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ARTICLE

Angiopoietin-2–integrin α5β1 signaling enhances
vascular fatty acid transport and prevents ectopic
lipid-induced insulin resistance
Hosung Bae 1, Ki Yong Hong2, Choong-kun Lee1,3, Cholsoon Jang 4,8, Seung-Jun Lee1, Kibaek Choe 5,

Stefan Offermanns 6, Yulong He 7✉, Hyuek Jong Lee1 & Gou Young Koh 1,3✉

Proper storage of excessive dietary fat into subcutaneous adipose tissue (SAT) prevents

ectopic lipid deposition-induced insulin resistance, yet the underlying mechanism remains

unclear. Here, we identify angiopoietin-2 (Angpt2)–integrin α5β1 signaling as an inducer of

fat uptake specifically in SAT. Adipocyte-specific deletion of Angpt2 markedly reduced

fatty acid uptake and storage in SAT, leading to ectopic lipid accumulation in glucose-

consuming organs including skeletal muscle and liver and to systemic insulin resistance.

Mechanistically, Angpt2 activated integrin α5β1 signaling in the endothelium and triggered

fatty acid transport via CD36 and FATP3 into SAT. Genetic or pharmacological inhibition

of the endothelial integrin α5β1 recapitulated adipocyte-specific Angpt2 knockout phe-

notypes. Our findings demonstrate the critical roles of Angpt2–integrin α5β1 signaling in

SAT endothelium in regulating whole-body fat distribution for metabolic health and

highlight adipocyte–endothelial crosstalk as a potential target for prevention of ectopic

lipid deposition-induced lipotoxicity and insulin resistance.
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The adipose tissue plays a pivotal role in maintaining whole-
body energy homeostasis by buffering lipids1–3. Impaired
uptake of circulating lipids by subcutaneous adipose tissue

(SAT) can induce ectopic fat accumulation in major glucose-
consuming organs such as the skeletal muscle and liver4,5, leading
to lipotoxicity and insulin resistance6,7. Several approaches have
focused on preventing ectopic fat accumulation; one strategy
inhibits trans-endothelial fatty acid (FA) transport8–11, because
the vascular endothelial cell (EC) is the anatomic and metabolic
gatekeeper of lipid shuttling into tissues12,13. However, approa-
ches targeting trans-endothelial FA transport have been only
partly successful14,15, presumably because of the systematic
approach targeting the whole circulatory system rather than
specific tissues. Therefore, it will be clinically important to
develop new ways to control tissue-specific endothelial FA
transport, such as driving FA trafficking into SAT.

Transducing roles for vascular ECs in FA trafficking into tis-
sues have been uncovered through the recent characterization of
FA transport proteins (FATPs) and CD36 in ECs12,16. These
proteins are regulated by autocrine or paracrine factors such as
VEGF-B, apelin, or Notch ligands that act on receptors of
ECs8,10,11,17. Other than its corresponding receptors such as
VEGFR1, NRP1, or APLNR, integrin receptors are also impli-
cated in FA handling18,19, but their role in endothelial FA traf-
ficking is unknown. Among the well-known ligands of integrin
receptors are ECM molecules such as fibronectin, Mfge8, and
Angpt220–22. In particular, the effects of Angpt2 in regulating
adipose tissue metabolism through angiogenesis have been
thoroughly investigated23,24. However, approaches targeting adi-
pose tissue angiogenesis through systemic blockade or constant
overexpression have generated mixed results in metabolic out-
come25–28. Thus, more thorough investigation is required to shed
light on the fundamental mechanisms underlying adipocyte
crosstalk with ECs by other methods such as adipocyte-specific
deletion of Angpt2.

Here, using adipocyte-specific KO of Angpt2 and endothelial-
specific KO of integrin receptors, we identify Angpt2–integrin
α5β1 signaling as a novel regulator of trans-endothelial FA
transport, specifically in subcutaneous adipose depots.
Angpt2–integrin α5β1 induced FA transport into SAT is critical
for clearance of circulating FAs and prevention of peripheral lipid
accumulation and systemic glucose intolerance. Thus, stimulation
of FA transport by targeting SAT endothelium through
Angpt2–integrin α5β1 signaling offers a new therapeutic avenue
for combat against ectopic lipid-induced insulin resistance and
related metabolic syndrome.

Results
Adipocyte-derived Angpt2 leads subcutaneous fat distribution.
To validate the expression of Angpt2 in adipose tissues23, we first
examined the expressions and distributions of Angpt2 in various
metabolic organs. Angpt2 expression was highest in SAT com-
pared with other adipose tissues or metabolically active organs in
mice (Supplementary Fig. 1a–c). In SAT, Angpt2 expression was
enriched in adipocytes compared with stromal vascular fraction
(SVF) (Supplementary Fig. 1d).

To investigate the role of adipocyte-derived Angpt2, we
generated adipocyte-specific Angpt2 knockout (KO) mice
(Angpt2ΔAd) by crossing the adiponectin-Cre line with Angpt2fl/fl

mice29 and analyzed them at 8 weeks after birth (Supplementary
Fig. 2a). Cre-negative but flox/flox-positive mice among the
littermates were defined as wild-type (WT) mice for each
experiment unless otherwise indicated. We found no differences
in body weight (BW) and visceral adipose tissue (VAT) weights
between WT and Angpt2ΔAd mice (Supplementary Fig. 2b, c).

However, we found altered fat distribution among different depots
in Angpt2ΔAd mice, with significantly contracted SAT and
enlarged brown adipose tissue (BAT) (Supplementary Fig. 2c, d).
Inducible adipocyte-specific Angpt2 KO (Angpt2iΔAd) mice also
showed almost identical phenotypes, indicating that this alteration
was not due to developmental defects (Fig. 1a–d). Interestingly, the
fat mass change was largely due to the altered size in adipocytes:
the size of SAT adipocytes was reduced while the size of BAT
adipocytes was increased (Fig. 1e). However, these smaller SAT
adipocytes in the Angpt2iΔAd mice did not show any signs of
apoptosis, beiging, oxygen consumption, immune cell infiltration,
or defective vascularization (Fig. 1f–k and Supplementary
Fig. 3a–g), suggesting that the reduced size is due to decreased
fat contents. Compared with WT mice, EC-specific Angpt2 KO
mice (Angpt2iΔEC) showed no differences in BW or weights and
adipocyte sizes of SAT, VAT, and BAT (Fig. 1l–p). Thus, Angpt2
derived from the adipocytes but not from the ECs regulates the
reciprocal distribution of fat into SAT and BAT.

Angpt2 stimulates endothelial FA uptake. We next sought to
understand how fat contents were selectively reduced in SAT by
Angpt2 deletion. Thus, we examined if Angpt2 affects FA traf-
ficking into adipocytes by measuring tissue uptake of orally
administered radio-labeled FAs to Angpt2iΔAd mice (Fig. 2a).
Angpt2iΔAd mice showed 56% reduction in FA uptake by SAT,
whereas they showed increased FA uptake by BAT (Fig. 2b and
Supplementary Fig. 4a). Because BAT expresses much less
Angpt2 than SAT (Supplementary Fig. 1a), we speculate that the
increased FA uptake by BAT reflects compensation mechanisms
of reduced FA uptake by SAT. Importantly, FA production,
uptake by liver, or systemic levels of insulin or glucose, which are
regulators of FA mobilization, were unchanged, indicating direct
action of Angpt2 on FA uptake (Supplementary Fig. 4b–j).

To elucidate the mechanism of Angpt2 action on FA uptake,
we measured FA intake in isolated SAT adipocytes in vitro
(Fig. 2c). To our surprise, we found no difference in FA uptake
between WT and Angpt2-deficient (Angpt2ΔAd) adipocytes
(Fig. 2d, e), indicating that Angpt2 induces fat uptake in a cell-
nonautonomous manner. Given that blood vessels act as a
gatekeeper of FA trafficking into tissues12,30 and that ECs express
Angpt2 receptors (e.g., Tie2 and integrins)21, we tested if Angpt2
regulates endothelial FA transport. We found that Angpt2
treatment significantly increased FA uptake by ECs (Fig. 2f, g).
These results indicate that Angpt2 acts as an adipokine to
stimulate endothelial FA uptake in a cell-nonautonomous
manner.

Organotypic characteristics of endothelial cells in SAT. To
search for the receptor(s) that mediate the Angpt2 effect, we
assessed which Angpt2 receptors are highly expressed in ECs of
adipose tissues using the RiboTagΔEC mouse31,32 to avoid dis-
ruption in cell surfaces. Upon tamoxifen treatment, this mouse
tags hemagglutinin (HA) to the ribosome-associated actively
transcribing mRNAs, specifically in VE-Cadherin-expressing ECs
(Fig. 3a–c). After successful validation of EC-specific marker
enrichment [e.g., platelet endothelial cell adhesion molecule
(PECAM)] in mRNAs purified with an antibody against the HA
tag (Fig. 3d), we compared a catalog of known Angpt2 receptors
in ECs from various organs (Fig. 3e). Of note, the ECs in SAT
expressed higher levels of integrin α5 (ITGα5) and integrin β1
(ITGβ1) by ∼5.6-fold but ∼52% reduced levels of Tie2 compared
with ECs in the other organs we examined (Fig. 3e). Immuno-
histochemical analyses supported these reciprocal expression
levels of integrin α5β1 and Tie2 in the ECs of SAT, which clearly
differs with other depots (Fig. 3f, g and Supplementary Fig. 5a, b).
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Thus, integrins are the strongest candidate receptors that are
likely mediators of Angpt2 action on the endothelium in SAT.

Angpt2 drives endothelial FA uptake through integrin α5β1.
To test this hypothesis, we used uncoated plates to minimize
integrin activation by ECM proteins such as gelatin or

fibronectin33; nonetheless, the adherence of HUVECs was com-
parable to coated dishes (Supplementary Fig. 6a). Next, we
examined the effect of Mn2+, which enhances ligand-binding
affinity of integrin21, on endothelial FA uptake (Fig. 4a). Treat-
ment of Mn2+ alone showed no effect, but it strongly augmented
Angpt2-induced FA uptake by ECs by 3.0-fold (Fig. 4b, c). In the
presence of Mn2+, Angpt2 stimulated FA uptake rapidly (Fig. 4d)
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and dose dependently (Fig. 4e). We found no difference between
vascular leakage by trans-well endothelial layer permeability
assay, indicating that Angpt2 stimulates FA uptake independently
of vascular permeabilizing actions (Fig. 4f). We next depleted
various integrin subunits in ECs to further examine the impor-
tance of each integrin in mediating the Angpt2 effect. Depletion
of integrin α5 or β1 completely blocked Angpt2-induced FA
uptake by ECs (Fig. 4g), whereas depletion of integrin αv or β5
did not (Supplementary Fig. 6b). Of interest, depletion of Tie2 or
integrin β3 rather enhanced Angpt2-induced FA uptake (Sup-
plementary Fig. 6b), presumably because the absence of these
receptors liberates Angpt2 and allows more Angpt2 to activate
integrin α5β121,34. Consistent with the depletion data, the α5β1-
specific blocking peptide ATN-16135 completely suppressed
Angpt2-induced FA uptake (Fig. 4h). Conversely, the con-
formational activator of integrin α5β1, SNAKA-5122,36, enhanced
Angpt2 activity (Fig. 4i). We observed similar effects of Angpt2 in
a mouse EC cell line (MS1) but not in adipocytes isolated from
SAT (Supplementary Fig. 6c–e).

To strengthen our finding that Angpt2 induces organotypic FA
uptake in SAT ECs, we compared the effect of Angpt2 on primary
ECs from SAT and VAT (Supplementary Fig. 7a). First, we
employed a previously published method for culturing primary
ECs of murine organs37, and validated its 92.7% purity
(Supplementary Fig. 7a–c). Next, we compared the effects of
Angpt2 treatment with or without Mn2+ in primary ECs from
SAT and VAT (Supplementary Fig. 7d). Of note, Angpt2
treatment alone enhanced FA uptake in time- and dose-
dependent manners only in SAT ECs (Supplementary Fig. 7d±f).
Importantly, this effect was inhibited by ATN-161 treatment
(Supplementary Fig. 7g). These data demonstrate that the
endothelial integrin α5β1 in SAT mediates Angpt2-induced FA
uptake.

Angpt2–integrin α5β1 drives FA transport through CD36/
FATP3. Various FATPs mediate endothelial FA uptake12,30. Of
note, Angpt2-induced FA uptake was specific for the long-chain
FAs (Fig. 5a). We thus depleted candidate FA transporters in ECs,
including FA translocase (CD36) and FATPs (Fig. 5b). Also of
interest, depletion of CD36 or FATP3, but not of FATP4, blocked
Angpt2-induced FA uptake and transport by ECs (Fig. 5c–f).
However, we found no changes in gene expression levels of CD36
or FATP3 after Angpt2 treatment (Fig. 5g). Thus, Angpt2 acti-
vates endothelial FA uptake, likely via redistribution or
protein–protein interactions of CD36 or FATP39.

Intracellular translocation of CD36 or FATPs, and conse-
quently increased FA uptake, have been reported in various cell
types16,20. Therefore, we tracked protein expression of CD36 or

FATP3 in ECs after Angpt2 treatment. Although we did not
observe any changes in localization of FATP3 in ECs (Fig. 5h), we
detected rapid formation of punctate CD36 structures in
perinuclear regions after only 5 min following Angpt2 addition
(Fig. 5i). Intriguingly, these punctate CD36 signals were co-
localized with ITGβ1 (Fig. 5i), suggesting that CD36 and ITGβ1
may physically interact upon activation by Angpt2. To test this
possibility, we conducted an in situ proximity ligation assay and
observed strong signals indicative of complex formation between
CD36 and ITGβ1 only after Angpt2 treatment (Fig. 5j, k).
Moreover, ATN-161 markedly blunted CD36 co-localization with
ITGβ1 and their interaction (Fig. 5l–n), indicating that activation
of ITGβ1 by Angpt2 binding is required for CD36 translocation
and interaction with ITGβ1. Immunoprecipitation (IP) by anti-
CD36 antibody also demonstrated that CD36 bound to ITGβ1
and that their interaction increased by ∼2.1-fold after Angpt2
treatment (Fig. 5o, p). Thus, Angpt2 facilitates CD36 transloca-
tion through integrin α5β1.

Since ITGβ1 faces the basolateral side of ECs38, and CD36 is
located on the luminal side of ECs39, we speculated that
transmembrane lipid rafts, which interacts with both molecules40,
could mediate this binding complex. Indeed, we detected co-
localization of this complex in Caveolin-1+ lipid rafts in plasma
membrane of ECs (Supplementary Fig. 8a, b). In line with this
finding, we found that integrin α5β1 is mainly located on collagen
IV+ CD34− basolateral membrane of ECs41,42 in SAT (Supple-
mentary Fig. 8c, d).

Endothelial ITGβ1 stimulates FA transport into SAT. We next
proceeded to recapitulate our findings in vivo. First, we generated
EC-specific inducible ITGβ1 KO (ITGβ1ΔEC) mice by crossing
VE-Cadherin-Cre-ERT2 mice and Itgb1flox/flox mice, and analyzed
them 1 week after tamoxifen administration due to lethality43

(Fig. 6a). There were no changes in vascular integrity or density in
ITGβ1ΔEC mice after 1 week of tamoxifen treatment (Supple-
mentary Fig. 9a–d). Compared with WT mice, adipocyte sizes in
SAT decreased by 63% and SAT weight by 23%, but no differ-
ences were found in VAT in ITGβ1ΔEC mice (Fig. 6b). We found
no difference in BW, liver and muscle fat content, or BAT weight
(Supplementary Fig. 9e–g). ITGβ1ΔEC mice also showed 42%
reduced uptake of intravenously administered FAs toward SAT
but not by VAT, BAT, or liver (Fig. 6c–e and Supplementary
Fig. 9h, i). Thus, endothelial ITGβ1 is required for vascular FA
transport toward SAT.

Inhibition of integrin α5β1 blocks FA transport into SAT. We
next administered the integrin α5β1-specific blocking peptide

Fig. 1 Depletion of Angpt2 from adipocytes alters subcutaneous fat distribution. a Diagram for generation of Angpt2iΔAd mice, inducible and specific
deletion of Angpt2 in adipocytes by tamoxifen delivery into 4 week old mice and analyses in 8-week old mice. b Comparisons of Angpt2 mRNA expression
in fractionized adipocytes (Ad) of SAT in WT and Angpt2iΔAd mice. c, d Comparison of body weight and fat weight in different adipose tissues between WT
and Angpt2iΔAd mice. n= 6 mice/group pooled from three independent experiments. e Representative H&E-stained images and comparisons in adipocyte
size (diameter; μm) of different adipose tissues in WT and Angpt2ΔAd mice. Four to six different mice of each genotype were randomly selected to
determine the adipocyte size and data are presented as % of total cells. Scale bars, 50 μm. f, g Representative images and comparisons of apoptosis
(Caspase-3) and beiging (UCP1) in SAT of WT and Angpt2iΔAd mice. Scale bars, 50 μm. h, i Representative images and comparison of indicated immune
cell infiltration in SAT and VAT of WT and Angpt2iΔAd mice. Magnified view is shown in right panels. Scale bars, 30 μm. j, k Representative images and
comparisons of vascular density and CD31+ vessel area in SAT of WT and Angpt2iΔAd mice. Scale bars, 100 μm. l Diagram for generation of Angpt2iΔEC

mice, inducible and specific deletion of Angpt2 in endothelial cells by tamoxifen delivery into 4 week old mice and analyses in 8 week old mice.
m Comparisons of Angpt2mRNA expression in stromal vascular fraction (SVF) of SAT in WT and Angpt2iΔEC mice. n, o Comparison of body weight and fat
weight in different adipose tissues between WT and Angpt2iΔEC mice. p Representative H&E-stained images and comparisons in adipocyte size (diameter;
μm) of different adipose tissues in WT and Angpt2iΔEC mice. Four different mice of each genotype were randomly selected to determine the adipocyte size
and data are presented as % of total cells. Scale bars, 50 μm. Unless otherwise denoted, each dot indicates a value obtained from one mouse and n= 3
mice/group pooled from two independent experiments. Horizontal bars indicate mean ± SD and P values versus WT by two-tailed Student’s t test. NS not
significant.
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ATN-161 to WT mice (Supplementary Fig. 10a) to evaluate
whether the phenotypes of ITGβ1ΔEC mice were caused by
integrin α5β1 inhibition (Fig. 7a). Indeed, ATN-161 treatment
recapitulated the ITGβ1ΔEC mouse SAT phenotypes, and the
phenotype was even more enhanced after an additional week of
treatment (Fig. 7b, c). This change was accompanied by a
markedly diminished uptake of radioactive FAs in SAT, by 44%,
but not by other organs (Fig. 7d). Again, we found no changes in
BW, liver, and BAT weights (Supplementary Fig. 10b–e).
Therefore, we concluded that the endothelial integrin α5β1 is
essential for vascular FA transport, specifically in SAT.

Angpt2–integrin α5β1 is enriched in nondiabetic obese SAT.
To investigate the clinical relevance of our findings, we compared
gene expression profiles of SAT and VAT between nondiabetic
obese (NDO) and diabetic-obese (DO) individuals from the
publicly available gene expression database, Gene Expression
Omnibus (GEO; GSE20950, GSE29226, GSE29231, GSE16415,
GSE71416). Among the 34 genes that were specifically upregu-
lated in SAT of NDO individuals, we identified Angpt2 as the sole
secretory molecule (Fig. 8a and Supplementary Tables 1, 2).

To examine if dietary fat overload and obesity affect Angpt2
expression, we fed mice with high-fat diet (HFD). Surprisingly,
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with HFD, a gradual increase in Angpt2 expression was detected
in SAT but not in other organs or in the systemic circulation
(Fig. 8b, c and Supplementary Fig. 11a, b). Intriguingly, the
Angpt2 induction was specific to the adipocytes (Fig. 8d and
Supplementary Fig. 11c). This result was consistent with
increased expression of Angpt2 in the isolated adipocytes from
the SAT of NDO individuals (Fig. 8e). In detail, saturated FA
(palmitic acid) treatment alone for 24 h was sufficient to increase

Angpt2 expression by 2.0- and 2.7-fold in SAT adipocytes in both
mice and humans, respectively (Fig. 8f). Thus, Angpt2 expression
is rapidly induced by dietary fat intake in a SAT adipocyte-
specific manner.

By comparison analysis of human GEO data, we confirmed
enhanced expression of ITGα5 in SAT compared with VAT in
NDO patients (Fig. 8g). Likewise, we confirmed enriched expression
of integrin α5β1 in ECs of SAT of NDO patient (Supplementary
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Fig. 11d). Thus, integrin receptor expression is enriched in ECs of
SAT in NDO individuals. Next, we observed changes in Angpt2 and
its receptors during fast/fed cycle. Of note, Angpt2 expression was
reduced by 58.8% in fasted mice (Supplementary Fig. 11e).
Consistently, expressions of both ITGα5β1 and CD36 were
downregulated in ECs during fasting (Supplementary Fig. 11f, g).
These indicate that expressions of Angpt2 and its mediators in FA
transport are reduced during energy output.

Angpt2 prevents ectopic lipid-induced insulin resistance. Given
that Angpt2 in adipocytes is highly induced by dietary fat intake, we
next challenged Angpt2iΔAd mice with HFD (Fig. 9a and Supple-
mentary Fig. 12a). After 8 weeks of HFD, SAT weighed 28% less,
and BAT weighed 71% more in Angpt2iΔAd mice compared with
WT animals (Fig. 9b). Obesity-associated inflammatory markers in
VAT were upregulated, while thermogenic markers were down-
regulated in BAT in Angpt2iΔAd mice (Supplementary Fig. 12b, c).
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Likewise, electron microscope analysis revealed unpacked cristae
and vacuole-filled mitochondria in BAT of Angpt2iΔAd mice
(Supplementary Fig. 12d). Moreover, circulating triglyceride and
leptin levels were each ∼1.5-fold and ∼2.0-fold higher, whereas
plasma adiponectin level was 30% less in Angpt2iΔAd mice (Fig. 9c
and Supplementary Fig. 12e, f). Of special note, histological analyses
revealed profound lipid accumulation in the liver and skeletal
muscle of Angpt2iΔAd (Fig. 9d, e). Angpt2iΔAd mice also showed

systemic glucose intolerance and insulin resistance (Fig. 9f, g),
presumably because of ectopic fat deposition in these glucose-
consuming organs6,8. Moreover, Angpt2iΔAd mice showed
decreased metabolic rate without affecting food intake or activity
(Fig. 9h, i and Supplementary Fig. 13a–e). Together, these data
indicate that adipocyte-derived Angpt2 is required for proper fat
distribution toward SAT to prevent lipid overflow into glucose-
metabolizing organs during high-fat intake.
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Discussion
Maintenance of metabolic health is of paramount importance in a
society where obesity is rapidly on the rise. Our various tissue-
specific KO mouse models and mechanistic studies in primary

cultured cells demonstrate that adipocyte-produced Angpt2 reg-
ulates endothelial FA uptake via CD36 and FATP3 through
integrin α5β1 signaling. Intriguingly, this process is critical for FA
uptake specifically in subcutaneous fat depots. Inhibition of this

Fig. 5 Angpt2–ITGα5β1 signaling facilitates FA transport through CD36 and FATP3. a, c, d, g–p HUVECs were treated with vehicle or Mn2+ (1 mM)+
Angpt2 (2.5 μg/ml) for 15min or indicated time points. a Comparisons of short-chain FA (BODIPY C-5, 8 μM; n= 4) and long-chain FA (BODIPY C-12 and
C-16, 8 μM; n= 4 for vehicle and 3 for Mn2++Angpt2) uptake. b Comparisons of depletion efficiency of CD36, FATP3, and FATP4 in corresponding siRNA
treated HUVECs. n= 3. c, d Comparisons and representative images of FA (BODIPY C-12, 8 μM) uptake in siControl (n= 7, 5), siCD36 (n= 4, 5), siFATP3
(n= 6), or siFATP4 (n= 6, 8) HUVECs. Scale bars, 30 μm. e Diagram depicting the endothelial FA transport assay. HUVECs were cultured until confluence
on trans-wells and FA (BODIPY C-12, 8 μM) was added to upper layer of trans-well, followed by analysis of transported FA in bottom well. f Comparisons of
FA transport for indicated time points after Mn2+ (1 mM)+Angpt2 (2.5 μg/ml) treatment in siControl (n= 3 for 10, 30min and 4 for 20min), siFATP3 (n
= 3) or siFATP4 (n= 4) HUVECs. n= 3–5. g Comparison of mRNA expression of CD36 and FATP3. h Representative images of FATP3-td-Tomato
transfected HUVECs. Scale bars, 50 μm. i Representative images of CD36 and ITGβ1 expression. Expression of active ITGβ1 (arrows) and CD36
(arrowheads) are co-localized after Angpt2 treatment. Scale bars, 50 μm. j, k Representative images and comparison of in situ proximity ligation assay
between CD36 and ITGβ1 complex. Scale bars, 20 μm. l–n Representative images and comparison of in situ proximity ligation assay between CD36 and
ITGβ1 complex in HUVECs pre-treated with vehicle or ITGα5β1 blocking peptide (ATN-161, 10 μM) for 15min. Scale bars, 50 μm (l); 20 μm (m).
o, p Immunoprecipitation with anti-IgG and anti-CD36 antibody in HUVECs. Immunoblot analysis with anti-ITGβ1 and anti-ITGα5 antibodies are shown.
Graph indicates normalized ratio of immunoprecipitated ITGβ1 per input. Unless otherwise denoted, each dot indicates a mean of triplicate values from three
independent experiments and horizontal bars indicate mean ± SD or SEM (f) and P values versus control by two-tailed Student’s t test. NS not significant.
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process triggers fat accumulation in other fat depots and major
glucose-consuming organs, leading to systemic insulin resistance
with HFD, reminiscent of the pattern in diabetic-obese patients
(Fig. 10).

Angpt2 is stored in repository granules of ECs called
Weibel–Palade bodies, and rapidly released upon stimulation as
an angiocrine factor44,45. Thus, it is intriguing that only
adipocyte-specific but not EC-specific Angpt2 KO mice exhibited
phenotypes in SAT. How does Angpt2 in adipocytes exert dif-
ferent effects from Angpt2 in ECs? Adipocytes do not possess
Weibel–Palade bodies; thus, it is possible that the signals trig-
gering Angpt2 release by adipocytes are distinct from those in
ECs. For example, ECs release Angpt2 in inflammatory condi-
tions to increase vascular permeability for immune cell
infiltration34,45. On the other hand, we found a gradual increase
in Angpt2 expression in adipocytes after a short-term high-fat
regimen, which did not alter circulating Angpt2 levels. Thus, fat
intake-induced Angpt2 released from adipocytes can stimulate
FA uptake by neighboring ECs without systemic impact. In eli-
citing this outcome, integrin receptors face the basolateral side to
bind with the extracellular matrix46. Although ITGα5β1 is on the
basolateral side and CD36 resides on the luminal side, these seem
to form a complex through transmembrane lipid rafts39,40. Thus,
Angpt2 produced from the adipocytes may aggregate more easily
than Angpt2 released from ECs circulating inside the lumen.

Another interesting feature of Angpt2 is its fat depot-specific
effect. We found that adipocyte-specific deletion of Angpt2 affects
SAT but not VAT. This selectivity can be explained by the dis-
tribution of its receptors; ECs in SAT highly express ITGα5β1 but
barely express Tie2, whereas ECs in VAT have the opposite
expression. EC-specific integrin KO mice phenocopied adipocyte-

specific Angpt2 KO mice further confirming that the integrin but
not Tie2 is a key determinant of Angpt2 action on endothelial FA
uptake in SAT. Therefore, endothelial heterogeneity among dif-
ferent fat depots mediates specific effects of Angpt2, which could
be masked during systemic modulation of Angpt2 through
pharmacological blockade or constant overexpression affecting
other organs23,24.

The differences in adipose depots’ response to dietary fat intake
could explain why VAT does not exhibit compensatory fat
uptake. While SAT expands through hypertrophy of existing
adipocytes, VAT responds through hyperplasia of newly gener-
ated adipocytes upon dietary fat intake47,48. This means that SAT
expansion is mediated by fat intake itself whereas VAT expansion
involves certain molecular cues to activate adipogenesis49,50.
Meanwhile, it is well-known through clinical observation that
subcutaneous obesity is more frequent in females and is less
morbid than visceral obesity that is more frequent in males2,51.
Whether adipocyte-derived Angpt2 and its role in endothelial FA
transport is involved in the sexual dimorphism of body fat dis-
tribution needs to be studied. In order to do so, manipulating
Angpt2 in a depot-specific manner could better define the role of
Angpt2 in various adipose depots.

The important role of capillary ECs as a gatekeeper for fat
trafficking has been demonstrated in various settings8–11,17,52.
However, a study using imaging mass spectrometry to visualize
cardiac FA uptake showed that the vascular wall is not a sub-
stantial barrier to the lipid movement into cardiomyocytes53. In
addition, these authors reported that CD36 deficiency does not
affect lipid entry into cardiomyocytes53. Yet another group
recently reported that EC-specific deletion of CD36 leads to
reduced lipid droplet accumulation in cardiomyocytes16. In
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agreement, we found that CD36 is necessary for Angpt2-
mediated endothelial FA uptake. Thus, it is possible that CD36
regulates FA uptake in a context-dependent manner. On the
other hand, genetic mouse models for FATPs and their pheno-
types regarding endothelial fat metabolism have not yet been
reported. Thus, studies using animal models with genetic mod-
ifications in different FATPs in ECs will be useful to demonstrate
their importance in regulating endothelial FA transport.

Through comparative transcriptomics on samples from NDO
versus DO individuals, we identified Angpt2 as a potential
adipokine that sustains metabolic health via regulation of body
fat distribution. Accordingly, our adipocyte-specific Angpt2 KO
mice demonstrated significant ectopic fat accumulation in the

BAT and in liver and skeletal muscle after HFD. This accu-
mulation is accompanied by markedly reduced FA uptake and
SAT size, indicating that SAT adipocyte-released Angpt2 is
critical for proper fat distribution to prevent fat spillover to
other organs. The question then arises: Can Angpt2–ITGα5β1
treatment be a therapeutic strategy to normalize fat distribution
and treat obesity-induced metabolic disorders? The doses and
administration route may be critical given that a constant or
systemic increase in Angpt2 elicits other impacts, such as
activation of angiogenesis and increased vascular
permeability23,54,55. Alternatively, targeting the SAT endothe-
lium would be a more attractive approach. Further investigation
is required to test these possibilities genetically or
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pharmaceutically to open new therapeutic paths for metaboli-
cally healthy obesity.

Methods
Animals. Specific pathogen-free C57BL/6J, Adiponectin-Cre, Integrinβ1 flox/flox,
Tie2-GFP, and RiboTag mice were purchased from Jackson Laboratory (Jackson
Labs, Bar Harbor, ME). Angpt2-eGFP (Tg [Angpt2-EGFP] DJ90Gsat/Mmcd) were
purchased from the Mutant Mouse Regional Resource Centers, Angpt2 flox/flox 29,
Angpt2-lacZ56, Adiponectin-Cre-ERT2 57, and VE-Cadherin-Cre-ERT2 58 mice were
transferred and bred in our specific pathogen-free animal facilities in Korea
Advanced Institute of Science and Technology (KAIST). Mice were housed under
12 light/12 dark cycle, temperatures of 22 ± 2 °C with 50 ± 10% humidity. For all
experiments, male mice aged 8-week-old under standard chow diet or 16-week-old
under long term high-fat diet (HFD) were used. In order to induce Cre activity in
the Cre-ERT2 mice, 2 mg of tamoxifen was injected i.p. for 2 or 3 consecutive days
from the indicated time points. For integrin α5β1-specific inhibition, mice were
treated with ATN-161 (30 mg/kg)35,59 for indicated time points and analyzed at
indicated days. All mice were bred in our specific-pathogen-free animal facility and
were fed normal chow diet (PMI LabDiet, St. Louis, MO) or HFD (60 kCal% fat,
Research Diets, New Brunswick, NJ) with ad libitum access to water. Animal care
and experimental procedures were performed under the approval from the Insti-
tutional Animal Care and Use Committee (IACUC; No. KA2013-39) of KAIST.

Histological analyses. Mice were anesthetized with a combination of ketamine
(80 mg/kg) and xylazine (12 mg/kg) by intramuscular injection. All adipose tissues
were from male adult mice. For sampling of tissues, inguinal white adipose tissue
was used for SAT, epididymal white adipose tissue was used for VAT, interscapular
BAT, and quadriceps (skeletal muscle) were used for this study. For hematoxylin
and eosin (H&E) staining, indicated organs were fixed overnight in 10% paraf-
ormaldehyde (PFA) at 4 °C. After tissue processing using standard procedures,
samples were embedded in paraffin and cut into sections followed by H&E
staining. For immunofluorescence studies, harvested tissues were fixed overnight
with 1% PFA in PBS at 4 °C, and whole mounted. After blocking with 5% goat or
donkey serum (Jackson ImmunoResearch) in PBST (0.3% Triton X-100 in PBS for
whole-mount method, 0.03% Triton X-100 in PBS for paraffin-sections) for 1 h at
RT, whole-mounted or sectioned tissue was incubated overnight at 4 °C with the
following primary antibodies (diluted at a ratio of 1:200 in blocking solution): anti-
Perilipin (guinea pig polyclonal, 20R-PP004, Fitzgerald), anti-mouse CD31
(hamster monoclonal, 2H8, Millipore), anti-GFP (rabit polycloncal, AB3080,
Millipore), anti-cleaved caspase-3 (rabbit polyclonal, 9661, Cell Signaling), anti-
UCP1 (rabit polycloncal, ab23841, Abcam), anti-Integrin α5β1 (rat monoclonal,
BMB5, Millipore), anti- active Integrin β1 (rat monoclonal, 9EG7, BD Biosciences),
anti- Integrin β1 (mouse monoclonal, 12G10, Abcam), anti-HA (rabbit polyclonal,
H6908, Sigma-Aldrich), and anti-human CD31 (rabit polyclonal, ab28364,
Abcam). After several washes with PBST, the samples were incubated with the
following secondary antibodies diluted at a ratio of 1:1000 in blocking solution (all
from Jackson ImmunoResearch) for 2 h at RT: Cy3-conjugated anti-guinea pig
antibody, Cy5-conjugated anti-hamster antibody, FITC-conjugated anti-rabbit
antibody, FITC-conjugated anti-rat antibody, and FITC-conjugated goat antibody.
Hoechst 33342 (Sigma-Aldrich) was used to detect nucleus, and boron-
dipyrromethene (BODIPY, Invitrogen) was used to detect lipid accumulation.

To evaluate β-galactosidase activity, the tissues were incubated with a staining
solution [5 mM potassium ferricyanide, 2 mM magnesium chloride, 5 mM
potassium ferrocyanide, and 1 mg/ml 4-chloro-5-bromo-3-indolyl-β-D-
galactopyranoside (X-gal) in PBS] at 37 °C for 16 h. For Oil Red O staining, slides

were washed with PBS and 60% isopropanol, and incubated with filtered Oil Red O
working solution for 50 min at room temperature. After staining, several washes
with PBS and 60% isopropanol were performed to reduce nonspecific staining.

Morphometric analysis. Confocal microscopes (LSM 800 and LSM 880, Carl
Zeiss) and stereomicroscope (Axiozoom V16) equipped with argon and
helium–neon lasers were used to visualize fluorescence images. Morphometric
analyses were performed with Image J software (NIH) or Zeiss image software
(ZEN 2012). Histological sections of adipose tissues were stained with H&E and
studied under 40-fold magnification to compare adipocyte size. Four to six dif-
ferent mice of each genotype were randomly selected to determine the adipocyte
size by cross-sectioned area using Image J software. Cross-sectioned area were
narrowed down into ranges of adipocyte size, and data were presented as per-
centage of adipocytes of each range of adipocyte size.

Vascular density was measured as CD31+ vessel area divided by total measured
area and presented as percentage.

RNA extraction. Total RNA was extracted from the samples using TRIzol®

Reagent (Invitrogen) according to the manufacturer’s instructions. For adipocyte
and SVF isolation, adipose tissues were incubated in Hanks balanced salt solution
(HBSS; Sigma-Aldrich) containing 0.2% collagenase type 2 (Worthington) for 30
min at 37 °C with constant shaking. After inactivating collagenase activity with 10%
fetal bovine serum (FBS) containing Dulbecco modified eagle medium (DMEM),
the cell suspension was filtered through a 40 μm nylon mesh (BD Biosciences),
followed by centrifugation at 420 g for 5 min. Floating adipocytes were used as
adipocyte fraction, remaining SVF pellet were isolated and further analyzed.
500–2000 ng of the RNA were reverse transcribed into cDNA using GoScriptTM

cDNA synthesis system (Promega, Madison, Wisconsin).

Quantitative RT-PCR analyses. Quantitative real-time PCR was performed using
FastStart SYBR Green Master mix (Roche) and QuantStudio3 (Applied Biosys-
tems) with the indicated primers. The real-time PCR data were analyzed with
QuantStudio Software (Applied Biosystems). Results were calculated using the
delta delta CT method60, with 36b4 used for normalization of in vivo samples and
Gapdh for normalization of in vitro samples. Primers for the quantitative real-time
PCR are shown in Supplementary Table 3.

Oxygen consumption rate. The oxygen consumption rate was measured using the
Seahorse XFe96 analyzer (Seahorse Bioscience) following the manufacturer’s
instructions. Briefly, ECAR and OCR were measured after primary cultured pre-
adipocytes were stimulated with adipogenic cocktail on XFe96 microplates. Cells
were maintained in non-buffered assay medium in a non-CO2 incubator for 1 h
before the assay. The Mito stress test kit (Seahorse Bioscience) was used to test the
OCR under basal conditions in the presence of oligomycin (1.5 μM), the mito-
chondrial uncoupler carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
(FCCP; 1 μM), and the respiratory chain inhibitors rotenone and antimycin A
(0.5 μM).

Fatty acid uptake in vivo. For measuring FA absorption in vivo using radio-
isotopes, mice were given a bolus dose of 2 mCi of 14C-oleic acid (Perkin Elmer)
dissolved in 200 µl olive oil by oral gavage. After 2 h, indicated organs were dis-
sected. The organs were incubated overnight at 50° in 1 ml tissue solubilizer
(Solvable, Perkin Elmer), decolorized with 0.3 ml 30% hydrogen peroxide for 1 h in
room temperature. We added scintillation solution (Ultima Gold, Perkin Elmer) to
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Fig. 10 Endothelial-to-adipocyte fatty acid transport determines metabolic health. Schematic diagram depicting Angpt2 produced from adipocytes could
regulate endothelial FA transport via CD36 and FATP3 through integrin α5β1 signaling to accumulate FAs toward SAT. This process prevents ectopic fat
accumulation into endocrine organs, and thus prevents insulin resistance.
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each vial. Total radioactivity was measured by liquid scintillation using a Tri-Carb
2910 TR Liquid Scintillator (Perkin Elmer). 14C-oleic acid content was normalized
to g of tissue.

For measuring FA absorption in vivo using fluorescent dyes, we revised a
previously described method20. In brief, the appropriate amount of BODIPY
fluorescent-conjugated FAs (BODIPY FL C16 and BODIPY 558/568 C12,
Invitrogen) was calculated (0.5 mg/kg) for each mice and dissolved in control
solution (HBSS supplemented with 20 mM HEPES and 0.2% FFA free BSA) in a
total volume of 200 µl. Injection was performed intravenously, and tissues were
harvested and snap freezed at indicated time points. Tissues were then
homogenized in RIPA buffer, centrifuged and supernatant was used. Fluorescence
intensity was measured (λex= 485/λem= 520 nm) in black, 96-well flat-bottom
plates using a fluorescence microplate reader (Tecan). We subtracted the
fluorescence signal of each tissue from mice treated with control solution, and
normalized by the weight of the extracted tissue. For both methods, those with
insufficient FA intake in plasma were ruled out for data analysis.

Cell culture. Human Umbilical Vein Endothelial Cells (HUVECs) were cultured
according to the manufacturer’s protocols (Lonza, Walkersville, Maryland). In
brief, the cells were cultured in a humidified atmosphere with 5% CO2 at 37 °C in
endothelial growth medium (EGM, Lonza) on cell culture plates without gelatin or
fibronectin coating to minimize effects of integrin activation from other growth
factors or matrix. The cells used were between passages 3–6.

For SVF induction, dissected SAT were chopped with scissors and incubated in
digestion medium containing 0.2% collagenase type 2 (Worthington) for 30min at 37
°C with constant shaking. The resulting suspension were lysed with ACK Lysing
Buffer (Life Technologies) for 5 min at 37 °C, and centrifuged at 470 × g for 5min.
After several washes, SVF pellet was resuspended in culture medium. Two days after
confluent state, SVF cells were cultured with adipogenic differentiation medium. After
3 days, adipogenic differentiation medium was changed to maintenance medium.

Human primary subcutaneous pre-adipocytes (PCS-210-010; ATCC) were
cultured in fibroblast basal medium (PCS-201-030; ATCC) added with fibroblast
growth kit-low serum (PCS-201-041; ATCC) and differentiated using adipocyte
differentiation toolkit (PCS-500-050; ATCC). MS1 mouse pancreas ECs (CRL-
2279; ATCC) were cultured in DMEM medium supplemented with 5% fetal calf
serum (FCS) at 37 °C and 5% CO2.

For primary culture of ECs from SAT and VAT, we employed and modified a
previously published method for culturing primary ECs of murine adipose
tissues37. Dissected SAT and VAT were chopped with scissors and incubated in
digestion medium containing 0.2% collagenase type 2 (Worthington) for 30 min at
37 °C on a shaker. The resulting suspension was lysed with ACK Lysing Buffer (Life
Technologies) for 5 min at 37 °C and centrifuged at 470 × g for 5 min. After several
washes, cell suspension was filtered through 100 μm nylon cell strainer and washed.
To enrich the EC fraction, cells were incubated for 20 min with anti-CD31
Microbeads (Miltenyi) and selected using AutoMACS (Miltenyi) according to the
manufacturer’s instructions. In order to maximize EC survival and culture, cells
were incubated with EGM2 containing 10% FBS and 400 ng/ml of EC growth
supplement (ECGS; Sigma). Culture-expanded monolayer of ECs under single
passage that were validated to be CD31+ were used for all experiments.

For SVF induction, dissected SAT were chopped with scissors and incubated in
digestion medium containing 0.2% collagenase type 2 (Worthington) for 30 min at
37 °C with constant shaking. The resulting suspension were lysed with ACK Lysing
Buffer (Life Technologies) for 5 min at 37 °C, and centrifuged at 470 × g for 5 min.
After several washes, SVF pellet was resuspended in culture medium. Two days
after confluent state, SVF cells were cultured with adipogenic differentiation
medium. After 3 days, adipogenic differentiation medium was changed to
maintenance medium.

Human primary subcutaneous pre-adipocytes (PCS-210-010; ATCC) were
cultured in fibroblast basal medium (PCS-201-030; ATCC) added with fibroblast
growth kit-low serum (PCS-201-041; ATCC) and differentiated using adipocyte
differentiation toolkit (PCS-500-050; ATCC). MS1 mouse pancreas ECs (CRL-
2279; ATCC) were cultured in DMEM medium supplemented with 5% FCS at
37 °C and 5% CO2.

Cell adhesion assay. For cell adhesion assays, 48-well tissue culture plates were
either uncoated or coated with 0.1% gelatin or 10 μg/mL fibronectin in PBS at 4 °C
for 1 h, air dried, and rinsed once with PBS. After being serum deprived at 37 °C for
8 h, HUVECs were detached and washed twice, and plated onto the wells in serum-
free medium containing 0.1% BSA at 5 × 104 per well. Cells in three wells of the
quadruplicate were allowed to adhere to the coated/uncoated surface for 30 min,
followed by four intensive washes to remove nonadherent cells, and incubated with
44 µM resazurin (#R7017, Sigma-Aldrich) in complete medium for 2 h. Resazurin
fluorescence was then measured with a microplate reader (excitation 530 nm,
emission 590 nm, cutoff 550 nm). Values were normalized to control.

siRNA transfection. For siRNA experiments, HUVECs were transfected with siR-
NAs targeting human CD36 (5′-AAGAGGAACTATATTG-TGCCTCCTGT
CTC-3′), FATP3 (Santa Cruz Biotechnology, SASI_Hs01_00100092), FATP4 (Santa
Cruz Biotechnology, SASI_Hs01_00047-530), ITGβ1 (5′-TGATAGAT

CCAATGGCTTA-3′), ITGα5 (Bioneer, 1075709), ITGαV (Bioneer, 1075799), ITGβ3
(Bioneer, 1075875), ITGβ5 (Bioneer, 1075906), TIE2 (5′-GGCUAGUAAGAU-
CAAUGGUdTdT-3′), NFATc1 (5′-CCCGUUCACGUCAGUUUCUAC
GUCU-3′)or a scrambled control (5′-UAGCGACUAAACACAUCAA-3′) were used.
Transfections of siRNA into the HUVECs were performed using Lipofectamine®
RNAiMAX (Invitrogen, Waltham, Massachusetts) according to the manufacturer’s
protocol. Briefly, 20 nM of siRNA was transfected with RNAiMAX and knockdown
was assessed by RT-PCR. Experiments were conducted 48 h after siRNA transfection.

Fatty acid uptake and transport in vitro. For measuring FA absorption in vitro,
we revised a previously described method9. In brief, confluent HUVECs were
transferred from a 10 cm dish to a non-coated, 96-well, black, clear-bottom plate
(Corning, 3603), with empty corner wells for no-cell controls. After overnight
incubation, the cells were serum-starved for at least 6 h. The cells were then treated
with Mn2+ to activate integrin motifs21 with vehicle or human recombinant
Angpt2 (2.5 µg/ml). Then, BODIPY-FA (Invitrogen, D3823), preincubated with
fatty acid-free bovine serum albumin (BSA) (2:1 molar ratio) in PBS for 30 min in a
37 °C water bath, was added to the cells for 5–30 min at 37 °C. The BODIPY
solution was then completely aspirated, and the cells were washed with 0.5% BSA
in PBS for 1.5 min twice (100 µl per well). One percent PFA was added (100 µl per
well) to minimize degradation, and intracellular fluorescence was measured
(excitation 488 nm, emission 515 nm) immediately with a microplate reader
(Tecan, BioTek). Readings from wells without BODIPY addition were used to
subtract background signals. The cells were then incubated with HOECHST (100 µl
per well) and was measured with a microplate reader (excitation 350 nm, emission
461 nm) to normalize BODIPY signals to cell number. BODIPY FL C16 (D3821)
and BODIPY FL C5 (D3834) were purchased from Invitrogen. To block integrin
α5β1, 10 μM ATN-16135 were treated 15 min prior to Angpt2 addition. To activate
integrin α5β1-specific motif, 10 μg/ml SNAKA-5122 were treated 15 min prior to
Angpt2 addition. For all experiments, a fresh batch of recombinant Angpt261 were
treated in freshly isolated HUVECs (less than four passages).

For measuring FA transport in vitro, we revised a previously described
method8. HUVECs were grown on a 24-well 0.4 µm trans-well inserts (SPL,
35024), and they were then grown for 2–3 days until the cells formed compact
layers. Phenol red-free ECBM (Promocell, C-22215) were used to minimize
overlapping fluorescence of medium samples that were collected from the bottom
chamber at the indicated time points. Fifty microliters of medium sample was
measured using a fluorescence plate reader (excitation 488 nm, emission 515 nm).

In vitro vascular permeability assay. For assessment of endothelial layer per-
meability, we modified the manufacturer’s instructions of in vitro vascular per-
meability assay (Millipore). Briefly, HUVECs were grown until confluence for
2–3 days on trans-well inserts. FITC-dextran solution (Millipore) was added to the
upper chamber and transferred solution was measured.

In vivo vascular permeability assay. Vascular leakage was analyzed after i.v.
injection of 100 μl of FITC-conjugated dextran (4 mg/ml, 70 kDa, Sigma-Aldrich)
5 min before sacrifice. Mice were anesthetized and perfused by intracardiac
injection of 1% PFA to remove circulating dextran.

mRNA isolation using RiboTag method. RiboTag mouse was used to isolate
polysome-bound mRNAs of EC with minor modification from previously described
method32. Briefly, tissues were harvested and immediately snap freezed. Then,
polysome buffer (50mM Tris, pH 7.5, 100mM KCl, 12 mM MgCl2, 1% Nonidet P-
40, 1mM DTT, 200U/ml RNasin, 1 mg/ml heparin, 100 μg/ml cyclohexamide, and
1× protease inhibitor mixture) were added to each sample and homogenized using
Precellys lysis kit (Bertin). For IP against HA, anti-HA antibody-conjugated magnetic
beads (MBL, M180-11) were added to the supernatant after centrifugation for 10min
at 13500 × g 4 °C, and incubated on a rotating shaker at 4 °C overnight. Beads were
washed for four times with high-salt buffer (50mM Tris, pH 7.5, 300mM KCl,
12mM MgCl2, 1% Nonidet P-40, 1 mM DTT, and 100 μg/ml cyclohexamide) and
resuspended in 350 μl of RLT plus buffer with β-mercaptoethanol. Total RNAs were
extracted using the RNA isolation mentioned in methods. The quality and quantity of
the RNA samples were analyzed using Agilent 2100 Bioanalyzer with RNA 6000 pico
kit (Agilent), and further performed to RNA-seq.

RNA-seq analysis of RiboTag-captured mRNA. For RNA-seq data analysis, four
to five biological replicates of mRNA isolated by RiboTag method were used for
analysis. The normalized count values were processed based on Quantile normal-
ization method using the Genowiz™ version 4.0.5.6 (Ocimum Biosolutions) and used
for heatmaps and bioinformatics analysis. RNA-Seq gene expression heatmap was
generated with Multiple Experiment Viewer from The Institute of Genomic Research.
The indicated expression ratio in a heatmap reflects the normalized count of each
replicate apart from the mean gene expression value over all condition.

Bioinformatics. For RNA-seq experiment, SENSE 3′ mRNA-Seq Library Prep Kit
(Lexogen, Inc.) were used according to the manufacturer’s instructions. In brief, each
500 ng total RNA were prepared and an oligo-dT primer containing an Illumina-
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compatible sequence at its 5′ end was hybridized to the RNA and reverse transcription
was performed. After degradation of the RNA template, second strand synthesis was
initiated by a random primer containing an Illumina-compatible linker sequence at its
5′ end. The double-stranded library was purified by using magnetic beads to remove
all reaction components. The library was amplified to add the complete adapter
sequences required for cluster generation. The finished library is purified from PCR
components. High-throughput sequencing was performed as single-end 75 sequen-
cing using NextSeq 500 (Illumina, Inc.). For RNA-Seq, SENSE 3′ mRNA-Seq reads
were aligned using Bowtie2 version 2.1.0. Bowtie2 indices were either generated from
genome assembly sequence or the representative transcript sequences for aligning to
the genome and transcriptome. The alignment file was used for assembling tran-
scripts, estimating their abundances and detecting differential expression of genes.
Differentially expressed gene were determined based on counts from unique and
multiple alignments using EdgeR within R version 3.2.2 (R development Core Team)
using BIOCONDUCTOR version 3.0. The RT (Read Count) data were processed
based on Quantile normalization method using the Genowiz™ version 4.0.5.6 (Oci-
mum Biosolutions).

Immunoblotting. For immunoblot analysis, cells were lysed on ice in RIPA lysis
buffer supplemented with protease and phosphatase inhibitors (Roche). Cell lysates
were centrifuged for 10 min at 4 °C, 16,000 × g. Protein concentrations of the
supernatants were quantitated using the detergent-insensitive Pierce BCA protein
assay kit (Thermo Scientific, 23227). Aliquots of each protein lysate (10–20 μg)
were subjected to SDS polyacrylamide gel electrophoresis. After electrophoresis,
proteins were transferred to nitrocellulose membranes and blocked for 30 min with
5% skim milk in TBST (0.1% Tween 20 in TBS). For phosphorylated protein
detection, membranes were blocked with 2% BSA in TBS. Primary antibodies were
incubated overnight at 4 °C. After washes, membranes were incubated with anti-
rabbit (CST, 7074) or anti-mouse (CST, 7076) secondary peroxidase coupled
antibody for 1 h at RT. Target proteins were detected using ECL western blot
detection solution (Millipore, WBKLS0500). The uncropped and unprocessed
scans with marker positions of all blots were included in the Source data file.

Immunoprecipitation. Cells were lysed in NETN lysis buffer (20 mM Tris-HCl pH
7.4, 100 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40) with protease inhibitors
(Roche). Antibody was added to the cleared lysate and incubated overnight. Then,
30 μl of protein A/G agarose (Pierce) was added to the lysate, incubated for 2 h,
washed with NETN buffer three times, and boiled in Laemmli’s sample buffer. The
samples were then subjected to SDS-PAGE gels for western blot analysis.

In situ proximity ligation assay. Cells cultured on confocal dishes were fixed with
4% PFA for 20 min at room temperature, permeabilized and incubated with pri-
mary antibodies at 4 °C. All primary antibodies were used at a 1:200 dilution. For
in situ proximity ligation assay, protein–protein interactions between CD36
(Thermo) and Integrin β1 (abcam) were detected with secondary proximity probes
(Anti-Rabbit Plus and Anti-Mouse Minus) according to the Duolink In Situ
Fluorescence protocol (Sigma-Aldrich).

Stable expression of FATP3 in HUVECs. The cDNA sequence of human FATP3
was cloned into FUtdTW vector (addgene) containing td-Tomato sequence.
Sequencing confirmed that no errors were introduced. Lentivirus production was
performed with Lenti-X cells co-transfected with FUtdTW-FATP3, Delta 8.2 and
Ampho plasmids using Lipofectamine LTX (Invitrogen). At day 3 after transfection,
culture supernatants were collected and centrifuged at 450 × g for 10min to remove
cell debris. Supernatants were filtered with 0.22 μm syringe filter and concentrated by
using Centricon filters (30 kDa cutoff, Amicon). Lentiviral particles were transduced
into HUVECs with hexadimethrine bromide for 20 h. Two days after lentiviral
transduction, HUVECs were stably expressed, giving rise to a cell population with
FATP3 expression. Cells were used immediately for experiments.

Live cell imaging was performed using the incubator chamber equipped with
optimal environment settings of 5% CO2 and 37 °C, live cell imaging was
performed and recorded for 30 min by microscope (Cell Observer, Carl Zeiss).

Sampling of human adipose tissues. Human SATs were collected from female
patients (ages 39–56) undergoing breast reconstruction after mastectomy for breast
cancer. The Institutional Review Board of Seoul National University Hospital
(1708-043-876) approved experimental procedures with human adipose tissue
specimens. All human samples were collected in an unbiased manner by the tissue
bank of Seoul National University Hospital, Seoul, Korea, with the informed
consents from the donors following the bioethics and safety regulations.

Comparison of nondiabetic obese and diabetic-obese patients. For the analysis
of differentially expressed genes in NDO versus DO, each gene expression data
were collected from NCBI-GEO (GSE20950, GSE29226, GSE29231, GSE16415,
GSE71416), a publically available database repository of high-throughput gene
expression data. Collected datasets were annotated with official gene symbols, and
normalized (log2). Differential expressed genes were analyzed separately in each
gene sets. Among each datasets, common genes that were specifically upregulated

in SAT (fold change > 1.5, p < 0.05) were narrowed down with genes that were not
upregulated in VAT (<1.5). Datasets including GEO reference number, sample
number, organ, normalized Angpt2 expression, and status of patient (diabetic,
obese) are indicated in Supplementary Table 2. Gene classification analysis was
performed with Ingenuity Pathway Analysis (IPA, Qiagen) and indicated in Sup-
plementary Table 1. For analysis of Angpt2 mRNA expression in human SAT,
indicated gene sets was annotated and each value for Angpt2 expression was
normalized (log2). Relative expression of Angpt2 in human SVF was compared
between human adipocytes (GSE80654), and adipocytes from NDO individuals
(BMI 55 ± 8) were compared with lean individuals (GSE2508). Relative expression
of ITGα5 in NDO SAT was compared with lean individuals (GSE55200), and SAT
from NDO individuals (obese, nondiabetic) were compared with VAT (GSE20950).

Biochemical analysis of serum. A 0.5 ml blood sample harvested in Vacutainer
tubes (BD) were centrifuged for 20 min at 2000 × g t 4 °C twice. The plasma activity
triglyceride (TG) was measured using an automated analyzer (VetScan, Abaxis,
CA, USA). To measure circulating Angpt2, mouse/rat Ang2 ELISA kit was used
(R&D Systems) according to the manufacturer’s instruction and measured using a
Spectra MAX340 plate reader (Molecular Devices). To measure plasma level of
FFA, mouse/rat/human FFA kit was used (abcam) according to the manufacturer’s
instruction using a Spectra MAX340 plate reader (Molecular Devices).

Intraperitoneal glucose/insulin tolerance test. For intraperitoneal glucose tol-
erance test, mice fasted for 16 h were injected with D-glucose (2 g/kg) (Sigma-
Aldrich) intraperitoneally. For intraperitoneal insulin tolerance test, mice fasted for
4 h were injected with insulin (1 U/kg) (Sigma-Aldrich) intraperitoneally. For
analysis of blood glucose concentrations, blood was collected from the tail vein at 0,
15, 30, 60, 90, and 120 min after insulin administration, and glucose was measured
with a glucometer (Gluco Dr. Plus, All Medicus).

Statistics and reproducibility. Sample sizes were chosen on the basis of standard
power calculations (with α= 0.05 and power of 0.8) performed for similar experi-
ments and statistical methods were not used to predetermine sample size. No samples
were excluded from the analysis. Unless otherwise indicated, experiments were
replicated at least once for all analyses and number of reproductions of each
experimental finding is described in each figure legend. All attempts at experimental
replication were successful. Animals from different cages, but within the same
experimental group, were selected to assure randomization. Experiments involving
in vitro and in vitro study was assured randomization through double-blind experi-
ments. The investigators were not blinded during experiments involving long term
HFD challenge due to clear appearance of body mass changes among the groups.
However, two independent investigators have performed most of experiments in
parallel and administration of chemicals was carried out as blinded experiments. Data
are presented as mean ± standard deviation (SD) or mean ± standard error of the
mean (SEM). Statistical differences between the means were compared by the two-
tailed, unpaired t test for two groups, or determined using one-way ANOVA followed
by Tukey’s multiple comparison test for multiple groups, unless otherwise noted.
Statistical analysis was performed with PASW Statistics 18 (SPSS) or Prism 7
(GraphPad). Statistical significance was set to P value < 0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq data are available in the European Bioinformatics Institute (EMBL-EMI’s)
ArrayExpress under the accession number E-MTAB-6161. Other transcriptomic datasets
analyzed in this study can be retrieved from the GEO repository under the accessions
GSE20950, GSE29226, GSE29231, GSE16415, GSE71416 for the comparison of NDO vs.
DO, GSE80654 for human SVF and adipocytes, GSE2508 for NDO vs. lean human
adipocytes, GSE55200 for NDO vs. lean human SAT, and GSE20950 for NDO human
SAT vs. VAT datasets. The source data underlying all Figs. and Supplementary Figs. are
provided as a Source Data file. A reporting summary for this article is available as
a Supplementary Information file. All other data that support the findings of this study
are available from the corresponding author upon reasonable request.
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