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The cornerstone of multiphase flow applications in engineering practice is a scientific
construct that translates the basic laws of fluid mechanics into a set of governing
equations for effective interpenetrating continua, the effective-field (or two-fluid)
model. Over more than half a century of development this model has taken many
forms but all of them fail in a way that was known from the very beginning:
mathematical ill-posedness. The aim of this paper is to refocus awareness of this
problem from a unified fundamental perspective that clarifies the manner in which
such failures took place and to suggest the means for a final closure.
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1. Introduction
When a disperse multiphase system is too complex to simulate in a frame that

keeps track of all interfaces, one must resort to an approach that instead is focused on
phase volume fractions together with the mean mass, momentum and energy of each
phase. If the dispersion involves multiple length scales, fixed or allowed to vary by
breakup and coalescence mechanisms, we also need the interfacial area concentration.
Evolution equations must be provided for all these quantities. The overall procedure,
based on methods of continuum mechanics, and established long ago, yields an ill-
posed mathematical problem, which despite extensive efforts to remedy, and despite
claims to the contrary, remains to this day. On basic scientific grounds, the significance
of this issue goes far beyond a mere curiosity, for as noted by Drew & Passman
(1998):
A model that is not properly formulated mathematically cannot describe physical

phenomena correctly. While mathematical correctness does not imply physical validity,
the latter cannot be obtained without the former.

On practical grounds, this has implications, which increase in significance just as
advancements in numerical schemes and computing power allow unprecedented detail
and fidelity in solving systems of hyperbolic conservation laws. In this paper we
provide new results and a synthesis that aim to: (a) examine critically the status of this
quest; (b) clarify the issues and dispel errors and misconceptions that seem to have
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crept into the literature over a 40-year period of pursuit; and (c) point the way for the
final assault.

It is sufficient for our purposes here to address non-dissipative disperse systems of
two compressible phases with a fixed particle length scale so that no interfacial area
transport equation is needed. (This means we do not consider mass and heat exchange
between the particles and the carrier fluid nor viscous stresses and heat fluxes inside
the two phases. And because they need some specific modelling, we exclude from our
analysis all mixtures in which the particles display permanent compressive or sliding
contacts, such as granular porous media, foams or concentrated polymer solutions.) So
the system is to be described in terms of the phase volume fractions, mass densities,
velocities, entropies and pressures, all subject locally to the Euler equations and mass
and entropy conservation. Volume or ensemble averaging of these equations yields
the six effective-field evolution equations. The two equations of state relate pressures
to densities and entropies, and the volume fractions sum up to unity, so we have a
total of nine equations for the ten unknowns. To close the system we need a tenth
equation that is independent of the above, or a supplementary assumption that reduces
the number of unknowns. A common such assumption is that locally the average
pressures of each phase are equal. This closure however produces a system whose
eigenvalues are not real. On closer examination, it becomes evident that a better
closure can be obtained by a relation between the two average pressures in terms of
local flow properties. In fact one can enlarge the possibilities (and accommodate much
more physics) by taking into account the velocity fluctuations of both phases and
this is the point of view adopted in the present paper. Two more evolution equations
are needed for the pseudo-turbulent kinetic energies so that one ends up with eleven
equations for twelve unknowns. We demonstrate that the missing relation is bound to
the conservation of the overall energy and that it provides a necessary link between the
force and the stresses appearing in the two momentum balances on the one hand, and
the two evolution equations for the pseudo-turbulent kinetic energies on the other. It is
for that complete set of equations that we want to restore hyperbolicity.

The general framework for our discussion is laid out in § 2 and the analysis of
the hyperbolicity issue is carried out in three steps: (a) ad hoc approaches that
address various mechanisms but which neglect pseudo-turbulence (§ 3); (b) a consistent
treatment of added-mass phenomena that ignores only particle velocity fluctuations
(§ 4); and (c) a first-step treatment of the velocity fluctuations of both phases that
ignores added-mass phenomena (§ 5). The main results are summarized in § 6 where
we also point the way to a complete treatment.

2. The roots of ill-posedness
2.1. The six main equations for dispersed mixtures

We are interested in the flow of suspensions of particles and will characterize the
carrier fluid and the dispersed phase with subscripts c and d respectively. Since our
ultimate goal is hyperbolicity we focus on the non-dissipative equations of motion and
eliminate external forces like gravity. The conservation equations for entropy and mass,
and the momentum balances of the two phases appear in the generic form (Buyevich
& Shchelchkova 1978; Nigmatulin 1979; Zhang & Prosperetti 1994; Jackson 1997)

dksk

dt
= 0,

∂

∂t
(αkρk)+∇ · (αkρkuk)= 0 (k = c, d), (2.1)

αdρd
ddud

dt
+∇ ·5d + αd∇pc =−F, αcρc

dcuc

dt
+∇ ·5c + αc∇pc = F. (2.2)



186 D. Lhuillier, C.-H. Chang and T. G. Theofanous

In these equations the material time-derivatives are defined as dk/dt = ∂/∂t + uk · ∇.
Note the main role played by the Archimedes force αd∇pc on the particles. Note also
that the particle pressure appears nowhere explicitly but that the pressure jump pd − pc

is hidden in the phasic stresses 5d and 5c (Lhuillier & Theofanous 2010), so that the
above special form of two-fluid model is actually a two-pressure model. By summing
up (2.2) we can see that the interfacial forces, F, cancel as they should, while the
divergence of the sum of the phasic stresses remains, and the two pressure gradient
terms sum up to ∇pc. This helps us understand the basic nature of these divergences
in complementing the pressure gradient as a volumetric source of momentum. By
Green’s theorem, integration over any finite control volume of the two-phase mixture
translates these terms to forces applied to the surface of the control volume – thus, it
is absolutely essential that these stresses, or their divergences, are not confused with
interfacial forces which are effective within every point of the effective medium. The
ten unknowns sk, ρk, pk,uk and αk are the entropy, mass density, pressure, velocity and
volume fraction of phase k (k = c, d). There are three relations between them: two
equations of state and the volume sharing condition

ρd = ρd(pd, sd), ρc = ρc(pc, sc), αd + αc = 1. (2.3)

There are thus nine equations or relations involving ten variables. For the above
equations to form a closed set we lack one relation or one equation. This missing
information will be expressed in the form of a conservation-of-energy constraint that
incorporates the energetics of fluctuations.

2.2. Conservation of energy
We must consider energy conservation because entropy, and not energy, was taken as
a basic unknown. The thermodynamic relation dek = Tkdsk − pkd(1/ρk) is supposed
to relate the mean internal energy ek of phase k to its mean entropy, mass density,
pressure and temperature. As a consequence entropy conservation is equivalent to
αkρkdkek/dt = −pk (∂αk/∂t +∇ · (αkuk)) meaning that the internal energy of a non-
compressible phase is conserved. The equations for the kinetic energies are obtained
directly from the momentum balances. Then one can obtain the equations for the total
energy Ek = ek + u2

k/2+ Kk of phase k where the pseudo-turbulent kinetic energy Kk is
defined as

Kk =
1
2 〈(u

0
k − uk) · (u0

k − uk)〉, (2.4)

with u0
k the local-instantaneous velocity and the brackets indicating mean values. The

overall energy of the mixture αdρdEd + αcρcEc must obey a conservation equation and
this conservation will be satisfied provided the following condition is fulfilled:

αdρd
ddKd

dt
+ αcρc

dcKc

dt
+ (pc − pd)

[
∂αd

∂t
+∇ · (αdud)

]
+ (uc − ud) ·F+5d : ∇ud +5c : ∇uc +∇ ·Q= 0 (2.5)

where Q is some Galilean-invariant energy flux to be determined later on. The above
equality must be considered as a necessary condition to be satisfied between the (as
yet unknown) transport equations for Kd,Kc and αd and the non-dissipative forces
and stresses that appear in the two momentum balances. Any model for disperse
mixtures which does not fulfil (2.5) must be rejected. Note that the six equations
of the generic model, the two evolution equations for Kc and Kd, the three relations
(2.3) and the energy conservation condition (2.5) make a total of twelve equations for
twelve unknowns.
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2.3. The one-pressure model
Before examining the first attempts to restore hyperbolicity, it is wise to present
the set of equations at the origin of the issue. The simplest (and intuitive) way to
obtain closure is to assume the equality of the two mean pressures (pd = pc = p)
and to neglect the two pseudo-turbulent kinetic energies (Kc = Kd = 0). The
resulting momentum balances are a special case of the generic equations (2.2) with
F = 0,5d =5c = 0, and one can check that the necessary condition (2.5) is fulfilled
provided Q = 0. The one-pressure model is thus closed and it satisfies the energy
conservation condition. Unfortunately, after investigating its mathematical character it
was proved to be non-hyperbolic (Rakhmatulin 1956; Stewart & Wendroff 1984). This
is the starting point for a long story.

3. The first attempts to restore hyperbolicity
3.1. Interfacial pressure

The first chronological attempt to restore hyperbolicity was based on the concept
of mean interfacial pressure (Stuhmiller 1977). Discarding the velocity fluctuations
(Kd = Kc = 0), assuming the equality of the two bulk pressures (pd = pc = p) and
defining p? as the mean pressure on the interfaces, the momentum balances appear as
in (2.2) with

F= (p− p?)∇αd, 5d =5c = 0. (3.1)

The hyperbolicity of that set of equations was investigated in Stuhmiller (1977)
for non-compressible mixtures and in Ndjinga (2007) and Chang et al. (2007)
for compressible ones. For non-compressible mixtures Stuhmiller (1977) found the
hyperbolicity condition

p− p? >
αdαcρdρc

αdρc + αcρd
(ud − uc)

2. (3.2)

One can understand the above inequality after noticing that the interfacial pressure
p? has introduced in the momentum balances a kind of diffusion force involving the
gradient of volume fraction. It is clear that, to play a stabilizing role, a diffusion
force must be directed opposite to the gradient of volume fraction. Stuhmiller’s result
can be interpreted by saying that the ‘diffusion coefficient’ p − p? must be positive
in order to prevent non-physical accumulation of particles in some parts of the flow,
and that it must be positive and large enough to restore hyperbolicity. That result is
appealing; unfortunately the model equations themselves are not tenable. When the
two bulk pressures are equal to p it is difficult to understand why the mean interfacial
pressure should be different from p. Moreover, condition (2.5) for energy conservation
cannot be fulfilled with the above set (3.1) of force and stresses. Consequently the
above model has to be discarded, but we have learned that a ∇αd diffusion force with
the right sign can be beneficial to our quest for hyperbolicity.

3.2. Volume fraction transport equation
A second proposal discards velocity fluctuations, introduces the mean interfacial
pressure p? but releases the equal-pressure assumption and writes the momentum
balances as in the generic equations with

F= (pc − p?)∇αd, 5d = αd(pd − pc)I, 5c = 0. (3.3)
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With these expressions the energy conservation condition (2.5) can be satisfied with
Q= 0 and

∂αd

∂t
+ u? ·∇αd = 0, u? = ud −

p? − pc

pd − pc
(ud − uc), (3.4)

meaning that the volume fraction is transported with a velocity u? which depends on
p?. The set of seven equations based on the six generic equations completed by (3.4) is
very popular (Saurel & Abgrall 1999; Gallouët, Hérard & Seguin 2004) because it is
hyperbolic with seven different (and surprisingly simple) eigenvalues

λ1 = ud, λ2 = uc, λ3 = u?, λ4,5 = ud ± cd, λ6,7 = uc ± cc, (3.5)

where ck is the sound speed of phase k. While the eigenvalues λ1, λ2 and λ3 are
a mere consequence of entropy conservation and (3.4), it is worth noting that the
interfacial pressure has no influence at all on λ4,5,6,7 which would have the same
values if F = 0. This surprising feature can be traced to the special form (3.4) of
the evolution equation for the volume fraction. Moreover the eigenvalues λ4,5 are
suspect because a sound wave or pressure disturbance propagates with velocity cd

inside the particles only, and when outside the particles will move with a different
velocity. It is only when the particles display permanent contacts that a pressure
wave is likely to propagate with velocity cd throughout the suspension. Moreover,
for dispersed mixtures one expects the mean interfacial velocity and mean interfacial
pressure to be equal to the bulk velocity and bulk pressure of the dispersed phase,
an intuitive result which is incompatible with relation (3.4) between u? and p?. As it
happens, the evolution equation (3.4) first appeared in the Baer–Nunziato (BN) model
(Baer & Nunziato 1986), but the BN model describes very special mixtures, namely
fluid-saturated granular media with permanent contacts between the grains (Bdzil et al.
1999). When dealing with less concentrated suspensions of particles, not only does
the contact pressure disappear but simultaneously the evolution equation of the volume
fraction is qualitatively modified as shown in what follows.

For compressible particles which do not exchange mass with the carrier fluid the
evolution of the volume fraction can be generally written as

∂αd

∂t
+∇ · (αdud)= αd〈∇ ·u0

d〉 (3.6)

where the right-hand side represents the rate of change of the particle volume. When
the particles are well dispersed in the fluid there is no link between the mean
divergence of their local-instantaneous velocity 〈∇ · u0

d〉 and the divergence of their
mean velocity ∇ · ud. The former is related to the rate of change of the volume
while the latter is related to the rate of change of the number density. If a pressure
difference exists between the two phases it will act on 〈∇ · u0

d〉 only. However, when
the particles are so concentrated as to display permanent compressive contacts between
neighbours any change of volume will have a direct influence on the number density.
A pressure difference will now act simultaneously on 〈∇ · u0

d〉 and ∇ · ud. Hence for
volume fractions above some minimum value of the order of the random close packing
(αRCP ≈ 0.65 for spheres) the evolution of the volume fraction will be rewritten as

∂αd

∂t
+ ud ·∇αd = αd(1− ν(αd))(〈∇ ·u0

d〉 −∇ ·ud) (αd > αRCP), (3.7)

where ν(αd), which represents the ratio between the surface of the contacts and the
total surface of a particle, increases from zero at random close packing up to one for
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crushed particles when there are no more ‘holes’ in the granular material. Since the
change of volume is now correlated with the change of number density, a pressure
difference will play a role in the right-hand side of (3.7), which was the type of
equation considered by Baer & Nunziato (1986). It is clear that (3.6) and (3.7) hold in
two complementary ranges of volume fraction. The use of (3.7) (or its generalization
(3.4)) when there are no permanent contacts between the particles is not physically
tenable despite its ability to restore hyperbolicity.

3.3. Added-mass
Added-mass effects were early on considered to be involved in the hyperbolicity
issue. In fact added-mass is one of the rare non-dissipative physical phenomena that
two-fluid models have to take into account. The first attempts to introduce added-mass
effects into the two-fluid model (Stuhmiller 1977; Voinov & Petrov 1977; Lahey et al.
1980; Lhuillier 1985) focused on the expression of the added-mass force but none of
these attempts could restore hyperbolicity (Jones & Prosperetti 1985; Fitt 1993). In the
next Section we present a more systematic approach that takes into account not only
the added-mass force but also the added-mass stresses.

4. Added-mass as a particular case of pseudo-turbulence
A more systematic study of added-mass effects and their representation in a

two-fluid model was performed within two very different approaches: a variational
principle based on a Lagrangian (Geurst 1986), and an averaging of the equations
of motion of particles moving in a Euler fluid (Wallis 1991; Lhuillier & Theofanous
2010). These two different approaches share the same two assumptions concerning the
pseudo-turbulent kinetic energies:

Kd = 0, Kc = E(αd)
(ud − uc)

2

2
, (4.1)

meaning that all the particles are moving with the same velocity and that added-mass
effects are responsible for extra kinetic energy of the carrier phase written in terms
of the relative velocity and a function of the volume fraction which is known to
be αd/2 in the dilute limit. In Wallis (1991) and Lhuillier & Theofanous (2010)
the velocity fluctuations and the pressure field on the interfaces are deduced from
a Bernoulli equation. The resulting momentum balances can be presented as in the
generic equations (2.2) with the added-mass force

F=
∂J
∂t
+∇ · (ud ⊗ J)+ (J ·∇)uc + αcρc∇Kc + J ×

(
∇ ×

J
αcρc

)
, (4.2)

J = αcρcE(αd)(ud − uc), (4.3)

and the added-mass stresses

5c = (ud − uc)⊗ J, 5d =−αdαcρc
∂E

∂αd

(ud − uc)
2

2
I. (4.4)

Although the particle pressure never appeared in the above calculations, the particle
momentum balance suggests that pd = pc − αcρc(∂E/∂αd)(ud − uc)

2/2. It can be
checked that condition (2.5) for energy conservation is fulfilled with assumptions (4.1)
and expressions (4.2)–(4.4). We have studied the mathematical character of the above
pair of momentum balances completed by mass and entropy conservation equations.
That mathematical character is bound to E(αd) exclusively (Lhuillier & Theofanous
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2010). In case of rigid spheres moving in an incompressible fluid, the hyperbolic
character is obtained when e(αd) = E(αd)/αd and its first and second derivatives with
respect to αd (denoted by a prime and a double prime) satisfy the inequality[

1+ e+ αce
′
] [
ρd/ρc + e− αde′

]
+
αdαc

2
[αd + αcρd/ρc + e] e′′ 6 0. (4.5)

Note that this inequality is independent of the relative velocity and cannot be satisfied
when E = 0 or E = αd/2. We looked for expressions of E(αd) for which the above
inequality is satisfied for arbitrary values of the density ratio ρd/ρc. We found that the
quadratic expression

E =
αd

2
(1+ Cαd) with C 6−3, (4.6)

restores hyperbolicity for any value of the density ratio. That result was also obtained
in Pauchon & Smereka (1992) for massless particles and it can be understood if we
note that a force −[αcρc∇Kc+∇·5d] acts on the particles and that the ∇αd component
of that force allows us to write

αdρd
ddud

dt
+ αd∇pc = αdαcρc

(ud − uc)
2

2
∂2E

∂α2
d

∇αd + · · ·. (4.7)

For that force to have a stabilizing role requires ∂2E/∂α2
d 6 0 and result (4.6) means

that to restore hyperbolicity requires ∂2E/∂α2
d 6 −3. The analogy with Stuhmiller’s

result (3.2) is patent.
Unfortunately there is no known homogeneous configuration of the particles that

leads to (4.6) with C 6−3. For example one finds C ≈ 0.32 for a random distribution
(Biesheuvel & Spoelstra 1989), C = 0 for Zuber’s periodic configuration (Zuber
1964) and C ≈ 0 for cubic arrays. See Smereka & Milton (1991) for a synthesis
of the results. We conclude that added-mass has a beneficial role in the quest for
hyperbolicity but, used alone, the function E(αd) is restricted to unphysical values. In
fact the only case of a negative C we are aware of was obtained by van Wijngaarden
(1976) upon applying equal forces on bubbles initially at rest. The final configuration
has a non-trivial velocity distribution (Kd 6= 0) with C ≈ −0.24. This suggests that the
combined effects of particle pseudo-turbulence and added-mass is perhaps the clue to
restore hyperbolicity.

5. Pseudo-turbulence without added-mass
In suspensions the particles have a chaotic motion because of fluid-mediated

interactions or direct collisions. And their chaotic motion is transmitted to the fluid
because of the boundary conditions obeyed by the fluid velocity on the surface of
a particle. The simplest way to depict the velocity fluctuations of the particles and
the carrier fluid is to introduce the kinetic energies Kd and Kc defined in (2.4).
In a two-phase flow the evolution of pseudo-turbulence generally involves the four
mechanisms of production, diffusion, exchange and dissipation. It can be guessed that
the general transport equations for Kd and Kc take a complex form, even upon neglect
of all dissipative phenomena. In what follows our aim will not be to consider the
equations in full but only to work with over-simplified equations just to check their
potentialities in the quest for hyperbolicity. Hence we place ourselves in a position
similar to Stuhmiller when he tested the potentialities of a ∇αd force (see § 3.1).

If (a) dissipative and diffusive processes are neglected, (b) the distribution of
velocity fluctuations is assumed to be isotropic, and (c) there is no coupling between
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the velocity fluctuations of the particles and those of the carrier fluid, then the
transport equations of Kd and Kc are reduced to the simple form

αkρk
dkKk

dt
+

2
3
αkρkKk∇ ·uk = 0. (5.1)

Such an equation was already considered in Saurel, Gavrilyuk & Renaud (2003) and
Hérard (2003) and it can be presented in the condensed form

dk

dt

(
Kk/(αkρk)

2/3
)
= 0. (5.2)

If one takes for granted the equal-pressure assumption (pd = pc = p) together with the
evolution equations (5.1) then the necessary condition (2.5) is satisfied with Q= 0 and

F= 0, 5d =
2
3αdρdKdI, 5c =

2
3αcρcKcI. (5.3)

The eight-equation model considered hereafter is made up of the six generic equations
(taking expressions (5.3) into account) completed by the two equations (5.2). We have
investigated the eigenvalues of that set of equations and concluded that four of them
are real:

λ1 = λ2 = ud, λ3 = λ4 = uc, (5.4)

which is a direct consequence of entropy conservation and (5.2). The four remaining
eigenvalues are the solutions of the quartic equation[

(λ− ud)
2
− Adc2

m

] [
(λ− uc)

2
− Acc

2
m

]
− Ac4

m = 0 (5.5)

where cm and ρm are the sound speed and mass density of the mixture:

ρm = αdρd + αcρc,
1

ρmc2
m

=
αd

ρdc2
d

+
αc

ρcc2
c

, (5.6)

while Ad,Ac and A are three non-dimensional scalars, depending on the particle
volume fraction, the density ratio and the pseudo-turbulent kinetic energies:

Ad =
10
9

Kd

c2
m

+ αd
ρm

ρd
, Ac =

10
9

Kc

c2
m

+ αc
ρm

ρc
, A= αdαc

ρm

ρd

ρm

ρc
, (5.7)

hence verifying the inequality 0 < A 6 AcAd. For the one-pressure eight-equation
model to be hyperbolic the quartic equation (5.5) must have four real roots and
this is obtained provided

q2(p2
− 4q)> r(27r + 4p3

− 18pq), (5.8)

where

p= 2(Ad + Ac)+1M2, r = (Ad − Ac)
21M2, (5.9)

q= 4A+ (Ad − Ac)
2
+ 2(Ad + Ac)1M2, (5.10)

and 1M = ‖ud − uc‖/cm is the Mach number of the relative velocity. The only result
that can be obtained easily concerns the case of no relative velocity for which 1M = 0.
Definitions (5.9) and (5.10) imply r = 0 and p2 > 4q, so that inequality (5.8) is always
satisfied, meaning that the system of equations is hyperbolic for any (positive) values
of Kc and Kd. For a non-zero relative velocity the problem is much harder and we
performed a numerical study of the eigenvalues of (5.5) (or the domain where (5.8)
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holds) in the parameter space [
√

Kd,
√

Kc,ud − uc] with the volume fraction αd and the
density ratio ρd/ρc as parameters. A good approximation of the hyperbolic domain is
given by √

Kd

(
1+

αcρd

αdρc

)
+

√
Kc

(
1+

αdρc

αcρd

)
> 1.5‖ud − uc‖. (5.11)

When Kd = 0 hyperbolicity is obtained with Kc much larger than the added-mass
kinetic energy which is of order αd(ud − uc)

2. This should not be a surprise because
in the set of equations considered in the present Section the fluctuating kinetic energy
is involved in the divergence of a kinetic stress only, while the set of equations
describing added-mass has a much richer list of stresses and forces involving Kc.

We note here that Hank, Saurel & Metayer (2011) have considered a modified form
of the above equations in which the Archimedes force αd∇pc is ignored from the
momentum equation of the particles while αc∇pc is replaced by ∇pc in the momentum
equation for the carrier phase. In that case one finds A = 0 and it is clear from
(5.5) that there are four more real eigenvalues so that their modified set of equations
is indeed hyperbolic. However there is no physical justification for suppressing the
Archimedes force in a suspension, even if dilute. Hence the hyperbolicity obtained in
Hank et al. (2011) is not physically tenable.

6. Conclusions
The only model of suspensions which is both hyperbolic and compatible with

physics is the Baer–Nunziato model. That model however is specific to suspensions
with permanent compressive contacts between the particles and it is unphysical to
apply it to suspensions with concentrations below random close packing. Hence the
hyperbolicity of effective-field models of disperse mixtures without permanent contacts
is not resolved yet. After a critical appraisal of the existing models we conclude
that two physical phenomena are necessary: (a) added-mass; and (b) pseudo-turbulent
velocity fluctuations. When considered alone, each of these two physical phenomena
does not lead to fully satisfactory results. Added-mass alone can restore hyperbolicity
but with a curious dependence of the kinetic energy on the volume fraction. Velocity
fluctuations without added-mass can restore hyperbolicity but only for unexpectedly
high values of the pseudo-turbulent kinetic energies, of the order of the relative
velocity squared.

A promising direction is to associate added-mass and the pseudo-turbulence of the
particles. Preliminary results in that direction have already been obtained for massless
bubbles (Yurkovetsky & Brady 1996; Khang et al. 1997; Spelt & Sangani 1998)
but they must be extended to massive particles in a form which satisfies the energy
conservation condition (2.5) before considering the hyperbolicity issue.

Ultimately, however, any model must be anchored in experimental evidence, as
along the lines pursued for example by Chang et al. (2011) and Wagner et al. (2012).
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