal instabilities contributing to signal loss and performance 

decline over time100,101. Many efforts are ongoing to improve the safety and stability of 

MEAs, along with promising work in computational techniques to recalibrate data across 

days102–105. Although more work is needed to validate long-term robustness and signal 

stability with MEAs, their potential for high-performance speech decoding in combination 

with computational recalibration for stable acquisition offers potential for future use as a 

clinically viable neuroprosthesis.

Modelling speech features from neural activity

Text (Fig. 3b) and synthesized speech (Fig. 3c) are two outputs commonly used in speech-

decoding systems. For text decoding, decoders are trained to predict a discrete set of 

linguistic features — such as characters, phonemes, words or sentences — that correspond 

to the intended speech of the user (Fig. 3b). For speech synthesis, acoustic features, such 

as the mel-spectrogram and pitch, are decoded and mapped to a final acoustic waveform 

that can be played back to the user (Fig. 3c). In our discussion of text decoding and 

speech synthesis mentioned subsequently, we follow the progression highlighted by the 

literature in Fig. 1. For text decoding, we first discuss studies in able speakers, undergoing 

surgical work-up for epilepsy, that demonstrated approaches to decode phonemes106,107, 
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words and sentences108,109 from cortical activity. We next discuss adaptations of these 

approaches to decode text in people with vocal-tract paralysis who cannot speak12,14–

16. Finally, we highlight three recent studies that have demonstrated high-performance 

decoding of sentences with large vocabularies closer to natural speaking rates14–16. For 

speech synthesis, we similarly first discuss approaches developed in able speakers110–112 

before moving to how these approaches have been adapted for individuals with vocal-

tract paralysis13,14. Given the strong link between vocal-tract articulatory movements and 

produced speech, we end the speech-synthesis section by discussing standalone approaches 

to decode articulation14,52,113,114.

Text decoding.—A first approach to text decoding is to classify neural activity from 

isolated, intended speech as a word or sentence in a predefined vocabulary. In able speakers, 

single-word classification has been highly successful using predefined and restricted 

vocabularies115,116. To scale to longer segments of speech, pre-defined sentence sets have 

been targeted instead of single words. Successful classification of a limited set of produced 

sentences in the setting of question-and-answer dialogue has been demonstrated, where 

incorporating context from the predicted question improved classification of the answer117. 

To build on this result and move beyond direct classification of words or sentences, 

Makin et al.108 applied a recurrent neural network (RNN) encoder-decoder framework to 

encode temporal patterns in neural activity during sentence production into an abstract 

representation that was then decoded word-by-word into phrases (Fig. 1; Makin et al. 

2020). By targeting words within sentences, rather than whole sentences, and leveraging 

contemporary machine-learning techniques, this RNN-based approach improved accuracy 

and the overall vocabulary size and number of sentences that could be decoded. Despite 

their successes, these approaches are all limited by restrictive, predefined vocabulary sizes. 

To address this, several studies have drawn inspiration from the field of automatic speech 

recognition (ASR) to facilitate generalizability to larger vocabularies.

One such approach to generalize decoding to larger vocabularies is to decode subword 

linguistic units, such as phonemes or characters, rather than individual words or sentences. 

This is a common ASR approach in which language models — trained to capture the 

statistical patterns of subword units and words — are used to convert decoded phoneme 

or character sequences into sentences (Fig. 3b). Multiple studies have demonstrated that 

isolated phonemes can be decoded from neural activity17,106,107,118 (Fig. 1; Mugler et al. 

2014 and Herff et al. 2015). Herff et al.106 further demonstrated that, during continuous 

speech, phoneme sequences could be decoded provided that synchronized produced 

acoustics were available to aid model training106. A language model applied to the decoded 

phoneme sequences could then generate sentences. Subsequent work built on this finding, 

applying additional ASR techniques to mitigate the need to synchronize linguistic subunits 

directly with the neural data (Fig. 3b). By using the connectionist temporal classification 

(CTC) loss119, which scores the loss between predictions from an input sequence (such as 

neural activity) and an output sequence (such as linguistic subunits) without requiring their 

alignment, Sun et al.109 trained an RNN to decode character sequences from brain activity 

during sentence production. Language models similarly converted the decoded character 

sequences into sentences (Fig. 1; Sun et al. 2020). Even though precise alignment between 
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the input neural activity and output character sequences was not required, aligning acoustic 

features to the brain activity during model training increased performance. Here, as in many 

text-decoding studies and ASR approaches, performance evaluation used word, character 

and/or phoneme error rates (WER, CER and PER, respectively). Error rates are defined as 

the edit distance between the ground-truth and decoded sequences.

In able speakers, neural activity could be aligned to their produced speech acoustics to 

improve model performance. However, for individuals who cannot speak, there may be 

no way to reliably align neural activity with ground-truth produced acoustics. It may be 

possible to align neural activity to the onsets or offsets of attempted speech, through audio 

(if the individual is able to vocalize) or through video of the face (if the individual retains 

some residual motor function), but these methods require separate annotation (and may 

not be possible if the individual is fully locked in). As a first approach to counter a lack 

of alignment between neural activity and ground-truth targets, Moses et al.12 instructed a 

participant with anarthria to attempt to speak sentences word-by-word (with pauses between 

words). A speech-detection model used cortical activity, primarily from the SMC, to predict 

when the individual was attempting to speak a word and passed the corresponding neural 

features to a word-classification model trained to predict probabilities across 50 words 

in a predefined vocabulary. A language model combined the neural-based probabilities 

of each word with linguistic likelihoods of word sequences, improving WERs of the 

decoded sentences12 (Fig. 1; Moses et al. 2021; Supplementary Table 1). Although the 

speech-detection model used provided word-level alignment, direct classification from a 

50-word vocabulary limited this approach. The development of a spelling system in which 

the same participant with anarthria attempted to silently speak 26 NATO code words — 

phonetically discriminable words which represent each letter in the alphabet — rather than 

the 50 common words previously used facilitated access to a larger vocabulary120. The 

individual then had the ability to spell character-by-character and language models could 

transform decoded-character sequences into sentences comprised from a vocabulary of more 

than 1,000 words (Supplementary Table 1). Although this approach facilitated access to 

a large vocabulary, while still using intended speech, decoding speeds were slower and 

communication was less natural for the individual.

Recent works have achieved large-vocabulary decoding while maintaining decoding speeds 

closer to natural speech, by using CTC loss. Three studies (each in a different individual 

with vocal-tract paralysis: two with MEAs15,16 and one with ECoG14) leveraged RNN 

models trained to map an input sequence of neural activity to an output sequence of 

phonemes without the need for alignment between the neural activity and ground-truth 

sequence of phonemes (Fig. 1; Metzger et al. 2023, Willett et al. 2023 and Card et al. 2023). 

Language models then mapped decoded phoneme sequences into words and sentences (Fig. 

3b and Supplementary Table 1). A key advantage of using CTC loss is that the individual 

can more naturally produce a phrase in this approach, without having to associate isolated 

speech attempts with individual words. Furthermore, decoders can generalize to larger 

vocabularies by targeting low-dimensional subword units (such as phonemes) that can be 

built into a much higher-dimensional space of words and sentences. Overall, this has led to 

state-of-the-art decoding performance for individuals with paralysis.
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MEA-based decoders, including text decoders9,15, have traditionally required day-to-day 

recalibration owing to signal instabilities and drift, requiring additional dedicated time 

from the user. However, computational techniques are actively being developed to counter 

this challenge. One line of work involves developing models that learn an underlying 

manifold (low-dimensional spaces that capture neural population dynamics) structure for 

a given behaviour103,104,121, which can then be used to stabilize MEA activity over time. 

This approach has primarily been applied in the context of upper limb decoders103 but 

may scale to speech neuroprostheses in the future. A second approach, specific to text 

decoding, involves leveraging large language models to automatically recalibrate MEA-

based text neuroprostheses. In this approach, MEA activity is decoded into subword units 

and converted into sentences using language models; this language model output is used 

as a ‘pseudo-label’ to update the RNN decoding model9,16,105. This allows the RNN to be 

automatically recalibrated without additional training labels or dedicated time on the part 

of an individual with paralysis. Thus, promising avenues exist to create MEA-based text 

neuroprostheses that do not require daily recalibration time from the user.

Speech synthesis.—An alternative to decoding text is to synthesize audible speech 

from brain activity (Fig. 3c). As spoken language is a more fundamental form of human 

communication than written language (text), this approach can enable more fine-grained 

and natural control over decoded outputs. Furthermore, self-perception of speech is 

an important component to speech-motor control122,123. It is possible that low-latency 

restoration of audible speech could have analogous benefits to rapid closed-loop feedback 

for neuroprosthetic control in other motor domains124. Finally, an individual may feel 

greater embodiment when using a speech neuroprosthesis with a personalized voice that 

reflects their likeness14. However, these potential benefits come with increased difficulty; 

speech synthesis has generally proven more challenging than text decoding, as it does not 

leverage language models and predefined vocabularies.

Initial work to synthesize speech from neural activity in able speakers has leveraged a few 

approaches110–112,125. Herff et al.112 developed a concatenative synthesizer to transform 

neural activity recorded from SEEG into audible speech (Fig. 1; Herff et al. 2019). They 

first built a brain-to-speech lookup library during training by associating 150 ms neural 

activity segments with the synchronized 150 ms of audible speech. During evaluation, 

consecutive 150 ms windows of neural activity were correlated with each neural entry in the 

lookup library and the speech segments corresponding to the highest correlated neural entry 

were concatenated together to form a decoded speech waveform112. An advantage of this 

concatenative-synthesis approach is its feasibility with smaller dataset sizes; however, it does 

not fully leverage advances in machine learning, relying on time window correlations.

Another approach, pursued by Angrick et al.111 and Anumanchipalli et al.110, involved a 

two-stage decoding process. In the first stage, a deep-learning model is trained to regress 

neural activity (recorded from SEEG111 or ECoG110) to a time series of acoustic features, 

such as the mel-spectrogram (Fig. 3b). In the second stage, a speech synthesizer — a 

vocoder — is used to convert the acoustic representation into an audible speech waveform 

(Fig. 3b). This acoustic regression approach achieved higher-performance speech synthesis, 

probably owing to the ability of a deep-neural network to learn complex nonlinear mappings 
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between inputs and outputs. Anumanchipalli et al. added a first step of decoding an 

articulatory representation from neural activity, which was then mapped to the intermediate 

acoustic representation and vocoded into speech110. Their approach further improved 

speech-synthesis performance by leveraging the underlying articulatory organization of 

the SMC. In both implementations, computing correlation or distortion between the mel-

spectrogram of decoded and ground-truth speech assessed performance. Anumanchipalli et 

al. also computed a human-transcribed WER by asking volunteers to transcribe decoded 

speech to text, which can then be compared with the ground truth110.

The previously described speech-synthesis approaches required precise alignment between 

neural activity and ground-truth acoustics. However, as described earlier, a major challenge 

of creating speech neuroprostheses for individuals with vocal-tract paralysis is the lack 

of intelligible ground-truth acoustic signals to align with the neural data during training. 

Individuals with dysarthria may retain some intelligible vocalization over single, isolated 

words, allowing the acoustic regression approach to prove successful in synthesizing single 

words13 (Fig. 1; Angrick et al. 2023; and Supplementary Table 1). However, individuals 

with severe cases of dysarthria or anarthria may lack the ability to make any intelligible 

vocalizations, especially for longer sentences. Similar to text decoding, a way to circumvent 

the need for alignment is to use CTC loss to train models that map input sequences of 

neural activity to output sequences of acoustic signals that may then be vocoded into 

speech. Metzger et al. used this approach to decode neural activity during silent speech 

attempts from a participant with anarthria into synthesized speech; however, rather than 

regressing the mel-spectrogram, they decoded input sequences of neural activity into output 

sequences of discrete acoustic-speech units14. During training, a large self-supervised audio 

model converted target waveforms (generated from a text-to-speech (TTS) model) into 

sequences of discrete acoustic-speech units. During online inference, the decoded discrete 

acoustic-speech unit sequences were vocoded into sentence-level speech that was intelligible 

to untrained human listeners (Supplementary Table 1). Although this approach facilitated 

alignment-free speech synthesis, suited to scale to fully locked in individuals, it is not 

yet ideal for low-latency streaming. Future approaches may explore integrating word-level 

alignment into speech-synthesis models, using either speech detection or microphone and/or 

video annotation. Word-level alignment may allow regression-based approaches, tailored for 

low-latency streaming13, to scale to individuals with vocal-tract paralysis.

Because speech is variable across people and expressive, neuroprostheses that synthesize 

speech are well suited for personalization (Fig. 3c). A voice-conversion model can be 

applied to convert decoded speech waveforms into personalized waveforms that resemble 

the likeness of the user. Voice-conversion models require as little as 3 s of recorded 

speech126; however, larger personalized training datasets can be leveraged if the individual 

has additional pre-injury audio recordings. Metzger et al.14 first used this voice-conversion 

approach to personalize synthesized speech for an individual with vocal-tract paralysis using 

speech samples recorded before the injury. Card et al.16 trained a personalized TTS model 

on a small corpus of pre-injury speech, which is an alternative to using a voice-conversion 

model. In certain cases, individuals could create voice banks of themselves speaking 

defined lists of natural sentences, which might be particularly relevant for neurodegenerative 
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diseases, such as ALS, in which people anticipate losing the ability to speak in the near 

future127.

Given the strong link between speech acoustics and underlying vocal-tract movements, 

articulation constitutes another relevant feature space (Fig. 3d) for speech decoding and 

speech synthesis128,129. Previous work has demonstrated that first decoding articulatory 

features and transforming them to acoustic features improved the quality of synthesized 

speech (compared with decoding acoustics directly from neural data)110. In addition, 

articulatory features may be useful as a standalone output space for both speech and 

non-speech orofacial gestures14,52,113,114 (Fig. 3d). Non-verbal facial expressions that 

accompany virtual or face-to-face communication provide numerous benefits compared with 

audio-only communication, including improved conveyance of emotion and attitude130,131, 

that provides increased clarity132. Studies with both ECoG14 and MEAs15,16,52 in 

individuals with paralysis have demonstrated the feasibility of decoding articulatory 

features, and Metzger et al. demonstrated that it is possible to use these decoded articulatory 

features to animate a digital avatar face, which was personalized to resemble the likeness of 

the individual14 (Fig. 3d).

Best practices for evaluating and implementing speech neuroprostheses

The past decade has seen rapid progress in speech decoding from the neural activity of both 

able speakers and individuals with vocal-tract paralysis. As the field continues to accelerate, 

it is important to define best practices for evaluating speech-decoding performance and 

implementing practical, user-controlled speech neuroprostheses. In this section, we propose 

key metrics for quantifying performance of text-decoding and speech-synthesis systems. 

We also discuss considerations for scaling speech-decoding research into practical speech-

neuroprosthetic systems.

Evaluation and standardization

When evaluating speech-decoding performance in individuals with vocal-tract paralysis, 

it is important to contextualize findings with the disease aetiology of the individual. 

For example, brainstem-stroke survivors4,133,134 and individuals with ALS135 can retain 

varying degrees of control over orofacial movements and vocalization. Given that most 

early studies in individuals with vocal-tract paralysis involve only single participants12–

16,64,95,120, great care is needed when comparing results, as the broad spectrum of disease 

presentations is not sampled (see Supplementary Table 1 for a high-level overview of 

current speech neuroprosthesis studies in individuals with paralysis). By contrast, in 

previous multiparticipant studies in able speakers, participants had near-identical speech 

capacity106,108,136–138. Although disease aetiologies, research goals and stimulus sets are 

likely to remain variable across speech-decoding studies, the metrics and methods used to 

quantify performance should be standardized.

Speech instruction type.—In speech-decoding studies, the type of speech instructions 

given to participants must be carefully considered and reported. Common types of speech 

instructions include imagined speech (in which participants imagine hearing or saying 

utterances), silently attempted speech (in which participants attempt to move their orofacial 
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muscles but do not vocalize) and attempted speech (in which participants attempt to move 

their orofacial muscles and to vocalize; Fig. 4a). Together, imagined, silently attempted 

and attempted speech reflect intended speech from the participant, which is distinct from 

internal monologues or thoughts139. When attempting to speak, any audible vocalizations 

that an individual with anarthria produces are generally unintelligible140 owing to their 

lack of coordinated vocal-tract control (Fig. 4a). In addition to reporting the type of 

speech instructions, we propose a few performance metrics to become standard for speech 

neuroprostheses.

Text-decoding performance.—For text-decoding systems, these metrics draw heavily 

on precedents set in ASR141,142. One such precedent is to report the WER and any explicitly 

decoded subword unit error rates, which are commonly PERs14–16,106 or CERs109,120 

(Fig. 4b). Often in ASR, to prevent equal weighing of short and long sentences, error 

rates are computed over paragraphs or longer segments of text143,144 rather than across 

individual sentences. Correspondingly, in text-decoding speech neuroprostheses, error rates 

should be computed over a series of sequential trials9,12,15,120. In ASR, a 5% WER, over 

longer segments of text, is standard for professional-level transcriptions141 and 25% or 

less is considered acceptable142. The field of speech neuroprosthetics should adopt the 

aforediscussed precedents for reporting unit error rates, ensuring proper trial weighing and 

defined benchmarks.

Speech-decoding systems often use recent advances in artificial intelligence and natural 

language processing to improve decoding performance. Most prominently, language models 

can be used to rescore sequences of linguistic features (such as phonemes or words) that are 

decoded from neural activity. Language models perform this re-scoring by evaluating how 

likely decoded sequences are to occur in natural language. Thus, by being trained to capture 

statistical patterns in language, language models can prioritize which decoded sequences 

from neural activity are most probable. Generative pretrained transformers145 are a class 

of language models that are particularly powerful for this application. Although decoding 

systems should take advantage of error rate improvements that come from using language 

models, it is important to disambiguate pure neural-decoding performance, which could 

result from different signal features or decoding models, from improvements that come 

from leveraging statistical priors in natural language. To this end, decoding metrics, such as 

subword unit error rates such as CERs or PERs, should be computed with and without the 

use of language models. A complementary perspective to assess the information content in 

the neural activity alone may be to investigate the neural encoding of the speech features 

relevant for decoding14,15; however, the specific approach may vary across studies.

In addition to error rates, the decoding speed is a critical text-decoding metric that may be 

quantified as the decoded WPM (Fig. 4b). The WPM can be computed for any utterance 

decoded by a speech neuroprosthesis, using a simple procedure. The number of decoded 

words can be divided by the elapsed time between the onset of a speech attempt and the 

time the decoding model processed the final sample of neural data (Fig. 4b). The onset 

of a speech attempt may be measured by a go-cue or an algorithm that detects speech 

attempts from neural activity. Able speakers often speak at rates of around 150 WPM during 

conversational speech10; however, for individuals with vocal-tract paralysis, their maximal 
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rate of attempted speech can vary considerably and may depend on their residual articulatory 

capacities and degree of comfort4,133,134. For these reasons, a decoding speed standard is 

difficult to define. Instead, a reasonable goal would be to decode at the same rate that the 

participant can perform their preferred intended speech type (Fig. 4a). This would likely 

provide substantial improvements over AAC, which typically do not exceed 15 WPM (refs. 

146–148).

A final important text-decoding metric is the vocabulary size used to define a lexicon 

constraint — the list of valid words that may be output by the model — and train a language 

model (Fig. 4b). This is distinct from the word set used during text-decoding model training 

or evaluation, which would be a subset of the lexicon and language model vocabulary (see 

‘Vocabulary metrics‘ for further discussion).

In summary, text-decoding systems should report the WER and PER (or other relevant 

subword error rates such as CERs) with and without a language model, the decoded WPM 

and the vocabulary size of the lexicon and/or language model.

Speech-synthesis performance.—A strong precedent for evaluating neural speech-

synthesis systems can be found in modern speech-processing algorithms, specifically TTS 

systems. The performance of TTS systems is often described using mel-cepstral distortion 

(MCD) and open-ended human-transcribed WER149,150. MCD is a measure of distortion 

between perceptually salient mel-scaled spectrotemporal features of the ground truth and 

decoded waveforms (Fig. 4c). It is preferred to correlation-based metrics, such as computing 

a Pearson correlation between ground truth and decoded acoustic waveforms, as MCD 

weighs the features in the produced sound that are most perceptually relevant for conveying 

information151. Open-ended human-transcribed WER complements MCD by providing a 

more interpretable metric derived from the perceptual intelligibility of the synthesized 

speech. These industry-standard metrics should also be standard for quantifying neural 

speech-synthesis performance.

The use of the MCD metric is, however, complicated by the lack of precisely aligned 

ground-truth speech when working with individuals who cannot speak. To resolve this, 

proxy waveforms, such as waveforms generated from TTS or recorded by able speakers 

and used during model training, can be used as references in MCD computations14. 

Separately, the open-ended human-transcribed WER might not be possible in all situations. 

Most previous neural speech-synthesis systems have not been highly intelligible with an 

open-ended vocabulary152 and, thus, have used forced-choice listening tests or word-level 

classification accuracies instead of open-ended WER. In cases of unintelligibility, these are 

suitable alternatives to using open-ended vocabularies. ASR can also be used to transcribe 

synthesized speech into text to compute WERs; however, ASR systems are typically trained 

to recognize natural waveforms that are not artificially synthesized153. Hence, ASR-based 

WERs should currently be seen as complementary, but not a substitute, to human-transcribed 

WERs. This may change as work to tailor ASR algorithms to synthesized speech is 

ongoing152.
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Decoding latency is a final metric of particular importance for speech synthesis, which 

may be quantified in a few ways. We propose that the system latency be defined as the 

elapsed time from the onset of an intended speech attempt (or go cue) to the onset of 

synthesized audio. In addition, the rate at which the speech-synthesis system can output 

new segments of audio — referred to as ‘buffer size’ in speech processing — should be 

quantified. Delayed auditory feedback disrupts speech production, so an ideal streaming 

neural-speech synthesizer would output sound with negligible latencies similar to the self-

perception of able speech (within a few milliseconds). Although this is a long-term goal, 

current streaming neural-speech synthesizers should aim for latencies below 200 ms to 

minimize effects of delayed auditory feedback154. Low-latency feedback may also improve 

speech neuroprosthetic control through feedback learning124.

Vocabulary metrics.—Common to both speech-synthesis and text-decoding systems, 

vocabulary metrics should also be reported. A language’s vocabulary is characterized by 

Zipf’s law, from which it follows that the most common words in a language make up a 

disproportionate amount of spoken content in that language155. For example, in English, the 

most common 1,000 words can cover more than 85% of the content in spoken sentences156. 

However, lower frequency words remain an important component of natural language 

because they facilitate expressivity156. Thus, vocabulary metrics should provide insight into 

the frequency and breadth of words and subword sequences used during speech-decoding 

model training and evaluation (Fig. 4d). Importantly, three vocabulary sizes should be 

reported (even if subword units are first decoded): the number of unique words in the 

utterance set used to train the model, to evaluate the model performance and to define 

a lexicon or language model (only applicable for text decoders), the latter of which may 

be increased without substantially limiting performance14,15. For large-vocabulary sizes, 

it is not feasible to evaluate performance on every word. However, a strong indicator 

that a speech neuroprosthesis would allow the user to produce words beyond the training 

vocabulary is high performance on an evaluation set that is reflective of natural language, 

containing words not seen by the speech-decoding model during training. Thus, a long-term 

goal for both text decoding and speech synthesis is to achieve WERs lower than 5% on 

natural sentences, freely chosen by the user, containing words that were not seen during 

model training. As part of this long-term goal, performance should be demonstrated over the 

course of years and, ideally, decades.

Training times.—A final class of metrics that should be reported across speech-decoding 

studies are related to the time required to train speech decoders. Specifically, we 

propose two metrics. First, the amount of training data required to achieve usable system 

performance, which could be defined as the 25% WER threshold for a minimally viable 

system and the 5% WER threshold for the performance of an ideal system. Second, the 

number of days the decoder can maintain this threshold of usable system performance 

without necessitating dedicated re-training time with the user — either by not re-training 

or by using automatic recalibration techniques which may be simulated offline. This can 

highlight the tradeoff between absolute performance and day-to-day stability (Fig. 4e). Here, 

the time at which system evaluation occurred relative to the time of device implantation (for 

example, measured in days; Supplementary Table 1) should be reported and may give insight 
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into longevity of the system. These two training-time metrics will help the field monitor 

progress towards scalable and robust speech-neuroprosthetic solutions in the future, which 

ideally would be usable after only a brief initial training period and require very-little-to-no 

explicit recalibration periods on a day-to-day basis.

Practical implementation of a speech neuroprosthesis

In this section, we focus on practical speech neuroprosthesis implementations tailored 

to work in daily-life settings. Although studying isolated aspects of speech decoding 

such as text or synthesis with single words or sentences is appropriate for research, an 

ideal speech neuroprosthesis in daily life would have the capacity to leverage numerous 

communication modes based on the setting and desire of users. For example, in some 

situations, users may prefer to limit their output space of speech to single, high-utility words 

and/or phrases (such as ‘no’, ‘yes’, ‘thank you’, ‘not now’ or ‘bring that’) in exchange 

for near-perfect decoding performance157. A similar tradeoff can be facilitated by having 

a spelling framework available on the neuroprosthesis, either using attempted speech120 or 

handwriting9, which would allow users to spell out arbitrary sentences with high accuracy 

(albeit with substantially lower speeds). Although spelling and classification approaches 

may be critical to a practical system for daily use, they do not address users’ desire for 

high-speed and natural communication.

Thus, algorithms to directly decode neural activity into sentence-level speech, with a large 

vocabulary and at natural conversational speeds, are critical in a speech neuroprosthesis. 

Ideally, these algorithms would be designed to capture the multimodal output space of 

speech. For example, text outputs may be preferred in web-based or computer-based 

browsing applications, whereas speech synthesis may be ideal during interpersonal 

interactions. Virtual interactions can further be facilitated by facial animation accompanying 

speech synthesis and can be used to express non-verbal gestures such as laughing, smiling 

and frowning. Synthesized speech and facial animation should be customized to the likeness 

of the participant, using techniques common in speech and avatar processing.

In developing speech-decoding systems for use in daily life, a few additional user concerns 

must be considered. As long and recurring training periods for speech neuroprostheses 

might discourage long-term use158,159, it is essential to develop decoders that are stable 

over time or can be quickly recalibrated102,104,105 to avoid dedicated and high-effort re-

training periods inconveniencing users. Transfer learning, either between individuals108 or 

different types of speech within the same individual120, may also be used to expedite 

decoder training. Another critical concern of neuroprosthesis users is whether thoughts or 

ideas not intended to be conveyed might be output by the system (see Box 2 for ethical 

considerations). Although current speech neuroprostheses do not decode or target internal 

monologue (Fig. 4a), an additional safeguard is to use a speech-detection algorithm to gate 

any decoding process, which is highly successful in correctly identifying volitional attempts 

of users to overtly and silently speak12,120. In the future, speech-detection algorithms can be 

trained using neural activity collected during internal monologues or the presence of external 

sensory stimuli (such as watching TV, listening to a podcast or reading an article) as negative 

examples to further refine specificity for intended speech.
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Importantly, many of the aforementioned user concerns — ease of use, re-training periods 

and data privacy — are not unique to neuroprostheses but rather apply to many machine-

learning-based applications. A growing literature aims to define general machine-learning 

principles to encourage the development of scalable, reliable and efficient systems160. As 

the field of speech neuroprosthetics grows, adopting shared principles with other machine-

learning systems may become increasingly important.

Future directions

In this Review, we have discussed progress towards the development of clinically viable 

speech neuroprostheses. We now focus on three overarching future directions that will 

accelerate the field towards achieving that goal: understanding the cortical encoding of 

speech production, developing better engineering techniques to sample and decode neural 

activity in daily-life settings and scaling to different clinical aetiologies of speech loss.

Attempts to better understand the cortical control of speech production can provide insight 

into optimal electrode array placements for speech neuroprostheses. Further understanding 

of somatotopy and articulatory control on the SMC, both in able speakers37–39,161 and 

in individuals with vocal-tract paralysis14,15, could accelerate progress, which may mirror 

previous investigations of somatotopy in upper limb representations8,162–164. However, it 

is also vital to better understand non-direct articulatory control of speech, such as which 

cortical regions are important for speech planning47,165,166, including semantic68,167 and 

phonological representations58,168 that may be important for forming imagined or attempted 

speech targets. Such regions and representations may inform the development of speech 

neuroprostheses to treat individuals with speech disorders in which the SMC is damaged 

but cognition is otherwise intact. The supplementary motor area (SMA) is another important 

region in the speech production network165,169 that is involved in speech initiation170. A 

recent non-peer-reviewed preprint found that neural populations in the SMA are among 

the earliest predictors of speech onset and may remain strongly activated in imagined and 

attempted speech170. Thus, the SMA may be a particularly useful target for future speech 

detection algorithms. A parallel line of research should investigate the speech features 

encoded by single neurons versus neuronal populations, as different sampling scales may 

offer complementary information, even in the same general anatomical area. Finally, speech 

decoders have yet to fully leverage paradigms of feedback-based learning that have the 

potential to entrain new patterns of neural activity for better control171–174.

Numerous engineering advancements are required to enable daily-life use of speech 

neuroprostheses. For example, higher-density cortical sampling — via an increased number 

of surface or penetrating electrodes — has been shown to increase the performance 

of decoding models14–16,175,176. Different approaches to increase the density and lower 

the invasiveness of ECoG are currently being developed for use in humans and animal 

models176–182. Similarly, both in academic and industry settings, approaches are being 

developed to improve throughput, sampling, biocompatibility and stability of MEAs183–186. 

In addition, although not ready for chronic implantation, NeuroPixels, or similar probes 

that sample laminar cortex, may offer a method to record high-density single units across 

cortical layers in humans187,188. Separately, the feasibility of non-invasive methods for 
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communication brain computer interfaces is being actively investigated77–80, with the goal 

of improving signal-to-noise and spatial resolution. Overall, a positive correlation exists 

between decoder performance and electrode density and/or the relevant coverage afforded by 

the corresponding neural interface, emphasizing that improvements to these two hardware 

aspects can lead to improved speech brain computer interfaces, regardless of the specific 

recording modality.

In addition, algorithms for decoding speech from neural activity may be improved. One 

potential avenue is to leverage advancements in self-supervised learning189 to learn latent 

representations that best capture behaviour-related dynamics, even when noise is present 

in the neural activity121,190–194. This may improve the decoding of speech features, such 

as phonemes or the mel-spectrogram, and lower the amount of training data required. 

Another approach to improve decoding performance is to leverage large language models, 

which are currently being developed in industry145,195, to score the likelihood of decoded 

sentences from neural activity. Importantly, these large language models have the capacity to 

integrate conversational context into their predictions, which has been shown to improve 

neural-decoding pipelines117. Contemporary machine-learning architectures, tailored for 

streaming, may also reduce the latency at which speech-synthesis and text-decoding systems 

operate196,197.

System-design advancements are also necessary to scale speech neuroprostheses for daily 

use. To this end, one promising research avenue involves developing recording technologies 

that can be wireless, portable and fully implanted6,198–203. Complementary work may focus 

on integrating the speech neuroprosthesis with the phone of users and computer operating 

systems to allow seamless communication via text, e-mail and web services. In developing 

these approaches, value-aligned development, in which user feedback is used to guide 

advancements, will be essential and will help ethically design speech neuroprostheses for 

clinical use (Box 2). This may involve frequently soliciting feedback from users of speech 

neuroprostheses, potentially through standardized survey mechanisms. A complementary 

approach is to survey158,159 the population of potential users for their desired features in a 

speech neuroprosthesis.

A final direction towards an optimized speech neuroprosthesis is to explore decoding in 

the context of a number of different speech disorders (Box 1). This may start by further 

assessing decoding performance in individuals with anarthria that have varying degrees 

of vocal-tract paralysis. Specifically, high-performance speech decoding has yet to be 

demonstrated in an individual that is fully locked-in with negligible residual motor function. 

Speech-decoding studies might also consider targeting cortical forms of dysarthria (caused 

by injury to the vSMC)204,205 by recording from intact speech production regions such as 

the posterior STG, SMG or preserved aspects of the precentral gyrus. Apraxia of speech and 

aphasias (Box 1) may similarly be targeted in the future by decoding from intact regions, 

upstream or parallel in the production process from the lesion. Overall, we believe these 

directions will accelerate the field of speech decoding towards its ultimate goal: restoring 

natural and expressive communication to all who have lost it.
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Glossary

Anarthria
Speech-motor disorder referring to an inability to move the vocal-tract muscles to articulate 

speech.

Aphasias
A disorder of understanding or expressing language.

Attempted speech
This is an instruction given to individuals with vocal-tract paralysis to attempt to speak the 

best they can, despite lack of the attempt being intelligible.

Concatenative synthesizer
A speech-synthesis approach that relies on matching neural activity with discrete units of a 

speech waveform that are then concatenated together.

Corticobulbar system
The pathway through which motor commands from the cortex reach the muscles of the vocal 

tract. At a high level, cortical motor neurons send axons via the corticobulbar tract which 

terminate in cranial nerve nuclei in the brainstem. Second-order motor neurons in the cranial 

nerve nuclei then send axons, that bundle and form cranial nerves, to innervate the muscles 

of the vocal tract.

Formants
The preferred resonating frequencies of the vocal tract that are critical for forming different 

vowel sounds.

Language models
Models that are trained to capture the statistical patterns of word occurrences in natural 

language.

Locked-in syndrome
This refers to a clinical condition in which a participant retains cognitive capacity but has 

limited voluntary motor function. Locked-in syndrome is a spectrum, ranging from fully 

locked in states (no residual voluntary motor function) to partially locked in states (some 

residual voluntary motor function such as head movements).
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Mime
An attempt to move vocal-tract muscles without attempting to vocalize.

Sensorimotor cortex
This area of the cortex is composed of the precentral and postcentral gyri, primarily 

responsible for motor control and sensation, respectively.

Silently attempted speech
This is an instruction given to individuals with vocal-tract paralysis to attempt to speak the 

best they can, but without vocalizing.

Speech articulators
The vocal-tract muscle groups that are important for producing (articulating) speech, 

including the lips, jaw, tongue and larynx.

Syntax
The arrangement and structure of words to form coherent sentences.

Vocal-tract paralysis
An inability to contract and move the speech articulators, often caused by injury to 

descending motor-neuron tracts in the brainstem.

Zipf’s law
The law that generally proposes that the frequencies of items are inversely proportional to 

their ranks.

References

1. Felgoise SH, Zaccheo V, Duff J & Simmons Z Verbal communication impacts quality of life in 
patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener 17, 179–183 
(2016).

2. Das JM, Anosike K & Asuncion RMD Locked-in syndrome. StatPearls https://
www.ncbi.nlm.nih.gov/books/NBK559026/ (StatPearls, 2021).

3. Lulé D et al. Life can be worth living in locked-in syndrome. Prog. Brain Res 177, 339–351 (2009). 
[PubMed: 19818912] 

4. Pels EGM, Aarnoutse EJ, Ramsey NF & Vansteensel MJ Estimated prevalence of the target 
population for brain–computer interface neurotechnology in the Netherlands. Neurorehabil. Neural 
Repair 31, 677–685 (2017). [PubMed: 28639486] 

5. Koch Fager S, Fried-Oken M, Jakobs T & Beukelman DR New and emerging access technologies 
for adults with complex communication needs and severe motor impairments: state of the science. 
Augment. Altern. Commun. Baltim. MD 1985 35, 13–25 (2019).

6. Vansteensel MJ et al. Fully implanted brain–computer interface in a locked-in patient with ALS. N. 
Engl. J. Med 375, 2060–2066 (2016). [PubMed: 27959736] 

7. Utsumi K et al. Operation of a P300-based brain–computer interface in patients with Duchenne 
muscular dystrophy. Sci. Rep 8, 1753 (2018). [PubMed: 29379140] 

8. Pandarinath C et al. High performance communication by people with paralysis using an 
intracortical brain–computer interface. eLife 6, e18554 (2017). [PubMed: 28220753] 

9. Willett FR, Avansino DT, Hochberg LR, Henderson JM & Shenoy KV High-performance brain-to-
text communication via handwriting. Nature 593, 249–254 (2021). [PubMed: 33981047] 

10. Chang EF & Anumanchipalli GK Toward a speech neuroprosthesis. JAMA 323, 413–414 (2020). 
[PubMed: 31880768] 

Silva et al. Page 21

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/books/NBK559026/
https://www.ncbi.nlm.nih.gov/books/NBK559026/


11. Bull P & Frederikson L in Companion Encyclopedia of Psychology (Routledge, 1994).

12. Moses DA et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. 
Engl. J. Med 385, 217–227 (2021). [PubMed: 34260835] The authors first demonstrated speech 
decoding in a person with vocal-tract paralysis by decoding cortical activity word-by-word into 
sentences, using a vocabulary of 50 words at a rate of 15 wpm.

13. Angrick M et al. Online speech synthesis using a chronically implanted brain–computer interface 
in an individual with ALS. Preprint at medRxiv 10.1101/2023.06.30.23291352 (2023).The authors 
demonstrated speech synthesis of single words from cortical activity during attempted speech in a 
person with vocal-tract paralysis.

14. Metzger SL et al. A high-performance neuroprosthesis for speech decoding and avatar 
control. Nature 10.1038/s41586-023-06443-4 (2023).The authors reported demonstrations of 
speech synthesis and avatar animation (orofacial-movement decoding), along with improved text-
decoding vocabulary size and speed, by using connectionist temporal classification loss to train 
models to map persistent-somatotopic representations on the sensorimotor cortex into sentences 
during silent speech (a large vocabulary was used at a speech rate of 78 wpm).

15. Willett FR et al. A high-performance speech neuroprosthesis. Nature 10.1038/s41586-023-06377-x 
(2023).The authors improved text decoding to an expansive vocabulary size at 62 wpm, by training 
models with connectionist temporal classification loss to decode sentences from multiunit activity 
from microelectrode arrays on precentral gyrus while a person with dysarthria silently attempted to 
speak.

16. Card NS et al. An Accurate and Rapidly Calibrating Speech Neuroprosthesis 
10.1101/2023.12.26.23300110 (2023).The authors used a similar approach to Willett et al. (2023), 
demonstrating that doubling the number of microelectrode arrays in the precentral gyrus further 
improved text-decoding accuracy with a rate of 33 wpm.

17. Bouchard KE, Mesgarani N, Johnson K & Chang EF Functional organization of human 
sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013). [PubMed: 23426266] 
Here, the authors demonstrated the dynamics of somatotopic organization and speech-articulator 
representations for the jaw, lips, tongue and larynx during production of syllables, directly 
connecting phonetic production with speech-motor control of vocal-tract movements.

18. Carey D, Krishnan S, Callaghan MF, Sereno MI & Dick F Functional and quantitative MRI 
mapping of somatomotor representations of human supralaryngeal vocal tract. Cereb. Cortex N. Y. 
N 1991 27, 265–278 (2017).

19. Ludlow CL Central nervous system control of the laryngeal muscles in humans. Respir. Physiol. 
Neurobiol 147, 205–222 (2005). [PubMed: 15927543] 

20. Browman CP & Goldstein L Articulatory gestures as phonological units. Phonology 6, 201–251 
(1989).

21. Ladefoged P & Johnson K A Course in Phonetics (Cengage Learning, 2014).

22. Berry JJ Accuracy of the NDI wave speech research system. J. Speech Lang. Hear. Res 54, 1295–
1301 (2011). [PubMed: 21498575] 

23. Liu P et al. A deep recurrent approach for acoustic-to-articulatory inversion. In 2015 
IEEE International Conf. Acoustics, Speech and Signal Processing (ICASSP) 10.1109/
ICASSP.2015.7178812 (2015).

24. Chartier J, Anumanchipalli GK, Johnson K & Chang EF Encoding of articulatory kinematic 
trajectories in human speech sensorimotor cortex. Neuron 98, 1042–1054.e4 (2018). [PubMed: 
29779940] The authors demonstrated that, during continuous speech in able speakers, cortical 
activity on the ventral sensorimotor cortex encodes coordinated kinematic trajectories of speech 
articulators and gives rise to a low-dimensional representation of consonants and vowels.

25. Illa A & Ghosh PK Representation learning using convolution neural network for acoustic-to-
articulatory inversion. In ICASSP 2019 — 2019 IEEE International Conf. Acoustics, Speech and 
Signal Processing (ICASSP) 10.1109/ICASSP.2019.8682506 (2019).

26. Shahrebabaki AS, Salvi G, Svendsen T & Siniscalchi SM Acoustic-to-articulatory mapping with 
joint optimization of deep speech enhancement and articulatory inversion models. IEEEACM 
Trans. Audio Speech Lang. Process 30, 135–147 (2022).

Silva et al. Page 22

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Tychtl Z & Psutka J Speech production based on the mel-frequency cepstral coefficients. 
In 6th European Conf. Speech Communication and Technology (Eurospeech 1999) 10.21437/
Eurospeech.1999-510 (ISCA, 1999).

28. Belyk M & Brown S The origins of the vocal brain in humans. Neurosci. Biobehav. Rev 77, 
177–193 (2017). [PubMed: 28351755] 

29. Simonyan K & Horwitz B Laryngeal motor cortex and control of speech in humans. Neuroscientist 
17, 197–208 (2011). [PubMed: 21362688] 

30. McCawley JD in Tone (ed. Fromkin VA) 113–131 (Academic, 1978).

31. Murray IR & Arnott JL Toward the simulation of emotion in synthetic speech: a review of 
the literature on human vocal emotion. J. Acoust. Soc. Am 93, 1097–1108 (1993). [PubMed: 
8445120] 

32. Chomsky N & Halle M The Sound Pattern of English (Harper, 1968).

33. Baddeley A Working Memory xi, 289 (Clarendon/Oxford Univ. Press, 1986).

34. Penfield W & Boldrey E Somatic motor and sensory representation in the cerebral cortex of man 
as studied by electrical stimulation. Brain 60, 389–443 (1937).The authors demonstrated evidence 
of somatotopy on sensorimotor cortex by localizing cortical-stimulation-induced movement and 
sensation for individual muscle groups.

35. Penfield W & Roberts L Speech and Brain-Mechanisms (Princeton Univ. Press, 1959).This 
study provided insights into cortical control of speech and language through neurosurgical cases, 
including cortical resection, direct-cortical stimulation and seizure mapping.

36. Cushing H A note upon the Faradic stimulation of the postcentral gyrus in conscious patients. 
Brain 32, 44–53 (1909).This study was one of the first that applied direct-cortical stimulation to 
localize function on the sensorimotor cortex.

37. Roux F-E, Niare M, Charni S, Giussani C & Durand J-B Functional architecture of the 
motor homunculus detected by electrostimulation. J. Physiol 598, 5487–5504 (2020). [PubMed: 
32857862] 

38. Jensen MA et al. A motor association area in the depths of the central sulcus. Nat. Neurosci 26, 
1165–1169 (2023). [PubMed: 37202552] 

39. Eichert N, Papp D, Mars RB & Watkins KE Mapping human laryngeal motor cortex during 
vocalization. Cereb. Cortex 30, 6254–6269 (2020). [PubMed: 32728706] 

40. Umeda T, Isa T & Nishimura Y The somatosensory cortex receives information about motor 
output. Sci. Adv 5, eaaw5388 (2019). [PubMed: 31309153] 

41. Murray EA & Coulter JD Organization of corticospinal neurons in the monkey. J. Comp. Neurol 
195, 339–365 (1981). [PubMed: 7251930] 

42. Arce FI, Lee J-C, Ross CF, Sessle BJ & Hatsopoulos NG Directional information from neuronal 
ensembles in the primate orofacial sensorimotor cortex. Am. J. Physiol. Heart Circ. Physiol 
10.1152/jn.00144.2013 (2013).

43. Mugler EM et al. Differential representation of articulatory gestures and phonemes in precentral 
and inferior frontal gyri. J. Neurosci 4653, 1206–1218 (2018).The authors demonstrated that 
the ventral sensorimotor cortex, not Broca’s area in the inferior frontal gyrus, best represents 
speech-articulatory gestures.

44. Dichter BK, Breshears JD, Leonard MK & Chang EF The control of vocal pitch in human 
laryngeal motor cortex. Cell 174, 21–31.e9 (2018). [PubMed: 29958109] The authors uncovered 
the causal role of the dorsal laryngeal motor cortex in controlling vocal pitch through feedforward 
motor commands, as well as additional auditory properties.

45. Belyk M, Eichert N & McGettigan C A dual larynx motor networks hypothesis. Philos. Trans. R. 
Soc. B 376, 20200392 (2021).

46. Lu J et al. Neural control of lexical tone production in human laryngeal motor cortex. Nat. 
Commun 14, 6917 (2023). [PubMed: 37903780] 

47. Silva AB et al. A neurosurgical functional dissection of the middle precentral gyrus during speech 
production. J. Neurosci 42, 8416–8426 (2022). [PubMed: 36351829] 

48. Itabashi R et al. Damage to the left precentral gyrus is associated with apraxia of speech in acute 
stroke. Stroke 47, 31–36 (2016). [PubMed: 26645260] 

Silva et al. Page 23

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49. Chang EF et al. Pure apraxia of speech after resection based in the posterior middle frontal gyrus. 
Neurosurgery 87, E383–E389 (2020). [PubMed: 32097489] 

50. Levy DF et al. Apraxia of speech with phonological alexia and agraphia following resection of the 
left middle precentral gyrus: illustrative case. J. Neurosurg. Case Lessons 5, CASE22504 (2023). 
[PubMed: 37014023] 

51. Willett FR et al. Hand knob area of premotor cortex represents the whole body in a compositional 
way. Cell 181, 396–409.e26 (2020). [PubMed: 32220308] 

52. Stavisky SD et al. Neural ensemble dynamics in dorsal motor cortex during speech in people with 
paralysis. eLife 8, e46015 (2019). [PubMed: 31820736] The authors demonstrated that, at single 
locations on the dorsal precentral gyrus (hand area), neurons are tuned to movements of each key 
speech articulator.

53. Venezia JH, Thurman SM, Richards VM & Hickok G Hierarchy of speech-driven spectrotemporal 
receptive fields in human auditory cortex. NeuroImage 186, 647–666 (2019). [PubMed: 30500424] 

54. Mesgarani N, Cheung C, Johnson K & Chang EF Phonetic feature encoding in human superior 
temporal gyrus. Science 343, 1006–1010 (2014). [PubMed: 24482117] 

55. Akbari H, Khalighinejad B, Herrero JL, Mehta AD & Mesgarani N Towards reconstructing 
intelligible speech from the human auditory cortex. Sci. Rep 9, 874 (2019). [PubMed: 30696881] 

56. Pasley BN et al. Reconstructing speech from human auditory cortex. PLOS Biol. 10, e1001251 
(2012). [PubMed: 22303281] 

57. Binder JR The Wernicke area. Neurology 85, 2170–2175 (2015). [PubMed: 26567270] 

58. Binder JR Current controversies on Wernicke’s area and its role in language. Curr. Neurol. 
Neurosci. Rep 17, 58 (2017). [PubMed: 28656532] 

59. Martin S et al. Word pair classification during imagined speech using direct brain recordings. Sci. 
Rep 6, 25803 (2016). [PubMed: 27165452] 

60. Pei X, Barbour D, Leuthardt EC & Schalk G Decoding vowels and consonants in spoken and 
imagined words using electrocorticographic signals in humans. J. Neural Eng 8, 046028 (2011). 
[PubMed: 21750369] 

61. Martin S et al. Decoding spectrotemporal features of overt and covert speech from the human 
cortex. Front. Neuroeng 10.3389/fneng.2014.00014 (2014).

62. Proix T et al. Imagined speech can be decoded from low- and cross-frequency intracranial EEG 
features. Nat. Commun 13, 48 (2022). [PubMed: 35013268] 

63. Simanova I, Hagoort P, Oostenveld R & van Gerven MAJ Modality-independent decoding 
of semantic information from the human brain. Cereb. Cortex 24, 426–434 (2014). [PubMed: 
23064107] 

64. Wandelt SK et al. Online internal speech decoding from single neurons in a human participant. 
Preprint at medRxiv 10.1101/2022.11.02.22281775 (2022).The authors decoded neuronal activity 
from a microelectrode array in the supramarginal gyrus into a set of eight words while the 
participant in their study imagined speaking.

65. Acharya AB & Maani CV Conduction aphasia. StatPearls https://www.ncbi.nlm.nih.gov/books/
NBK537006/ (StatPearls, 2023).

66. Price CJ, Moore CJ, Humphreys GW & Wise RJ Segregating semantic from phonological 
processes during reading. J. Cogn. Neurosci 9, 727–733 (1997). [PubMed: 23964595] 

67. Huth AG, de Heer WA, Griffiths TL, Theunissen FE & Gallant JL Natural speech reveals the 
semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016). [PubMed: 27121839] 

68. Tang J, LeBel A, Jain S & Huth AG Semantic reconstruction of continuous language from non-
invasive brain recordings. Nat. Neurosci 26, 858–866 (2023). [PubMed: 37127759] The authors 
developed an approach to decode functional MRI activity during imagined speech into sentences 
with preserved semantic meaning, although word-by-word accuracy was limited.

69. Andrews JP et al. Dissociation of Broca’s area from Broca’s aphasia in patients undergoing 
neurosurgical resections. J. Neurosurg 10.3171/2022.6.JNS2297 (2022).

70. Mohr JP et al. Broca aphasia: pathologic and clinical. Neurology 28, 311–324 (1978). [PubMed: 
565019] 

Silva et al. Page 24

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/books/NBK537006/
https://www.ncbi.nlm.nih.gov/books/NBK537006/


71. Matchin W & Hickok G The cortical organization of syntax. Cereb. Cortex 30, 1481–1498 (2020). 
[PubMed: 31670779] 

72. Chang EF, Kurteff G & Wilson SM Selective interference with syntactic encoding during sentence 
production by direct electrocortical stimulation of the inferior frontal gyrus. J. Cogn. Neurosci 30, 
411–420 (2018). [PubMed: 29211650] 

73. Thukral A, Ershad F, Enan N, Rao Z & Yu C Soft ultrathin silicon electronics for soft neural 
interfaces: a review of recent advances of soft neural interfaces based on ultrathin silicon. IEEE 
Nanotechnol. Mag 12, 21–34 (2018).

74. Chow MSM, Wu SL, Webb SE, Gluskin K & Yew DT Functional magnetic resonance imaging and 
the brain: a brief review. World J. Radiol 9, 5–9 (2017). [PubMed: 28144401] 

75. Panachakel JT & Ramakrishnan AG Decoding covert speech from EEG — a comprehensive 
review. Front. Neurosci 15, 642251 (2021). [PubMed: 33994922] 

76. Lopez-Bernal D, Balderas D, Ponce P & Molina A A state-of-the-art review of EEG-based 
imagined speech decoding. Front. Hum. Neurosci 16, 867281 (2022). [PubMed: 35558735] 

77. Rabut C et al. A window to the brain: ultrasound imaging of human neural activity through a 
permanent acoustic window. Preprint at bioRxiv 10.1101/2023.06.14.544094 (2023).

78. Kwon J, Shin J & Im C-H Toward a compact hybrid brain–computer interface (BCI): performance 
evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels. PLOS ONE 
15, e0230491 (2020). [PubMed: 32187208] 

79. Wittevrongel B et al. Optically pumped magnetometers for practical MEG-based brain–computer 
interfacing. In Brain–Computer Interface Research: A State-of-the-Art Summary 10 (eds Guger C, 
Allison BZ & Gunduz A) 10.1007/978-3-030-79287-9_4 (Springer International, 2021).

80. Zheng H et al. The emergence of functional ultrasound for noninvasive brain–computer interface. 
Research 6, 0200 (2023). [PubMed: 37588619] 

81. Fernández-de Thomas RJ, Munakomi S & De Jesus O Craniotomy. StatPearls https://
www.ncbi.nlm.nih.gov/books/NBK560922/ (StatPearls, 2024).

82. Parvizi J & Kastner S Promises and limitations of human intracranial electroencephalography. Nat. 
Neurosci 21, 474–483 (2018). [PubMed: 29507407] 

83. Rubin DB et al. Interim safety profile from the feasibility study of the BrainGate Neural Interface 
system. Neurology 100, e1177–e1192 (2023). [PubMed: 36639237] 

84. Guenther FH et al. A wireless brain–machine interface for real-time speech synthesis. PLoS ONE 
4, e8218 (2009). [PubMed: 20011034] The authors demonstrated above-chance online synthesis 
of formants, but not words or sentences, from neural activity recorded with an intracortical 
neurotrophic microelectrode in the precentral gyrus of an individual with anarthria.

85. Brumberg J, Wright E, Andreasen D, Guenther F & Kennedy P Classification of intended phoneme 
production from chronic intracortical microelectrode recordings in speech motor cortex. Front. 
Neurosci 10.3389/fnins.2011.00065 (2011).In a follow-up study to Guenther et al. (2009), the 
authors demonstrated the above-chance classification accuracy of phonemes.

86. Ray S & Maunsell JHR Different origins of gamma rhythm and high-gamma activity in macaque 
visual cortex. PLOS Biol. 9, e1000610 (2011). [PubMed: 21532743] 

87. Ray S, Crone NE, Niebur E, Franaszczuk PJ & Hsiao SS Neural correlates of high-gamma 
oscillations (60–200 Hz) in macaque local field potentials and their potential implications in 
electrocorticography. J. Neurosci 28, 11526–11536 (2008). [PubMed: 18987189] 

88. Crone NE, Boatman D, Gordon B & Hao L Induced electrocorticographic gamma activity during 
auditory perception. Clin. Neurophysiol 112, 565–582 (2001). [PubMed: 11275528] 

89. Crone NE, Miglioretti DL, Gordon B & Lesser RP Functional mapping of human sensorimotor 
cortex with electrocorticographic spectral analysis. II. Event-related synchronization gamma band. 
Brain 121, 2301–2315 (1998). [PubMed: 9874481] 

90. Vakani R & Nair DR in Handbook of Clinical Neurology Vol. 160 (eds Levin KH & Chauvel P) 
Ch. 20, 313–327 (Elsevier, 2019). [PubMed: 31277857] 

91. Lee AT et al. Modern intracranial electroencephalography for epilepsy localization with combined 
subdural grid and depth electrodes with low and improved hemorrhagic complication rates. J. 
Neurosurg 1, 1–7 (2022).

Silva et al. Page 25

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/books/NBK560922/
https://www.ncbi.nlm.nih.gov/books/NBK560922/


92. Nair DR et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for 
focal epilepsy. Neurology 95, e1244–e1256 (2020). [PubMed: 32690786] 

93. Degenhart AD et al. Histological evaluation of a chronically-implanted electrocorticographic 
electrode grid in a non-human primate. J. Neural Eng 13, 046019 (2016). [PubMed: 27351722] 

94. Silversmith DB et al. Plug-and-play control of a brain–computer interface through neural map 
stabilization. Nat. Biotechnol 39, 326–335 (2021). [PubMed: 32895549] 

95. Luo S et al. Stable decoding from a speech BCI enables control for an individual with ALS 
without recalibration for 3 months. Adv. Sci. Weinh. Baden-Wurtt. Ger 10.1002/advs.202304853 
(2023).The authors demonstrated stability of electrocorticography-based speech decoding in a 
person with dysarthria by showing that, despite not re-training a model over the course of months, 
performance did not drop off.

96. Nordhausen CT, Maynard EM & Normann RA Single unit recording capabilities of a 100 
microelectrode array. Brain Res. 726, 129–140 (1996). [PubMed: 8836553] 

97. Normann RA & Fernandez E Clinical applications of penetrating neural interfaces and Utah 
Electrode Array technologies. J. Neural Eng 13, 061003 (2016). [PubMed: 27762237] 

98. Wilson GH et al. Decoding spoken English from intracortical electrode arrays in dorsal precentral 
gyrus. J. Neural Eng 17, 066007 (2020). [PubMed: 33236720] 

99. Patel PR et al. Utah array characterization and histological analysis of a multi-year implant in 
non-human primate motor and sensory cortices. J. Neural Eng 20, 014001 (2023).

100. Barrese JC et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in 
non-human primates. J. Neural Eng 10, 066014 (2013). [PubMed: 24216311] 

101. Woeppel K et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain–
computer-interfaces. Front. Bioeng. Biotechnol 10.3389/fbioe.2021.759711 (2021).

102. Wilson GH et al. Long-term unsupervised recalibration of cursor BCIs. Preprint at bioRxiv 
10.1101/2023.02.03.527022 (2023).

103. Degenhart AD et al. Stabilization of a brain–computer interface via the alignment of low-
dimensional spaces of neural activity. Nat. Biomed. Eng 4, 672–685 (2020). [PubMed: 
32313100] 

104. Karpowicz BM et al. Stabilizing brain–computer interfaces through alignment of latent dynamics. 
Preprint at bioRxiv 10.1101/2022.04.06.487388 (2022).

105. Fan C et al. Plug-and-play stability for intracortical brain–computer interfaces: a one-
year demonstration of seamless brain-to-text communication. Preprint at bioRxiv 10.48550/
arXiv.2311.03611 (2023).

106. Herff C et al. Brain-to-text: decoding spoken phrases from phone representations in the brain. 
Front. Neurosci 10.3389/fnins.2015.00217 (2015).The authors demonstrated that sequences of 
phonemes can be decoded from cortical activity in able speakers and assembled into sentences 
using language models, albeit with high error rates on increased vocabulary sizes.

107. Mugler EM et al. Direct classification of all American English phonemes using signals from 
functional speech motor cortex. J. Neural Eng 11, 035015 (2014). [PubMed: 24836588] The 
authors demonstrated that all English phonemes can be decoded from cortical activity of able 
speakers.

108. Makin JG, Moses DA & Chang EF Machine translation of cortical activity to text with an 
encoder–decoder framework. Nat. Neurosci 23, 575–582 (2020). [PubMed: 32231340] The 
authors developed a recurrent neural network-based approach to decode cortical activity from 
able speakers word-by-word into sentences, with word error rates as low as 3%.

109. Sun P, Anumanchipalli GK & Chang EF Brain2Char: a deep architecture for decoding text from 
brain recordings. J. Neural Eng 17, 066015 (2020).The authors trained a recurrent neural network 
with connectionist temporal classification loss to decode cortical activity from able speakers into 
sequences of characters, which were then built into sentences using language models, achieving 
word error rates as low as 7% with an over 1,000-word vocabulary.

110. Anumanchipalli GK, Chartier J & Chang EF Speech synthesis from neural decoding of 
spoken sentences. Nature 568, 493–498 (2019). [PubMed: 31019317] The authors developed 
a biomimetic approach to synthesize full sentences from cortical activity in able speakers: 

Silva et al. Page 26

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



articulatory kinematics were first decoded from cortical activity and an acoustic waveform was 
subsequently synthesized from this intermediate representation.

111. Angrick M et al. Speech synthesis from ECoG using densely connected 3D convolutional neural 
networks. J. Neural Eng 16, 036019 (2019). [PubMed: 30831567] The authors developed a 
neural-network-based approach to synthesize single words from cortical activity in able speakers.

112. Herff C et al. Generating natural, intelligible speech from brain activity in motor, premotor, and 
inferior frontal cortices. Front. Neurosci 10.3389/fnins.2019.01267 (2019).The authors developed 
a concatenative speech-synthesis approach for single words in healthy speakers, tailored to 
limited-sized datasets.

113. Salari E et al. Classification of articulator movements and movement direction from sensorimotor 
cortex activity. Sci. Rep 9, 14165 (2019). [PubMed: 31578420] 

114. Salari E, Freudenburg ZV, Vansteensel MJ & Ramsey NF Classification of facial expressions for 
intended display of emotions using brain–computer interfaces. Ann. Neurol 88, 631–636 (2020). 
[PubMed: 32548859] 

115. Berezutskaya J et al. Direct speech reconstruction from sensorimotor brain activity with 
optimized deep learning models. Preprint at bioRxiv 10.1101/2022.08.02.502503 (2022).

116. Martin S et al. Decoding inner speech using electrocorticography: progress and challenges toward 
a speech prosthesis. Front. Neurosci 10.3389/fnins.2018.00422 (2018).

117. Moses DA, Leonard MK, Makin JG & Chang EF Real-time decoding of question-and-answer 
speech dialogue using human cortical activity. Nat. Commun 10, 3096 (2019). [PubMed: 
31363096] 

118. Ramsey NF et al. Decoding spoken phonemes from sensorimotor cortex with high-density ECoG 
grids. NeuroImage 180, 301–311 (2018). [PubMed: 28993231] 

119. Graves A, Fernández S, Gomez F & Schmidhuber J Connectionist temporal classification: 
labelling unsegmented sequence data with recurrent neural networks. In Proc. 23rd Int. Conf. 
Machine Learning — ICML ‘06 10.1145/1143844.1143891 (ACM Press, 2006).

120. Metzger SL et al. Generalizable spelling using a speech neuroprosthesis in an individual with 
severe limb and vocal paralysis. Nat. Commun 13, 6510 (2022). [PubMed: 36347863] 

121. Pandarinath C et al. Latent factors and dynamics in motor cortex and their application to brain–
machine interfaces. J. Neurosci 38, 9390–9401 (2018). [PubMed: 30381431] 

122. Parrell B & Houde J Modeling the role of sensory feedback in speech motor control and learning. 
J. Speech Lang. Hear. Res 62, 2963–2985 (2019). [PubMed: 31465712] 

123. Houde J & Nagarajan S Speech production as state feedback control. Front. Hum. Neurosci 
10.3389/fnhum.2011.00082 (2011).

124. Sitaram R et al. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci 18, 
86–100 (2017). [PubMed: 28003656] 

125. Wairagkar M, Hochberg LR, Brandman DM & Stavisky SD Synthesizing speech by decoding 
intracortical neural activity from dorsal motor cortex. In 2023 11th Int. IEEE/EMBS Conf. 
Neural Engineering (NER) 10.1109/NER52421.2023.10123880 (IEEE, 2023).

126. Casanova E et al. YourTTS: towards zero-shot multi-speaker TTS and zero-shot voice conversion 
for everyone. In Proc. 39th Int. Conf. Machine Learning (eds Chaudhuri K et al.) Vol. 162, 
2709–2720 (PMLR, 2022).

127. Peters B, O’Brien K & Fried-Oken M A recent survey of augmentative and alternative 
communication use and service delivery experiences of people with amyotrophic lateral sclerosis 
in the United States. Disabil. Rehabil. Assist. Technol 10.1080/17483107.2022.2149866 (2022).

128. Wu P, Watanabe S, Goldstein L, Black AW & Anumanchipalli GK Deep speech synthesis 
from articulatory representations. In Proc. Interspeech 2022, 779–783 (2022). 10.21437/
Interspeech.2022-10892.

129. Cho CJ, Wu P, Mohamed A & Anumanchipalli GK Evidence of vocal tract articulation 
in self-supervised learning of speech. In ICASSP 2023 — 2023 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2023). 10.1109/
icassp49357.2023.10094711.

130. Mehrabian A Silent Messages: Implicit Communication of Emotions and Attitudes (Wadsworth, 
1981).

Silva et al. Page 27

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



131. Jia J, Wang X, Wu Z, Cai L & Meng H Modeling the correlation between modality semantics 
and facial expressions. In Proc. 2012 Asia Pacific Signal and Information Processing Association 
Annual Summit and Conference 1–10 (2012).

132. Sumby WH & Pollack I Visual contribution to speech intelligibility in noise. J. Acoust. Soc. Am 
26, 212–215 (1954).

133. Branco MP et al. Brain–computer interfaces for communication: preferences of individuals with 
locked-in syndrome. Neurorehabil. Neural Repair 35, 267–279 (2021). [PubMed: 33530868] 

134. Patterson JR & Grabois M Locked-in syndrome: a review of 139 cases. Stroke 17, 758–764 
(1986). [PubMed: 3738962] 

135. Tomik B & Guiloff RJ Dysarthria in amyotrophic lateral sclerosis: a review. Amyotroph. Lateral 
Scler 11, 4–15 (2010). [PubMed: 20184513] 

136. Thomas TM et al. Decoding articulatory and phonetic components of naturalistic continuous 
speech from the distributed language network. J. Neural Eng 20, 046030 (2023).

137. Flinker A et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 
2871–2875 (2015). [PubMed: 25730850] 

138. Cogan GB et al. Sensory–motor transformations for speech occur bilaterally. Nature 507, 94–98 
(2014). [PubMed: 24429520] 

139. Rainey S, Martin S, Christen A & Mégevand P & Fourneret E Brain recording, mind-reading, and 
neurotechnology: ethical issues from consumer devices to brain-based speech decoding. Sci. Eng. 
Ethics 26, 2295–2311 (2020). [PubMed: 32356091] 

140. Nip I & Roth CR in Encyclopedia of Clinical Neuropsychology (eds Kreutzer J, DeLuca J & 
Caplan B) (Springer International, 2017).

141. Xiong W et al. Toward human parity in conversational speech recognition. IEEEACM Trans. 
Audio Speech Lang. Process 25, 2410–2423 (2017).

142. Munteanu C, Penn G, Baecker R, Toms E & James D Measuring the acceptable word error rate 
of machine-generated webcast transcripts. In Interspeech 2006 10.21437/Interspeech.2006-40 
(2006).

143. Panayotov V, Chen G, Povey D & Khudanpur S Librispeech: an ASR corpus based on 
public domain audio books. In 2015 IEEE Int. Conf. Acoustics, Speech and Signal Processing 
(ICASSP) 10.1109/ICASSP.2015.7178964 (IEEE, 2015).

144. Godfrey JJ, Holliman EC & McDaniel J SWITCHBOARD: telephone speech corpus for research 
and development. In Proc. ICASSP-92: 1992 IEEE International Conference on Acoustics, 
Speech, and Signal Processing Vol. 1, 517–520 (1992).

145. OpenAI. GPT-4 Technical Report. Preprint at https://arxiv.org/abs/2303.08774 (2023).

146. Trnka K, Yarrington D, McCaw J, McCoy KF & Pennington C The effects of word prediction on 
communication rate for AAC. In Human Language Technologies 2007: The Conference of the 
North American Chapter of the Association for Computational Linguistics; Companion Volume, 
Short Papers 173–176 (Association for Computational Linguistics, 2007).

147. Venkatagiri H Effect of window size on rate of communication in a lexical prediction AAC 
system. Augment. Altern. Commun 10, 105–112 (1994).

148. Trnka K, Mccaw J, Mccoy K & Pennington C in Human Language Technologies 2007 173–176 
(2008).

149. Kayte SN, Mal M, Gaikwad S & Gawali B Performance evaluation of speech 
synthesis techniques for English language. In Proc. Int. Congress on Information and 
Communication Technology (eds Satapathy SC, Bhatt YC, Joshi A & Mishra DK) 253–262 
10.1007/978-981-10-0755-2_27 (Springer, 2016).

150. Wagner P et al. Speech synthesis evaluation — state-of-the-art assessment and suggestion for 
a novel research program. In 10th ISCA Workshop on Speech Synthesis (SSW 10) 10.21437/
SSW.2019-19 (ISCA, 2019).

151. Kubichek R Mel-cepstral distance measure for objective speech quality assessment. In Proc. IEEE 
Pacific Rim Conf. Communications Computers and Signal Processing Vol. 1, 125–128 (1993).

152. Varshney S, Farias D, Brandman DM, Stavisky SD & Miller LM Using automatic speech 
recognition to measure the intelligibility of speech synthesized from brain signals. In 2023 11th 

Silva et al. Page 28

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/2303.08774


Int. IEEE/EMBS Conf. Neural Engineering (NER) 10.1109/NER52421.2023.10123751 (IEEE, 
2023).

153. Radford A et al. Robust speech recognition via large-scale weak supervision. Preprint at http://
arxiv.org/abs/2212.04356 (2022).

154. Yates AJ Delayed auditory feedback. Psychol. Bull 60, 213–232 (1963). [PubMed: 14002534] 

155. Zanette D Statistical patterns in written language. Preprint at https://arxiv.org/abs/1412.3336v1 
(2014).

156. Adolphs S & Schmitt N Lexical coverage of spoken discourse. Appl. Linguist 24, 425–438 
(2003).

157. Laureys S et al. The locked-in syndrome: what is it like to be conscious but paralyzed and 
voiceless? in Progress in Brain Research Vol. 150 (ed. Laureys S) 495–611 (Elsevier, 2005). 
[PubMed: 16186044] 

158. Peters B et al. Brain–computer interface users speak up: the Virtual Users’ Forum at the 2013 
International Brain–Computer Interface Meeting. Arch. Phys. Med. Rehabil 96, S33–S37 (2015). 
[PubMed: 25721545] 

159. Huggins JE, Wren PA & Gruis KL What would brain–computer interface users want? Opinions 
and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler 12, 
318–324 (2011). [PubMed: 21534845] 

160. Kreuzberger D, Kühl N & Hirschl S Machine learning operations (MLOps): overview, definition, 
and architecture. IEEE Access. 11, 31866–31879 (2023).

161. Gordon EM et al. A somato-cognitive action network alternates with effector regions in motor 
cortex. Nature 10.1038/s41586-023-05964-2 (2023).

162. Degenhart AD et al. Remapping cortical modulation for electrocorticographic brain–computer 
interfaces: a somatotopy-based approach in individuals with upper-limb paralysis. J. Neural Eng 
15, 026021 (2018). [PubMed: 29160240] 

163. Kikkert S, Pfyffer D, Verling M, Freund P & Wenderoth N Finger somatotopy is preserved after 
tetraplegia but deteriorates over time. eLife 10, e67713 (2021). [PubMed: 34665133] 

164. Bruurmijn MLCM, Pereboom IPL, Vansteensel MJ, Raemaekers MAH & Ramsey NF 
Preservation of hand movement representation in the sensorimotor areas of amputees. Brain 
140, 3166–3178 (2017). [PubMed: 29088322] 

165. Guenther FH Neural Control of Speech (MIT Press, 2016).

166. Castellucci GA, Kovach CK, Howard MA, Greenlee JDW & Long MA A speech planning 
network for interactive language use. Nature 602, 117–122 (2022). [PubMed: 34987226] 

167. Murphy E et al. The spatiotemporal dynamics of semantic integration in the human brain. Nat. 
Commun 14, 6336 (2023). [PubMed: 37875526] 

168. Ozker M, Doyle W, Devinsky O & Flinker A A cortical network processes auditory error 
signals during human speech production to maintain fluency. PLOS Biol. 20, e3001493 (2022). 
[PubMed: 35113857] 

169. Quirarte JA et al. Language supplementary motor area syndrome correlated with dynamic 
changes in perioperative task-based functional MRI activations: case report. J. Neurosurg 134, 
1738–1742 (2020). [PubMed: 32502992] 

170. Bullock L, Forseth KJ, Woolnough O, Rollo PS & Tandon N Supplementary motor area in speech 
initiation: a large-scale intracranial EEG evaluation of stereotyped word articulation. Preprint at 
bioRxiv 10.1101/2023.04.04.535557 (2023).

171. Oby ER et al. New neural activity patterns emerge with long-term learning. Proc. Natl Acad. Sci. 
USA 116, 15210–15215 (2019). [PubMed: 31182595] 

172. Luu TP, Nakagome S, He Y & Contreras-Vidal JL Real-time EEG-based brain–computer 
interface to a virtual avatar enhances cortical involvement in human treadmill walking. Sci. Rep 
7, 8895 (2017). [PubMed: 28827542] 

173. Alimardani M et al. Brain–Computer Interface and Motor Imagery Training: The Role of Visual 
Feedback and Embodiment. Evolving BCI Therapy — Engaging Brain State Dynamics10.5772/
intechopen.78695 (IntechOpen, 2018).

Silva et al. Page 29

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
https://arxiv.org/abs/1412.3336v1


174. Orsborn AL et al. Closed-loop decoder adaptation shapes neural plasticity for skillful 
neuroprosthetic control. Neuron 82, 1380–1393 (2014). [PubMed: 24945777] 

175. Muller L et al. Thin-film, high-density micro-electrocorticographic decoding of a human cortical 
gyrus. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC) 10.1109/EMBC.2016.7591001 (2016).

176. Duraivel S et al. High-resolution neural recordings improve the accuracy of speech decoding. Nat. 
Commun 14, 6938 (2023). [PubMed: 37932250] 

177. Kaiju T, Inoue M, Hirata M & Suzuki T High-density mapping of primate digit representations 
with a 1152-channel μECoG array. J. Neural Eng 18, 036025 (2021).

178. Woods V et al. Long-term recording reliability of liquid crystal polymer μECoG arrays. J. Neural 
Eng 15, 066024 (2018). [PubMed: 30246690] 

179. Rachinskiy I et al. High-density, actively multiplexed μECoG array on reinforced silicone 
substrate. Front. Nanotechnol 10.3389/fnano.2022.837328 (2022).

180. Sun J et al. Intraoperative microseizure detection using a high-density micro-electrocorticography 
electrode array. Brain Commun. 4, fcac122 (2022). [PubMed: 35663384] 

181. Ho E et al. The layer 7 cortical interface: a scalable and minimally invasive brain–computer 
interface platform. Preprint at bioRxiv 10.1101/2022.01.02.474656 (2022).

182. Oxley TJ et al. Motor neuroprosthesis implanted with neurointerventional surgery improves 
capacity for activities of daily living tasks in severe paralysis: first in-human experience. J. 
NeuroIntervent. Surg 13, 102–108 (2021).

183. Chen R, Canales A & Anikeeva P Neural recording and modulation technologies. Nat. Rev. Mater 
2, 1–16 (2017).

184. Hong G & Lieber CM Novel electrode technologies for neural recordings. Nat. Rev. Neurosci 20, 
330–345 (2019). [PubMed: 30833706] 

185. Sahasrabuddhe K et al. The Argo: a high channel count recording system for neural recording in 
vivo. J. Neural Eng 18, 015002 (2021). [PubMed: 33624614] 

186. Musk E & Neuralink. An integrated brain–machine interface platform with thousands of 
channels. J. Med. Internet Res 21, e16194 (2019). [PubMed: 31642810] 

187. Paulk AC et al. Large-scale neural recordings with single neuron resolution using neuropixels 
probes in human cortex. Nat. Neurosci 25, 252–263 (2022). [PubMed: 35102333] 

188. Chung JE et al. High-density single-unit human cortical recordings using the neuropixels probe. 
Neuron 110, 2409–2421.e3 (2022). [PubMed: 35679860] 

189. Kingma DP & Welling M An introduction to variational autoencoders. Found. Trends Mach. 
Learn 12, 307–392 (2019).

190. Schneider S, Lee JH & Mathis MW Learnable latent embeddings for joint behavioural and neural 
analysis. Nature 617, 360–368 (2023). [PubMed: 37138088] 

191. Liu R et al. Drop, swap, and generate: a self-supervised approach for generating neural activity. 
Preprint at http://arxiv.org/abs/2111.02338 (2021).

192. Cho CJ, Chang E & Anumanchipalli G Neural latent aligner: cross-trial alignment for learning 
representations of complex, naturalistic neural data. In Proc. 40th Int. Conf. Machine Learning 
5661–5676 (PMLR, 2023).

193. Keshtkaran MR et al. A large-scale neural network training framework for generalized estimation 
of single-trial population dynamics. Nat. Methods 19, 1572–1577 (2022). [PubMed: 36443486] 

194. Berezutskaya J et al. Direct speech reconstruction from sensorimotor brain activity with 
optimized deep learning models. J. Neural Eng 20, 056010 (2023).

195. Touvron H et al. LLaMA: Open and Efficient Foundation Language Models. Preprint at 
10.48550/arXiv.2302.13971 (2023).

196. Graves A Sequence transduction with recurrent neural networks. Preprint at 10.48550/
arXiv.1211.3711 (2012).

197. Shi Y et al. Emformer: efficient memory transformer based acoustic model for low latency 
streaming speech recognition. Preprint at 10.48550/arXiv.2010.10759 (2020).

Silva et al. Page 30

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/2111.02338


198. Rapeaux AB & Constandinou TG Implantable brain machine interfaces: first-in-human studies, 
technology challenges and trends. Curr. Opin. Biotechnol 72, 102–111 (2021). [PubMed: 
34749248] 

199. Matsushita K et al. A fully implantable wireless ECoG 128-channel recording device for human 
brain–machine interfaces: W-HERBS. Front. Neurosci 12, 511 (2018). [PubMed: 30131666] 

200. Cajigas I et al. Implantable brain–computer interface for neuroprosthetic-enabled volitional hand 
grasp restoration in spinal cord injury. Brain Commun. 3, fcab248 (2021). [PubMed: 34870202] 

201. Jarosiewicz B & Morrell M The RNS system: brain-responsive neurostimulation for the treatment 
of epilepsy. Expert Rev. Med. Dev 18, 129–138 (2021).

202. Lorach H et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 
618, 126–133 (2023). [PubMed: 37225984] 

203. Weiss JM, Gaunt RA, Franklin R, Boninger ML & Collinger JL Demonstration of a portable 
intracortical brain–computer interface. Brain-Comput. Interfaces 6, 106–117 (2019).

204. Kim JS, Kwon SU & Lee TG Pure dysarthria due to small cortical stroke. Neurology 60, 1178–
1180 (2003). [PubMed: 12682329] 

205. Urban PP et al. Left-hemispheric dominance for articulation: a prospective study on acute 
ischaemic dysarthria at different localizations. Brain 129, 767–777 (2006). [PubMed: 16418180] 

206. Wu P et al. Speaker-independent acoustic-to-articulatory speech inversion. Preprint at 10.48550/
arXiv.2302.06774 (2023).

207. Oppenheim AV, Schafer RW & Schafer RW Discrete-Time Signal Processing (Pearson, 2014).

208. Kim JW, Salamon J, Li P & Bello JP CREPE: a convolutional representation for pitch estimation. 
Preprint at 10.48550/arXiv.1802.06182 (2018).

209. Park K & Kim J g2pE. Github https://github.com/Kyubyong/g2p (2019).

210. Duffy JR Motor Speech Disorders: Substrates, Differential Diagnosis, and Management (Elsevier 
Health Sciences, 2019).

211. Basilakos A, Rorden C, Bonilha L, Moser D & Fridriksson J Patterns of poststroke brain damage 
that predict speech production errors in apraxia of speech and aphasia dissociate. Stroke 46, 
1561–1566 (2015). [PubMed: 25908457] 

212. Berthier ML Poststroke aphasia: epidemiology, pathophysiology and treatment. Drugs Aging 22, 
163–182 (2005). [PubMed: 15733022] 

213. Wilson SM et al. Recovery from aphasia in the first year after stroke. Brain 146, 1021–1039 
(2022).

214. Marzinske M Help for speech, language disorders. Mayo Clinic Health 
System https://www.mayoclinichealthsystem.org/hometown-health/speaking-of-health/help-is-
available-for-speech-and-language-disorders (2022).

215. Amyotrophic lateral sclerosis. CDC https://www.cdc.gov/als/WhatisALS.html (CDC, 2022).

216. Sokolov A Inner Speech and Thought (Springer Science & Business Media, 2012).

217. Alderson-Day B & Fernyhough C Inner speech: development, cognitive functions, 
phenomenology, and neurobiology. Psychol. Bull 141, 931–965 (2015). [PubMed: 26011789] 

218. Sankaran N, Moses D, Chiong W & Chang EF Recommendations for promoting user agency 
in the design of speech neuroprostheses. Front. Hum. Neurosci 17, 1298129 (2023). [PubMed: 
37920562] 

219. Sun X & Ye B The functional differentiation of brain–computer interfaces (BCIs) and its ethical 
implications. Humanit. Soc. Sci. Commun 10, 1–9 (2023).

220. Ienca M, Haselager P & Emanuel EJ Brain leaks and consumer neurotechnology. Nat. Biotechnol 
36, 805–810 (2018). [PubMed: 30188521] 

221. Yuste R Advocating for neurodata privacy and neurotechnology regulation. Nat. Protoc 18, 2869–
2875 (2023). [PubMed: 37697107] 

222. Kamal AH et al. A person-centered, registry-based learning health system for palliative care: a 
path to coproducing better outcomes, experience, value, and science. J. Palliat. Med 21, S–61 
(2018).

223. Alford J The multiple facets of co-production: building on the work of Elinor Ostrom. Public. 
Manag. Rev 16, 299–316 (2014).

Silva et al. Page 31

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Kyubyong/g2p
https://www.mayoclinichealthsystem.org/hometown-health/speaking-of-health/help-is-available-for-speech-and-language-disorders
https://www.mayoclinichealthsystem.org/hometown-health/speaking-of-health/help-is-available-for-speech-and-language-disorders
https://www.cdc.gov/als/WhatisALS.html


224. Institute of Medicine (US) Roundtable on Value & Science-Driven Health Care. Clinical Data as 
the Basic Staple of Health Learning: Creating and Protecting a Public Good: Workshop Summary 
(National Academies Press, 2011).

Silva et al. Page 32

Nat Rev Neurosci. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1

Disorders of speech and language

In discussing different types of speech and language disorders that may be treated with 

a speech neuroprosthesis, it is helpful to simplify the speech-production process to a few 

representational levels (although more detailed levels may exist and we do not suggest 

that these levels occur in complete isolation from one another). These include accessing 

conceptual language representations, generating and coordinating the proper vocal-tract 

motor plans to reach intended speech targets, executing these motor plans, transmitting 

these signals through the brainstem and peripheral nerves and properly contracting the 

corresponding vocal-tract muscles.

Dysarthria is a speech-production disorder in which the ability of an individual to control 

their vocal-tract articulators is degraded but their ability to comprehend speech and 

language is preserved210. Anarthria is the most severe form of dysarthria and refers to 

the case in which the ability to coordinate articulation is fully lost140. Dysarthria can 

result from an injury that disrupts one of the final three stages of the speech-production 

process (executing the motor plan onwards). Injuries that selectively impair the ability of 

an individual to contract their vocal-tract muscles, such as a laryngectomy or facial nerve 

injury, may cause dysarthria. Another common cause of dysarthria, and often anarthria, 

is injury to the descending motor pathways in the brainstem. Past speech-neuroprosthesis 

studies have generally focused on individuals with this type of injury, often owing to 

amyotrophic lateral sclerosis, a neurodegenerative disease that selectively targets motor 

neurons, or to a stroke that causes irreversible injury to the brainstem tissue. In these 

cases, speech is rarely the only motor function lost, with descending motor neurons that 

innervate the upper and lower limbs also often injured. Individuals who have lost all 

motor control, except for certain eye or head movements, are referred to as being ‘locked 

in’2. Finally, dysarthria may be caused by injury to the motor cortex itself, referred to as 

cortical anarthria or dysarthria204,205. In such cases, the motor cortex cannot implement 

the proper motor commands and transmit them to the peripheral nerves to contract the 

vocal-tract articulators.

Beyond anarthria and dysarthria, apraxia of speech (AOS) and aphasia are disorders of 

speech and language, respectively, that may be treated with a speech neuroprosthesis 

in the future. AOS is a disorder of speech-motor planning and coordination in 

which articulatory muscle strength and language comprehension are preserved210,211. 

In contrast to dysarthria, AOS is characterized by a deficit in generating and 

coordinating complex speech-motor sequences rather than a direct deficit in motor 

control of vocal-tract movements. Individuals with AOS tend to have inconsistent speech 

errors that occur more often as the complexity of an utterance increases, whereas 

individuals with dysarthria are consistently unable to finely control their vocal tract 

and orofacial movements210. AOS often occurs with lesions to the language-dominant 

left hemisphere212, and recent studies have localized AOS to damage in the middle 

precentral gyrus48–50,211. Language disorders, or aphasias, affect the ability of an 

individual to comprehend or express speech, disrupting the conceptual-language system 

of the brain, and generally result from injury to cortical regions in the language-dominant 
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left hemisphere213. Treatment of AOS or aphasia has not been explicitly explored 

with a neuroprosthesis. Future studies should investigate whether intact cortical regions 

in individuals with aphasia and AOS contain representations that may be decoded 

into intended speech. Although AOS (without coincident aphasia) disrupts the ability 

of an individual to implement and plan coordinated speech-articulatory movements, 

language representations (lexico-semantics and syntax), and probably representations 

corresponding to intended speech targets, remain intact210. For aphasia, the nature 

of preserved representations is less consistent across individuals and may depend on 

whether the ability of an individual to comprehend or express speech is impacted. 

Approaches to restore speech in individuals with AOS or aphasia is likely to require 

electrode arrays to be placed in areas beyond the motor cortex.

Given the broad range of clinical disorders that may be treated with a speech 

neuroprosthesis, it is challenging to define the number of individuals who may 

benefit from the technology. An estimated 5–10% of people in the USA live with 

a communication disorder and approximately 1 million people in the USA live with 

aphasia specifically214. According to the US Centers for Disease Control, each year 

there are an estimated 5,000 newly diagnosed cases of amyotrophic lateral sclerosis215. 

However, the worldwide proportion of these cases in which a speech neuroprosthesis 

may be needed or desired is unclear. Thus, although speech neuroprostheses have the 

potential to improve quality of life for many individuals, future work is needed to 

precisely define the user population. Beyond measuring the incidence of conditions 

resulting in communication disorders, this should involve estimating the proportion of 

cases in which intact cortical representations persist that can be decoded into intended 

speech. Furthermore, the performance and medical risk at which an individual would be 

willing to use the technology, given different severity levels of underlying communication 

impairment, should be estimated through survey. These efforts should go hand in hand 

with work to better solicit feedback and design considerations from user populations 

(Box 2).
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Box 2

Ethical considerations for the development of speech neuroprostheses

Speech neuroprostheses have progressed rapidly over the past decade, demonstrating 

immense potential to restore agency, expression and autonomy to individuals with severe 

paralysis. Although these research advances have given hope to individuals with severe 

paralysis, they have also raised important ethical concerns for researchers to address 

primarily surrounding mental and data privacy.

A contributing factor to ethical concerns held by individuals with severe paralysis is how 

advances in speech neuroprostheses are communicated to the public through the media. 

Given that neuroprostheses and human–machine interactions are prevalent in popular 

culture, the presentation of current scientific work can be misunderstood. Indeed, some 

recent speech neuroprostheses advances14,15 have been portrayed as mind reading — the 

reading out of internal thoughts or inner monologue that one did not intend to make 

public (referred to as internal speech in this Review) — when, in reality, they rely on 

volitional speech attempts by the user and not internal speech. Thus, researchers have the 

responsibility to clearly convey their work to help address mental privacy concerns, and 

we hope that standardizing speech instruction reporting will help towards this end.

However, mind reading is still a pervasive ethical concern. In this Review, we distinguish 

internal speech from intended speech, as intended speech is either matched by a 

behaviour, such as trying to mime (silently attempted speech) or trying to speak aloud 

(attempted speech), or the user is imagining that they are saying or hearing their 

intended speech output. Confusing these concepts is understandable, given that our 

internal thoughts and ideas can be conceptualized through language, and language is 

conveyed with speech216. Current speech neuroprostheses do not target internal speech 

representations, as their goal has been to decode volitional and intended speech from 

users with paralysis. In addition, current speech-decoding approaches are rooted in 

years of work understanding intact speech production, specifically the volitional control 

of articulation encoded on the sensorimotor cortex. By contrast, the understanding 

of how the brain represents internal monologue and thoughts is relatively limited217. 

However, although the field may not currently be close to decoding internal thoughts 

and monologue, it is possible that this could change in the future. A potential safeguard 

would be to chain any speech decoding to an initial speech-detection module, trained 

to identify volitional speech attempts218. Such a model has been highly successful in 

preliminary work and could be augmented to explicitly distinguish types of intended 

speech from types of internal monologue and thought.

In addition to mind reading, the rapid expansion of speech neuroprostheses has 

raised data-related ethical concerns over ownership219, leaks220 and privacy221 of 

one’s neural activity. For example, it is not currently clear what rights speech-

neuroprosthesis users will have over their neural activity data. It is critical that the 

future of speech neuroprostheses is driven by constant communication and collaboration 

between engineers, physicians, neuroscientists, neuroethicists, regulators, legislators 

and, importantly, current and potential users and their advocacy groups. Value-aligned 
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development, in which innovation is guided by user input, has proven successful 

in many health-care fields by creating more sustainable and efficient co-designed 

systems222–224. Soliciting consistent feedback from users may optimize the development 

of desired speech neuroprostheses features and encourage long-term and widespread 

system adoption.
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Fig. 1 |. Key milestones in speech decoding.
Timeline of key advancements that have ultimately led to proof-of-concept 

speech neuroprostheses for individuals with paralysis. Advancements are labelled 

based on their study population, neural-recording technology and research goal12–

17,24,43,44,64,68,84,85,88,89,95,106–112.
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Fig. 2 |. Articulatory control of speech.
Speech articulation relies on the corticobulbar system. At a broad level, this system is 

composed of cortical neuronal populations that project axons to the brainstem, where 

activations are relayed through cranial nerves to the speech articulators (muscles). a, Neural 

populations, arranged somatotopically on the ventral sensorimotor cortex (vSMC) and 

middle precentral gyrus (midPrCG), control the movements of key vocal-tract articulators, 

such as the larynx, tongue, jaw and lips. These neural populations may receive input from 

other regions involved in speech, a few of which are highlighted (superior temporal gyrus 

(STG) and the supramarginal gyrus (SMG)). The vSMC and midPrCG send motor-control 

signals through their axons, which bundle and form the corticobulbar white matter tract, 

that terminate in cranial nerve nuclei in the brainstem. Neurons in cranial nerve nuclei then 

send axons, which bundle and form cranial nerves, that innervate the speech articulators 

(larynx, tongue, jaw and lips). b, Cortical-activity patterns, ultimately transmitted by the 

cranial nerves, lead to contraction of the vocal-tract articulators and defined vocal-tract 
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configurations that can broadly be grouped based on the place of air constriction into 

four classes: vocalic, back tongue, front tongue and labial. c, Continuous movements of 

the vocal-tract articulators between these configurations, along with air from respiratory 

structures, turn neural activity related to intended speech into vocalized sound waves. 

Continuous articulatory features can be measured for different landmarks in the vocal 

tract over time. Here, the visualized articulatory features are inferred from the produced 

acoustic waveform206. d, The produced speech can be represented as an acoustic waveform 

(amplitude over time). The envelope can be estimated from the acoustic waveform207 and 

represents the intensity of speech over time, an important measurement that correlates 

with speech rate, stress patterns and loudness e, Speech can also be represented as a 

mel-spectrogram, in which the power of different perceptually salient frequency bands is 

shown over time. Pitch can be computed by computational algorithms that estimate the 

fundamental frequency of a signal208. f, Defined patterns in the produced sound, visible on 

a mel-spectrogram, form the basis of meaning. Phonemes are a type of linguistic feature 

and refer to the smallest perceptually distinct units of sound (epochs denoted by dotted lines 

in panels d and e) that form a language. Phonemes, along with words, can be annotated 

and inferred based on the produced sound during continuous speech209. In addition, the 

vocal-tract configuration that gives rise to a distinct unit of sound can be used to group 

phonemes. Visualization of articulatory control of speech in panels c–f from produced sound 

was created using algorithms from refs. 206–209.
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Fig. 3 |. Decoding speech from neural activity.
Speech-decoding systems follow a similar heuristic; neural activity during intended speech 

is captured with an interface of choice and relevant features are extracted and processed 

by a decoding model. This decoding model can be trained to transform neural activity into 

text, audible speech or orofacial movements. a, Recording of neural activity can be achieved 

using different neural interfaces such as electrocorticography (ECoG), microelectrode array 

(MEA) and stereoelectroencephalography (SEEG). Recorded neural activity is processed 

into neural features, which are then passed to a speech feature decoder, which might have 

been trained to output linguistic, acoustic or articulatory features as intermediate speech 

representations. b, For text decoding, models can be trained to decode neural features 

into sequences of linguistic features, such as phonemes (colours indicate their vocal-tract 

configuration), and then a defined vocabulary (via a lexicon constraint) and natural language 

modelling can be used to transform phoneme sequences into text sequences of plausible 
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words and sentences. c, For speech synthesis, models can be trained to decode neural 

features into sequences of acoustic features, such as the mel-spectrogram, which can then 

be vocoded into an audible speech waveform, often using pretrained models from the field 

of speech processing. Importantly, the vocoder can be personalized in a way that captures 

the previous intact voice of the individual. d, Models may also be trained to decode neural 

features into sequences of articulatory features, such as the relative displacement of different 

locations in the vocal tract over time (gesture activation). A gesture-animation system may 

be applied to the gesture activation sequences to animate a digital avatar. Similar to speech 

synthesis, the avatar may be personalized to reflect the likeness of the users, using digital-

face capture software. Optional conversion between text, speech and facial-avatar animation 

outputs is feasible using pretrained speech-processing models (dashed arrows). Visualization 

of acoustic and articulatory features in panels b–d was created using data and algorithms 

from ref. 14. The personalized avatar mesh animations in panel d were generated using 

Unreal Engine animation software (Speech Graphics, Edinburgh, UK). Panel d adapted from 

ref. 14, Springer Nature Limited.
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Fig. 4 |. Evaluating and standardizing speech neuroprostheses.
As the field of speech neuroprosthetics continues to accelerate, it is important to define 

standardized methods of reporting and evaluating speech-decoding results. Here, we propose 

several metrics to become standardized, specifically relating to speech instructions, decoded 

outputs, utterance sets used to train and evaluate models and finally user training times. 

a, Common types of speech instructions given to individuals in speech-decoding studies 

include imagined, silently attempted and attempted speech (right). These intended speech 

types are distinct from internal thoughts or monologue of an individual (left). b, For text 

decoding, metrics related to the accuracy, speed and lexicon and language model of the 

system should be reported and standardized. To measure accuracy, the WER and PER 

(alternatively, the character error rate can be reported if the model is trained to decode 
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sequences of characters) should be used and are defined as the edit distance between 

ground truth and decoded word and phoneme sequences. To measure speed, the WPM can 

be reported as the time between the onset of the speech attempt and the final processed 

sample of neural activity. Finally, the vocabulary size used to define a language model 

and lexicon should be reported. c, For speech synthesis, metrics related to accuracy and 

latency of the system should be reported and standardized. To measure accuracy, the MCD 

should be computed between ground truth and synthesized speech, capturing distortion in 

perceptually salient frequency bands. For a more interpretable measure of performance, the 

human-transcribed WER should be reported by having volunteers transcribe synthesized 

speech into text, which can then be compared with ground truth. Finally, the latency of the 

speech-synthesis system should be reported and can be defined as the time between the onset 

of a speech attempt and the first sample of synthesized audio that is played back to the 

participant. Visualization of acoustic waveforms and mel-spectrograms were created using 

data and algorithms from ref. 14. d, Utterance-set metrics, common to text-decoding and 

speech-synthesis systems, should also be reported. First, qualities of the training-utterance 

set, such as number of unique words (vocabulary size) and sentences, should be reported. 

Next, the lexicon and language model vocabulary size (as in panel b) should be reported. 

Finally, key characteristics of the evaluation-utterance set should also be reported. This 

includes the vocabulary size of, the number of sentences in and the length of sentences in the 

evaluation-utterance set. Importantly, the overlap between the training and evaluation sets 

should also be quantified and reported as the number of overlapping words and sentences 

between the two sets. e, Training-time metrics, also common to text-decoding and speech-

synthesis systems, should be reported. The total amount of training data quantified as 

number of hours to reach usable and/or goal performance should be reported. The number 

of days the system can maintain usable performance, without supervised re-training (either 

by not re-training or using self-supervised recalibration techniques), should also be reported. 

Panel e adapted from ref. 14, Springer Nature Limited.
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