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The Ridesharing Routing Problem with Flexible Pickup 
and Drop-off Points 

EXECUTIVE SUMMARY 

Ridesharing can be an effective way of reducing traffic congestion and providing flexible and 
cheap commutes to passengers. Research has shown that ridesharing systems can increase the 
efficiency of transportation systems by using unused spaces on vehicles and providing 
convenient rides to commuters. This is especially applicable to dense urban areas such as Los 
Angeles and Orange County. One of the major drawbacks of the ridesharing system is the 
excessive detours drivers have to take to pick up commuters. This not only is an inconvenience 
to rideshare drivers by also increases travel and waiting times for passengers. 

One way this can be reduced is through flexible pickup and drop-off points where passengers 
walk to a certain meeting point to be picked up or dropped off. Research has shown that this 
can reduce travel time for all the users in the rideshare system. Although few of the existing 
literature has considered carpool rideshare system optimization with flexible meeting points, to 
the best of our knowledge none of the papers have proposed an optimization-based solution 
procedure and are based on metaheuristics.  

In this research project, we propose a dynamic programming-based solution approach and two 
optimization-based heuristics using Branch and Price to solve the rideshare routing problem 
with flexible pickup and drop-off points. We consider flexible meeting points and consider the 
possible use of High Occupancy Lanes (HOV). We also take into consideration the time limits of 
passengers and drivers. We aim to reduce the travel time for drivers while ensuring the 
maximum number of commuters will be serviced. We developed a Mixed Integer Nonlinear 
Program (MINLP) which we decompose into two smaller problems, a route selection problem 
and a pickup and drop-off point selection problem. To solve the decomposed model, we 
developed three separate approaches. First is an exhaustive route enumeration algorithm (REA) 
where we generate all possible feasible routes and their corresponding pickup and drop-off 
points. The second one is a branch and price-based algorithm with simultaneous routing and 
pickup and drop-off point selection. The third one is also branch and price algorithm but with 
sequential routing and pickup and drop-off point selection. 

Numerical experiments show that having flexibility in pickup and drop-off points and allowing 
passengers to walk up to a maximum of 8 minutes can reduce travel time by 18% on average. 
We also conduct several sensitivity analyses that show that passenger service rate is directly 
affected by the number of rideshare drivers in the system. These analyses also show increasing 
the maximum walking tolerance directly results in decreased total travel time, commuter 
waiting time, and commuter in-vehicle time. Specifically, 8 minutes of passenger walking can 
decrease the passenger waiting time by 43%. We also found that walking does not affect 
passenger service rate when the number of drivers in the system is fixed. 
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Introduction  

Traffic congestion is a major problem in large metropolitan areas like Los Angeles and San 
Francisco Bay area. In 2019, on average a commuter lost about 54 hours or about 1170 USD in 
monetary terms annually due to congestion nationwide, which amounts to 8.7 billion lost hours 
in total (Lasley, 2021). Although major infrastructure projects have been taken to alleviate this 
problem, they cannot keep up with the increase in the usage of personal vehicles (Cheng et al., 
2020). On the other hand, these personal vehicles are highly inefficient modes of transport as 
they usually have a low occupancy rate and take up a lot of space. In 2017, the average vehicle 
occupancy was only 1.67 (Lasley, 2021). One way of reducing congestion that has shown some 
promise is ridesharing. Research says that ridesharing can lessen traffic congestion by 
increasing the efficiency of the transportation system by using empty spaces in vehicles and 
reducing the need for personal vehicles (Hu et al., 2021; Z. Li et al., 2021). 

It is to be noted that we differentiate between commercial ridesharing services which we 
denote as ride-hailing and carpool ridesharing. In commercial ride-hailing services, drivers 
provide services which is similar to traditional taxicabs. Here their objective is to earn income. 
On the other hand, in carpool ridesharing, the drivers are regular commuters, and they take 
detours to pick up passengers on their way to their destinations. The objective here is travel 
cost mitigation. Commercial ride-hailing services such as Uber and Lyft have been providing 
flexible and on-demand rides to commuters for many years and currently are very popular 
(Hampshire et al., 2017). However, studies show that they exacerbate the congestion problem 
as they increase deadhead miles and traffic volume (Z. Li et al., 2021). Carpool ridesharing has 
the potential to solve these problems (Fielbaum et al., 2021).  

For a rideshare system to be efficient, one problem that needs to be addressed is how to 
provide the best routes to the drivers so that they can go to their destination while picking up 
passengers and delivering them to their destination in the minimum possible time and at the 
same time satisfying drivers’ and passengers’ time limits. In this research project, we aim to 
address this problem.  

A drawback of the rideshare system is the excessive detour drivers must take to pick up and 
drop off passengers. This can be reduced by incorporating flexible pickup and drop-off points, 
where passengers walk to a common area to be picked up or walk to their destination from the 
said common area. Research has shown that this can reduce the total travel time of drivers by 
more than 10% (Fielbaum et al., 2021). We aim to incorporate this walking feature into the 
rideshare routing problem. For convenience, we denote the pickup and drop-off points as 
meeting points. 

The rideshare routing problem with flexible meeting points is a generalization of pickup and 
delivery problems (PDP) and dial-a-ride problems (DARP) (B. Li et al., 2016). Numerous papers 
have been published which discuss the PDP and DARP problems and ways to solve them. 
Although few of the studies have already considered the rideshare routing problem with 
flexible meeting points (Fielbaum, 2022; Fielbaum et al., 2021; X. Li et al., 2018), they all 
propose metaheuristics or insertion heuristics to solve them and consider a limited set of 
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potential pickup/drop-off points. These proposed methods can have a larger gap to the optimal 
solution compared to optimization-based heuristics. Also, by limiting the pickup or drop-off 
points to a discrete set of points, travel time savings can be less compared to a continuous set 
of pickup/drop-off points. To the best of our knowledge, no optimization-based solution 
methods have been proposed to solve this problem. Also, no studies have considered a 
continuous set of pickup/drop-off points. Therefore, in this research project, we aim to provide 
optimization-based solution approaches to solve the rideshare routing problem with a 
continuous set of flexible pickup and drop-off points. We aim to develop efficient optimization-
based heuristics that can solve medium-sized instances within a reasonable amount of CPU 
time. We consider the pickup and drop-off time limit for passengers and the destination time 
limit for drivers. In addition, we also consider the possible usage of High Occupancy Vehicle 
(HOV) lanes to reduce the travel time. However, the ridesharing system we consider is static 
and deterministic which may not be robust to changes in request cancellation and traffic 
congestion.  

The rest of the report is organized as follows: In the Literature Review section, we give a brief 
review of the studies done to date and the state-of-the-art. The Problem Description section 
describes the problem in mathematical terms. The Solution Methodology section presents the 
proposed solution approaches. The Numerical Experiments section describes the numerical 
studies conducted, the dataset on which they are conducted, and the results. Finally, we end 
the report with a summary and directions for future research in the Conclusions section. 

Literature Review 

As mentioned previously, the rideshare routing problem is a generalization of the Pickup and 
Delivery Problem (PDP), which is in turn a generalization of the Vehicle Routing Problem (VRP). 
There is a vast collection of published research on the VRP. Many solution methodologies have 
been proposed such as Bender’s Decomposition (Alkaabneh et al., 2020) Branch and Price 
(Christiansen & Lysgaard, 2007; Desrochers et al., 1992), Branch and Cut (Letchford et al., 2007) 
Branch and Price and Cut (Costa et al., 2019; Desrosiers & Lübbecke, 2011). VRP is a NP-hard 
problem (Archetti et al., 2011), so various metaheuristics methods have been proposed to 
approximately solve it such as the genetic algorithm (Baker & Ayechew, 2003), tabu search (Jia 
et al., 2013), simulated annealing (C. Wang et al., 2015). For a comprehensive review, we 
redirect the readers to the review of Eksioglu et al. (2009) and Pillac et al. (2013). 

The Pickup and Delivery Problem (PDP) expands on the VRP by adding deliveries. Just like the 
VRP, there is a wide array of literature on this topic. There are many variants of the PDP, the 
most prominent in the literature is pickup and delivery with time windows (PDPTW). Dumas et 
al. (1991) developed a branch and price algorithm for the PDPTW. Lu & Dessouky (2004) 
provided a Branch and Cut algorithm for the problem. Subramanian et al. (2013) developed a 
Branch and Cut and Price (BCP) algorithm for the problem. They used rounded capacity cuts, 
bound cuts, and strengthened comb cuts. They were able to solve 4 previously unsolved 
instances. Cherkesly et al. (2015) also developed a BCP algorithm for the PDPTW but they also 
added an extra feature namely Last-in-First-out loading (LIFO). Heuristics and metaheuristics 
have also been used to solve the PDPTW such as the construction heuristic (Lu & Dessouky, 
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2006; Xiang et al., 2006), simulated annealing (C. Wang et al., 2015), tabu search (Nanry & 
Wesley Barnes, 2000) and genetic algorithm (Baker & Ayechew, 2003). 

The Dial-a-Ride Problem (DARP) is a special variant of the PDPTW where instead of goods, 
vehicles carry passengers. There is a central depot where it is assumed that an unlimited supply 
of vehicles is available. The objective is to reduce the total travel time or distance and at the 
same time reduce the number of vehicles used. There have been quite a few papers published 
that focus on DARP specifically. Here we discuss a few of the more recent developments. 
Gschwind & Irnich (2015) provided a Branch and Price methodology for solving the DARP with 
dynamic time windows. They define a dynamic time window as the upper bound of the 
difference between the pickup time and drop-off time of a passenger. More recently, Rist & 
Forbes (2021) provided a new fragment-based formulation that is based on the work of 
Gshcwind and Irnich. They define a fragment to be a partial route where at the last node a 
vehicle is empty. They solved the model using a Branch and Cut algorithm and showed that 
their formulation and method are superior to Branch and Price and Cut based methods. In a 
later paper, they also developed a Bender’s decomposition-based solution approach which 
outperformed all state-of-the-art solution approaches and was able to solve 11 unsolved 
benchmark instances of Riedler & Raidl, (2018).  

Rideshare Routing Problem 

The rideshare routing problem can be perceived as a variation of the DARP, but there is one 
significant difference. In the rideshare problem, there is no central depot. Instead, the vehicles 
(or drivers) have their own origins and destinations which can be spread throughout the 
network. In addition, the drivers have their destination time limits. This adds further complexity 
to the already difficult dial-a-ride problem. But unlike PDPTW or DARP, rideshare routing 
problems have not gotten as much attention in the literature. In recent years, the need to solve 
traffic congestion and the rise and success of commercial rideshare services have shifted the 
attention of researchers to this problem.  

One of the earliest studies on this topic was by Baldacci et al. (2004) who proposed an exact 
solution approach to solve the to-and-from work carpooling problem. Their method was based 
on calculating lower bounds of the integer formulation and dynamically generating routes. They 
were able to solve an instance of up to 250 customers. Some studies focused on the optimal 
matching of drivers and commuters. For example, Agatz et al. (2011) formulated a bipartite 
matching integer model to optimally assign passengers to rideshare drivers. In addition, they 
also included a greedy insertion heuristic. X. Wang et al. (2016) proposed a heuristic solution 
approach for solving the rideshare routing problem. They used an insertion heuristic, adjust 
pickup time heuristic, and tabu search to provide good quality routes. They also used 4 sets of 
valid inequalities to strengthen the formulation. They considered the usage of HOV lanes and 
how the time savings in HOV lanes affect the optimal routes. Alonso-Mora et al. (2017) 
proposed an online ridesharing assignment algorithm that can optimize a large-scale 
ridesharing network in real time. The authors conducted experiments using New York Taxicab 
dataset considering the full Manhattan road network. They also conducted sensitivity analysis 
with respect to waiting time, fleet size, vehicle capacity and travel delay.  In a later paper, 
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Simonetto et al. (2019) proposed a new approach for online ridesharing assignment. They 
showed that by limiting the assignment of a vehicle to at most one customer, they can achieve 
four times faster execution time without a significant loss in solution quality compared to the 
approach of Alonso-Mora et al. Their approach can be implemented on less demanding 
hardware and can be implemented in a multi-company ridesharing scenario. Hasan et al. (2020) 
developed a Branch-and-Price algorithm for the commute ridesharing problem. Their model 
had the unique feature of driver-passenger flexibility where if needed any number of 
passengers can be assigned as drivers. They also used machine learning-based clustering of 
nodes to make their algorithm more efficient. For a comprehensive review of the rideshare 
routing problem, we refer the readers to the studies by N. Agatz et al. (2012), Furuhata et al. 
(2013), and Wang & Yang (2019).  

Rideshare Routing with Flexible Pickup and Drop-off Points 

Incorporating flexibility in pick-up and drop-off points can result in travel time savings. A few 
studies have incorporated this feature into their routing problem. Li et al. (2016) devised a 
dynamic programming-based approach for the multi-meeting point ridesharing problem. Here, 
instead of directly incorporating walking, they provide a finite set of pickup and drop-off points 
for each passenger, from which the algorithm chooses the optimal one. Li et al. (2018) 
developed a tabu search-based solution approach to solve the problem. They did not consider 
any additional pickup or drop-off points. Instead, they considered other passengers’ 
pickup/drop-off points as the potential pickup/drop-off point for a passenger. They found 2.7%-
3.8% time savings as a result of incorporating walking for a 10-passenger rideshare network. 
They concluded that time savings increases as the rideshare network increases in size. Fielbaum 
(2022) developed a polynomial time algorithm for selecting stopping points for passengers for a 
single vehicle case and showed that travel time can be reduced by 20% if detours to pick-up or 
drop-off passengers can be completely avoided. In a previous paper, Fielbaum et al. (2021) 
studied the multi-vehicle dynamic rideshare system, where they developed an insertion-based 
heuristic to solve the passenger-driver assignment problem. The authors considered a finite 
number of points in the neighborhood of a passenger’s originally requested origin or 
destination point as the potential new pickup or drop-off points. They tested their algorithm on 
a New York City Taxicab dataset and found that introducing walking to the carpool rideshare 
can reduce request rejections by 80% and reduce travel time by 10%.  

To the best of our knowledge, no studies have considered a continuous set of potential pickup 
or drop-off points. Also, these studies proposed metaheuristics or insertion heuristics to solve 
the rideshare routing problem. In this study, we propose three optimization-based heuristics 
that can solve medium size rideshare networks efficiently. We propose an exact formulation for 
the problem which we later decompose into a separate routing and pickup/drop-off point 
selection problem. Our pickup/drop-off point selection problem considers any point that is 
within the walking distance from the passenger origin/destination as a potential meeting point. 
We propose a dynamic programming-based heuristic and two branch-and-price-based 
heuristics. To the best of our knowledge, this is the first study that proposes branch-and-price-
based procedures for solving the rideshare routing problem with flexible pickup and drop-off 
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points. We test the performance of the algorithms on a San Francisco Taxicab dataset. We also 
conduct sensitivity analysis which will give us valuable insights into the rideshare network. 

Problem Description 

In this section, we introduce the mathematical model for the rideshare routing and meeting 
point selection problem and the related notations. In this model, we have a set of 𝑚 drivers 
{1,2, … , 𝑚} and a set of 𝑛 passengers {𝑚 + 1, 𝑚 + 2, … , 𝑚 + 𝑛}. For this problem, we assume 
all the passenger requests are known before the planning horizon begins and the travel times 
between the arcs are known and static. Therefore, we consider a static rideshare system. Each 
driver and passenger have an origin and a destination. Passenger (Driver) origin nodes are 
represented by 𝑂𝑃 (𝑂𝑉) and destination nodes are represented by 𝐷𝑃 (𝐷𝑉). We use the same 
set notation of drivers and passengers to describe the set of origin points for drivers and 
passengers i.e., 𝑂𝑉 = {1,2, … , 𝑚}, 𝑂𝑃 = {𝑚 + 1, 𝑚 + 2, … , 𝑚 + 𝑛}. The destination node sets 
for drivers are designated by 𝐷𝑉 = {𝑚 + 𝑛 + 1, 𝑚 + 𝑛 + 2, … , 2𝑚 + 𝑛} and for passengers, it is 
designated by 𝐷𝑃 = {2𝑚 + 𝑛 + 1, 2𝑚 + 𝑛 + 2, … , 2𝑚 + 2𝑛}. To represent the problem 
mathematically, we assume we have a graph 𝐺(𝑁, 𝐴) where 𝑁 is the set of nodes i.e., 𝑁 =
𝑂𝑉 ∪  𝑂𝑃 ∪  𝐷𝑃 ∪  𝐷𝑉. 𝐴 = {(𝑖, 𝑗): 𝑖 ∈  𝑁 ;  𝑗 ∈  𝑁 } is the set of arcs between node 𝑖, 𝑗 ∈  𝑁. 
Therefore, our task is to identify sets of optimum routes which are a sequence of arcs. The 
binary decision variable 𝑋𝑖,𝑗,𝑣 takes the value 1 if vehicle 𝑣 ∈ 𝑉 , goes from node 𝑖 ∈ 𝑁 to node 

𝑗 ∈ 𝑁 in the rideshare network and 0 otherwise. Therefore, these decision variables tell us 
which arcs a vehicle will use in its itinerary. 

We denote the time when a node is visited by a driver as 𝑡𝑖  ∀𝑖 ∈  𝑁. Each passenger has an 

origin time window represented by [𝑎𝑞 , 𝑏𝑞] where 𝑞 ∈ 𝑂𝑃 within which they must be picked up. 

They also have a destination time limit 𝑏𝑞 ∀𝑞 ∈ 𝐷𝑃 within which they must be dropped off. We 

assume each driver is traveling to their destination and only takes a detour to pick up a 
passenger and deliver it to its destination when a passenger is assigned to them. Drivers have 
destination time windows that are similarly denoted i.e., 𝑏𝑞 ∀𝑞 ∈ 𝐷𝑉 . They also have a ready 

time 𝑎𝑖 ∀ 𝑖 ∈ 𝑂𝑉 which is the time they will leave for their destination. We assume passengers 
are willing to walk a certain distance to go to their pickup point or walk towards their 
destination if it results in a shorter detour for the driver and minimizes the total travel time. 𝑟𝑖

𝑥  

and 𝑟𝑖
𝑦

 are the coordinates of the originally requested pickup or drop-off points and 𝑙𝑖
𝑥  and 𝑙𝑖

𝑦
 

are the decision variables for the coordinates of the new pickup or drop-off points where 𝑥 and 
𝑦 superscript denotes the x and y coordinates and 𝑖 ∈ 𝑁. Using these coordinates, we 
determine the new travel time 𝑑𝑖,𝑗 between two nodes 𝑖, 𝑗 ∈ 𝑁. Since 𝑑𝑖,𝑗 is dependent on 

decision variables (𝑙𝑖
𝑥, 𝑙𝑖

𝑦
) and (𝑙𝑗

𝑥, 𝑙𝑗
𝑦

), it is also a decision variable. Each passenger has a 

maximum walking distance limit for their origins and destinations which we denote by 𝑊𝑖 ∀𝑖 ∈
𝑂𝑃 ∪ 𝐷𝑃 . 

The nominal travel speed between two nodes 𝑖, 𝑗 ∈ 𝑁 is denoted by 𝛾𝑖,𝑗 . We also assume that 

for some of the arcs (𝑖, 𝑗) ∈  𝐴  𝑖, 𝑗 = 1,2, … ,2𝑚 + 2𝑛 an HOV lane can be used if a vehicle has 
the required number of passengers which will result in a shorter travel time. Thus, a driver will 
use the HOV lane whenever possible. The minimum number of passengers needed to use the 
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HOV lane is denoted by 𝐻. Each vehicle also has a passenger capacity which is denoted by 
𝐶𝑣 ∀𝑣 ∈ 𝑉. The HOV lane time savings factor between node 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁  is denoted by 𝛽𝑖,𝑗. 

Our objective is to find a set of routes for the drivers such that the passengers are picked up 
and delivered to their desired locations within their respective time windows and the total 
travel time is minimized while maximizing the passenger service rate. In case there are no 
compatible passengers the driver will simply go to their respective destinations. We also 
consider the possibility of having flexible meeting points for passengers which will be 
introduced later. 

We next summarize the decision variables and the parameters and then the model is presented 
which is denoted as problem P.  

Decision Variables 

Parameters 

Notation Description 

𝐶𝑣 The capacity of a vehicle 𝑣 ∈ 𝑉 in terms of the number of passengers 

𝑎𝑖 Service start time of node 𝑖 ∈  𝑂𝑉 ∪ 𝑂𝑃 

𝑏𝑖 Service end time of node 𝑖 ∈  𝑂𝑃 ∪ 𝐷𝑉 ∪ 𝐷𝑃 

𝑊𝑖  Maximum walking distance from node 𝑖 ∈  𝑂𝑃 ∪  𝐷𝑃 

𝑟𝑖
𝑥 , 𝑟𝑖

𝑦
 𝑥 and 𝑦 coordinates of node 𝑖 ∈ 𝑁 

𝐻 Required number of passengers for HOV lane 

𝛽𝑖,𝑗   The discounted time factor for taking the HOV lane between node 𝑖 and 𝑗 ∀𝑖, 𝑗 ∈  𝑁 

𝛾𝑖,𝑗   The nominal travel speed of vehicles between node 𝑖 and 𝑗 ∀𝑖, 𝑗 ∈  𝑁 

Notation Description 

𝑥𝑖,𝑗,𝑣   {
1 if a vehicle 𝑣 ∈ 𝑉 travels from node 𝑖 ∈  𝑁 to a node 𝑗 ∈  𝑁 
0 otherwise

 

𝑡𝑖 The time when a vehicle visits node 𝑖 ∈  𝑁 

𝛼𝑖,𝑗,𝑣     {
1 if the HOV lane can be used by a vehicle 𝑣 ∈  𝑉 when going from node 𝑖 ∈  𝑁 to node 𝑗 ∈  𝑁
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑙𝑖
𝑥, 𝑙𝑖

𝑦
  Deviated 𝑥 and 𝑦 coordinates of node 𝑖 ∈  𝑂𝑃 ∪  𝐷𝑃  

𝑑𝑖,𝑗   Travel time from node 𝑖 ∈  𝑁 to node 𝑗 ∈  𝑁 without HOV lanes 

𝑐𝑖,𝑣   Number of passengers in vehicle 𝑣 ∈  𝑉 after visiting node 𝑖 ∈  𝑁 
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𝑐𝑑𝑖 

 

Parameter indicating pick up or drop-off of passengers 

{
   1  if 𝑖 ∈  𝑂𝑃; 
−1 if 𝑖 ∈  𝐷𝑃 ;
    0 otherwise

 

Mathematical Model 

𝑃 = 𝑀𝑖𝑛 ∑ ∑ ∑(1 − 𝛼𝑖,𝑗,𝑣 𝛽𝑖,𝑗) 𝑥𝑖,𝑗,𝑣 𝑑𝑖,𝑗

𝑣∈ 𝑉𝑗∈𝑁

 

𝑖∈ 𝑁

  

Subject to  

∑ ∑ 𝑥𝑖,𝑗,𝑣

𝑣∈ 𝑉𝑗∈ 𝑁

= 1 ∀ 𝑖 ∈  𝑁 ∖ 𝐷𝑉 (1)  

∑ ∑ 𝑥𝑖,𝑗,𝑣

𝑣∈ 𝑉𝑖∈ 𝑁

= 1 ∀ 𝑗 ∈  𝑁 ∖  𝑂𝑉 (2)  

∑ 𝑥𝑖,𝑗,𝑣

𝑗∈ 𝑁

= ∑ 𝑥𝑗,𝑖,𝑣

𝑗∈ 𝑁

 ∀ 𝑖 ∈  𝑂𝑃 ∪  𝐷𝑃 ; ∀ 𝑣 ∈  𝑉 (3)  

∑ 𝑥ℎ,𝑗,𝑣
𝑗∈ 𝑁

= ∑ 𝑥𝑗,ℎ+𝑛+𝑚,𝑣
𝑗∈ 𝑁

  ∀ ℎ ∈  𝑂𝑃 ; ∀ 𝑣 ∈  𝑉 (4)  

∑ 𝑥𝑣,𝑗,𝑣
𝑗∈ 𝑁

= ∑ 𝑥𝑗,𝑣+𝑛+𝑚,𝑣
𝑗∈ 𝑁

        ∀ 𝑣 ∈  𝑂𝑉  (5)  

∑ 𝑥𝑣,𝑗,𝑣

𝑗∈ 𝑁∖𝑂𝑉

= 1  ∀ 𝑣 ∈  𝑂𝑉  (6)  

∑ 𝑥𝑗,𝑣+𝑛+𝑚,𝑣
𝑗∈ 𝑁∖𝐷𝑉

= 1  ∀ 𝑣 ∈  𝑂𝑉  (7)  

𝑥𝑖,𝑗,𝑣 = 0 ∀ 𝑖 ∈  𝐷𝑣 ; ∀ 𝑗 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (8)  

𝑥𝑖,𝑖,𝑣 = 0 ∀ 𝑖 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (9)  

𝑡𝑖 + 𝑑𝑖,𝑗 + 𝑀(1 − 𝑥𝑖,𝑗,𝑣) ≤  𝑡𝑗     ∀ 𝑖 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (10)  

𝑡𝑗 ≥  𝑎𝑗  ∀ 𝑗 ∈  𝑂𝑃 ∪ 𝑂𝑣 ; ∀ 𝑣 ∈  𝑉 (11)  

𝑡𝑗 ≤  𝑏𝑗  ∀ 𝑗 ∈  𝑂𝑃 ∪ 𝐷𝑝 ∪ 𝐷𝑉  ; ∀ 𝑣 ∈  𝑉 (12)  

𝑡𝑞+𝑛+𝑚 ≥  𝑡𝑞     ∀ 𝑞 ∈  𝑂𝑃 ; ∀ 𝑣 ∈  𝑉 (13)  
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𝑐𝑖,𝑣 + 𝑐𝑑𝑖 + 𝑀 (1 − 𝑥𝑖,𝑗,𝑣) ≤ 𝑐𝑗,𝑣  ∀ 𝑖 ∈  𝑁 ; ∀ 𝑗 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (14)  

𝑐𝑖,𝑣 ≤  𝐶  ∀ 𝑖 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (15)  

𝑐𝑖,𝑣 = 0  ∀ 𝑖 ∈  𝑂𝑉 ∪  𝐷𝑉 ; ∀ 𝑣 ∈  𝑉 (16)  

(𝑙𝑖
𝑥 − 𝑙𝑗

𝑥)
2

+ (𝑙𝑖
𝑦

− 𝑙𝑗
𝑦

)
2

= 𝛾𝑖,𝑗
2  𝑑𝑖,𝑗

2       ∀ 𝑖, 𝑗 ∈  𝑂𝑃 ∪  𝐷𝑃 (17)  

(𝑟𝑖
𝑥 − 𝑙𝑗

𝑥)
2

+ (𝑟𝑖
𝑦

− 𝑙𝑗
𝑦

)
2

= 𝛾𝑖,𝑗
2  𝑑𝑖,𝑗

2     ∀ 𝑖 ∈  𝑂𝑉 ; ∀ 𝑗 ∈  𝑂𝑃 (18)  

(𝑙𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑙𝑖
𝑦

− 𝑟𝑗
𝑦

)
2

= 𝛾𝑖,𝑗
2  𝑑𝑖,𝑗

2        ∀ 𝑖 ∈  𝐷𝑃 ; ∀ 𝑗 ∈  𝐷𝑉  (19)  

(𝑟𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑟𝑖
𝑦

− 𝑟𝑗
𝑦

)
2

= 𝛾𝑖,𝑗
2  𝑑𝑖,𝑗

2       ∀ 𝑖 ∈  𝑂𝑉 ; ∀ 𝑗 ∈  𝐷𝑉  (20)  

(𝑙𝑖
𝑥 − 𝑟𝑖

𝑥)2 + (𝑙𝑖
𝑦

− 𝑟𝑖
𝑦

)
2

≤  𝑊𝑖
2 ∀ 𝑖 ∈  𝑂𝑃 ∪  𝐷𝑃  (21)  

∑ 𝑥𝑘,𝑖,𝑣𝑘∈𝑁
 𝑐𝑑𝑘 ≥ 𝐻 − 𝑀(1 − 𝛼𝑖,𝑗,𝑣  )    ∀ 𝑖 ∈  𝑁 ; ∀ 𝑗 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (22)  

𝑡𝑖 ≥  0  ∀ 𝑖 ∈  𝑁 ; ∀ 𝑖 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (23)  

𝑥𝑖,𝑗,𝑣 ∈  {0,1} ∀ 𝑖 ∈  𝑁 ; ∀ 𝑗 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (24)  

𝛼𝑖,𝑗,𝑣 ∈  {0,1} ∀ 𝑖 ∈  𝑁 ; ∀ 𝑗 ∈  𝑁 ; ∀ 𝑣 ∈  𝑉 (25)  

 𝑙𝑖
𝑥 , 𝑙𝑖

𝑦
∈ ℝ ∀ 𝑖 ∈  𝑁 (26)  

𝑐𝑖,𝑣 ∈  ℤ+ ∀ 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉 (27)  

The objective function minimizes the total travel time for all the vehicles on our planning 
horizon. It considers the deviated pickup and drop-off points for passengers and applies a time 
discount factor if the vehicle takes the HOV lane. We consider the travel time from node 𝑖 to 
node 𝑗, 𝑑𝑖,𝑗 to be a decision variable since the actual pickup and drop-off points for passengers 

may deviate from their originally requested pickup and drop-off points. Therefore, our problem 
is a mixed-integer non-linear program (MINLP) with non-linear constraints. Constraints 1-2 are 
node constraints that ensure that each node is visited exactly once by exactly one vehicle. We 
note that when we solve the problem, constraints 1-2 may be violated since it is possible that 
all the passengers may not be served under the given time constraints. Therefore, we relax 
constraints 1-2 using a relaxation function of the solver and set a penalty for violating 
constraints 1-2. Hence, our model minimizes the travel time and at the same time minimizes 
the number of passengers that could not be picked up by the ridesharing system. Constraint 3 is 
a flow conservation constraint. It states that no vehicle can stay in a node 𝑖 ∈  𝑂𝑃 ∪  𝐷𝑃 once it 
arrives at that node. Constraints 4 and 5 assign the origin and destination of a passenger or 
driver to the same vehicle. Constraint 6 states that all drivers must start their journey from their 
respective origins. Similarly, Constraint 7 forces all drivers to end their journey at their 
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respective destinations. Constraint 8 prevents any vehicle to go to any other node after 
reaching its destination at any point in time. Constraint 9 prevents any circular arcs. Constraints 
10 to 13 are time-related constraints that also act as subtour elimination constraints. 
Specifically, constraint 10 updates the time variable 𝑡𝑖 after a vehicle 𝑣 ∈  𝑉 visits node 𝑖 ∈  𝑁. 
Constraints 11 and 12 ensure that passenger and driver origins and destinations are visited 
within their respective time limits. Constraint 13 is the precedence constraint that ensures that 
the destinations are visited after the respective origin. Constraint 14 updates the vehicle 
capacity after it visits a passenger pickup or drop-off node. Constraint 15 is the capacity 
constraint. Constraint 16 ensures that drivers start their itinerary without any passengers. 
Constraints 17 to 20 are quadratic constraints that determine the distance between nodes 𝑖, 𝑗 ∈
 𝑁 using original or deviated coordinates when applicable. Specifically, constraint 17 
determines the travel time between the origin and destination of passengers using their 
deviated coordinates. Constraint 18 determines the travel time between driver origin and 
passenger origin using the original coordinates for driver origin point and using the deviated 
coordinates for passenger origin points. Similarly, constraint 19 determines the travel time 
between passenger destination and driver destination. Finally, constraint 20 determines the 
travel time between driver origin-destination pairs. Constraint 21 ensures that deviated pickup 
or drop-off location is within the passengers' walking limit. Constraint 22 ensures the HOV lane 
is used whenever a vehicle is carrying the required number of passengers to be eligible for the 
HOV lane. Finally, constraint 23 is the non-negativity constraint for the time variable 𝑡𝑖. 
Constraints 24 and 25 are binary constraints for variables 𝑥𝑖,𝑗,𝑣 and 𝛼𝑖,𝑗,𝑣. Constraint 27 is 

integer constraints for the load-variable 𝑐𝑖,𝑣. One thing to note is that we do not consider the 
tradeoff between walking time and driving time in the objective function. 

Next, we show that the continuous relaxation of the model in the form presented is non-
convex. Since the problem is a generalization of PDP, it is NP-hard. Moreover, the nonlinear 
nature of the model and the non-convexity add another layer of complexity on top of the 
already NP-hard mixed integer program making solving the model directly using a commercial 
solver computationally difficult. Therefore, we need to decompose the model to make solving 
the problem tractable. 

Proposition 1: The continuous relaxation of the problem P is non-convex. 

Proof: Since the objective function is separable, we can prove that none of the components are 
convex which will imply the objective function is non-convex. Without loss of generality let us 

prove that the first component (1 − 𝛼1,1,1 𝛽1,1 )𝑥1,1,1 𝑑1,1 is not convex. The Hessian is given 

by: 

𝐻 = [

0 0 0
−β1,1 d1,1 0 (1 − α1,1,1 β1,1 )

−β1,1 x1,1,1 (1 − α1,1,1 β1,1 ) 0

] 
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Let us determine 𝒚𝑇𝑯𝒚 for any 𝒚 ∈ ℝ𝟑 

[𝑦1 𝑦2 𝑦3]𝑇 [

0 0 0
−β1,1 d1,1 0 (1 − α1,1,1 β1,1 )

−β1,1 x1,1,1 (1 − α1,1,1 β1,1 ) 0

] [

𝑦1

𝑦2

𝑦3

] 

= −y1y3β1,1 x1,1,1 − y1y2β1,1 d1,1 + 2y2y3(1 − α1,1,1 β1,1) 

This implies 𝒚𝑇𝑯𝒚 may not be non-negative. For example, let us take a feasible solution 𝑥1,1,1 =

1, 𝑑1,1 = 1, 𝛼1,1,1 = 1 and let 𝑦1 = 1, 𝑦2 = 1, 𝑦3 = 1, 𝑏1,1 = .8. The value of the above 

expression is then -1.2. Similarly, we can prove that (1 − 𝛼𝑖,𝑗,𝑣 𝛽𝑖,𝑗 )𝑥𝑖,𝑗,𝑣 𝑑𝑖,𝑗 is non-convex for 

any 𝑖 ∈  𝑁, 𝑗 ∈  𝑁, 𝑣 ∈  𝑉. Since the objective function is the sum of (1 − 𝛼𝑖,𝑗,𝑣 𝛽𝑖,𝑗 )𝑥𝑖,𝑗,𝑣  𝑑𝑖,𝑗 for 

all 𝑖 ∈  𝑁, 𝑗 ∈  𝑁, 𝑣 ∈  𝑉 it is non-convex.∎ 

To form a separate routing problem, we take out constraints 17-21 from 𝑃. We define the 
modified problem 𝑃 as 𝑃′. The objective function of 𝑃′ is the same as 𝑃 but the travel time 𝑑𝑖,𝑗 

is now a constant which we determine using the formula 𝑑𝑖,𝑗 =

√((𝑟𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑟𝑖
𝑦

− 𝑟𝑗
𝑦

)
2

) ÷ 𝛾𝑖,𝑗. Therefore, model 𝑃′ is a rideshare routing problem 

considering the original pickup and drop-off locations and consists of the constraints 1-16 and 
22-25 and 27. The objective function of 𝑃′ is quadratic, and the constraints are linear. The 
continuous relaxation of problem 𝑃′ is now convex. This optimal solution to this decomposition 
however is not necessarily optimal for problem 𝑃 due to the routing and pickup/drop-off points 
selection being separately solved. The meeting points selection model is presented below. 

Pickup and Dropoff Point/Meeting Point Selection Problem 

From the rideshare routing problem 𝑃′ we get a set of routes which we then feed into the 
meeting point selection problem to get the new pickup/drop-off points and the new costs. For 

this pickup and drop-off point selection model, we denote the routes as 𝑍 =  (𝑧1, 𝑧2, … , 𝑧𝑞) 

where the first node is the driver’s origin 𝑧1 ∈  𝑂𝑉 and the last node is the driver’s 
destination 𝑧𝑞  ∈  𝐷𝑉  and the nodes in between are passenger pickup and drop-offs 

𝑧2, … , 𝑧𝑞−1  ∈  𝑂𝑃 ∪  𝐷𝑃 . The meeting point selection model aims to minimize the square of the 

travel distance of the route by selecting the new pickup and drop-off points while ensuring that 
those points are within the passengers' walking limits. This model outputs the new pickup and 
drop-off points and the new total travel time for each route. We denote the models as 𝑄′. The 
model is given below. 

(𝑄′) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑙𝑧2
𝑥 − 𝑟𝑧1

𝑥 )
2

+ (𝑙𝑧2

𝑦
− 𝑟𝑧1

𝑦
)

2
+ ∑ ((𝑙𝑧𝑖

𝑥 − 𝑙𝑧𝑖+1
𝑥 )

2
+ (𝑙𝑧𝑖

𝑦
− 𝑙𝑧𝑖+1

𝑦
)

2
)

𝑞−2

{𝑖=2}

+ (𝑙𝑧𝑞−1

𝑥 − 𝑟𝑧𝑞

𝑥 )
2

+ (𝑙𝑧𝑞−1

𝑦
− 𝑟𝑧𝑞

𝑦
)

2
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Subject to 

(𝑙𝑧𝑖
𝑥 − 𝑟𝑧𝑖

𝑥)
2

+ (𝑙𝑧𝑖

𝑦
− 𝑟𝑧𝑖

𝑦
)

2
≤  𝑊𝑖

2 ∀ 𝑖 ∈  𝑂𝑃 ∪  𝐷𝑃  

In the meeting point selection problem 𝑄′, the objective function is the sum of finite quadratic 
terms. Each of the constraints is also the sum of two quadratic terms. Therefore, the meeting 
point selection problem 𝑄′ is convex. Therefore, this model can be solved rather fast using a 
commercial solver such as GUROBI. In the next section, we present our solution methodologies.  

Solution Methodology 

In this section, we present our three different solution methodologies. In the previous section, 
we decomposed problem 𝑃 into a routing problem 𝑃′and a separate meeting point selection 
problem 𝑄′. However, the routing problem is still NP-hard and quadratic. Therefore, we will 
decompose the model for problem 𝑃′further using Lagrangean relaxation. We will form a set 
partitioning master problem that will select the best routes and a subproblem that will 
generate the routes. Our route enumeration approach and the two branch-and-price-based 
approaches will vary in the structure of the subproblem, and the way routing and meeting point 
selection problems are integrated. Our first solution approach is a dynamic programming-based 
route enumeration algorithm that generates the set of all feasible routes, and meeting points 
for all the passengers in those feasible routes and uses a set partitioning formulation to select 
the set of best routes. The second and the third one is branch and price algorithms. The 
difference between the two is in the second one we generate routes and select pickup and 
drop-off points simultaneously. In the third one, we do this sequentially, i.e., we select the best 
routes using BP and then select the meeting points. In the next subsection, we present the 
network preprocessing steps that reduce the complexity of the route generation subproblem by 
eliminating infeasible arcs. Then we present the set partitioning model and the related 
notations since this will be used as the master problem in all three approaches. Then, we 
describe our first solution methodology. Then we describe the Branch and Price algorithm used 
in the final two approaches. Finally, we present those two approaches and how they integrate 
routing and meeting point selection. 

Network Preprocessing 

Before we use any algorithms, we use some network preprocessing that will eliminate 
infeasible arcs. Since there are 2(𝑚 + 𝑛) nodes in the network graph there can be at most 
4(𝑚 + 𝑛)2 arcs. We can reduce the number of possible arcs by doing the following 
preprocessing steps. Some of the preprocessing steps are adapted for ridesharing from Dumas 
et al. (1991) and Hasan et al. (2020).  

(1) Arcs (𝑖, 𝑗) are prohibited if 𝑖 ∈ 𝐷𝑉  and 𝑗 ∈ 𝑁 since drivers will end their journey once 
they reach their destination. 

(2) Arcs (𝑖, 𝑗) are prohibited if 𝑖 ∈ 𝐷𝑃 and 𝑗 = 𝑖 − 𝑚 − 𝑛 i.e. arcs from passenger 
destination to that passenger's origin are prohibited. 
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(3) Arcs (𝑖, 𝑗) are prohibited if 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑂𝑉 as all incoming arcs to drivers’ origins are 
infeasible. 

(4) Arcs (𝑖, 𝑖) are prohibited to prevent any circular arcs for all 𝑖 ∈ 𝑁 

(5) Arcs (𝑖, 𝑗) are prohibited if 𝑖 ∈ 𝑂𝑉  and 𝑗 ∈ 𝐷𝑃 since drivers cannot go to a passenger's 
destination without picking up that passenger. 

(6) Arcs (𝑖, 𝑗) are prohibited if 𝑖 ∈ 𝑂𝑃 and 𝑗 ∈ 𝐷𝑉 since drivers cannot go to their 
destinations after picking up and not dropping off a passenger. 

(7) Arcs (𝑖, 𝑗) are prohibited if 𝑖 ∈ 𝑂𝑉  and 𝑗 ≠ 𝑖 + 𝑚 + 𝑛 since drivers are not allowed to 
visit other drivers’ destinations. 

In addition, we use the following time-based arc elimination techniques. Let 𝑖, 𝑗 ∈ 𝑂𝑃: 

(1) Arcs (𝑖, 𝑗 + 𝑛 + 𝑚) are prohibited if max(𝑎𝑗 + 𝑑𝑗,𝑖 , 𝑎𝑖) + 𝑑𝑖,𝑗+𝑛+𝑚 + 𝑑𝑗+𝑛+𝑚,𝑖+𝑛+𝑚 >

𝑏𝑖+𝑛+𝑚 

(2) Arcs (𝑖 + 𝑛 + 𝑚, 𝑗) are prohibited if max(𝑎𝑖 + 𝑑𝑖,𝑖+𝑛+𝑚 + 𝑑𝑖+𝑛+𝑚,𝑗 , 𝑎𝑗) + 𝑑𝑗,𝑗+𝑛+𝑚 >

𝑏𝑗+𝑛+𝑚 

(3) Arcs (𝑖, 𝑗) are prohibited if max(𝑎𝑖 + 𝑑𝑖,𝑗 , 𝑎𝑗) + 𝑑𝑗,𝑖+𝑛+𝑚 + 𝑑𝑖+𝑛+𝑚,𝑗+𝑛+𝑚 > 𝑏𝑗+𝑛+𝑚 

(4) Arcs (𝑖, 𝑗) are prohibited if max(𝑎𝑖 + 𝑑𝑖,𝑗 , 𝑎𝑗) + 𝑑𝑗,𝑗+𝑛+𝑚 + 𝑑𝑗+𝑛+𝑚,𝑖+𝑛+𝑚 > 𝑏𝑖+𝑛+𝑚 

(5) Arcs (𝑖 + 𝑛 + 𝑚, 𝑗 + 𝑛 + 𝑚) are prohibited if max(𝑎𝑗 + 𝑑𝑗,𝑖 , 𝑎𝑖) + 𝑑𝑖,𝑖+𝑛+𝑚 +

𝑑𝑖+𝑛+𝑚,𝑗+𝑛+𝑚 > 𝑏𝑗+𝑛+𝑚 

(6) Arcs (𝑖 + 𝑛 + 𝑚, 𝑗 + 𝑛 + 𝑚) are prohibited if max(𝑎𝑖 + 𝑑𝑖,𝑗 , 𝑎𝑗) + 𝑑𝑗,𝑖+𝑛+𝑚 +

𝑑𝑖+𝑛+𝑚,𝑗+𝑛+𝑚 > 𝑏𝑗+𝑛+𝑚 

Based on driver time limits we prohibit the following arcs. Let 𝑖 ∈ 𝑂𝑉, 𝑗 ∈ 𝑂𝑃: 

(1) Arcs (𝑖, 𝑗) are prohibited if max(𝑎𝑖 + 𝑑𝑖,𝑗 , 𝑎𝑗) + 𝑑𝑗,𝑗+𝑛+𝑚 > 𝑏𝑖+𝑛+𝑚  

(2) Arcs (𝑖, 𝑗) are prohibited if max(𝑎𝑖 + 𝑑𝑖,𝑗 , 𝑎𝑗) + 𝑑𝑗,𝑗+𝑛+𝑚 > 𝑏𝑗+𝑛+𝑚 

(3) Arcs (𝑖, 𝑗) are prohibited if 𝑎𝑖 + 𝑑𝑖,𝑗 > 𝑏𝑗+𝑛+𝑚  

Since we use an adjacency graph for the dynamic program, the above arcs are removed from 
the adjacency lists. 

Set Partitioning Formulation for the Routing Problem 

In this section, we present the set partitioning formulation for the routing problem. This model 
will be used as the master problem in all three of our approaches. Let Ω be the set of all feasible 
routes. we define a new binary variable 𝑥𝑟 for each 𝑟 ∈ Ω whose value is 1 if 𝑟 is used in the 
solution and 0 otherwise. We also define a new constant 𝛿𝑖,𝑟 whose value is 1 if 𝑖 ∈  𝑁 is in 
route 𝑟, 0 otherwise. We define the cost of a route as 𝑐𝑟 = ∑ 𝑑𝑖,𝑗(𝑖,𝑗)∈ 𝐴 . Thus, the cost of a 
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route is defined as the sum of the travel times of the arc in that route. We denote the 
formulation as master problem 𝑀𝑃: 

(MP) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑟𝑥𝑟𝑟∈Ω  

Subject to 

∑ 𝛿𝑖,𝑟 𝑥𝑟

𝑟∈Ω

=  1 ∀ 𝑖 ∈ 𝑂𝑃 ∪ 𝑂𝑉  

𝑥𝑟 ∈  {0,1} ∀ 𝑟 ∈ Ω 

The objective function minimizes the sum of the costs of all the selected routes. The constraint 
ensures that each driver and passenger origin is visited exactly once. Since not all the 
passengers may be served, we will relax these constraints while solving the model. The way we 
generate routes will ensure that all the destinations are in the route if the respective origin is in 
the route. Therefore, we do not need separate constraints for the destination routes. The 
second constraint is just the binary constraint for the decision variables. 

Route Enumeration Algorithm (Approach 1) 

Now we present our first approach which is a dynamic programming-based approach that we 
call route enumeration algorithm (REA). In this approach, we generate the set of all feasible 
routes using a dynamic program. Then we generate new meeting points for each of the routes 
and determine their costs using the meeting point selection problem. Then the routes and their 
respective costs are fed into the set partitioning formulation which gives us the best set of 
routes as output. In the dynamic program, for each node, we assign a label that has six 
elements in it. Each label is denoted by 𝑠. Each label of a node 𝑖 ∈ 𝑁 is represented by 𝑠(𝑖) =
{𝑟, 𝑅𝑠, 𝑡𝑠, 𝑞𝑠, 𝑍𝑠, 𝐶𝑠}. The first element 𝑟 is a partial path from the origin node of the driver up to 
node 𝑖 ∈ 𝑁. 𝑅𝑠 is a set of passengers that have been picked up to node 𝑖 and not have been 
dropped off. 𝑡𝑠 represents the time of arrival of the vehicle to node 𝑖. 𝑞𝑠 is the current number 
of passengers in the vehicle. 𝑍𝑠 is the total travel time without any waiting time to node 𝑖 from 
the driver origin. And finally, 𝐶𝑠 is the set of passengers that have been picked up and dropped 

off up to node 𝑖. The algorithm is initialized by assigning a label 𝑠(𝑣) = {{𝑣}, 𝜙, 𝑎𝑣, 0,0, 𝜙} for 

each vehicle 𝑣 ∈ 𝑉 and these labels are put on a stack 𝑆. In each iteration, a label is picked from 
the stack and the algorithm picks the last node 𝑖 in the partial route 𝑟 and tries to extend this 
label to all the nodes in the adjacency list of 𝑖. While extending it checks if the expansion is 
feasible in terms of time limit and capacity. Also, if the number of passengers in the vehicle 
satisfies the HOV usage requirement it applies a discount factor if available to the travel time. 
While extending to a passenger destination node it checks if the passenger is in the unserved 
set 𝑅𝑆. If not, the algorithm does not extend. A time check is performed while extending the 
label to a passenger origin node that checks if the label can be extended to the respective 
destination node. Also, while extending to any node the algorithm checks if that node is already 
in the partial path. That way, we eliminate any possibility of generating a cycle. After extending 
the label it is again put into the stack. When the algorithm reaches the driver destination node 
𝑗 ∈ 𝐷𝑉, the route is completed. The algorithm then outputs the route and its associated travel 
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time. In this case, the label is not put into the stack again. This dynamic program terminates 
when there are no labels in the stack. This algorithm then outputs the set of all feasible paths. 
Since the number of feasible routes is exponential the route generation dynamic program has 
an exponential running time. We then feed the routes to the meeting point selection problem 
𝑄′ to get the new pickup/drop-off points and their new travel times. Then the master problem 
MP determines the best set of routes using the new travel times. The process of generating 
feasible routes is given in Figure 1 and the route enumeration algorithm (REA) is summarized in 
Figure 2. 

Now we present the Branch and Price algorithm that will be used in our next two solution 
approaches. 

Branch and Price Algorithm 

One drawback of the route enumeration algorithm (REA) approach is the sheer number of 
feasible routes for even a small-sized network. The Route Enumeration Algorithm (REA) makes 
the process computationally prohibitive for medium or large-sized networks. One alternative is 
to consider a small subset of feasible routes at a time and generate routes as needed until we 
reach the stopping criteria. This is the idea behind the Branch and Price Algorithm (BPA). We 
use this branch and price algorithm in our approaches 2 and 3. At each iteration, we only 
consider a small subset of routes which we denote as Ω′. Since we are restricting the master 
problem (MP) to a small subset of routes we call the new master problem restricted master 
problem (RMP). The model is given below: 

(RMP)  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ 𝑐𝑟𝑥𝑟𝑟∈ Ω′  

Subject to 

∑ 𝛿𝑖,𝑟 𝑥𝑟

𝑟∈ Ω′

=  1 ∀ 𝑖 ∈ 𝑂𝑃 ∪ 𝑂𝑉  

𝑥𝑟 ∈  {0,1} ∀ 𝑟 ∈ Ω′ 

At each iteration, we solve the linear relaxation of the restricted master problem and take the 
dual variables which we denote as 𝜋. We feed these dual variables to the pricing subproblem. 
The pricing subproblem then provides routes with negative reduced costs which we then add to 
the restricted set Ω′. If no route with negative route cost can be found, then the linear 
relaxation of RMP is optimal. We then check the solution of the RMP. If there are any fractional 
variables, then we do branching on the variables. We branch on the fractional variables until an 
integer solution is found. The branch and bound scheme will be described later. But first, we 
describe the pricing subproblem. 
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Pricing Subproblem 

The pricing subproblem aims to generate routes with negative reduced costs. We denote the 

reduced cost of a route 𝑟 as  𝑐𝑟  = ∑ 𝑐𝑖,𝑗 ̅̅ ̅̅
(𝑖,𝑗)∈ 𝐴

.  where 𝑐𝑖,𝑗 ̅̅ ̅̅  is the reduced cost of the arc (𝑖, 𝑗). 

These are calculated as: 

𝑐𝑖,𝑗 ̅̅ ̅̅ = {
𝑑𝑖,𝑗 − 𝜋𝑖 𝑖𝑓 𝑖 ∈ 𝑂𝑃 ∪ 𝑂𝑉

𝑑𝑖,𝑗           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The pricing subproblem uses a dynamic program-based approach to generate routes similar to 
REA. Our pricing subproblem is a Shortest Elementary Path Problem with Resource Constraints 
of Feillet et al. (2004) modified for the ridesharing routing problem. Instead of saving all the 
labels in a common stack as we did for REA, we keep a list of labels for each node and the stack 
is filled with nodes to which we will try to extend the labels. The notation and the elements of 

the label are the same as REA. For each driver, we start with a label {{𝑣}, 𝜙, 𝑎𝑣, 0,0, 𝜙}. At each 
iteration of the pricing subproblem, the subproblem tries to extend the label to an adjacent 
route. But here we use dominance criteria to prohibit nonoptimal labels to extend. The 
dominance criteria are based on Desrochers et al. (1992). Let us have two labels for node 
𝑖 namely 𝑠(𝑖) = {𝑟, 𝑅𝑠, 𝑡𝑠, 𝑞𝑠, 𝑍𝑠, 𝐶𝑠}.  and 𝑠(𝑖)′ = {𝑟′, 𝑅𝑠

′ , 𝑡𝑠
′ , 𝑞𝑠

′ , 𝑍𝑠
′ , 𝐶𝑠

′}. . Then we say 𝑠(𝑖) 
dominates 𝑠(𝑖)′ if and only if: 

𝑅𝑠 ⊂ 𝑅𝑠
′ , 𝑍𝑠 ≤ 𝑍𝑠

′  𝑎𝑛𝑑 𝑡𝑠 ≤ 𝑡𝑠
′  

If a label is dominated, we eliminate that label from further extension since it can be proven 
that a dominated label extends to a nonoptimal path. The proof is given in Desrochers et al. 
(1992). Whenever the label of a node changes we add that node to the stack 𝐸. The algorithm 
continues until the stack 𝐸 is empty. After termination the algorithm returns the minimum cost 
label for every driver destination node 𝑗; 𝑗 ∈ 𝐷𝑉  or 𝑖 + 𝑛 + 𝑚; 𝑖 ∈ 𝑂𝑉 from which we extract the 
minimum cost routes and add them to the set Ω′ . The pricing subproblem is given in Figure 3. 
The label extension procedure is similar to REA and is given in Figure 4. 
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Figure 1. Generating Feasible Routes using Dynamic Programming 
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Figure 2. Route Enumeration Algorithm 
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Figure 3. Pricing Subproblem 
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Figure 4. Label Extension Procedure 
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Branching Scheme 

We check the routes from the pricing subproblem to see if there are any negative reduced-cost 
routes. If found, we add all such routes to Ω′ and solve the RMP again. If there are no reduced-
cost routes found, then we know our LP relaxation of the RMP is optimal. Then we check if the 
solution of the RMP is integer. If not, we do branching. We branch based on the flow variable 
on arcs. We define a flow variable 𝑓𝑖,𝑗 ∀(𝑖, 𝑗) ∈ 𝐴. The value of 𝑓𝑖,𝑗 is the number of times a 

particular arc (𝑖, 𝑗) appears on route subset Ω′. We select all such arcs (𝑖, 𝑗) such that 0 < 𝑓𝑖,𝑗 <

1 and among these arcs, we select the one with the maximum flow variable. Then we create 
two branches: one where the value of the flow variable is 0 and another where the value of the 
flow variable is 1. 𝑓𝑖,𝑗 = 0 is translated to the subproblem by deleting 𝑗 from the adjacency list 

of 𝑖 and penalizing all the routes that use arc (𝑖, 𝑗). 𝑓𝑖,𝑗 = 1 is translated to the subproblem by 

deleting all other nodes except 𝑗 from the adjacency list of 𝑖, deleting 𝑗 from the adjacency lists 
of nodes 𝑙 ∀𝑙 ∈ 𝑁, 𝑙 ≠ 𝑖 and penalizing all the routes that use arc (𝑖, 𝑘) ∀𝑘 ≠ 𝑗 . The newly 
created branches are put into a branching tree 𝑇. At each iteration of the BPA, we take a 
branch node from the tree and solve the RMP associated with the branch node, take the duals 
and feed them to the pricing subproblem to generate a new negative reduced costs route. 
Thus, the branch tree is traversed in a depth-first fashion. The algorithm terminates when the 
LP relaxation of RMP is optimal, and the solution is integer. We initialize the root node by 
running the REA for a small amount of time and solving the integer RMP with a short time 
budget. The idea is that by spending a little more time on the root node we can get close to the 
optimum solution faster. 

Now we describe how routing and meeting point selection is integrated into approaches 2 and 
3. 

Branch and Price with Simultaneous Routing and Meeting Point Selection 
(Approach 2)  

This is our second proposed approach. In this approach, whenever we generate a new negative 
reduced cost route in the pricing subproblem, we use the meeting point selection problem 𝑄′ 
to select the new pickup and drop-off points for all the passengers on that route and determine 
the new cost of the route. Then we add the route and its corresponding cost to the restricted 
master problem. For notational purposes, we denote this method as ‘PreLocBPA’. The 
procedure is shown in Figure 5. 
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Figure 5. Branch and Price with Simultaneous Routing and Meeting Point selection 

Branch and Price with Sequential Routing and Meeting Point Selection 
(Approach 3)  

In the third and final approach, we determine the best routes first using their original pickup 
and drop-off location. And then for each of the selected routes, we use the meeting point 
selection problem 𝑄′ to determine the new pickup and drop-off points and the new costs. The 
reasoning behind this approach is that since for a medium to large-sized network there are an 
exponential number of possible feasible routes, even if we consider only a fraction of them at a 
time, it may take a long time to determine the meeting point for each of the feasible routes. 
That is why in this approach we determine the routes first and then do the meeting point 
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selection. For notational purposes, we denote this procedure as ‘PostLocBPA’. The process is 
summarized in Figure 6.  

 

Figure 6. Branch and Price with Sequential Routing and Meeting Point Selection 

Numerical Experiments 

In this section, we perform numerical tests to determine the effectiveness of our algorithms 
and to gain some insights into the performance of the rideshare network. First, we do a 
comparison of the solution quality and computation time among the three proposed methods. 
Then we conduct a sensitivity analysis where we investigate how the performance changes 
when we change the number of drivers in the system. We also investigate how the maximum 
walking time to the meeting point affects the solution and performance parameters. For these 
analyses, apart from the objective function value, we also use the in-vehicle time for 
passengers and drivers, their waiting times and the percentage of passengers served as 
performance measurements. Now we describe the dataset used to do the experiments. 

Description of the Dataset 

For the experiments, we use the San Francisco taxicab dataset (Piorkowski et al., 2009). It 
contains the origin and destination of about 650,000 taxicab rides in the San Francisco metro 
area. We created multiple instances from the dataset. Both driver and passenger origin and 
destination points are selected from the dataset. Driver origin-destination pairs were selected 
sequentially from the first half of the dataset. Passenger origin-destination pairs were selected 
similarly from the second half of the dataset. We set the request arrival horizon to 2 hours. The 
passenger and driver origin ready times are randomly generated according to a uniform 
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distribution. The passenger origin due times are generated by adding to the corresponding 
ready time a fixed time window. The due times for passenger destinations are generated by 
adding to the corresponding origin due time the product of the direct travel time and a 
constant 𝜇. Driver destination due times are generated the same way but we multiply by a 
different constant 𝜈 and add the time window. These constants represent how much extension 
of their direct travel time passengers or drivers are willing to tolerate. The planning horizon is 
set to be the maximum of the driver's destination due time. We set the penalty for not servicing 
a passenger to be 1000. 

For the High Occupancy Vehicle lanes time discount factor, we generate an 𝑁 ∗ 𝑁 matrix, 𝛽 
where each entry is randomly generated using a uniform distribution ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,0.1). This 
means vehicles can save up to 10% by using arcs that have an HOV lane between them. These 
numbers were inspired by Kwon & Varaiya (2008) who found that in California, for every 16-
kilometer drive there is a 1.7 minutes time savings on average compared to regular lanes.  

For the walking times, we assume that all the passengers are willing to walk a maximum of 10 
minutes. Therefore, we set 𝑊𝑖 = 10 minutes ∀𝑖 ∈ 𝑂𝑃 ∪ 𝐷𝑃 . To get the walking distance we 
multiply the walking time by the nominal walking speed which we set to 5 km/h. We assume all 
vehicles have the same nominal speed of 40km/h. The table below describes how the 
parameters are generated and gives the value of the parameters used: 

Table 1. Parameters Values Used in Numerical Experiments 

Parameter Value 

Request Arrival Horizon 120 minutes 

Time Window, 𝑡𝑤 10 minutes 

Driver Origin Ready Time 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 ÷ 2)  

Passenger Origin Ready Time 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ℎ𝑜𝑟𝑖𝑧𝑜𝑛) 

Passenger Origin Due Time Passenger Origin Ready Time+ 𝑡𝑤 

Driver Destination Due Time Driver Origin Ready Time+𝜈*Direct Travel Time+ 𝑡𝑤 

Passenger Destination Due Time Passenger Origin Due Time+𝜇*Direct Travel Time 

Passenger Capacity, 𝐶 3 

Minimum In-vehicle Passenger 
required to use HOV, H 

2 

HOV discount factor matrix, 𝛽 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,0.1) 

Driver Time Constant, 𝜈 1.5 

Passenger Time Constant, 𝜇 1.5 

Passenger Max Walking Time, W  10 minutes 

The nominal speed of vehicles, 𝛾 40 km\h 

Passenger rejection penalty 1000 
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All the linear programs and integer programs were solved using Gurobi 9.5.0. Since all the 
passengers cannot be served, we need to relax the constraint in the master problem. For 
relaxing the constraints, we used the 𝑓𝑒𝑎𝑠𝑅𝑒𝑙𝑎𝑥 function of Gurobi. All the instances were 
solved on a server with an Intel Xeon Silver processor using 24 cores and 64GB of RAM. All the 
programs were written in Python 3.6. We note that we tried to solve the MINLP model 𝑃 
directly using Gurobi but none of the instances could be solved even after 6 hours of CPU time. 
For the Branch and Price based approaches, we run the root node REA for 15 seconds and solve 
the initial RMP as a mixed integer program with a time budget of 1 hour. Now we compare the 
performance of our three approaches. First, we show the results for small-sized instances (up to 
170 nodes) in Table 2. 
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Table 2. Performance Analysis of the Three Proposed Approaches for Small Instances 

Solution Approach Route Enumeration 
Algorithm 

PreLocBPA PostLocBPA 

Instance Drivers Passengers CPU 
Time 
(sec) 

Objective 

(sec) 

% 
Served 

% CPU 
Time Diff. 

% 
Objective 
Diff. 

Diff. in 
% 
served 

% CPU 
Time 
Diff. 

% 
Objective 
Diff. 

Diff. in 
% 
served 

00d10c20 10 20 10.1 138.2 50% 1479% 0% 0% 1863% 0% 0% 

01d20c20 20 20 37.0 267.8 55% 3555% 0% 0% 3856% 0% 0% 

02d15c30 15 30 59.6 258.6 57% 3131% 0% 0% 3119% 0% 0% 

03d25c30 25 30 172.3 400.6 70% 4230% 0% 0% 4083% 0% 0% 

04d20c40 20 40 132.9 389.8 63% 2291% 0% 0% 2149% 0% 0% 

05d30c40 30 40 321.2 484.1 70% 2307% 0% 0% 2072% 0% 0% 

06d40c40 40 40 1541.2 697.2 85% 4580% 3% 3% 4244% 3% 3% 

07d25c50 25 50 447.8 491.2 64% 1892% -10% -2% 1844% -9% -2% 

08d35c50 35 50 2632.7 676.9 84% 7580% 5% 0% 6756% -1% -2% 

Average 3449.4% -0.22% 0.11% 3331.7% -0.7% -0.1% 
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In Table 2, we present the solution time, objective value and the percentages of the passengers 
served for the REA and compare the results with the two Branch and Price approaches. For the 
other two approaches, we compare the percentage difference in objective value, the 
percentage difference in CPU time, and the percentage difference served. As we can see from 
the table, for the first six instances all three methods generate the same solution. For the next 
three instances, the two branch and price methods generate slightly different solutions. For the 
instance ‘06d40c40’, the two BPA methods have a 3% gap in objective value, although the 
percentage of passengers served is also 3% higher. For the next instance ‘07d25c50’, although 
the objective value is 10% less for PreLocBPA and 9% less for PostLocBPA they both serve 2% 
fewer passengers. For the last entry in the table, PreLocBPA has a 5% increased objective value 
and PostLocBPA has a 1% less objective value, but the percentage of passengers served is also 
2% less. In terms of CPU time, both branch and price procedures vastly outperform REA, this is 
to be expected since REA considers all feasible routes whereas BPA systematically generates 
routes as needed. BPA approaches take 150 to 750 times less computation time than REA. Thus, 
even though the BPA approaches give a slightly worse solution than REA, they vastly 
outperform REA in terms of computation time. Therefore, these are better suited for real-life 
rideshare systems. 

For larger instances, since the number of feasible routes is large, REA runs out of system 
memory. So we only report the absolute values for PreLocBPA and the percentage differences 
in CPU time, objective value, and percentage served for PostLocBPA. We present the results in 
Table 3. As we can see in the table, the objective value is slightly higher for sequential meeting 
point selection in every single instance which is to be expected since, in that approach, we 
select the pickup and drop-off points after we have selected the best routes. However, in most 
of the instances, the percentage of passengers served is also higher. In terms of computation 
time, both approaches perform similarly. There is only a slight difference in computation time. 
Also, it is to be noted that, the Branch and Price algorithm can solve instances containing up to 
300 nodes within a relatively short time. For example, the largest instance with 50 drivers and 
100 commuters (300 nodes) was solved within 130 seconds. The highest time taken was 219 
seconds which is also a 300-node network but with 70 drivers and 80 passengers. Therefore, 
BPA approaches are efficient for medium-sized rideshare networks. 
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Table 3. Performance Analysis of BPA Approaches for Medium to Large Instances 
 

PreLocBPA PostLocBPA 

Instance Drivers Passengers CPU Time 
(sec) 

Objective 
(sec) 

% Served % CPU Time 
Diff. 

% Objective 
Diff. 

Diff. in % 
served 

10d30c60 30 60 33.2 553.4 63.3% 0% 7% 3.3% 

11d40c60 40 60 58.6 768.3 81.7% -2% 5% 0.0% 

12d50c60 50 60 100.5 868.0 80.0% -4% 8% 1.7% 

13d60c60 60 60 144.0 1084.4 81.7% -1% 0% 0.0% 

14d35c70 35 70 50.6 691.6 75.7% 2% 9% 2.9% 

15d45c70 45 70 92.6 903.5 80.0% -4% 0% 1.4% 

16d55c70 55 70 135.5 1018.6 80.0% 0% 1% 2.9% 

17d65c70 65 70 214.4 1123.6 80.0% -3% 3% 0.0% 

18d40c80 40 80 72.7 772.2 73.8% -2% 5% 0.0% 

19d50c80 50 80 110.3 960.0 75.0% -1% 3% 2.5% 

20d60c80 60 80 157.9 1100.6 75.0% 2% 0% 1.3% 

21d70c80 70 80 219.2 1394.2 97.5% 2% 2% 0.0% 

22d45c90 45 90 91.5 913.4 76.7% 0% 6% 0.0% 

23d55c90 55 90 136.5 1044.6 74.4% 5% 0% 1.1% 

24d50c100 50 100 129.7 970.0 74.0% 1% 5% 1.0% 

Average -0.3% 3.6% 1.2% 
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Effect of Flexible Meeting Points 

To show the usefulness of having flexible pickup and drop-off points we compare the results of 
two approaches: one is our proposed simultaneous routing and meeting point selection branch 
and price algorithm, and the other is a branch and price algorithm with no walking. The results 
are shown in Table 4. As we can see, with a maximum walking time of 10 minutes, having 
flexible meeting points greatly saves travel time with an average savings of 18%. Time savings 
range from 7% to 33% across all the instances. Although in a few of the instances, the second 
approach serves more passengers, the time savings is large in comparison. For example, in 
instance ‘22d45c50’, the no meeting point selection approach serves 1% more passengers but 
has a 34% increased travel time. From the results, we can see that flexible meeting points can 
be beneficial in ridesharing systems. 

Table 4. Effectiveness of Flexible Meeting Point Selection 
 

PreLocBPA No Meeting Point Selection 

Instance Drivers Passengers Objective Served % Objective Diff. Diff. in % served 

00d10c20 10 20 138.2 50% 22% 0% 

01d20c20 20 20 267.8 55% 12% 0% 

02d15c30 15 30 258.6 57% 18% 0% 

03d25c30 25 30 400.6 70% 16% 0% 

04d20c40 20 40 389.8 63% 20% 0% 

05d30c40 30 40 484.1 70% 18% 0% 

06d40c40 40 40 715.9 88% 15% 0% 

07d25c50 25 50 443.8 62% 26% 2% 

08d35c50 35 50 709.2 82% 11% 0% 

10d30c60 30 60 553.4 63% 17% 0% 

11d40c60 40 60 768.3 82% 23% 0% 

12d50c60 50 60 868.0 80% 33% 3% 

13d60c60 60 60 1084.4 82% 9% 0% 

14d35c70 35 70 691.6 76% 21% -1% 

15d45c70 45 70 903.5 80% 13% -1% 

16d55c70 55 70 1018.6 80% 18% 4% 

17d65c70 65 70 1123.6 80% 14% 0% 

18d40c80 40 80 772.2 74% 23% -1% 

19d50c80 50 80 960.0 75% 14% 3% 
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PreLocBPA No Meeting Point Selection 

Instance Drivers Passengers Objective Served % Objective Diff. Diff. in % served 

20d60c80 60 80 1100.6 75% 8% 3% 

21d70c80 70 80 1394.2 98% 17% 0% 

22d45c90 45 90 913.4 77% 34% 1% 

23d55c90 55 90 1044.6 74% 13% 0% 

24d50c100 50 100 970.0 74% 18% 0% 

Average Gap 18% 0% 

Sensitivity Analysis 

Effect of the Number of Rideshare Drivers 

To see the effect of varying the number of rideshare drivers in the system, we took an instance 
with 45 passengers and varied the number of drivers from 10 to 45. In Figure 7, we can see that 
as the number of rideshare drivers increases, more commuters are served. With only 10 drivers 
about 49% or 22 of the 45 passengers were served. But with about 36 drivers 89% or 39 of the 
45 passengers were given a ride. This is intuitive, as more rideshare drivers enter the system 
there are more opportunities for giving rides to commuters while respecting their time limits. 
The same pattern can be seen in the total travel time in Figure 8. As more drivers enter the 
system and more commuters are served the total travel time also increases. 

 

Figure 7. Effect of Varying Rideshare Drivers on the Percentage of Commuters Served 
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Figure 8. Effect of Varying Rideshare Drivers on the Total Vehicle Travel Time 

Effect of Maximum Walking Time 

Now we examine how the maximum commuter walking time can change the performance 
parameters of the system. The results are shown in Figure 9. Here we can see the travel time 
decreasing as passengers' maximum walking time increases. The maximum time savings is 
achieved at 8 minutes. However, travel time seems to increase after 8 minutes of maximum 
walking. This is due to increased driver waiting. Since the meeting point selection problem is 
solved separately and only minimizes the travel distance, when passengers walk more than 8 
minutes, drivers may have to wait at the pickup point for the passenger to arrive which 
increases the total travel time.  

Walking also has a positive effect on the amount of time a passenger spends in the vehicle on 
average. In Figure 10 we can see the average passenger in-vehicle time (IVT) decreases almost 
linearly with more walking. With 10 minutes of walking tolerance, average passenger IVT 
decreases around 30% compared to no walking. A positive effect can also be seen on average 
passenger waiting time as we can see in Figure 12. In this study, passenger waiting time is 
defined as the difference between passenger origin ready time and the time the passenger was 
picked up. Average waiting time decreases almost by 43% when passengers are willing to walk a 
maximum of 8 minutes compared to no walking. This is intuitive since passengers are willing to 
walk to a meeting point, they have to wait less for the rideshare drivers to arrive at their 
location.  

However, walking time does not seem to affect the percentage of passengers served much as 
we can see in Figure 11. From the results of the previous subsection and this, we can conclude 
that number of rideshare drivers has more of an impact on the percentage of passengers 
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served than walking time. Since passengers have their service time window, if there are more 
rideshare drivers, the possibility that one of the rideshare drivers can take a detour to pick up 
the passenger is higher. But if the number of drivers is low, no matter how much a passenger 
walks, no rideshare driver may be available that can pick up and drop off that passenger within 
their time window. 

 

Figure 9. Effect of Maximum Walking Time on Total Vehicle Travel Time (Minutes) 
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Figure 10. Effect of Maximum Walking Time on Average Passenger in Vehicle Time (Minutes) 

 

Figure 11. Effect of Maximum Walking Time on Percentage of Passengers Served 
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Figure 12. Effect of Maximum Walking Time on Average Passenger Waiting Time (Minutes) 
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Conclusion 

In this study, we developed three approaches for determining the best routes and pickup and 
drop-off points for rideshare systems. We developed a mixed integer nonlinear model which 
we decompose into a routing problem and a meeting point selection problem. Later, we 
decompose the routing problem into a master and subproblem. Our first proposed approach is 
REA which exhaustively enumerates all feasible routes and determines their corresponding 
optimum meeting points and uses a set partitioning mixed integer program to determine the 
set of best routes. The second one is a Branch and Price based approach where we iteratively 
generate routes and determine optimum meeting points simultaneously until we reach a 
solution. The third one is a similar approach, but we determine optimum meeting points only 
for the derived routes. 

Numerical results show that, although REA gives us the best solution, due to the exponential 
number of feasible routes, it is unable to generate routes for medium to large instances. 
Whereas the other two approaches can solve an instance of up to 300 nodes within 130 
seconds. In terms of performance, the two BPA-based approaches perform similarly. The 
sequential approach is slightly faster, taking 0.33% less computation time on average across all 
instances. But it also gives a worse solution, with a 3.6% higher total travel time on average.  

Results also show that having flexible pickup and drop-off points is beneficial, resulting in 18% 
total travel time savings on average. Also, an increase in maximum walking tolerance results in 
lower total travel time, passenger in-vehicle time, and passenger waiting time. The results from 
this study can help transportation planners design more efficient carpool rideshare systems. 

Future research should focus on incorporating meeting point selection directly into the route 
generation dynamic program which will ensure we get the optimum solution using the Branch 
and Price algorithm. Also, future research can focus on incorporating valid inequalities which 
will speed up the computation time of the Branch and Price algorithm even further. Also, 
uncertainties such as travel and walking times in the rideshare system should be incorporated 
into future research.  
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Data Summary  

Products of Research  

One of the main research products of this research will be peer-reviewed journal articles, book 
chapters and/or conference proceedings targeted toward the transportation science research 
community, plus supplemental materials such as tables, numerical data used for graphs, etc. 
The resulting algorithms will be published in peer-reviewed journals. 

Data Format and Content  

All research products will be available online in digital form. Manuscripts will appear in a 
common document-viewing format, such as PDF, and supplemental materials such as tables 
and numerical data will be in a tabular format, such as Microsoft Excel spreadsheet, tab-
delimited text, etc. 

Data Access and Sharing  

All participants in the project will publish the results of their work. Papers will be published in 
peer-reviewed scientific journals, books published in English, conference proceedings, or as 
peer-reviewed data reports. Beyond the data posted on USC websites, primary data and other 
supporting materials created or gathered in the course of work will be shared with other 
researchers upon reasonable request, at no more than incremental cost and within a 
reasonable time of the request or, if later, the filing of a patent application covering the results 
of such research. 

All the data used in this research report can be found at Dataverse: 
https://doi.org/10.7910/DVN/3IWXBJ. This includes the dataset instances, all the data in the 
tables, and the data for the graphs. The San Francisco Taxicab Dataset can be found at : 
https://crawdad.org/epfl/mobility/20090224/ 

Reuse and Redistribution  

USC's policy is to encourage, wherever appropriate, research data to be shared with the public 
through internet access. This public access will be regulated by the university to protect privacy 
and confidentiality concerns, as well to respect any proprietary or intellectual property rights. 
Administrators will consult with the university's legal office to address any concerns on a case-
by-case basis, if necessary. Terms of use will include requirements of attribution along with 
disclaimers of liability in connection with any use or distribution of the research data, which 
may be conditioned under some circumstances. 

https://doi.org/10.7910/DVN/3IWXBJ
https://crawdad.org/epfl/mobility/20090224/
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