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For years, diabetic retinopathy has been defined based on vascular lesions, and neural abnormalities were not regarded as impor-
tant. This review summarizes evidence that the neural retina has important effects on the retinal vasculature under normal con-
ditions, and the interaction between the retinal neuroglial cells and vascular function is altered in diabetes. Importantly, new evi-
dence raises a possibility that abnormalities within retinal neuroglial cells (notably photoreceptors) might actually be causing or 
initiating the vascular disease in diabetic retinopathy. 
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INTRODUCTION

Under normal conditions, neurons, glia, and vasculature of 
the brain or retina act together in a coordinated manner. Cells 
constantly are bathed in chemical moderators, hormones, 
ions, and proteins from surrounding cells and tissues, and 
these signals coordinate a local interrelationship between me-
tabolism, capillary density, and blood flow. Notably, changes 
in neuronal activity induce changes in vascular blood flow and 
density.
 The purpose of this review is to summarize data indicating 
that the interaction between neural and vascular cells becomes 
altered in retina in diabetes, and to provide new evidence that 
suggests that neural cells of the retina can contribute to the de-
velopment of vascular alterations that are characteristic of the 
early stages of diabetic retinopathy.

NEUROVASCULAR COUPLING

Neurovascular coupling refers to the relationship between lo-

cal neural activity and changes in blood flow. Thus, this de-
scribes a process in which neural tissue regulates its blood flow 
in response to neural activity.
 In the retina, there is significant linkage between neural ac-
tivity of retinal ganglion cells (or at least inner retina) and 
blood flow [1-4]. The retina has unique sensitivity to light, and 
the response of the retinal vasculature to light-induced chang-
es in neural function has provided considerable insight into 
neurovascular coupling in the retina [4]. Human and animal 
studies have indicated that retinal or photoreceptor oxygen 
consumption is greater in dark than light, yet oxygen satura-
tion in retinal blood vessels is higher in dark than in light [5]. 
Moreover, velocity of blood in the retinal vessels is increased 
at night [6]. The increased delivery of oxygen in response to 
the increased activity of retinal neurons is a consequence of 
the coupling between neural activity and the vasculature. 
Since the blood vessels do not directly respond to light, light-
induced changes in blood flow or oxygen delivery must be ini-
tiated by light-induced changes in neural activity of the retina. 
Surprisingly, dark adaptation did not increase retinal blood 
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flow in Sprague-Dawley rats.
 Flicker light stimulation further demonstrates neurovascu-
lar coupling in the retina. Various animal and human studies 
have demonstrated that retinal and optic nerve blood flow in-
crease in response to diffuse luminance flicker (light on, light 
off) [7]. Diffuse luminance flicker stimulation increased optic 
nerve-head blood flow markedly in anesthetized cats, and the 
increase depended upon the intensity, frequency, and wave-
length of the stimulation and the state of adaptation of the ret-
ina [8]. Blood flow around the macula, as assessed by blue field 
simulation technique in normal subjects, also increases in re-
sponse to diffuse luminance flicker [9]. Investigators have re-
ported that flicker light-induced vasodilation was mediated by 
ganglion cells [4] or pericytes [10]. There is significant correla-
tion between neural activity of retinal ganglion cells and en-
hanced glucose delivery and metabolism during light flicker 
[11].

Neurovascular communication
Possible mechanisms by which neuroglial cells communicate 
with vascular cells have been investigated. Some of these sig-
naling molecules act rapidly (such as H+, K+, neurotransmit-
ters, adenosine, arachidonic acid metabolites, and nitric oxide 
[NO]), whereas others seem to have a more prolonged effect 
(such as growth factors) [4,12,13]. It seems clear that the con-
trol of microcirculation by neuroglia is a complex process that 
likely involves a number of different molecules [14]. Some of 
these molecules are listed here.
 1) NO can be made by every retinal cell type, and it is an 
important signaling molecule that regulates neurotransmitters 
release and modulates gap junction conductivity in retina. In 
the retina, the NO produced by the constitutive nitric oxide 
synthases (NOSs; endothelial NOS and neuronal NOS) con-
tribute to regulate normal ocular hemodynamics and cell via-
bility, and to protect retinal cells against different stresses 
[15,16]. Pretreatment of animals with a NO inhibitor inhibited 
the flicker-induced increase in retinal blood flow [17], indicat-
ing that NO plays an important role in the coupling between 
retinal neuronal activity and blood flow.
 2) Metea and Newman [18] demonstrated that retinal glial 
cells mediate neurovascular coupling by inducing the produc-
tion of two arachidonic acid metabolites, epoxyeicosatrienoic 
acids, and 20-hydroxyeicosatetraenoic acid, which dilate and 
constrict vessels, respectively. They showed that 1) light or di-
rect glial stimulation produce vasodilatation or vasoconstric-

tion mediated by these small molecules, 2) the vascular re-
sponse depends on NO, and 3) glial cells are necessary for sig-
naling from neurons to blood vessels. 
 3) Studies have demonstrated that a large fraction of neuro-
vascular coupling that causes hyperemia is due to release of 
glutamate from neural tissue [19].
 4) Vascular endothelial growth factor (VEGF) is another 
soluble factor that couples neuroglia and the vasculature. 
VEGF is produced largely by glia and neurons. It is known to 
have important effects on vascular development, permeability 
and, in ischemic diseases, also neovascularization [20]. 
 5) Neurotrophins are another way by which neural tissue 
might communicate with the retinal vasculature. The neuro-
trophins are a family of trophic factors (including nerve growth 
factor [NGF], brain-derived neurotrophic factor, neurotroph-
in-3, and neurotrophin-4/5) which promote neural cell surviv-
al, neurite outgrowth, phenotypic maturation, and synaptic 
functioning, but also exert a trophic effect on some, but per-
haps not all, endothelial cells. Endothelial cells from the brain, 
dermis, and umbilical vein have been reported to contain the 
NGF receptors TrkA and p75NGFR, and to respond to NGF 
with cell mitosis, migration, and survival. Cerebral endothelial 
cells, however, have been reported to not respond to NGF [21].

NEUROVASCULAR INTERACTIONS AND 
DISEASE

Alterations in neurovascular coupling and cerebrovascular 
regulation have been proposed to play a key role in the process 
of ageing as well as in stroke, hyperlipidemia, hypertension, 
and diabetes. This review will now focus on alterations in neu-
rovascular interactions in diabetes.

Regulation of retinal blood flow by neural activity in 
diabetes
Whereas a variety of studies describe the effects of flickering 
light on retinal and optic nerve head blood flow under normal 
conditions, the knowledge about this coupling in the diabetic 
retina is less complete. Nevertheless, available evidence indi-
cates that neurovascular coupling in the retina is altered in di-
abetes. Luu et al. [22] demonstrated that a component of the 
neural oscillatory potential of the electroretinogram (ERG) 
correlated with retinal arteriolar caliber in patients with diabe-
tes, demonstrating at least a correlation between retinal neu-
ronal dysfunction and blood flow. Flicker responses of retinal 
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arteries and veins in insulin-dependent diabetic patients [23] 
and in healthy subjects made experimentally hyperglycemic 
[24] have shown significant reduction compared to controls. 
The flicker-induced retinal diameter change has been shown 
to deteriorate early in patients with diabetes; Lecleire-Collet et 
al. [25] found a significant reduction of the flicker-induced re-
sponse in the retinal arteries and veins of normotensive pa-
tients with diabetes with no clinically detectable diabetic reti-
nopathy. Nguyen et al. [26] showed that reduced retinal vaso-
dilation after flicker light stimulation was associated with dia-
betes, independent of major risk factors such as hypertension 
and glycemic control. Whether or not there is a difference be-
tween type 1 diabetes and type 2 is not clear; a controlled study 
demonstrated decreases in both arterial and venous flicker-in-
duced retinal vasodilation in normotensive patients with type 
1 diabetes and no diabetic retinopathy [27], whereas an un-
controlled study of patients with type 2 diabetes by the same 
research group [28] demonstrated that the observed decreases 
in the arterial and venous flicker-induced responses were no 
longer significant after factoring out age and antihypertensive 
treatment. 
 The impaired flicker-induced vascular response may be 
partly caused by endothelial dysfunction, as suggested by 
Mandecka et al. [27,28] and Nguyen et al. [26,29]. A key role 
for NO has been identified in retinal and optic nerve vasodila-
tory response to greater neuronal activity. Light-evoked arteri-
ole dilation (functional hyperemia) is reduced diabetic rats, 
and inhibition of iNOS restored both light- and glial-evoked 
dilation of retinal arterioles to control levels [30].

Diabetic retinopathy
Diabetic retinopathy is a common complication of diabetes 
and a leading cause of legal blindness among working-age 
adults. Historically, diabetic retinopathy researchers and phy-
sicians have concentrated on the vascular lesions in this dis-
ease, since those are what seem to account for most of the le-
sions that contribute to vision loss in diabetes. It is now clear 
that the neuronal components of the retina are also injured in 
diabetes, and appear to become impaired prior to the regres-
sion of the retinal vasculature. We will first present a brief 
summary of diabetic retinopathy, and then summarize recent 
evidence that neural abnormalities within the retina are actu-
ally contributing to the vascular lesions of the retinopathy.

Vasculature
Diabetic retinopathy is comprised of a spectrum of histologic 
and functional abnormalities that in composite make a picture 
that is relatively unique for diabetes. These abnormalities in-
clude nonperfused and degenerate capillaries, pericyte ghosts 
(empty pockets in the basement membrane surrounding cap-
illaries where pericytes used to be located), microaneurysms, 
increased vascular permeability, and intraretinal microvascu-
lar abnormalities in early stages of the disease. In the advanced 
(clinically important) stages of the retinopathy, hemorrhage, 
retinal edema, neovascularization, and possibly retinal detach-
ment occur.

Neurons
Some nonvascular cells, likely retinal ganglion cells, begin to 
degenerate (become positive for terminal deoxynucleotidyl 
transferase dUTP nick-end labeling stain (TUNEL) early in 
diabetes, and in fact some retinal neurons apparently begin to 
degenerate earlier than do vascular cells [31-33]. Retinal cross-
sections or in vivo measurements from diabetic rodents or pa-
tients have revealed retinal thinning in diabetes [33], which 
also is consistent with neuronal death. Although some neuro-
glial cells do die in diabetes, even greater numbers of cells like-
ly survive but become dysfunctional. 
 Diabetes-induced retinal dysfunction has been well docu-
mented. In the retinas of human diabetics, pattern ERGs be-
come diminished before the onset of the classically defined 
nonproliferative retinopathy [34,35], and delayed physiologi-
cal signals (evoked potentials) have been found in the optic 
nerve (axons of the retinal ganglion cells) and visual pathways 
of diabetic patients. A recent study of early diabetes indicated 
that patients having nonproliferative diabetic retinopathy sh- 
owed impairment of visual function compared to normal par-
ticipants, with 83% of patients exhibiting clinically significant 
impairment [36]. In addition, rod photoreceptor function was 
grossly impaired. Contrast sensitivity and other defects in vi-
sion have been widely studied in patients with diabetic reti-
nopathy. Trick et al. [37] found that about one-third of diabet-
ic subjects without retinopathy had abnormalities in contrast 
sensitivity, this figure rising to about two-thirds in those with 
nonproliferative (background) retinopathy. These electro-
physiological measures provide indications of functional 
changes in neural cells of the retina in the earliest stages of hu-
man diabetic retinopathy.
 Retinal levels of NO, glutamate, VEGF and neurotrophins 
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are altered in diabetic retinopathy.

1) Nitric oxide 
It is clear from multiple investigations that NO levels are al-
tered in diabetes. Increased serum levels of nitrite and nitrate 
(breakdown products of NO) have been found in diabetic pa-
tients with retinopathy compared with diabetic patients with-
out diabetic retinopathy or healthy controls. In those studies, 
serum nitrite and nitrate (used to estimate NO) levels in the 
patients with proliferative diabetic retinopathy were signifi-
cantly higher than the levels in the patients with nonprolifera-
tive retinopathy. Likewise, plasma nitrite and nitrate levels 
were higher in patients with proliferative diabetic retinopathy 
than in controls also in other studies. Elevated metabolites of 
the L-arginine-NO pathway have been detected also in the vit-
reous of eyes from diabetic patients, and greater than normal 
levels of NG-hydroxy-L-arginine (a by-product of NO genera-
tion), have been detected in the ocular aqueous humor of dia-
betic patients (with and without diabetic retinopathy) com-
pared with that in nondiabetic controls. Despite what appears 
to be increased generation of NO in diabetes; however, diabe-
tes results in subnormal NO bioavailability, due to increased 
production of free radicals which directly react with NO to 
generated peroxynitrite, or oxidize the cofactors of the NO syn-
thase, diminishing the activity of NO synthases and conse-
quently leading to a decreased NO production [38].

2) Glutamate
In diabetes, levels of the excitotoxin, glutamate, have been re-
ported to be significantly increased [39] or decreased [40] in ret-
inas of diabetic rodents. In diabetic patients, levels of glutamate 
in the vitreous are significantly elevated [41,42]. The increase 
in retinal glutamate in diabetic rodents was inhibited with sys-
temic administration of antioxidants [39].

3) VEGF 
Levels of VEGF in retina and vitreous are elevated in diabetes, 
and there is strong evidence that this VEGF increases vascular 
permeability and neovascularization in advanced diabetic reti-
nopathy [43,44]. In vitro, VEGF plays a critical role in endo-
thelial cell apoptosis induced by high glucose [45]. In vivo, Bai 
et al. [46] demonstrated that disruption of Müller cell-derived 
VEGF resulted in significant inhibition of the ischemia-in-
duced retinal neovascularization and vascular leakage, and at-
tenuation of the ischemia-induced breakdown of the blood-

retina barrier.

4) Neurotrophins 
Systemic administration of NGF to diabetic animals inhibits 
diabetes-induced vascular degeneration in the retina [47]. 
This benefit of NGF administration might not be mediated by 
a direct effect on the endothelium itself, but rather an indirect 
effect on other members of the neurovascular components in 
the retina, because retinal endothelial cells have been reported 
not respond to NGF in vitro [48]. The observed beneficial ef-
fect of NGF on the retinal vasculature in diabetes might indi-
cate a diabetes-induced defect in neurovascular communica-
tion that can be corrected therapeutically. Diabetes-induced 
impairment of NGF processing leads to accumulation of pro-
NGF, which has been postulated to contribute to development 
of diabetic retinopathy [49].

NEW EVIDENCE SUGGESTING THAT 
RETINAL NEURONS CONTRIBUTE TO 
VASCULAR DISEASE IN DIABETIC 
RETINOPATHY

The finding that retinal neurons (especially ganglion cells) be-
gan dying (estimated from TUNEL staining) before vascular 
lesions were grossly apparent led some investigators to specu-
late that neurons might contribute to the development of the 
vascular lesions of diabetic retinopathy [31]. No evidence to 
support this postulate was identified until recently, when reti-
nal photoreceptors were identified as likely contributors to the 
vascular damage in the retinopathy.
 Photoreceptors are specialized retinal neurons, and mediate 
the capture of light energy and conversion of that light into 
neural signals that allow us to see. The high metabolic rate of 
photoreceptors has been recognized as contributing to devel-
opment of retinal hypoxia and subsequently neovasculariza-
tion in late, advanced stages of diabetic retinopathy, but recent 
reports have raised a possibility that photoreceptors or outer 
retina might play a role in the development also of even early 
stages of diabetic retinopathy. de Gooyer and collaborators 
[50] reported that diabetes did not cause the expected de-
crease in density of the retinal microvasculature in mice lack-
ing rhodopsin (Rho-/-, which causes photoreceptor degenera-
tion). The authors concluded that loss of the outer retina re-
duced the severity of diabetic retinopathy in that model. Two 
additional pieces of data involving diabetic patients are consis-
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tent with a role of photoreceptors in the development of dia-
betic retinopathy. Results of a survey sent to a small group of 
diabetic patients who also had retinitis pigmentosa (and there-
fore, photoreceptor degeneration) suggested that diabetic reti-
nopathy was less severe in patients who also had retinitis pig-
mentosa [51]. In addition, Arden et al. [52,53] conducted a 
study on patients to determine if sleeping without total dark-
ness (to reduce the dark current in rod photoreceptors) could 
improve diabetes-induced abnormalities of retinal function or 
structure, and found that the avoidance of total darkness sig-
nificantly reduced the tritan thresholds, the area of dark reti-
nal anomalies, and retinal edema in treated eyes relative to un-
treated eyes.
 The mechanism by which neurons might contribute to vas-
cular pathology of diabetic retinopathy will be important to 
determine. Perhaps impaired delivery of oxygen to photore-
ceptors at night and the resulting low oxygen levels in the reti-
na, lead to increased levels of VEGF and its effects on the vas-
culature. In addition, recent studies demonstrate that photore-
ceptors generate (or at least regulate) generation of reactive 
oxygen species and synthesis of inflammatory proteins in the 
retina in diabetes [54]. This is important because diabetes re-
sults in increased generation of superoxide and inflammatory 
proteins in retina, and inhibition of the oxidative stress or de-

letion/inhibition of inflammatory proteins has been shown to 
inhibit development of vascular lesions of early diabetic reti-
nopathy [55,56]. Low intensity light is being found to inhibit 
aspects of diabetic retinopathy [52,53,57], and offers a possible 
therapeutic direction for future efforts to inhibit the retinopa-
thy.

CONCLUSIONS

Clinical evidence continues to support the premise that retinal 
vascular disease accounts for much of the clinically significant 
loss of vision that occurs in diabetes. However, neural function 
is an important regulator of normal vascular function, and 
disturbances in the interaction between neural and vascular 
cells can have adverse effects on retinal function or structure 
(Fig. 1). Intriguing new evidence indicates that photoreceptors 
and other neural cells might contribute to the pathogenesis of 
the vascular disease that is characteristic of diabetic retinopa-
thy. Thus, therapeutic efforts to correct critical abnormalities 
within the retinal neuroglia might help inhibit both the vascu-
lar lesions that characterize diabetic retinopathy and the dia-
betes-induced loss of vision. Additional work is required to 
further investigate this possibility.
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(photoreceptors)

Light

Visual cycle activity

Consumption of
oxygen, glucose, ATP

Neurotransmitter
release

Release of vaso-active ions
and molecules

Increased blood flow

Delivery of
oxygen and
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A

Visual cycle activity
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oxide and other vaso-
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Fig. 1. Comparison of neural and vascular interactions in (A) nondiabetic and (B) diabetic conditions. Normally, neural metab-
olism influences blood delivery to neural tissues, and the increase in local blood flow after increased neural activity maintains 
the interaction between these two compartments. In diabetes, both neural signaling to the vasculature, and the delivery of nutri-
ents to the retina become impaired.
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