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A rigorous computational approach based on Green’s second integral identity in the plane is used
to calculate the transmission, reflection, and conversion into volume electromagnetic waves of a
surface plasmon polariton incident on a nanoscale one-dimensional surface defect on an other-
wise planar interface between vacuum and a lossy metal. © 2010 American Institute of Physics.
�doi:10.1063/1.3499248�
The ability to control the propagation of surface plasmon
polaritons is important for their use in nanoscale devices.1–3

A way in which the propagation of these surface electromag-
netic waves can be controlled is to scatter them from one-
and two-dimensional nanoscale surface defects. In the case
of one-dimensional defects, the surface plasmon polariton
transmission and reflection coefficients, and the strength and
angular dependence of the volume electromagnetic waves
radiated into the vacuum above the surface, can be controlled
by varying the size and shape of the defect.2 The scattering
of surface plasmon polaritons from isolated one-dimensional
surface defects,4–9 and from arrays of a finite number of
defects,10 has been studied in several recent theoretical in-
vestigations.

All of these calculations have two features in common.
They are based on the use of an impedance boundary condi-
tion of one form or another, so that only the electromagnetic
field in the vacuum above the metal surface needs to be
considered, and they all assume that the dielectric function of
the metal is real.

In this paper we study the scattering of surface plasmon
polaritons incident normally on nanoscale one-dimensional
surface defects on an otherwise planar lossy metal surface
without invoking either of these approximations.

The physical system we consider consists of vacuum in
the region x3���x1�, and a metal, characterized by an isotro-
pic, frequency-dependent, complex dielectric function ����
=�1���+ i�2��� in the region x3���x1�. We are interested in
the frequency range within which the real part of ����,
�1���, satisfies �1����−1, which is the range in which sur-
face plasmon polaritons exist. The imaginary part of ����,
�2���, is non-negative for all frequencies. The surface profile
function ��x1� is assumed to be a single-valued function of
x1, that is twice differentiable, and is nonzero only in the
interval −L /2�x1�L /2.

We assume that a p-polarized surface plasmon polariton
of frequency �, whose sagittal plane is the x x plane, is
1 3
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incident on the surface defect from the planar region of the
surface where x1�−L /2. When the metal surface supporting
it is lossy, the surface plasmon polariton is attenuated as it
propagates in the +x1 direction. But this result also means
that the amplitude of this wave grows exponentially as x1

→−�. This causes some of the integrals that arise in the
scattering theory to diverge. We can avoid these unphysical
divergences by creating a source in the region x1�−L /2 that
launches surface plasmon polaritons propagating in both the
+x1 direction and the −x1 direction, and therefore decaying in
both directions.

To do so we begin by writing the single nonzero com-
ponent of the magnetic field in the vacuum region x3

���x1� as the sum of an incident and a scattered field

H2
��x1,x3��� = H2

��x1,x3���inc + H2
��x1,x3���sc, �1�

and in the region of the metal x3���x1� as

H2
��x1,x3��� = H2

��x1,x3���inc + H2
��x1,x3���sc, �2�

where

H2
��x1,x3���inc = ���x1 + L0�exp�ik����x1 + L0�

− 	0���x3� + ��− x1 − L0�


exp�− ik����x1 + L0� − 	0���x3�� , �3�

H2
��x1,x3���inc = ���x1 + L0�exp�ik���


�x1 + L0� + 	���x3� + ��− x1 − L0�


exp�− ik����x1 + L0� + 	���x3�� , �4�

with L0�L /2. In these expressions ��x� is the Heaviside unit
step function,

k��� = ��/c������/����� + 1��1/2 = k1��� + ik2��� ,

with k1����0, k2����0, is the wavenumber of the surface
plasmon polariton of frequency � at the planar interface be-
tween vacuum and a metal whose dielectric function is ����,
© 2010 American Institute of Physicsct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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while 	0���= �� /c��−1 / �����+1��1/2 and 	���=−����

�� /c��−1 / �����+1��1/2 are the inverse decay lengths of
the electromagnetic field of the surface wave into the
vacuum and the metal, respectively.

The incident fields H2
�,��x1 ,x3 ���inc given by Eqs. �3�

and �4� satisfy the equations

	 �2

�x1
2 +

�2

�x3
2 +

�2

c2 
H2
��x1,x3���inc = 2ik�����x1 + L0�


exp�− 	0���x3�, x3 � ��x1� , �5�

	 �2

�x1
2 +

�2

�x3
2 + ����

�2

c2 
H2
��x1,x3���inc

= 2ik�����x1 + L0�exp�	���x3�, x3 � ��x1� . �6�

The scattered fields H2
�,��x1 ,x3 ���sc satisfy the homoge-

neous forms of Eqs. �5� and �6�, respectively.
Thus, we have introduced a planar source perpendicular

to the x1 axis at x1=−L0, whose strength decreases exponen-
tially with increasing distance from the interface into the
vacuum and the metal.

We now define two Green’s functions G0�x1 ,x3 �x1� ,x3��
and G��x1 ,x3 �x1� ,x3�� as the solutions of the equations

	 �2

�x1
2 +

�2

�x3
2 +

�2

c2 
G0�x1,x3�x1�,x3��

= − 4���x1 − x����x3 − x�� , �7�
1 3
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	 �2

�x1
2 +

�2

�x3
2 + ����

�2

c2 
G��x1,x3�x1�,x3��

= − 4���x1 − x1����x3 − x3�� , �8�

subject to outgoing wave boundary conditions at infinity.
These functions can be represented by

G0�x1,x3�x1�,x3�� = i�H0
�1����/c���x1 − x1��

2 + �x3 − x3��
2�1/2�

= �
−�

� dq

2�

2�i


0�q�
exp�iq�x1 − x1�� + i
0�q�


�x3 − x3��� �9�

and

G��x1,x3�x1�,x3�� = i�H0
�1���������/c���x1 − x1��

2

+ �x3 − x3��
2�1/2� = �

−�

� dq

2�

2�i


�q�


exp�iq�x1 − x1�� + i
�q��x3 − x3��� ,

�10�

where H0
�1��x� is the Hankel function of the first kind and

zero order, 
0�q�= ��� /c�2−q2�1/2, with Re 
0�q��0,
Im 
0�q��0, and 
�q�= ������� /c�2−q2�1/2, with Re 
�q�
�0, Im 
�q��0.

When we apply Green’s second integral identity in the
plane11 to the regions x3���x1� and x3���x1� in turn, the
preceding results enable us to write the equations satisfied by

�,�
H2 �x1 ,x3 ���, respectively, as
��x3 − ��x1��H2
��x1,x3��� = H2

��x1,x3���inc = k����
−�

� dq

2�

exp�iq�x1 + L0� + i
0�q�x3�

0�q��	0��� + i
0�q��

+
1

4�
�

−�

�

dx1�
� �

�N�
G0�x1,x3�x1�,x3���

x3�=��x1��
H�x1���� − �G0�x1,x3�x1�,x3���x3�=��x1��L�x1����� , �11�

����x1� − x3�H2
��x1,x3��� = H2

��x1,x3���inc + k����
−�

� dq

2�

exp�iq�x1 + L0� − i
�q�x3�

�q��	��� + i
�q��

−
1

4�
�

−�

�

dx1�
� �

�N�
G��x1,x3�x1�,x3���

x3�=��x1��


H�x1���� − �����G��x1,x3�x1�,x3���x3�=��x1��L�x1����� . �12�
In writing these equations we have introduced the source
functions H�x1 ��� and L�x1 ��� that are defined by

H�x1��� = H2
���x1,x3����x3=��x1�, �13�

L�x1��� =
�

�N
H2

���x1,x3����x3=��x1�, �14�
where � /�N=−���x1��� /�x1�+ �� /�x3�. We have also used the
boundary conditions at the interface x3=��x1� namely
H2

��x1 ,x3 ���=H2
��x1 ,x3 ���, and �H2

��x1 ,x3 ��� /�N=�−1���

��H2

��x1 ,x3 ��� /�N�.
The equations satisfied by the source functions H�x1 ���

and L�x1 ��� are obtained by setting x3=��x1�+�, where � is
a positive infinitesimal, in Eqs. �11� and �12�. The resulting
equations are
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H�x1��� = H�x1���inc

+ k����
−�

� dq

2�

exp�iq�x1 + L0� + i
0�q���x1��

0�q��	0��� + i
0�q��

+
1

4�
�

−�

�

dx1�
� �

�N�
G0�x1,x3�x1�,x3���x3�=��x1��

x3=��x1�+�


H�x1���� − �G0�x1,x3�x1�,x3���x3�=��x1��
x3=��x1�+�

L�x1�����
�15�

and

0 = H�x1���inc + k����
−�

� dq

2�

exp�iq�x1 + L0� − i
�q���x1��

�q��	��� + i
�q��

−
1

4�
�

−�

�

dx1�
� �

�N�
G��x1,x3�x1�,x3���x3�=��x1��

x3=��x1�+�


H�x1���� − �����G��x1,x3�x1�,x3���x3�=��x1��
x3=��x1�+�

L�x1����� ,

�16�

where H�x1 ���inc=H2
���x1 ,x3 ���inc�x3=��x1�.

Equations �15� and �16� are solved numerically for
H�x1 ��� and L�x1 ��� in exactly the same way as this was
done in.12

We wish to obtain the fraction R��� of the power in the
incident surface plasmon polariton that is converted into the
reflected surface plasmon polariton, the fraction T��� trans-
mitted beyond the defect in the form of a surface plasmon
polariton, and the fraction S��� converted into volume elec-
tromagnetic waves in the vacuum.

We begin with a calculation of the total time-averaged
flux incident on the defect. This is given by

Pinc�x1� = �
−L2/2

L2/2

dx2��
0

�

dx3 Re S1
c�x1,x3���inc

�

+ �
−�

0

dx3 Re S1
c�x1,x3���inc

� � , �17�

where Li�i=1,2� is the length of the surface along the xi axis,
and where S1

c�x1 ,x3 ���inc
�,� is the 1-component of the com-

plex Poynting vector,

S1
c��x1,x3����inc

�,� = − i
c2

8���

�H2
�,��x1,x3���inc

�x1


H2
�,��x1,x3���

inc
* , �18�

where � the dielectric constant of the medium in which the
field is calculated. Thus, the incident flux in the region −L0

�x1�−L /2, obtained from the first term on the right-hand
sides of Eqs. �3� and �4�, together with Eqs. �17� and �18�, is
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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Pinc�x1� = L2
c2

8��� k1���
	0��� + 	

0
*���

+
k1����1��� + k2����2���

�1
2��� + �2

2���
1

	��� + 	*����

exp�− 2k2����x1 + L0��, − L0 � x1 � − L/2.

�19�

In the region x1�−L /2, x3�0 in front of the defect the
magnetic field of the reflected surface plasmon polariton has
the form

H2
��x1,x3���ref = r���exp�− ik���x1 − 	0���x3� , �20�

while in the region x1�−L /2, x3�0 it is given by

H2
��x1,x3���ref = r���exp�− ik���x1 + 	���x3� . �21�

The total time-averaged reflected flux is then obtained from
Eqs. �17� and �18� with «inc» replaced by «ref», with the
result that

Pref�x1� = − L2�r����2
c2

8��� k1���
	0��� + 	

0
*���

+
k1����1��� + k2����2���

�1
2��� + �2

2���
1

	��� + 	*����

 exp�2k2���x1�, x1 � − L/2. �22�

In the region x1�L /2, x3�0 beyond the defect the total
magnetic field of the surface plasmon polariton has the form

H2
��x1,x3���tr = t���exp�ik���x1 − 	0���x3� , �23�

while in the region x1�L /2, x3�0 it has the form

H2
��x1,x3���tr = t���exp�ik���x1 + 	���x3� . �24�

The total time-averaged power carried by the surface
plasmon polariton in the region x1�L /2 is then given by

Ptr�x1� = L2�t����2
c2

8��
 k1���
	0��� + 	

0
*���

+
k1����1��� + k2����2���

�1
2��� + �2

2���
1

	��� + 	*����

 exp�− 2k2���x1�, x1 � L/2. �25�

The magnetic component of the field scattered into the
vacuum region can be written in the far zone as

H2
��x1,x3���rad = �

−�

� dq

2�
R�q,��exp�iqx1 + i
0�q�x3� ,

�26�

where from Eq. �11� we find that

R�q,�� = k���
exp�iqL0�


0�q��	0��� + i
0�q��

+
i

2
0�q��−�

�

dx1�i�q���x1� − 
0�q��H�x1���

− L�x ����exp�− iqx − i
 �q���x �� . �27�
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The 3-component of the time-averaged Poynting vector
of the field scattered into the vacuum is

Prad = Re �
−L1/2

L1/2

dx1�
−L2/2

L2/2

dx2�
−

ic2

8��

�H2
��x1,x3���rad

�x3
H2

��x1,x3���
rad
* �

= L2
c2

8��
�

−�/c

�/c dq

2�

0�q��R�q,���2 �28�

in the limit as L1→�. With the change of variable q
= �� /c�sin �s Eq. �28� becomes

Prad = �
−�/2

�/2

d�sPrad��s� , �29�

where

Prad��s� = L2
�

16�2 cos2 �s�R���/c�sin �s,���2. �30�

We can now obtain expressions for the surface plasmon
polariton reflection, transmission, and radiation coefficients,
R���, T���, and S���, respectively. These are given by the
total time-averaged powers in the reflected and transmitted
surface plasmon polaritons, and in the volume waves in the
vacuum, normalized by the incident power. However, due to
the presence of damping in the metal, each of these fluxes
depends on the coordinate x1. Therefore we have to indicate
at which value of x1 each flux is calculated. For the incident
flux it seems natural to evaluate it at x1=−L /2, i.e., at the
point where the incident surface plasmon polariton meets the
defect. We will evaluate the reflected flux at the same value
of x1, namely at the value x1=−L /2 at which the reflected
surface plasmon polariton leaves the region of the defect. We
will evaluate the transmitted flux at x1=L /2, namely at the
value of x1 at which the transmitted surface wave leaves the
region of the defect.

With these choices the surface plasmon polariton reflec-
tion coefficient R��� is given by

R��� =
�Pref�− L/2��

Pinc�L/2�
= �r����2 exp�2k2����L0 − L�� . �31�

The surface plasmon polariton transmission coefficient
becomes

T��� =
Ptr�L/2�

Pinc�− L/2�
= �t����2 exp�2k2����L0 − L�� . �32�

The fraction of the total time-averaged incident flux that
is converted into bulk electromagnetic waves in the vacuum
is then given by

S =
Prad

Pinc�− L/2�
, �33�

while the fraction of the total time-averaged incident flux
that is converted into bulk electromagnetic waves propagat-
ing in the angular interval ��s ,�s+d�s� is

S��s� =
Prad��s�

P �− L/2�
. �34�
incticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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It remains only to determine the reflection and transmis-
sion amplitudes r��� and t���, respectively. Far from the
surface defect, where x1=−L1, with �x1��L0, the total field
evaluated on the surface x3=0, H2

��−L1 ,0 ����H�−L1 ��� is
the sum of the fields of the incident and reflected surface
plasmon polaritons, H�−L1 ���=exp�ik����L1−L0��
+r���exp�ik���L1�. From this result we obtain

r��� = H�− L1���exp�− ik���L1� − exp�− ik���L0� . �35�

In a similar fashion we argue that far from the defect,
where x1=L1�L /2, the total field evaluated on the surface
x3=0, H2

��L1 ,0 ����H�L1 ��� is given by H�L1 ���
= t���exp�ik���L1�. It follows, therefore, that

t��� = H�L1���exp�− ik���L1� . �36�

We now illustrate the preceding results by applying them
to several examples.

We consider first the scattering of a surface plasmon
polariton from a defect defined by a Gaussian surface profile
function

��x1� = � exp�− x1
2/a2� �37�

on a silver surface. This defect is a ridge if � is positive, and
a groove if � is negative.

In the numerical calculations the frequency of the inci-
dent surface plasmon polariton was assumed to be given by
��=1.96 eV, which corresponds to a vacuum wavelength
�=632.8 nm. This is the wavelength of the light used in
photon scanning tunneling microscope �PSTM�
experiments13–16 to excite surface plasmon polaritons on sil-
ver surfaces. The dielectric constant of silver at this wave-
length is ����=−17.2+ i0.479.17 The values of L, L0, and L1

assumed in carrying out these calculations were L=240 �m,
L0=30 �m, and L1=8 �m.

In Fig. 1 we plot the dependence on a /� of the coeffi-
cients R���, T���, and S��� for Gaussian ridges and grooves
of amplitudes � /�=0.05 and 0.2. From the plot it seen that
for wide defects all of these coefficients practically coincide
for the ridges and grooves of the same �; the difference be-
tween the results for the ridges and grooves displays itself
only for narrow defects a�� /2.

The reflection coefficient R��� of surface plasmon po-
laritons from ridges or grooves is significant only for very
narrow surface defects. In Fig. 1 it is seen to attain its maxi-
mum value for a value of a of the order of aopt�0.1�, irre-
spective of the value of �, but shifted slightly to smaller
values of a for ridges. The maximum reflectivity, however,
increases with increasing �, and is slightly larger for ridges
than for grooves. Such defects have been called plasmon
mirrors.4,15,16

The transmissivity T��� of a surface plasmon polariton
propagating through a ridge or a groove, after a drop for very
narrow defects, increases monotonically with increasing de-
fect width. This is in contrast to the results of Ref. 5, where
the transmissivity of a surface plasmon polariton propagating
through a groove increased in an oscillatory fashion with
increasing defect width.

The total normalized power S��� scattered from a sur-
face defect, also in contrast to Ref. 5, has a maximum for a
very narrow defect, and decreases monotonically with in-
ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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creasing defect width. It is larger for larger �, but the overall
behavior of S��� is the same for grooves and ridges. Thus
both narrow ridges and narrow grooves can act as light emit-
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FIG. 1. Surface plasmon polariton reflection �a� and transmission �b� coef-
ficients R��� and T���, respectively, and the total normalized scattered
power S��� �c�, as functions of the 1 /e half width of a Gaussian surface
defect: �=632.8 nm and ����=−17.2+ i0.479. Long dashed curve: �=0.2�;
solid curve: �=−0.2�; dot-dashed curve: �=−0.05�; dotted curve: �
=0.05�.
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ters, i.e., as surface defects that convert a large fraction of the
power in the incident surface plasmon polariton into volume
electromagnetic waves in the vacuum region.

The absence of the oscillations observed in Ref. 5 in our
results for T��� and S��� for the deep groove could be due to
the presence of losses that lead to the overdamping of local
shape resonances.

The frequency dependencies of R���, T���, and S���
were studied in Ref. 6 and display interesting features. In
Fig. 2 we have plotted the analogous dependencies for a
Gaussian ridge and groove, defined by Eq. �37�, with �
=785 nm and a=157 nm. In obtaining these results the fre-
quency dependence of ���� was assumed to be given by
����=1−�p

2 / ����+ i���, with �p=157 nm and �
=0.009681�p. In the case of a Gaussian ridge all of these
coefficients display a weak dependence on the frequency: the
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FIG. 2. The frequency dependence of the surface plasmon polariton reflec-
tion �dash-dotted curve� and transmission �solid curve� coefficients R���
and T���, respectively, and the total normalized scattered power S���
�dashed curve�, of a Gaussian surface defect of 1 /e half width a=157 nm:
ridge, �=785 nm �a�; groove, �=−785 nm �b�. �p=2�c /�p, where �p

=157 nm �Ag�.
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transmissivity T��� decreases monotonically, with increasing
frequency, while R��� and S��� increase with increasing fre-
quency, displaying weak structure. We note that the in this
case most of the energy of the incident surface plasmon po-
lariton is radiated into the vacuum. In contrast, in the case of
a Gaussian groove all of these coefficients are strongly fre-
quency dependent, with large oscillations �resonances� cor-
responding to strong transmission or radiation within some
frequency ranges. The reflectivity R��� oscillates weakly but
increases with increasing frequency.

In this paper we have presented a rigorous approach to
the scattering of a surface plasmon polariton incident nor-
mally on a one-dimensional defect on the otherwise planar
surface of a metal that also takes into account ohmic losses
in the metal. Expressions for the surface plasmon polariton
reflection �R���� and transmission �T���� coefficients, and
for the total normalized power of the volume electromag-
netic waves radiated into the vacuum above the metal surface
�S����, have been obtained in terms of the solutions of a pair
of coupled inhomogeneous integral equations. These equa-
tions have to be solved numerically, but this can be done by
standard methods.

This approach has been illustrated by applying it to the
calculation of R���, T���, and S��� for the scattering of a
monochromatic surface plasmon polariton from a nanoscale
Gaussian ridge or groove on a silver surface. These results
demonstrate that our approach is computationally tractable.
When they are compared with the results of earlier calcula-
tions of these coefficients, in which an impedance boundary
condition was used to simplify the calculations, and the
metal supporting the surface plasmon polariton was assumed
to be lossless, qualitative agreement is found. However, the
two sets of results also reveal some qualitative discrepancies.

The theoretical/computational study of properties of sur-
face plasmon polaritons have now advanced to such a level
that simplifications of the kind used in earlier scattering cal-
culations are no longer needed. The success of the approach
to such calculations presented here would seem to validate
this point of view. It is expected that it will be useful in
studies of other scattering problems, such as the scattering of
surface plasmon polariton pulses from one-dimensional sur-
face defects,6,7 or scattering from an array of such defects,10

which until now have been investigated only by approximate
methods.
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