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Abstract

We identified biologically relevant moderators of response to tumour necrosis factor (TNF)-α 
inhibitor, infliximab, among 60 individuals with bipolar depression. Data were derived from 

a 12-week, randomized, placebo-controlled clinical trial secondarily evaluating the efficacy of 

infliximab on a measure of anhedonia (ie, Snaith Hamilton Pleasure Scale). Three inflammatory 

biotypes were derived from peripheral cytokine measurements using an iterative, machine 

learning-based approach. Infliximab-randomized participants classified as biotype 3 exhibited 

lower baseline concentrations of pro- and anti-inflammatory cytokines and soluble TNF receptor-1 

and reported greater anti-anhedonic improvements, relative to those classified as biotype 1 or 

2. Pre-treatment biotypes also moderated changes in neuroinflammatory substrates relevant to 

infliximab’s hypothesized mechanism of action. Neuronal origin-enriched extracellular vesicle 

(NEV) protein concentrations were reduced to two factors using principal axis factoring: 

phosphorylated nuclear factorκB (p-NFκB), Fas-associated death domain (p-FADD), and 

IκB kinase (p-IKKα/β) and TNF receptor-1 (TNFR1) comprised factor “NEV1,” whereas 

phosphorylated insulin receptor substrate-1 (p-IRS1), p38 mitogen-activated protein kinase (p

p38), and c-Jun N-terminal kinase (p-JNK) constituted “NEV2.” Among infliximab-randomized 

subjects classified as biotype 3, NEV1 scores were decreased at weeks 2 and 6 and increased at 

week 12, relative to baseline, and NEV2 scores increased over time. Decreases in NEV1 scores 

and increases in NEV2 scores were associated with greater reductions in anhedonic symptoms 

in our classification and regression tree model (r2=0.22, RMSE=0.08). Our findings provide 

preliminary evidence supporting the hypothesis that the anti-anhedonic effects of infliximab 

require modulation of multiple TNF-α signalling pathways, including NF-κB, IRS1, and MAPK.

Introduction

Bipolar depression is a debilitating brain-based disorder; despite the availability of agents 

with demonstrated antidepressant efficacy in randomized clinical trials, health and functional 

outcomes remain woefully inadequate in real-world patient populations (1,2). A contributing 

factor to the tremendous human costs of bipolar depression is that the pathoetiology 
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of bipolar disorder and the neurobiology of treatments remain poorly understood (3). 

Consequently, current treatment selection and sequencing strategies largely constitute a 

process of trial-and-error, wherein the risk of treatment resistance rises and the odds of full 

functional recovery falls with each unsuccessful treatment attempt (5–9). The foregoing 

set of observations instantiates the need for a disease model-informed framework for 

conceptualizing mechanistically relevant, and clinically useful, biomarkers for the treatment 

of bipolar depression.

The immune system is a pertinent therapeutic target for a subpopulation of individuals 

with depression (10–12). Infliximab is a tumour necrosis factor (TNF)-α inhibitor that 

has exhibited antidepressant and anti-anhedonic effects in preliminary studies among 

depressed individuals with aberrant immune-inflammatory activation (13–15). Cellular 

targets of TNF-α stimulation include, but are not limited to, pathways involving nuclear 

factor-κB (NF-κB), Fas-associated death domain (FADD), mitogen-activated protein kinase 

(MAPK), and insulin receptor substrate-1 (IRS1) (16–18). Taken together, immune and 

inflammatory processes are relevant to the neurobiology and treatment of depression; 

moreover, inflammatory biotypes can inform disease models and aid clinicians in selecting 

interventions for patients with bipolar depression (19–21).

Anhedonia is a transdiagnostic neuropsychiatric construct, defined as loss of interest 

and/or pleasure in nearly all day-to-day activities, and observed in bipolar disorders, 

major depressive disorders, Parkinson’s disease, diabetes mellitus, Alzheimer’s disease, and 

many other medical conditions affecting the brain (22,23). Herein, we aimed to develop 

an empirically driven model for understanding the mechanism of action of infliximab, 

an anti-inflammatory agent that has preliminarily demonstrated anti-anhedonic efficacy 

among individuals with bipolar I/II depression (14). The primary outcome of interest, in 

the present post hoc analysis, was improvement in hedonic capacity (i.e., reduction in 

anhedonic symptoms), which was operationalized using the Snaith Hamilton Pleasure Scale 

(SHAPS) total score (range 14–56), with higher scores indicative of greater hedonic capacity 

(24,25). Our secondary outcome of interest was reduction in overall depressive symptom 

severity, which was operationalized using the Montgomery-Asberg Depression Rating Scale 

(MADRS) total score (range 0–60), with higher scores indicative of greater depressive 

symptom severity.

We used an iterative, machine learning-based approach to investigate peripheral markers 

of inflammatory activation relevant to infliximab’s hypothesized mechanism of action 

(Figure 1a). Plasma cytokine and neuronal origin-enriched extracellular vesicle (NEV) 

protein concentrations, assessed at weeks 0, 2, 6, and 12, were evaluated to identify 

mechanistically relevant inflammatory biotypes. Principal axis factor analyses of plasma 

cytokine concentrations reduced the number of cytokine measurements to three factors. 

Next, k-means clustering of cytokine factor scores stratified subjects by baseline cytokine 

concentrations and yielded three biotypes. Generalized estimating equations were used to 

evaluate to what extent these three biotypes moderate infliximab’s effects on neurobiological 

substrates (i.e., by comparing change in NEV concentrations across time, treatment groups, 

and biotypes). Similarly, we evaluated the biotypes’ clinical utility by evaluating their role 

in moderating change in SHAPS and MADRS total scores using generalized estimating 
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equations. Finally, classification and regression trees assessed the predictive utility of the 

three data-driven biotypes.

Materials and methods

Study Design and Clinical Trial Data

Data were derived from a 12-week, randomized, double-blind, placebo-controlled clinical 

trial evaluating the antidepressant efficacy of infliximab in 60 adults (ages 18–65) 

with bipolar I/II disorder (13). We have previously reported that infliximab-randomized 

participants exhibited significant reductions in anhedonic symptoms at week 6; however, 

the beneficial effects on anhedonia were not sustained at week 12 in the overall study 

sample (14). Complete inclusion and exclusion criteria have been published (13). Baseline 

participant characteristics are summarized in Table S1.

Sixty subjects were enrolled between October 1, 2015 and April 30, 2018 at the 

Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (Toronto, 

Ontario, Canada) and the Department of Psychiatry and Behavioral Sciences, School of 

Medicine, Stanford University (Palo Alto, California, USA). Participants met diagnostic 

criteria for a current major depressive episode according to the Diagnostic and Statistical 

Manual of Mental Disorders, Fifth Edition (DSM-5). The study population was enriched 

for a pre-treatment systemic pro-inflammatory phenotype, as determined by meeting at least 

one of the following metabolic/inflammatory criteria: obesity and dyslipidemia, obesity 

and hypertension, daily cigarette smoking, diabetes mellitus, migraine, inflammatory bowel 

disease, and/or C-reactive protein level of ≥5 mg/L (26).

Participants were randomized to intravenously receive 5 mg/kg infliximab (n=29) or saline 

placebo (n=31) at weeks 0, 2, and 6. Subjects were assessed weekly for the first 4 weeks 

(i.e., at weeks 1, 2, 3, 4) and bi-weekly thereafter (i.e., at weeks 6, 8, 10, 12). Saline 

was matched to infliximab in colour and consistency. All study participants, clinicians, 

investigators, infusion nurses, and outcome assessors were masked to treatment allocation. 

The institutional ethics boards at the University Health Network and Stanford University 

approved the study; all participants provided written, informed consent.

Dataset Description

We primarily evaluated predictors and moderators of change in the Snaith Hamilton Pleasure 

Scale (SHAPS) total score from baseline to weeks 6 and 12. Our primary analysis included 

data from participants that received at least one infusion and completed at least one 

post-baseline SHAPS assessment. Data from 25 infliximab- and 27 placebo-randomized 

subjects were included. Week 6 SHAPS data were available only in subjects enrolled in 

the study after a protocol amendment in December 2016. Eleven infliximab- and 11 placebo

randomized subjects who completed the 12-week study were missing SHAPS data at week 

6. Week 6 SHAPS data were available for 4 infliximab- and 1 placebo-randomized subjects 

without week 12 data.

We secondarily evaluated the change in Montgomery-Asberg Depression Scale (MADRS) 

total score from baseline to endpoint. At least one post-baseline MADRS assessment data 
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was available for 29 infliximab- and 30 placebo-randomized participants. Week 1, 2, 3, 

4, 5, 6, 8, 10, and 12 data were available for 29, 28, 27, 28, 26, 23, 21, and 22 infliximab

randomized subjects and 30, 28, 30, 29, 26, 27, 24, 26, and 26 placebo-randomized subjects, 

respectively.

Plasma Sample Collection and Analyses

Blood samples were collected after 12-hour fasts at baseline and weeks 2, 6, and 12 in 

ethylenediaminetetraacetic acid (EDTA)-coated tubes, centrifuged at 1000 g for 15 minutes 

at 4 degrees Celsius, and stored at −80 degrees Celsius until analysis. All personnel involved 

in sample analyses were masked to treatment allocation.

Cytokine Analysis

Plasma concentrations of TNF-α, sTNFR1, interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, 

IL-10, and IL-12 were quantified by personnel at Eve Technology (Calgary, AB, Canada) 

using BioPlex-200 (Luminex Corporation, Austin, TX, USA) and Millipore MILLIPLEX 

panels Human Cytokine Array Proinflammatory Focused 13-plex and Human Soluble 

Cytokine Receptor Array 14-plex (MilliporeSigma Corporation, Billerica, MA, USA). 

Baseline and endpoint samples were analysed in a single replication on the same day; 

analyte concentrations were calculated using a standard curve as per the manufacturer’s 

instructions.

Minimum detectable concentrations (pg/mL) were: TNF-α (0.1), sTNFR1 (12), IL-1β (0.4), 

IL-2 (0.3), IL-4 (0.6), IL-6 (0.3), IL-8 (0.2), IL-10 (0.3), and IL-12 (0.4). The mean intra

assay coefficients of variation (CVs) were <10% for sTNFR1 and <5% for TNF-α, IL-1β, 

IL-2, IL-4, IL-6, IL-8, IL-10, and IL-12; the mean inter-assay coefficients of variation were 

<15% for TNF-α, sTNFR1, IL-1β, IL-2, IL-4, and IL-8 and <20% for IL-6, IL-10, and 

IL-12.

Neuronal Origin-enriched Extracellular Vesicle (NEV) Analysis

Investigators at the Laboratory of Clinical Investigation, Intramural Research Program, 

National Institute on Aging, National Institutes of Health (Baltimore, MD, USA) quantified 

plasma concentrations of NEVs in accordance with published methods. A detailed 

description of the procedures and evidence supporting its use are available elsewhere (27–

31).

We quantified NEV protein concentrations of pS312-insulin receptor substrate-1 (p-IRS1), 

pT183/Y185-c-Jun N-terminal kinase (p-JNK), and pT180/Y182-p38 mitogen-activated 

protein kinase (p-p38) using the MESO SCALE DISCOVERY (MSD) Phospho-IRS1 

and Mitogen-Activated Protein Kinase (MAPK) Phosphoprotein Assay Whole Cell Lysate 

Kits (catalogue IDs: K150HLD, K15101D). We quantified phosphorylated nuclear factor 

κ-light-chain-enhancer of activated B cells (p-NFκB; Ser536), Fas-associated protein with 

death domain (p-FADD; Ser194), and IκB kinase (IKKα/β; Ser177/Ser181), as well as 

total protein levels of TNFR1 using the MILLIPLEX MAP 6-Plex NF-κB Magnetic 

Bead Signaling kit (48–630MAG; MilliporeSigma Corporation, Billerica, MA, USA). We 

quantified Alix concentrations using the Human Programmed cell death 6-interacting protein 
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(PDCD6IP) ELISA kit (CSB-EL017673HU; Cusabio Biotech Co., LTD, Houston, TX, 

USA).

The samples were precipitated with Exoquick (System Biosciences, Inc., Mountainview, 

CA, USA) to enrich for extracellular vesicle concentrations and mouse anti-human 

CD171 (L1CAM) biotinylated antibody (clone 5G3; Thermo Scientific, Inc., Waltham, 

MA) to isolate neuronal surface antigen L1CAM. Extracellular vesicles were lysed with 

Mammalian Protein Extraction Reagent (M-PER; Thermo Scientific, Inc.). Plates with 

the MSD phosphoassays were read using the MESO QuickPlex SQ120 imager (Meso 

Scale Discovery, Rockville, MD, USA); plates with the MILLIPLEX panel were read 

using the Luminex 200 System (Luminex Corporation, Austin, TX, USA). We analyzed 

electrochemiluminescence signals for the MSD phosphoassays and fluorescence signals for 

the MILLIPLEX panel as a standard curve could not be constructed. Alix plates were read 

using the Synergy H1 microplate reader, which was set to 450 nm as per the manufacturer’s 

instructions, and Gen5 Microplate Data Collection Software (BioTek Instruments, Winooski, 

VT, USA).

All assays were conducted in duplicate. The mean intra-assay and inter-assay CVs were 

<15% and <20%, respectively, for all NEV analytes. The limits of detection (LODs) were, in 

ng/mL: 84.08 (p-IRS1), 119.42 (p-JNK), 158.86 (p-p38), 48.16 (p-NFκB), 52.68 (p-FADD), 

46.42 (p-IKKα/β), 34.43 (TNFR1), and 168.71 (Alix). We excluded from our analyses 

samples that had a mean CV ≥15% (42 p-IRS1, 11 p-JNK, 9 p-p38, 35 p-NFκB, 32 

p-FADD, 32 p-IKKα/β, 34 TNFR1, 5 Alix) or were below the LOD (3 p-IRS1, 0 p-JNK, 0 

p-p38, 1 p-NFκB, 10 p-FADD, 0 p-IKKα/β, 1 TNFR1, 0 Alix).

Dimension Reduction

Principal axis factor analyses of ln-transformed plasma cytokine and NEV concentrations 

were conducted, pooling data from weeks 0, 2, 6, and 12 to maximize sample size 

(cytokines, n = 216: nWeek 0 = 58, n2 = 58, n6 = 52, n12 = 48; NEVs, n = 164: nWeek 0 

= 44, n2 = 41, n6 = 42, n12 = 37). Peripheral cytokine and NEV measurements were analyzed 

separately to avoid stratification due to differences in methodologies and to include cases 

missing NEV data in cytokine analyses. There was adequate sampling for the analysis, as 

determined using the Kaiser-Meyer-Olkin method (KMO = 0.76 and 0.70 for the cytokine 

and NEV factor analyses, respectively). The rotated factor scores of cytokine biomarkers 

were then analyzed using k-means clustering. The resultant clusters were used to stratify 

subjects by baseline cytokine measurements.

Model Development

We evaluated baseline cytokine biotype, intervention assignment, and week as predictors 

of pro-hedonic efficacy using classification and regression trees (CART). Classification and 

regression trees are a versatile, nonparametric type of decision tree (supervised) learning 

algorithm capable of predicting and explaining non-linear relationships and high-order 

interactions (32). Change in hedonic capacity was operationalized as change in SHAPS 

total score from baseline as a proportion of baseline SHAPS total score: (SHAPSWeek 6 or 12 

− SHAPSWeek 0)/SHAPSWeek 0.
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Data were pooled across visits to maximize sample size (infliximab: nWeek 6 = 13, n12 

= 21; placebo: nWeek 6 = 16, n12 = 25). A randomized search was used to optimize 

hyperparameters (i.e., splitting criterion [search range: random, best]; maximum tree depth 

[2:6, None], number of leaf nodes [10:24, None], number of features to consider for each 

split [auto, None, log2]; minimum numbers of observations per leaf [1:19], required to split 

an internal node [2:20]) (33). We used cross-validation on the entire dataset and, to increase 

explanatory power, we did not reserve a separate test set, as our overarching objective was 

to characterize biomarkers with clinical relevance (i.e., pro-hedonic intervention efficacy), 

rather than to maximize predictive capability at the expense of elucidating mechanisms or 

moderators of treatment response (34).

Generalized estimating equations were used to evaluate the effect of baseline cytokine 

cluster biotypes on change in treatment outcome measures. We used negative binomial 

and gamma distributions, as appropriate. We included ln-transformed Alix concentration 

as a moderator in generalized estimating equations where an NEV concentration was the 

outcome of interest.

Statistical Analysis

Factor and cluster analyses were conducted on R version 3.6.2 (35). Factor analyses with 

the principal axis method, varimax rotation, and 100 iterations were performed using the fa 
function from the package psych and varimax from stats. Scree plots identified 3 and 2 as 

the optimal numbers of factors for plasma cytokine and NEV factor analyses, respectively. 

There was adequate sampling for the analyses (Kaiser-Meyer-Olkin [KMO] = 0.76 for 

cytokines, 0.70 for NEVs). Factor scores were predicted using the regression method. 

K-means clustering analyses were conducted with 1000 iterations, 2000 bootstraps, and 

an α value of 0.05 using clusterboot and kmeansCBI from fpc (36,37). The Elbow method 

determined 3 as the optimal number of clusters. The Jaccard coefficients were examined to 

evaluate clusterwise stability (38).

Classification and regression trees were developed on Python 3.6.8 using the module sklearn 
(39). We ran DecisionTreeRegressor with mean squared error splitting criteria, a maximum 

tree depth of 3, a minimum of 11 samples at each node, and a minimum of 18 samples 

required to split an internal node. Hyperparameters were determined by results from a 

randomized search with 10-fold cross-validation, 600 iterations, and r2 scoring criteria using 

RandomizedSearchCV. Generalized estimating equations were conducted on SPSS Statistics 

26 for Windows. Missing data were omitted (i.e., pairwise deletion).

Results

Extraction of Component Factor Scores

Plasma cytokine concentrations were reduced to three factors henceforth named, “PL1,” 

“PL2,” and “PL3,” which were, respectively, characterized by (PL1:) high levels of 

interleukin (IL)-4, IL-6, and IL-8; (PL2:) elevations in IL-1β, IL-2, IL-12, and soluble TNF 

receptor-1 (sTNFR1); and (PL3:) high IL-10 with low TNF-α. Plasma NEVs produced 

an additional two factors. Phosphorylated nuclear factor-κB (p-NFκB), phosphorylated 
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Fas-associated death domain (p-FADD), phosphorylated IκB kinase (p-IKKα/β), and TNF 

receptor1 (TNFR1) comprised factor “NEV1,” whereas phosphorylated insulin receptor 

substrate-1 (p-IRS1), p38 mitogen-activated protein kinase (p-p38), and c-Jun N-terminal 

kinase (p-JNK) constituted “NEV2.” Factor loadings and fit indices are depicted in Figure 

1b. Factors PL1, PL2, and PL3 respectively explained 28.2%, 19.1%, and 8.0% of the 

variance in plasma cytokine concentrations; factors NEV1 and NEV2 respectively accounted 

for 50.8% and 26.1% of the variance in NEV concentrations.

Plasma Cytokine Concentrations Define Three Biotypes

We grouped participants by plasma cytokine measurements using k-means clustering. Our 

analysis of cytokine factor scores identified three clusters defined by distinct patterns of 

plasma cytokine levels, comprising 38.4%, 22.7%, and 38.9% of the 216 samples. The 2000- 

bootstrapped Jaccard coefficients were >0.75, indicating the clusters were valid and stable 

(Jaccard = 0.79, 0.92, 0.77). The mean PL1, PL2, and PL3 scores were, by cluster: −0.77, 

0.54, 0.23 (cluster 1); 1.55, 0.56, −0.01 (cluster 2); and −0.14, −0.87, −0.22 (cluster 3).

Of the 56 subjects with at least one post-baseline assessment of SHAPS: 16 subjects 

(nInfliximab= 8, nPlacebo= 8) were classified as cluster 1 at baseline–hereafter referred to 

as biotype 1–with lowerPL1 and higher PL2 and PL3 scores, indicative of lower IL-4, IL-6, 

IL-8, and TNF-αand higher IL-1β, IL-2, IL-12, sTNFR1, and IL-10 levels prior to the first 

infusion. Eleven subjects (nInfliximab= 4,nPlacebo= 7) exhibited elevations in all cytokines 

at baseline and were classified as biotype 2 (Figure 1c). Twenty-five subjects (nInfliximab= 

13,nPlacebo= 12) were classified as biotype 3,with lower PL1, PL2, and PL3 scores.

Baseline Biotypes Predict Treatment Outcomes

Baseline cytokine biotype, intervention allocation, week, as well as baseline and change 

in NEV1 and NEV2 factor scores, predicted baseline-to-endpoint reduction in anhedonic 

symptoms (r2 = 0.22, RMSE = 0.08). Decreases in NEV1 factor scores and increases in 

NEV2 factor scores were associated with greater reductions in anhedonic symptoms (Figure 

1d).

We used generalized estimating equations to further characterize changes in hedonic 

capacity over time across intervention and baseline biotype groups. Baseline biotype 

significantly moderated change in SHAPS total score (Table 1). Biotype 3 subjects exhibited 

greater improvements in hedonic capacity with infliximab (vs placebo) at weeks 6 and 

12. Biotype 2 subjects also derived greater pro-hedonic benefits with infliximab relative 

to placebo at week 6; however, the effects were not sustained 6 weeks past the last 

infusion (Figure 1e). In contrast, baseline biotype did not significantly moderate changes 

in MADRS total score (Table 1), although a similar stratification of antidepressant response 

was observed across baseline biotypes (Figure 1e).

Baseline Biotypes Moderate Treatment Effects on Plasma Cytokines and Neuronal Origin
enriched Extracellular Vesicles

Given that the baseline biotypes were associated with disparate treatment trajectories, we 

hypothesized that the baseline biotypes would also moderate divergent changes in peripheral 
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inflammatory biomarkers in response to treatment with infliximab or placebo. Furthermore, 

we hypothesized that individuals randomized to infliximab who were classified as biotype 3 

would exhibit cellular and molecular changes in the immune-inflammatory system targeted 

by infliximab that would be absent or differentially modulated in individuals classified as 

biotype 1 or biotype 2. To investigate to what extent baseline biotypes moderate the effects 

of treatment on the immune-inflammatory system, we assessed and compared changes 

in cytokine factor scores and individual NEV markers between intervention groups and 

baseline biotypes using generalized estimating equations.

Overall, individuals classified as biotype 3 exhibited significant reductions in PL1 (i.e., 

IL-4, IL-6, IL-8) and increases in PL2 (i.e., IL-1β, IL-2, IL-12, sTNFR1) factor scores 

with infliximab, whereas those classified as biotype 1 or biotype 3 exhibited different 

patterns of change in PL1 and PL2 factor scores (Figure S1). Participants randomized to 

infliximab exhibited significant increases in PL3 (i.e., increased IL-10, reduced TNF-α) 

factor scores across all biotypes when compared to participants receiving placebo. The 

results of the generalized estimating equations are summarized in Table 2 and detailed in the 

Supplementary Results.

The baseline biotypes moderated changes in NEV markers of inflammation (Figure 

1f), notably NEV1 factor scores (i.e., p-NFκB, p-FADD, p-IKKα/β, TNFR1). Among 

infliximab-randomized subjects classified as biotype 3, NEV1 scores decreased after the 

first and second infusions (i.e., from baseline to weeks 2 and 6) and increased after the 

third infusion (i.e., from baseline to week 12). In contrast, among infliximab-randomized 

subjects classified as biotype 1, NEV1 scores were decreased at week 2 and increased at 

weeks 6 and 12, relative to baseline levels. Similarly, among subjects classified as biotype 

2, NEV1 scores increased after one infusion of infliximab and gradually returned to baseline 

levels thereafter. Baseline NEV1 factor scores were higher among those classified as biotype 

2, relative to those classified as biotype 1 or biotype 3; the foregoing differences between 

biotypes were not significant within the infliximab group (χ2 = 2.64, p = 0.27) but were 

significant within the placebo group (χ2 = 9.75, p < 0.01).

Within biotype 3, NEV2 scores increased over time with infliximab, denoting increases in 

the NEV markers p-IRS1, p-JNK, and p-p38, relative to baseline concentrations. Among 

infliximab-randomized subjects classified as biotype 1, NEV2 scores decreased at weeks 

2 and 6 and increased at week 12, relative to baseline levels. Among those classified 

as biotype 2, NEV2 scores increased at weeks 2 and 6 and decreased at week 12 with 

infliximab. Baseline NEV2 scores were numerically higher among baseline NEV2 scores 

were numerically higher among participants classified as biotype 2 when compared to 

participants classified as biotype1 or biotype 3; however, the differences were not significant 

in either treatment group (infliximab: χ2= 1.35, p= 0.51; placebo: χ2= 2.30, p= 0.32).

Discussion

We used an iterative approach to identify and characterize biologically relevant predictors 

of treatment response among adult patients with bipolar depression. Pre-treatment biotypes, 

derived from peripheral cytokine measurements, were capable of predicting anti-anhedonic 

Lee et al. Page 9

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efficacy with the anti-inflammatory biologic drug, infliximab. In our sample, which was 

enriched for elevated baseline inflammatory activity, participants classified as biotype 3–

who exhibited lower plasma concentrations of pro- and anti-inflammatory cytokines and 

sTNFR1 prior to randomization relative to those classified as biotype 1 or biotype 2–were 

more likely to report reductions in anhedonic severity with infliximab than with placebo. 

Participants classified as biotype 1 or biotype 2, who exhibited higher PL2 factor scores 

relative to those classified as biotype 3, exhibited a less favourable response trajectory with 

infliximab when compared to those classified as biotype 3.

The pre-treatment inflammatory biotypes, informed solely by peripheral cytokine 

measurements, significantly moderated the observed changes in markers of 

neuroinflammation with infliximab (vs. placebo). Differences across biotypes in NEV1 

scores may be explained by the aberrant increases in p-FADD and dysregulation of NF-κB 

substrates observed among infliximab-randomized participants classified as biotype 1 or 2 

(Figure S2A–D). In contrast, p-FADD and p-IKKα/β decreased with infliximab treatment 

among those classified as biotype 3, particularly from weeks 2 to 6. Relative to baseline, 

NEV TNFR1 concentrations decreased with infliximab within biotype 3 and increased with 

infliximab within biotypes 1 and 2. The activation of TRADD by TNFR1 leads to the 

phosphorylation of FADD; increases in p-FADD are associated with NF-κB activation via 

the IKK complex (40).

Increase in p-NFκB in the context of moderately decreased p-FADD and p-IKKα/β, as was 

observed among participants classified as biotype 3 between weeks 2 and 6, suggests a 

shift from a pro-inflammatory state to an anti-inflammatory state may have occurred early 

with infliximab treatment (e.g., repression of pro-inflammatory cytokines, increased IL-10 

expression) (41–45). The foregoing hypothesis is supported by the observed decrease in PL1 

(i.e., IL-6, IL-8) and increase in PL3 (i.e., IL-10) scores among those classified as biotype 

3. Similarly, genes relevant to TNF-related apoptosis (i.e., TNF superfamily member 12 

[TNFSF12], TNF-like weak inducer of apoptosis [TWEAK]), NF-κB, and toll-like receptor 

(TLR) signalling have been reported to be differentially downregulated among individuals 

with major depressive disorder who exhibited improvements with infliximab, relative to 

those who did not respond favourably to infliximab (46).

Infliximab is a monoclonal antibody with high binding affinity for soluble, transmembrane, 

and receptor-bound TNF-α; moreover, infliximab is capable of lysing activated 

macrophages, which are the largest source of TNF-α (47–51). Phosphorylation of the 

p65 subunit of NF-κB and nuclear accumulation of IκBα have been associated with 

inflammatory resolution (52). Previous clinical trials investigating the efficacy of infliximab 

for the treatment of inflammatory bowel disease have reported that nuclear accumulation 

of mucosal p65 NF-κB, indicating immune reactivation, predicts non-response and relapse 

(53,54).

Differences in NEV2 scores between baseline biotypes are driven by disparate patterns of 

change in phosphorylated IRS1, p38, and JNK concentrations. We observed a gradual and 

sustained increase in NEV2 scores with infliximab among subjects classified as biotype 3, 

denoting significant increases in NEV concentrations of p-IRS1, p-p38, and p-JNK (Figure 
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S2E–G). In contrast, changes in NEV2 scores with infliximab were not sustained among 

those classified as biotype 1 or biotype 2. Baseline NEV concentrations and factor scores are 

compared across biotypes in Figure S2H–I.

Tyrosine phosphorylation of IRS1 is required for the activation of insulin signalling 

cascades; insulin-evoked responses are attenuated by a negative feedback loop via serine 

phosphorylation of IRS1 (55–58). A previous clinical trial evaluating the effects of 

exenatide, a glucagon-like peptide 1 agonist, on NEV markers of insulin signalling also 

observed increased Ser312 and Ser616 phosphorylation of IRS1 and concomitant tyrosine 

phosphorylation of IRS1, as well as activation of downstream AKT and mTOR signaling 

(29). Similarly, altered glucose and lipid metabolism-related gene expression has been 

hypothesized to subserve the antidepressant effects of infliximab in patients with major 

depressive disorder (46). Mood disorders also increase cardiometabolic risk and patients 

often present with other medical comorbidities (e.g., atherosclerosis, obesity, diabetes 

mellitus) (58–60).

It may be hypothesized that the aberrant regulation and/or lack of sustained modulation 

of NF-κB and IRS1 pathways may at least partially explain the insufficient reductions in 

anhedonic symptoms observed in subjects classified as biotype 1 or biotype 2 (Figure 2). 

We observed a decrease in p-JNK, which regulates IRS1 via activation of p70S6 kinase and 

NF-κB via c-Myc, among those classified as biotype 2 (Figure S2F). The activation of p38 

MAPK has also been reported to subserve infliximab’s beneficial anti-inflammatory effects 

in populations with inflammatory bowel disease (61–63).

Taken together, our analysis integrating peripheral cytokine and neuronal origin-enriched 

biomarkers of inflammation provides preliminary evidence supporting the hypothesis 

that the anti-anhedonic effects of TNF-α antagonist infliximab may be subserved by 

modulation of NF-κB, IRS1, and MAPK signalling pathways. Our findings also support the 

clinical utility of inflammatory biomarkers for personalizing bipolar depression treatments 

and targeting anhedonia, for which specific treatments are unavailable. Moreover, the 

observation that baseline biotypes did not significantly predict changes in overall depressive 

symptom severity (i.e., MADRS total score) suggests that our results may be specific to the 

treatment of anhedonia, a discrete and transdiagnostic symptom dimension that correlates 

with, yet diverges from, overall depressive symptom severity. However, interpretations of 

our findings are limited by the secondary post hoc nature of the analysis and our relatively 

small sample size, which limit the generalizability of our results and warrant a prospectively 

designed replication study.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was funded by the Stanley Medical Research Institute (Grant 13T-012 to R.S.M. and T.S.). This research 
was supported in part by the Intramural Research Program of the National Institute on Aging, NIH (authors DK, 
FDP, SC, CNO).

Lee et al. Page 11

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conflicts of interest

R.S.M. has received research grant support from the Stanley Medical Research Institute and the Canadian 
Institutes of Health Research/Global Alliance for Chronic Diseases/National Natural Science Foundation of 
China and speaker/consultation fees from Lundbeck, Janssen, Shire, Purdue, Pfizer, Otsuka, Allergan, Takeda, 
Neurocrine, Sunovion, and Minerva within the past 36 months. E.B. has been supported by Faculty of Health 
Sciences, Queen’s University and received honoraria as speaker/member of advisory board from Daiichi-Sankyo 
not related to the content of this study. J.D.R. has received research grant support from the University of 
Toronto, Canadian Cancer Society, Canadian Psychiatric Association, American Psychiatric Association, American 
Society of Psychopharmacology (New Investigator Award), University Health Network Centre for Mental Health, 
Joseph M. West Family Memorial Fund and Timeposters Fellowship and industry funding for speaker/consultation/
research fees from Allergan, Lundbeck and COMPASS; and is the medical director of a private clinic providing 
off-label ketamine infusions for depression. B.I.G. receives grant or research support from the Brain and Behavior 
Research Foundation (NARSAD), Brain Canada, the Canadian Institutes of Health Research, the Heart and 
Stroke Foundation, National Institute of Mental Health, the Ontario Ministry of Research and Innovation, and 
the departments of psychiatry of Sunnybrook Health Sciences Centre and the University of Toronto. M.V. has 
received consultancy fees from Lundbeck, Sunovion and Janssen/Cilag within the last three years. All other authors 
declare no conflict of interest.

References

1. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute 
and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a 
STAR*D report. Am J Psychiatry [Internet]. 2006 11;163(11):1905–17. Available from: 10.1176/
ajp.2006.163.11.1905 [PubMed: 17074942] 

2. Fava M, Rush AJ, Wisniewski SR, Nierenberg AA, Alpert JE, McGrath PJ, et al. A comparison of 
mirtazapine and nortriptyline following two consecutive failed medication treatments for depressed 
outpatients: a STAR*D report. Am J Psychiatry [Internet]. 2006 7;163(7):1161–72. Available from: 
10.1176/appi.ajp.163.7.1161 [PubMed: 16816220] 

3. Insel TR, Cuthbert BN. Medicine. Brain disorders? Precisely. Science [Internet]. 2015 5 
1;348(6234):499–500. Available from: 10.1126/science.aab2358 [PubMed: 25931539] 

4. Trivedi MH, Morris DW, Wisniewski SR, Lesser I, Nierenberg AA, Daly E, et al. Increase in 
work productivity of depressed individuals with improvement in depressive symptom severity. Am 
J Psychiatry [Internet]. 2013 6;170(6):633–41. Available from: 10.1176/appi.ajp.2012.12020250 
[PubMed: 23558394] 

5. Webb CA, Trivedi MH, Cohen ZD, Dillon DG, Fournier JC, Goer F, et al. Personalized prediction 
of antidepressant v. placebo response: evidence from the EMBARC study. Psychol Med [Internet]. 
2019 5;49(7):1118–27. Available from: 10.1017/S0033291718001708 [PubMed: 29962359] 

6. Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications 
of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis 
and systematic review. J Affect Disord [Internet]. 2018 12 1;241:519–32. Available from: 10.1016/
j.jad.2018.08.073 [PubMed: 30153635] 

7. Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ. Inflammation 
and clinical response to treatment in depression: A meta-analysis. Eur Neuropsychopharmacol 
[Internet]. 2015 10;25(10):1532–43. Available from: 10.1016/j.euroneuro.2015.06.007 [PubMed: 
26169573] 

8. Benedetti F, Poletti S, Hoogenboezem TA, Locatelli C, de Wit H, Wijkhuijs AJM, et al. Higher 
Baseline Proinflammatory Cytokines Mark Poor Antidepressant Response in Bipolar Disorder. J 
Clin Psychiatry [Internet]. 2017;78(8):e986–93. Available from: 10.4088/JCP.16m11310 [PubMed: 
28922589] 

9. Arteaga-Henríquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, et al. Low-Grade 
Inflammation as a Predictor of Antidepressant and Anti-Inflammatory Therapy Response in MDD 
Patients: A Systematic Review of the Literature in Combination With an Analysis of Experimental 
Data Collected in the EU-MOODINFLAME Consortium. Front Psychiatry [Internet]. 2019 7 
9;10:458. Available from: 10.3389/fpsyt.2019.00458 [PubMed: 31354538] 

10. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative 
to modern treatment target. Nat Rev Immunol [Internet]. 2016 1;16(1):22–34. Available from: 
10.1038/nri.2015.5 [PubMed: 26711676] 

Lee et al. Page 12

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Rosenblat JD, Kakar R, Berk M, Kessing LV, Vinberg M, Baune BT, et al. Anti-inflammatory 
agents in the treatment of bipolar depression: a systematic review and meta-analysis. Bipolar 
Disord [Internet]. 2016 3;18(2):89–101. Available from: 10.1111/bdi.12373 [PubMed: 26990051] 

12. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of 
anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic 
inflammatory conditions. Mol Psychiatry [Internet]. 2018 2;23(2):335–43. Available from: 
10.1038/mp.2016.167 [PubMed: 27752078] 

13. McIntyre RS, Subramaniapillai M, Lee Y, Pan Z, Carmona NE, Shekotikhina M, et al. Efficacy 
of Adjunctive Infliximab vs Placebo in the Treatment of Adults With Bipolar I/II Depression: A 
Randomized Clinical Trial. JAMA Psychiatry [Internet]. 2019 5 8;76(8):783–90. Available from: 
10.1001/jamapsychiatry.2019.0779 [PubMed: 31066887] 

14. Lee Y, Mansur RB, Brietzke E, Carmona NE, Subramaniapillai M, Pan Z, et al. Efficacy of 
adjunctive infliximab vs. placebo in the treatment of anhedonia in bipolar I/II depression. Brain 
Behav Immun [Internet]. 2020 5 4; Available from: 10.1016/j.bbi.2020.04.063

15. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized 
controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant 
depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry [Internet]. 2013 
1;70(1):31–41. Available from: 10.1001/2013.jamapsychiatry.4 [PubMed: 22945416] 

16. Andersson KME, Wasén C, Juzokaite L, Leifsdottir L, Erlandsson MC, Silfverswärd ST, 
et al. Inflammation in the hippocampus affects IGF1 receptor signaling and contributes to 
neurological sequelae in rheumatoid arthritis. Proc Natl Acad Sci U S A [Internet]. 2018 12 
18;115(51):E12063–72. Available from: 10.1073/pnas.1810553115 [PubMed: 30509997] 

17. Kleinridders A, Cai W, Cappellucci L, Ghazarian A, Collins WR, Vienberg SG, et al. Insulin 
resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci 
U S A [Internet]. 2015 3 17;112(11):3463–8. Available from: 10.1073/pnas.1500877112 [PubMed: 
25733901] 

18. Nasca C, Dobbin J, Bigio B, Watson K, de Angelis P, Kautz M, et al. Insulin receptor substrate 
in brain-enriched exosomes in subjects with major depression: on the path of creation of 
biosignatures of central insulin resistance. Mol Psychiatry [Internet]. 2020 6 15; Available from: 
10.1038/s41380-020-0804-7

19. Millett CE, Harder J, Locascio JJ, Shanahan M, Santone G, Fichorova RN, et al. TNF-α and 
its soluble receptors mediate the relationship between prior severe mood episodes and cognitive 
dysfunction in euthymic bipolar disorder. Brain Behav Immun [Internet]. 2020 4 6; Available 
from: 10.1016/j.bbi.2020.04.003

20. Haroon E, Welle JR, Woolwine BJ, Goldsmith DR, Baer W, Patel T, et al. Associations 
among peripheral and central kynurenine pathway metabolites and inflammation in 
depression. Neuropsychopharmacology [Internet]. 2020 5;45(6):998–1007. Available from: 
10.1038/s41386-020-0607-1 [PubMed: 31940661] 

21. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory 
markers in depression: A meta-analysis of mean differences and variability in 5,166 patients 
and 5,083 controls. Brain Behav Immun [Internet]. 2020 7;87:901–9. Available from: 10.1016/
j.bbi.2020.02.010 [PubMed: 32113908] 

22. Husain M, Roiser JP. Neuroscience of apathy and anhedonia: a transdiagnostic approach. Nat Rev 
Neurosci [Internet]. 2018 8;19(8):470–84. Available from: 10.1038/s41583-018-0029-9 [PubMed: 
29946157] 

23. Lee Y, Subramaniapillai M, Brietzke E, Mansur RB, Ho RC, Yim SJ, et al. Anti-cytokine agents 
for anhedonia: targeting inflammation and the immune system to treat dimensional disturbances 
in depression. Ther Adv Psychopharmacol [Internet]. 2018 12;8(12):337–48. Available from: 
10.1177/2045125318791944 [PubMed: 30524702] 

24. Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A scale for the 
assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. Br J Psychiatry [Internet]. 1995 
7;167(1):99–103. Available from: 10.1192/bjp.167.1.99 [PubMed: 7551619] 

25. Leventhal AM, Chasson GS, Tapia E, Miller EK, Pettit JW. Measuring hedonic capacity in 
depression: a psychometric analysis of three anhedonia scales. J Clin Psychol [Internet]. 2006 
12;62(12):1545–58. Available from: 10.1002/jclp.20327 [PubMed: 17019674] 

Lee et al. Page 13

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Kramer NE, Cosgrove VE, Dunlap K, Subramaniapillai M, McIntyre RS, Suppes T. A clinical 
model for identifying an inflammatory phenotype in mood disorders. J Psychiatr Res [Internet]. 
2019 6;113:148–58. Available from: 10.1016/j.jpsychires.2019.02.005 [PubMed: 30954775] 

27. Mustapic M, Eitan E, Werner JK Jr, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma 
Extracellular Vesicles Enriched for Neuronal Origin: A Potential Window into Brain Pathologic 
Processes. Front Neurosci [Internet]. 2017 5 22;11:278. Available from: 10.3389/fnins.2017.00278 
[PubMed: 28588440] 

28. Mullins RJ, Mustapic M, Goetzl EJ, Kapogiannis D. Exosomal biomarkers of brain insulin 
resistance associated with regional atrophy in Alzheimer’s disease. Hum Brain Mapp [Internet]. 
2017 4;38(4):1933–40. Available from: 10.1002/hbm.23494 [PubMed: 28105773] 

29. Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of Neuronal
Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients 
With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial. JAMA Neurol 
[Internet]. 2019 4 1;76(4):420–9. Available from: 10.1001/jamaneurol.2018.4304 [PubMed: 
30640362] 

30. Sáenz-Cuesta M, Arbelaiz A, Oregi A, Irizar H, Osorio-Querejeta I, Muñoz-Culla M, et al. 
Methods for extracellular vesicles isolation in a hospital setting. Front Immunol [Internet]. 2015 2 
13;6:50. Available from: 10.3389/fimmu.2015.00050 [PubMed: 25762995] 

31. Mansur RB, Delgado-Peraza F, Subramaniapillai M, Lee Y, Iacobucci M, Rodrigues N, et 
al. Extracellular Vesicle Biomarkers Reveal Inhibition of Neuroinflammation by Infliximab in 
Association with Antidepressant Response in Adults with Bipolar Depression. Cells [Internet]. 
2020 4 6;9(4). Available from: 10.3390/cells9040895

32. Breiman L Classification and Regression Trees. Boca Raton: Routledge; 2017.

33. Bergstra J, Bengio Y. Random Search for Hyper-Parameter Optimization. J Mach Learn 
Res [Internet]. 2012 [cited 2019 Oct 25];13(Feb):281–305. Available from: http://www.jmlr.org/
papers/v13/bergstra12a.html

34. Shmueli G To Explain or to Predict? Stat Sci [Internet]. 2010 8 [cited 2020 May 13];25(3):289–
310. Available from: https://projecteuclid.org/euclid.ss/1294167961

35. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, 
Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/

36. Revelle W psych: Procedures for Psychological, Psychometric, and Personality Research 
[Internet]. Evanston, Illinois: Northwestern University; 2019. Available from: https://CRAN.R
project.org/package=psych

37. Hennig C fpc: Flexible Procedures for Clustering [Internet]. 2019. Available from: https://
CRAN.R-project.org/package=fpc

38. Hennig C Cluster-wise assessment of cluster stability. Comput Stat Data Anal [Internet]. 
2007 9 15;52(1):258–71. Available from: http://www.sciencedirect.com/science/article/pii/
S0167947306004622

39. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine 
Learning in Python. J Mach Learn Res. 2011;12:2825–30.

40. Chen G, Bhojani MS, Heaford AC, Chang DC, Laxman B, Thomas DG, et al. Phosphorylated 
FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung 
adenocarcinomas. Proc Natl Acad Sci U S A [Internet]. 2005 8 30;102(35):12507–12. Available 
from: 10.1073/pnas.0500397102 [PubMed: 16109772] 

41. Lawrence T, Bebien M, Liu GY, Nizet V, Karin M. IKKalpha limits macrophage NF
kappaB activation and contributes to the resolution of inflammation. Nature [Internet]. 2005 4 
28;434(7037):1138–43. Available from: 10.1038/nature03491 [PubMed: 15858576] 

42. Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells 
[Internet]. 2016 3 18;5(1). Available from: 10.3390/cells5010012

43. Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular 
mechanisms. Nat Rev Neurosci [Internet]. 2007 1;8(1):57–69. Available from: 10.1038/nrn2038 
[PubMed: 17180163] 

44. Barger SW, Hörster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis 
factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for 

Lee et al. Page 14

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jmlr.org/papers/v13/bergstra12a.html
http://www.jmlr.org/papers/v13/bergstra12a.html
https://projecteuclid.org/euclid.ss/1294167961
https://www.R-project.org/
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=fpc
http://www.sciencedirect.com/science/article/pii/S0167947306004622
http://www.sciencedirect.com/science/article/pii/S0167947306004622


involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. 
Proc Natl Acad Sci U S A [Internet]. 1995 9 26;92(20):9328–32. Available from: 10.1073/
pnas.92.20.9328 [PubMed: 7568127] 

45. Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP. Lipopolysaccharide-induced interleukin 
(IL)-4 receptor-α expression and corresponding sensitivity to the M2 promoting effects of IL-4 
are impaired in microglia of aged mice. Brain Behav Immun [Internet]. 2012 7;26(5):766–77. 
Available from: 10.1016/j.bbi.2011.10.003 [PubMed: 22024136] 

46. Mehta D, Raison CL, Woolwine BJ, Haroon E, Binder EB, Miller AH, et al. Transcriptional 
signatures related to glucose and lipid metabolism predict treatment response to the tumor necrosis 
factor antagonist infliximab in patients with treatment-resistant depression. Brain Behav Immun 
[Internet]. 2013 7;31:205–15. Available from: 10.1016/j.bbi.2013.04.004 [PubMed: 23624296] 

47. Lügering A, Schmidt M, Lügering N, Pauels HG, Domschke W, Kucharzik T. Infliximab 
induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using 
a caspase-dependent pathway. Gastroenterology [Internet]. 2001 11;121(5):1145–57. Available 
from: 10.1053/gast.2001.28702 [PubMed: 11677207] 

48. Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG, Gottlieb AB. Efficacy and safety 
of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet [Internet]. 2001 6 
9;357(9271):1842–7. Available from: 10.1016/s0140-6736(00)04954-0 [PubMed: 11410193] 

49. Horiuchi T, Mitoma H, Harashima S-I, Tsukamoto H, Shimoda T. Transmembrane TNF
alpha: structure, function and interaction with anti-TNF agents. Rheumatology [Internet]. 2010 
7;49(7):1215–28. Available from: 10.1093/rheumatology/keq031 [PubMed: 20194223] 

50. Mitoma H, Horiuchi T, Hatta N, Tsukamoto H, Harashima S-I, Kikuchi Y, et al. 
Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through 
transmembrane TNF-alpha. Gastroenterology [Internet]. 2005 2;128(2):376–92. Available from: 
10.1053/j.gastro.2004.11.060 [PubMed: 15685549] 

51. Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muià C, Esposito E, et al. TNF-alpha blockage 
in a mouse model of SCI: evidence for improved outcome. Shock [Internet]. 2008 1;29(1):32–41. 
Available from: 10.1097/shk.0b013e318059053a [PubMed: 17621255] 

52. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. 
Oncogene [Internet]. 2006 10 30;25(51):6706–16. Available from: 10.1038/sj.onc.1209933 
[PubMed: 17072323] 

53. Lügering A, Lebiedz P, Koch S, Kucharzik T. Apoptosis as a therapeutic tool in IBD? Ann N 
Y Acad Sci [Internet]. 2006 8;1072:62–77. Available from: 10.1196/annals.1326.013 [PubMed: 
17057191] 

54. Nikolaus S, Raedler A, Kühbacker T, Sfikas N, Fölsch UR, Schreiber S. Mechanisms in failure of 
infliximab for Crohn’s disease. Lancet [Internet]. 2000 10 28;356(9240):1475–9. Available from: 
10.1016/s0140-6736(00)02871-3 [PubMed: 11081530] 

55. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated 
inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced 
insulin resistance. Science [Internet]. 1996 2 2;271(5249):665–8. Available from: 10.1126/
science.271.5249.665 [PubMed: 8571133] 

56. Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA. Modulation of insulin-stimulated 
degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem 
[Internet]. 2003 3 7;278(10):8199–211. Available from: 10.1074/jbc.M209153200 [PubMed: 
12510059] 

57. Stagakis I, Bertsias G, Karvounaris S, Kavousanaki M, Virla D, Raptopoulou A, et al. Anti-tumor 
necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in 
active rheumatoid arthritis patients with high insulin resistance. Arthritis Res Ther [Internet]. 2012 
6 12;14(3):R141. Available from: 10.1186/ar3874 [PubMed: 22691241] 

58. Hançer NJ, Qiu W, Cherella C, Li Y, Copps KD, White MF. Insulin and metabolic stress stimulate 
multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine 
phosphorylation. J Biol Chem [Internet]. 2014 5 2;289(18):12467–84. Available from: 10.1074/
jbc.M114.554162 [PubMed: 24652289] 

Lee et al. Page 15

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



59. Ho RCM, Chua AC, Tran BX, Choo CC, Husain SF, Vu GT, et al. Factors Associated with the Risk 
of Developing Coronary Artery Disease in Medicated Patients with Major Depressive Disorder. Int 
J Environ Res Public Health [Internet]. 2018 9 21;15(10). Available from: 10.3390/ijerph15102073

60. Goldstein BI, Carnethon MR, Matthews KA, McIntyre RS, Miller GE, Raghuveer G, 
et al. Major Depressive Disorder and Bipolar Disorder Predispose Youth to Accelerated 
Atherosclerosis and Early Cardiovascular Disease: A Scientific Statement From the American 
Heart Association. Circulation [Internet]. 2015 9 8;132(10):965–86. Available from: 10.1161/
CIR.0000000000000229 [PubMed: 26260736] 

61. Rosenstiel P, Agnholt J, Kelsen J, Medici V, Waetzig GH, Seegert D, et al. Differential 
modulation of p38 mitogen activated protein kinase and STAT3 signalling pathways by 
infliximab and etanercept in intestinal T cells from patients with Crohn’s disease. Gut [Internet]. 
2005 2;54(2):314–5; author reply 316–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/
15647208 [PubMed: 15647208] 

62. Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S. p38 mitogen-activated protein 
kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol 
[Internet]. 2002 5 15;168(10):5342–51. Available from: 10.4049/jimmunol.168.10.5342 [PubMed: 
11994493] 

63. Waetzig GH, Rosenstiel P, Nikolaus S, Seegert D, Schreiber S. Differential p38 mitogen
activated protein kinase target phosphorylation in responders and nonresponders to infliximab. 
Gastroenterology [Internet]. 2003 8;125(2):633–4; author reply 635–6. Available from: 10.1016/
s0016-5085(03)00979-x [PubMed: 12891581] 

Lee et al. Page 16

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/pubmed/15647208
https://www.ncbi.nlm.nih.gov/pubmed/15647208


Figure 1. 
We used an iterative, machine learning-based approach to investigate peripheral markers 

of inflammatory activation relevant to infliximab’s hypothesized mechanism of action. 

a. Plasma cytokine and neuronal origin-enriched extracellular vesicle (NEV) protein 

concentrations, assessed at weeks 0, 2, 6, and 12, were evaluated to identify mechanistically 

relevant inflammatory biotypes: principal axis factor analyses of plasma cytokine 

concentrations reduced the number of cytokine measurements to three factors; next, k-means 

clustering of cytokine factor scores stratified subjects by baseline cytokine concentrations 
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and yielded three biotypes. Generalized estimating equations were used to evaluate to what 

extent these three biotypes moderate infliximab’s effects on neurobiological substrates (i.e., 

by comparing change in NEV concentrations across time, treatment groups, and biotypes). 

Similarly, we evaluated the biotypes’ clinical utility by evaluating their role in moderating 

change in SHAPS and MADRS total scores using generalized estimating equations. Finally, 

classification and regression trees assessed the predictive utility of the three data-driven 

biotypes. Plasma NEV biomarker concentrations were reduced to two factors, given their 

interrelatedness, for improved interpretability.

Figure 1b. Principal axis factor analyses with varimax rotation were performed for 

peripheral cytokine measurements. Rotated factor loadings are presented as standardized 

z-scores. Fit indices: (left) KMO = 0.76, RMSEA = 0.12 (95%CI: 0.074, 0.16), SRMR = 

0.03, TLI = 0.88; (right) KMO = 0.70, RMSEA = 0.29 (95%CI: 0.237, 0.346), SRMR = 

0.04, TLI = 0.72.

Abbreviations: CI: confidence interval; IL: interleukin; KMO: Kaiser-Meyer-Olkin; NEV: 

neuronal origin-enriched extracellular vesicle factor; p-: phosphorylated; p-FADD:pS194

Fas-associated protein with death domain; p-IKKα/β: pS177/181-IκB kinase; p-IRS1: 

pS312-insulin receptor substrate-1; p-JNK: pT183/Y185-c-Jun N-terminal kinase; p-NFκB: 

pS536-nuclear factorκ-light-chain-enhancer of activated B cells; PL: plasma cytokine factor; 

p-p38: pT180/Y182-p38 mitogen-activated protein kinase;RMSEA: Root Mean Square 

Error of Approximation; SRMR: Standardized Root Mean Square Residual; sTNFR: soluble 

TNFR; TLI: Tucker-Lewis Index; TNF: tumour necrosis factor; TNFR: TNF receptor.

Figure 1c. Mean (left) standardized cytokine factor scores and (right) z-scores of individual 

plasma biomarker measurements are presented by cluster biotypes at baseline. Subjects with 

bipolar disorder, meeting criteria for a current major depressive episode at the time of study 

enrollment, were stratified by baseline cytokine factor scores into three biotypes through k

means clustering (2000-bootstrapped Jaccard coefficients = 0.79, 0.92, 0.77). Abbreviations: 
IL: interleukin; PL: plasma factor; sTNFR: soluble TNF receptor; TNF: tumour necrosis 
factor.
Figure 1d. Classification and regression trees were used to predict change in anhedonic 

symptom severity from baseline-to-endpoint as a proportion of baseline severity: 

(SHAPSWeek 6 or 12 −SHAPSWeek 0)/SHAPSWeek 0. Fit indices: r2 = 0.22, RMSE = 0.08. 

Abbreviations: mse: mean squared error; NEV: exosome factor 1 (p-NFκB, p-FADD, 
p-IKKα/β, TNFR1), 2 (p-IRS1, p-JNK, p-p38); RMSE: root-mean-square error; SHAPS: 
Snaith-Hamilton Pleasure Scale.
Figure 1e. Differences in mean change in (a) SHAPS and (b) MADRS total scores between 

infliximab- and placebo-randomized subjects with bipolar I/II depression, stratified by 

baseline cytokine biotypes. Increases in SHAPS and decreases in MADRS total scores 

indicate improvements in hedonic capacity and reductions in overall depressive symptom 

severity, respectively. Abbreviations: LSMD: least squares mean difference; MADRS: 
Montgomery-Asberg Depression Rating Scale (range 0 to 60); SHAPS: Snaith-Hamilton 
Pleasure Scale (14 to 56); *: Significant (p<0.05) baseline-to-endpoint change within the 
treatment-biotype group.
Figure 1f. Mean difference in change in NEV factor scores between infliximab- and 

placebo-randomized patients with bipolar I/II depression, stratified by baseline biotype. 

Abbreviations: NEV: exosome factor 1 (p-NFκB, p-FADD, p-IKKα/β, TNFR1), 2 (p-IRS1, 
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p-JNK, p-p38); LSMD: least squares mean difference; *: Significant (p < 0.05) baseline-to
endpoint change within the treatment-biotype group.
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Figure 2. 
Hypothesized mechanism of action of infliximab in bipolar depression. Abbreviations: AP1: 
activator protein 1; AKT: protein kinase B; ERK1/2: extracellular signal-regulated kinases 
1/2; FADD: Fas-associated protein with death domain; GRB2: growth factor receptor-bound 
protein 2; GSK3β: glycogen synthase kinase 3β; IκBα: inhibitor of NF-κB,α; IKKα/β: 
IκB kinase; IL: interleukin; IRAK: IL-1 receptor-associated kinase; IRS1: insulin receptor 
substrate-1; JNK: c-Jun N-terminal kinase; MAPK: mitogen activated protein kinase; MEK: 
MAPK/ERK kinase; MEKK1: MAPK/ERK kinase kinase 1; mTOR: mechanistic target of 
rapamycin; mTORC1: mTOR complex 1; mTORC2: mTOR complex 2; NFκB: nuclear 
factor κ-light-chain enhancer of activated B cells; NIK: NFκB inducing kinase; NOS: nitric 
oxide synthase; p38: p38 MAPK; PI3K: phosphoinositide 3-kinase; PSD-95: postsynaptic 
density protein 95; RIP: receptor-interacting protein; ROS: reactive oxygen species; S6K: 
p70S6 kinase; sTNFR: soluble TNFR; TLR: toll-like receptor; TNF: tumour necrosis factor; 
TNFR: TNF receptor; TRADD: TNFR-associated death domain; TRAF2: TNFR-associated 
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factor 2. Original illustration created with BioRender.com by Yena Lee. The figure was 

exported under a paid subscription.
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Table 1.

Model effects of baseline cytokine biotypes on measures of anhedonia (SHAPS) and overall depressive 

symptom severity (MADRS) in patients with bipolar I/II disorder who were experiencing a current major 

depressive episode at the time of study enrollment. A generalized estimating equation with a negative binomial 

distribution and autoregressive covariance structure was used.

Model effects
SHAPS MADRS

df χ 2 p df χ 2 p

Time 2 19.89 <0.001 3 73.66 <0.001

Treatment 1 0.005 0.946 1 0.29 0.593

Biotype 2 0.003 0.999 2 1.55 0.460

Time × Treatment 2 8.26 0.016 3 7.22 0.065

Time × Biotype 4 2.31 0.679 6 1.36 0.968

Treatment × Biotype 2 0.06 0.972 2 0.87 0.649

Time × Treatment × Biotype 4 10.40 0.034 6 5.13 0.528

Abbreviations: df: degree of freedom; MADRS: Montgomery-Asberg Depression Rating Scale (0 to 60); SHAPS: Snaith-Hamilton Pleasure Scale 
(14 to 56).
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Table 2.

Model effects of baseline cytokine biotypes on plasma cytokine and NEV factor scores. A generalized 

estimating equation with a gamma distribution and exchangeable covariance structure was used.

Model effects df
PL1 PL2 PL3 NEV1 NEV2

χ2 p χ2 p χ2 p χ2 p χ2 p

Time 3 6.86 0.08 1.35 0.72 39.77 <0.01 16.85 <0.01 3.80 0.28

Treatment 1 0.03 0.86 0.56 0.45 24.32 <0.01 1.36 0.24 0.02 0.88

Biotype 2 437.12 <0.01 48.88 <0.01 0.44 0.80 9.62 <0.01 3.50 0.17

Time × Treatment 3 4.88 0.18 1.20 0.75 14.81 <0.01 0.85 0.84 4.26 0.24

Time × Biotype 6 22.33 <0.01 12.22 0.06 13.79 0.03 13.48 0.04 5.68 0.46

Treatment × Biotype 2 3.02 0.22 2.23 0.33 0.40 0.82 1.32 0.52 0.16 0.92

Time × Treatment × Biotype 6 17.02 <0.01 3.73 0.71 10.74 0.10 18.21 <0.01 6.57 0.36

Abbreviations: df: degree of freedom; NEV: neuronal origin-enriched extracellular vesicle factor; SHAPS: Snaith-Hamilton Pleasure Scale; PL: 
plasma cytokine factor; ΔSHAPS: (SHAPSWeek 6 or 12 − SHAPSWeek 0)/SHAPSWeek 0

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.


	Abstract
	Introduction
	Materials and methods
	Study Design and Clinical Trial Data
	Dataset Description
	Plasma Sample Collection and Analyses
	Cytokine Analysis
	Neuronal Origin-enriched Extracellular Vesicle (NEV) Analysis
	Dimension Reduction
	Model Development
	Statistical Analysis

	Results
	Extraction of Component Factor Scores
	Plasma Cytokine Concentrations Define Three Biotypes
	Baseline Biotypes Predict Treatment Outcomes
	Baseline Biotypes Moderate Treatment Effects on Plasma Cytokines and Neuronal Origin-enriched Extracellular Vesicles

	Discussion
	References
	Figure 1
	Figure 2.
	Table 1.
	Table 2.



