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ABSTRACT OF THE DISSERTATION

Turbulence-driven shear flow and self-regulating drift wave turbulence in a cylindrical

plasma device

by

Zheng Yan

Doctor of Philosophy in Engineering Science (Mechanical Engineering)

University of California, San Diego, 2009

Professor George R. Tynan, Chair

This dissertation provides an experimental test of the basic theory of the self-

regulating drift wave turbulence (DWT)/sheared zonal flow (ZF) system in a cylindrical

plasma device. The work is carried out from three approaches: the first explores the sta-

tistical properties of the turbulent Reynolds stress and its link to the ZF generation, the

second investigates the dynamical behavior of the DWT/ZF system and the third investi-

gates the variation of the DWT driven ZF verses magnetic field strength and ion-neutral

drag.
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A radially sheared azimuthally symmetric plasma flow is generated by the DWT

turbulent Reynolds stress which is directly measured by a multi-tip Langmuir probe. A

statistical analysis shows that the cross-phase between the turbulent radial and azimuthal

velocity components is the key factor determining the detailed Reynolds stress profile.

The coincidence of the radial location of the non-Gaussian distribution of the turbulent

Reynolds stress and the ion saturation current, as well as the properties of the joint proba-

bility distribution function (PDF) between the radial particle flux and turbulent Reynolds

stress suggest that the bursts of the particle transport appear to be associated with radial

transport of azimuthal momentum as well. The results link the behavior of the Reynolds

stress, its statistical properties, generation of bursty radially going azimuthal momentum

transport events, and the formation of the large-scale ZF.

From both Langmuir probe and fast-faming imaging measurements this shear flow

is found to evolve with low frequency (∼250-300Hz). The envelope of the higher fre-

quency (above 5kHz) floating potential fluctuations associated with the DWT, the density

gradient, and the turbulent radial particle flux are all modulated out of phase with the

strength of the ZF. The divergence of the turbulent Reynolds stress is also modulated at

the same slow time scale in a phase-coherent manner consistent with a turbulence-driven

shear flow sustained against the collisional and viscous damping, and the radial turbu-

lence correlation length and cross field particle transport are reduced during periods of

strong flow shear. The results are qualitatively consistent with theoretical expectations

for coupled DWT-ZF dynamics.

The drift turbulence/zonal flow system shows a strong variation with magnetic

field and neutral gas pressure. The density fluctuation amplitude, radial particle flux and

the absolute value of the divergence of the turbulent Reynolds stress at shear layer and the

shear flow are negligible when B∼600G. As the magnetic field is raised, these quantities

all exhibit a rapid increase for 600G<B<700G. When B>700G these quantities increase

at a slower rate. The ZF is stronger at lower neutral pressure and weaker at higher neutral

pressure, and the density fluctuation amplitude, radial particle flux and the absolute value

of the divergence of the turbulent Reynolds stress at shear layer and the shear flow all
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Introduction

1.1 Motivation

As the energy demand of the world grows rapidly, the well known problems that

exist in our current energy system such as climate change and security of supply become

even more severe. Controlled fusion may be an attractive future energy options. The

typical fusion reactions are [1]:

D +D → He3(0.82MeV ) + n(2.45MeV ) (1.1)

D +D → T (1.01MeV ) + p(3.02MeV ) (1.2)

D + T → He(3.5MeV ) + n(14.1MeV ) (1.3)

To achieve net energy gain, the fusion plasma must be maintained at a high tem-

perature, T , with a sufficient ion density n, for a sufficient time τE . An important measure

of this is the Lawson’s criterion [2], as shown by the Eqn.1.4 and Eqn.1.5, which gives

1
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the minimum condition for an energy producing fusion reaction.

nτE ≥ 1014s/cm3 for deuterium− tritium fusion (1.4)

nτE ≥ 1016s/cm3 for deuterium− deuterium fusion (1.5)

The plasma pressure, p = nT is limited by large-scale Magnetohydrodynamics

(MHD) instabilities. Thus there exists a minimum value of the energy confinement time,

τE defined as the total energy content of the plasma W divided by power loss Ploss (rate

of energy loss)[1],for which energy gain is possible:

τE =
W

Ploss
(1.6)

If the heat transport is diffusive, then the energy confinement time τE scales as

τE ∼ L2/χi, where L = T/∇T is the temperature gradient scale length and χi is ion

thermal diffusion coefficient such that the heat flux q = −nχi
∂T

∂r
. In the random walk

model χi scales as χi ∼
(∆l)2

τr
, where (∆l)2 is the magnitude of the average step size

between collisions and τr is the average time between random walk steps. Therefore τE

scales as τE ∼
L2

(∆l)2
τr. Thus a decrease in (∆l)2 or increase in τr will lead to increase in

τE and thus make it easier to reach Lawson criterion. Neoclassical transport theory (due

solely to the coulomb collisions) gives the minimum possible value for χ and maximum

possible value for τE . However, these values are too optimistic when compared to exper-

imental observations. The experimental data show that actual ion thermal conductivity is

anomalously large by a factor on the order of 1 − 10 with respect to the neoclassical χi,

while the electron heat conduction and particle diffusion coefficients are each anomalous
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by about two orders of magnitude larger than expected from neoclassical theory[1]. This

discrepancy has made the achievement of energy producing fusion reaction challenging.

It now has been generally accepted that the so-called ’anomalous’ cross field trans-

port is in fact due to the plasma turbulence which is driven by free energy sources in the

plasma. Such free energy sources are, for example, due to the density gradient, temper-

ature gradient, and/or non-equilibrium distribution function [3]. See Carreras [4] for a

review on the turbulent processes in magnetized plasma. Plasma turbulence may cause

random perturbations in the guiding center orbits of the particles. The randomness of the

fluctuations leads to a collision-like diffusion of particles and energy and increase the av-

eraged step size. Turbulent transport, therefore, limits particle and energy confinements in

magnetic confinement devices. Thus the real problem of understanding anomalous trans-

port is understanding plasma turbulence, which is critical to achieve a positive net en-

ergy gain. Fig.1.1a is a sample density fluctuation measurements[5] obtained with beam-

emission-spectroscopy (BES)[6] in DIIID tokamak[7]. The plots are for two poloidally

adjacent channels near r/a = 0.95 position(r is minor radius and a is major radius in

toroidal geometry). The ambient turbulence amplitude is relatively large, ñ/n ≥ 5%.

More recently modeling and theory suggest that the saturation of turbulence is me-

diated by the self-generated zonal flow. Such flow can be spontaneously generated by the

turbulence via turbulent Reynolds stresses (i.e. the turbulent transport of momentum) in

a way similar to the formation of zonal flows in planetary atmospheres and rotating fluids

[8, 9]. From a spectral point of view, this process can be considered to be nonlinear en-

ergy transfer of kinetic energy from small-scaled turbulence into large-scaled shear flow.
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Figure 1.1: (a) Sample density fluctuation measurements from two poloidally adjacent

channels near r/a = 0.95. (b) The power spectrum of the derived poloidal velocity

exhibiting coherent oscillations near 15.5kHz[5].

These zonal flows exhibit a low frequency branch, referred as the ’residual’ zonal flow

(ZF) or Hinton-Rosenbluth mode [10, 11] and a related higher frequency branch, iden-

tified as geodesic acoustic modes (GAM)[12, 13]. Both the ZF and GAM are toroidally

and poloidally symmetric ~E × ~B flows that exhibit a significant radial (i.e., the direction

parallel to the mean plasma gradient) shear. Fig.1.1b is a power spectrum of the poloidal

velocity obtained by applying time-delay-estimation (TDE) to the BES density fluctua-

tion measurements in the edge of the DIIID tokamak[5]. The poloidal flow exhibits a

coherent mode ∼ 15.5kHz. Fig.1.2a shows the radial and poloidal phase relationship of

the coherent poloidal flow while Fig.1.2b hows a sample snap shot of the 2D flow field,

inferred from ensemble average 2D cross-correlation. It clearly shows the radial shear

and poloidal uniformity. The results in the literature[5] have demonstrated the observed
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flow oscillation is a GAM. Similar results are available for the ZF as well.

Figure 1.2: (a) Radial and poloidal phase relationship of coherent vθ oscillation at

15.5kHz. (b) Sample snap shot of 2D flow field of 15.5kHz vθ oscillation[5].

Theory predicts that the zonal flow random shearing effect on the turbulence will

regulate the amplitude and size of the turbulence. In addition, theory predicts that the

shear flow is nonlinearly driven by the turbulence. Thus the plasma turbulence and shear

flow form a self-regulating system [8]. In experiments it is found sometimes plasma can

spontaneously transition from a state with strong turbulent transport (L-mode) to a state

with significantly reduced anomalous transport (H-mode)[14, 15], resulting in a 2-3 times

increase in τE . The formation of such ’Transport barrier’ is represented as extreme exam-

ple of the effect of a shear flow on turbulence. Therefore, understanding the mechanism

of the zonal flow generation and the turbulence/ZF interaction play a crucial role in un-

derstanding the turbulent transport, which is a critical issue for magnetic fusion research.

Although modeling and theory have effectively predicted and interpreted the improve-
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ment of plasma confinement, these models still require further experimental tests. In

particular, the dynamical behavior of the DWT/ZF system and the non-linear coupling

between the DWT and ZF are critical issue requiring experimental study. However, be-

cause of the complications that arise from the complicated toroidal geometry, diagnostic

limitations and limited access, there have not yet been conclusive evidences to validate

this basic theory. These studies of turbulence-driven shear flow in a cylindrical plasma

device were motivated by this situation. In the following two sections we will first give an

overview of the basic physics of the drift-wave turbulence and the zonal flow generation.

We then summarize previous experimental results, based on which we then describe the

aim of this thesis.

1.2 Overview of drift-wave turbulence

A single charged particle in magnetic field will execute a circular motion (gyro-

motion) around the field line due to the Lorentz force. However a typical plasma den-

sity might be 1012 ion-electron pairs per cm3, and each follows a complicated trajectory.

Therefore, it will be hopeless to predict the plasma behavior by following each single par-

ticle. Some of the plasma phenomena observed in real experiments, particularly in low

temperature experiments where collisions are strong, can be explained by a fluid descrip-

tion of the ion and electron motion[16]. Each species of the plasma particles (electrons

and each type of ions) is described by a set of fluid equations (analogous to the Navier-

Stokes equation, but accounting for the fast gyromotion of the charged particles around
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the magnetic field) for density n and velocity ~u [16].

∂n

∂t
+∇ · (n~u) = 0 (1.7)

mn

[
∂~u

∂t
+ (~u · ~∇)~u

]
= en( ~E + ~u× ~B)− ~∇p− ~∇ · ~Π + ~R (1.8)

where, Π is the anisotropic viscous tensor and ~R represents the exchange of momentum

with other fluid species (e.g. ions with electrons and neutrals). These equations combined

with Maxwell’s equations provide a complete description of the plasma.

A spatially inhomogeneous plasma, i.e., n0 = n0(x), with finite pressure gra-

dient transverse to the magnetic fields can develop ’drift waves’ so called because the

waves propagate in the direction of the electron diamagnetic velocity, Vde = −mkT
eBLn

[16].

The quantity 1/Ln =
d lnn0(x)

dx
is the scale length of the equilibrium density gradient

dn0(x)/dx. The theoretical properties of linear drift waves are well understood and are

discussed in a review paper [17]. The simplest nonlinear model[18] for the drift-wave is

found by expanding Eqn.1.8 to the second order in ω/Ωci, where, Ωci = eB/Mi is the

ion gyrofrequency. Thus the ion velocity can be presented as the sum of the ~E × ~B and

polarization drift,

~u = −~∇φ×
~B

B2
0

+
1

ΩciB0

[
− ∂

∂t
~∇⊥φ− (~uE · ~∇⊥)~∇⊥φ

]
(1.9)

where, ~uE = −~∇φ ×
~B

B2
0

is the ~E × ~B drift and −~∇φ is the electric field ~E. The term

in the square brackets is the polarization drift. When ~Re = 0 (i.e., when the electrons do

not suffer collisions), the continuity equation Eqn.1.7 can then be used to find a nonlinear
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equation which describes the evolution of the perturbed potential,

∂

∂t
(φ− ~∇2

⊥φ)−
[
(~∇⊥φ× ẑ) · ~∇⊥

]
~∇2
⊥φ+

1

Ln

∂

∂y
φ = 0 (1.10)

Eqn.1.10 is known as the Hasegawa-Mima equation, or HM equation[18]. In this equation

the potential is normalized with Te/e, the time with the 1/Ωci, and distance with ρs(ρs =

cs/Ωci is the ion gyroradius evaluated at the sound speed cs, where cs =
√
Te/Mi).

To get this model several simplifying physical assumptions have been made: (1)Ho-

mogeneous background magnetic field, i.e., ~B = B0ẑ; (2) Cold ions (ion thermal bal-

ance equation dropped) and Ti � Te; (3)Adiabatic electrons and quasineutrality, i.e.,

ni ≈ ne ≈ n0(x) exp(
eφ

Te
) (Boltzmann relation); (4)The polarization drift (the term in

the square brackets in Eqn.1.9) is small compared to the primary ~E × ~B drift. Note that

the key nonlinearity here is the ~E × ~B advection of the ion polarization drift. The HM

model is similar to the 2D incompressible neutral fluid except two differences: (1) The

background gradient appears in the HM model, and (2) the time derivative ,
∂φ

∂t
, appears

in the HM model. The HM model behaves like a 2D incompressible fluid in the limit that

φ/~∇2
⊥φ→ 0 or kρs � 1, i.e., wavelength is much smaller than ρs.

With a plane wave solution of the potential, φ = φk exp(i~k ·~r− iωt), a dispersion

relation of the drift wave can be presented as ω? =
kθVde

1 + k2
⊥

. Note that in this description

the drift-wave is marginally stable (ω? is purely real). This is illustrated with the Fig.1.3.

When there is no parallel electron resistivity dissipation, i.e., ~Re ·
~B

|B|
= 0, the pressure

gradient is balanced by the electric field, thus the density and potential satisfy Boltzmann

relation,
ñ

n
=

eφ̃

kTe
(
eφ̃

kTe
� 1) for an isothermal plasma. As a result where the density is
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Figure 1.3: Physical mechanism of a drift wave.

positive, the potential is positive. The resulting ~E× ~B velocity bring plasma from different

density to a fixed point. The net effect is to propagate the drift wave azimuthally in the

direction of the electron diamagnetic velocity Vde. Density and potential perturbation

are in phase and the system is stable. The HM model was useful to study evolution

of spectrum without dissipation. However, this idealized model does not apply to most

experimental conditions where ~Re 6= 0, such as ours.

The Hasegawa-Wakatani model(HW), which is derived from the same equations

(Eqn.1.7 and Eqn.1.8) but includes the electron parallel dissipation, electron-ion collisions

and ion viscosity, describes the dynamics of the drift turbulence in the presence of electron

and ion dissipation. The governing equations are two coupled dimensionless equations as

(
∂

∂t
− ~∇φ× ẑ · ~∇)~∇2

⊥φ = c1(φ− n) + c2~∇4
⊥φ (1.11)

(
∂

∂t
− ~∇φ× ẑ · ~∇)(n+ lnn0) = c1(φ− n) (1.12)
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where, c1 = k2
‖V

2
the/νeΩci, the so-called ’adiabatic parameter’. Here k‖ is the parallel

wavenumber, Vthe the electron thermal velocity and νe the electron collision frequency.

c2 = µ/ρ2
sΩci, is the normalized ion viscosity.

Figure 1.4: Physical mechanism of a drift wave.

In the HW model (Eqn.1.11 and Eqn.1.12) there are three dimensionless parame-

ters determining the nonlinear dynamics of the drift wave turbulence: (1) the normalized

the density scale length ρs/Ln, (2) the ’adiabatic parameter’, c1, and (3) the normalized

ion viscosity c2. In the presence of the neutral collisions the dimensionless ion-neutral

collision frequency νin is also relevant, and should be much less than 1. The parameter

c1 quantifies the degree to which the Boltzmann relation is maintained via parallel elec-

tron dynamics. For c1 � 1, parallel collisions are negligible. This is the HM model.

For c1 ≈ 1, the Boltzmann relation breaks down and density and potential fluctuations

become particially de-correlated and also acquire a finite phase shift. For c1 � 1, density
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acts as a passive scalar following streamlines of the potential. This is in the hydrodynamic

limit. The dynamics of this extreme are as the 2D Euler fluid. The typical drift-wave per-

pendicular spatial scale is ρs and the time scale is ω? � Ωci. Drift turbulence occurs

typically when ρs/Ln � 1 and c2 � 1, which then allow the convective derivative term

to become important in the momentum equation Eqn.1.8. In our experiments these con-

ditions are satisfied with c1 ≈ 1, ρs/Ln ≈ 0.3 − 0.5, c2 ≈ 0.2 − 0.3 and νin ≈ 0.01. In

the presence of finite electron dissipations (i.e., c1 ∼ 1), the electrons can not respond

quickly to a perturbation in the plasma potential. Consequently, there is finite phase shift

between density and potential. As a result of this phase shrift, the ~E × ~B velocity rein-

forces the density perturbation and the system becomes unstable as ρs/Ln is decreased.

This is illustrated in the Fig.1.4. Typically fluctuations with 0.1 ≤ kθρs ≤ 1 become

linearly unstable, with
ωR
2π
≈ ω?

2π
∼ 10− 100kHz and with

ωI
ωR
∼ 0.01− 0.1. A detailed

discussion of the transition to a state of drift turbulence in CSDX deviece has been given

previously[19].

1.3 Zonal flow generation in drift-wave turbulence

Turbulence in fluids is generally three-dimensional. However, under certain cir-

cumstances the vorticity of the motion is ordered along a particular axis. In such case the

turbulence can be reasonably described as two-dimensional. Examples of this include a

thin accretion disk of materials orbiting a central object like a star, or in a thin-atmosphere

system with some rotation like geophysical turbulence, or the magnetized plasma[20].
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A key difference between 2D and 3D turbulence is that in 3D turbulence there

exists a finite strain field
∂vz
∂z
6= 0 which causes vortex tube stretching (here z is aligned

with the vortex axis). This allows both enstrophy and energy transfer to small spatial

scales where energy is dissipated by viscosity in a process referred as a direct energy

cascade[21]. However, in 2D turbulence the strain field vanishes, i.e.,
∂vz
∂z

= 0, so the

vortex stretching does not occur. This leads to a dual cascade of energy and enstrophy[22]

wherein the kinetic energy is transfered to the largest scales and enstrophy is transfered to

the smallest scales. Both enstrophy and kinetic energy are conserved in such process. This

process can be illustrated by two colliding vortices: When two like sign vortices approach

together they will merge together to form a single vortex, which due to conservation of

momentum and energy must be larger in size. This process can be repeated and resulting

in a formation of progressively larger-scaled structure. Eventually a large-scale coherent

structure will be formed [23, 24].

In toroidal plasma zonal flows, by definition, are poloidally and toroidally sym-

metric electric field perturbation, which are constant on the magnetic surface but rapidly

varies in the radial direction (kθ = kϕ = 0, finite kr, with kθ, kϕ and kr denoting the

poloidal, toroidal and radial wavenumber respectively). Fig.1.5a [8] is a schematic of a

zonal flow. Because the variation of the electric field perturbation is in the radial direction,

the associated ~E× ~B flow is in the poloidal direction and changes sign with radius. Zonal

flows are predicted to be linearly stable and are thought to be generated by a nonlinear

transfer of kinetic energy from the turbulence at ~k1 and ~k2 to large-scaled shear flows with

~kZF mediated by three wave coupling process satisfying criteria ~k1 + ~k2 = ~kZF , where
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~k1,~k2 are turbulent fluctuation wavenumbers and ~kZF is zonal flow wave number [21]. To

illustrate this process, consider a highly simplified model of azimuthal momentum bal-

ance for an incompressible inviscid two-dimensional plasma fluid with azimuthal flow uθ

in a cylindrical plasma in the presence of a flow damping rate µ [25] as,

∂uθ
∂t

+
∂uθur
∂r

= −µuθ (1.13)

where uruθ is Reynolds stress and µ is damping rate of the mean flow due to dissipative

processes. Taking a spatial Fourier transform of this equation gives,

∂uθ(~k)

∂t
+ ikr

∑
~k1,~k2,~k=~k1+~k2

uθ(~k1)ur(~k2) = −µuθ(~k) (1.14)

where ui(~k) is the ith component of the transformed velocity u at wavenumber ~k. Mul-

tiplying this equation by the complex conjugate u?θ(~k) results in a new equation. Taking

the complex conjugate of this new result and adding these two equations together give the

evolution of the kinetic energy of the flow u2
θ(
~k) as,

∂
∣∣∣uθ(~k)

∣∣∣2
∂t

− 2kr
∑

~k1,~k2,~k=~k1+~k2

Im
[
u?θ(

~k)uθ(~k1)ur(~k2)
]

= −µ
∣∣∣uθ(~k)

∣∣∣2 (1.15)

The 2nd term of the LHS of this equation represents the nonlinear transfer of kinetic en-

ergy in k space across spatial scales via 3-wave coupling. Consider a zonal flow to have

~kZF = kZFr r̂, and generally it is assumed to have |~k1|, |~k2| � |kZFr |. This assumption

implies that the wavevectors of the interacting triplets
{
~k1, ~k2, k

ZF
r

}
form ’narrow’ tri-

angles such as those shown in Fig.1.5b, rather than equilateral triangles in the 2D neutral

fluid turbulence, where the magnitudes
{
~k1, ~k2, ~kZF

}
are all comparable[21].
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Figure 1.5: (a) Schematic of zonal electric field. The poloidal cross section of toroidal

plasma is illustrated. The hatched region and the dotted region denote the positive and

negative charges respectively[8]. (b) Schematics of zonal flow-drift wave interaction for

zonal flow with a wavevector kZF and two drift wave vectors k1 and k2.

For low beta plasma with significant plasma fluctuation amplitude for kρs �

1, the fluid velocity can be taken to be electrostatic ~E × ~B drift velocity, i.e., u(~k) =

−(ikφ(~k) × B)/B2, where φ(~k) is the Fourier transformed electrostatic potential. Then

averaging Eqn.1.15 over zonal flow scales we can write in from of φ(~kZF ),

∂
∣∣∣φ(~kZF )

∣∣∣2
∂t

= 2γ(~kZF )
∣∣∣φ(~kZF )

∣∣∣2 +Re
∑
~k1,~k2

Tk(~k1, ~k2)
〈
φ?(~kZF )φ(~k1)φ(~k2)

〉
(1.16)

where Tk(~k1, ~k2) is a quadratically nonlinear wave-wave coupling coefficient. This equa-

tion simply says that the fluctuation energy contained in the kZF component is formed

by a balance of the linear growth(damping) rate of this mode with the energy transfered

away (into) this mode.

The simulations by Hasegawa and Wakatani [26] have shown the condensation of
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the kinetic energy into large-scaled shear flow. Fig.1.6 is an example of these results. The

most conspicuous feature of the potential contours is the formation of the closed potential

surface with φ(r) ≈ 0 as shown in Fig.1.6b. This is due to the generation of poloidal and

toroidal symmetric potential through inverse cascade of turbulent spectra [26].

Figure 1.6: (a) The density contour. (b) The potential contour from the 3D computer sim-

ulation of electrostatic plasma turbulence in a cylindrical plasma with magnetic curvature

and shear. In (b) the solid (dashed) lines are for the positive (negative) potential contours.

Note the development of closed potential contour near the φ ≈ 0 surface[26].

The significance of the generation of zonal flows is that they can regulate turbu-

lence and transport, which is the key element that drives the strong current interest in

zonal flow. In the case of a smooth, mean shear flow, the shearing tilts turbulent eddies,

narrowing the radial extent and elongating them, as illustrated in Fig.1.7(a,b)[8]. Some

simulations show the sheared flow can break up turbulent eddies. This implies that the
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radial wavenumber increases with time. The increase in kr implies reductions of the ef-

fective ’step size’ ∆l in the turbulent diffusivity χturb ≈ ∆l2/τcorr [27], thus reduces

turbulent transport and increases energy confinement time. In addition, the transfer of

energy between the turbulence and ZF conserves total energy. Thus an increase in the ZF

comes at the expense of the drift turbulence energy, and thus reduces χ. A recent review

article [8] gives a detailed summary of this process. Zonal flows and drift-wave turbulence

are thus in a self-organization system. As the theory of zonal flow generation and their

roles in regulating plasma turbulence and associated transport are now well developed,

detailed experimental tests of theory are now needed.

Figure 1.7: (a) Sheared mean flow. (b) Shearing of the vortex. Picture taken from Ref.[8]

1.4 Previous relevant plasma turbulence experiments

To investigate the drift-wave turbulence/zonal flow theoretical dynamical behav-

ior measurements of the plasma density and electrostatic potential have to be made. Such
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measurements are realized by using the Langmuir probe,by heavy ion beam probe (HIBP),

or by measuring spatial propagation of fluctuation immersed in a ZF. Because of the high

plasma density and temperature near the core region of the plasma, Langmuir probe mea-

surements are limited to the edge region. Observation of the ZF requires the capability

of either measuring the radial electric field (from probes or HIBP) or the plasma velocity

fields directly. With such experimental techniques the structure of the plasma profiles in

the plasma boundary region has been investigated in tokamak, stellarator and reversed

field pinch, demonstrating an onset of the improved confinement, associated with the ex-

istence of the shear flow. Fig.1.8 shows the examples of frequency spectra in CHS, T-10,

TEXT, JFT-2M, ASDEX-U and DIIID. The picture is taken from Ref.[30]. The common

feature of the spectra is the existence of the solitary peaks, which have been identified

as the finite frequency sheared ZF known as the GAM. The Hinton-Rosenbluth branch of

the ZF was observed in CHS using twin heavy-ion-beam-probe (HIBP) located at two dif-

ferent toroidal positions separated by 90o[31] as shown in Fig.1.9. In Fig.1.9a the power

spectrum of the electric field (red lines) and the coherence between the electric fields at

two different toroidal locations show that the 0.3 − 1kHz electric field fluctuations have

long-range correlations, suggesting the activity of zonal flow of nearly zero frequency.

This is also clearly shown in Fig.1.9b with blue lines showing a high coherence between

electric fields at different toroidal locations and red lines showing the zero phase (divided

by π) between these two.

As the existence of the ZF is an unambiguous phenomenon in many magnetic

confinement devices, attentions have turned to understand the mechanisms that drive the
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Figure 1.8: Potential fluctuation spectra measured with HIBP. (a) Electric field fluctuation

in CHS[32]. (b) Potential fluctuation spectra in JFT-2M. The hatched area means the

noise level[33]. (c) Potential and density fluctuation spectra in T-10[34]. (d) Potential

fluctuation spectra in TEXT-U for three different locations. The crosses, diamonds and

circles correspond to ρ = 0.85, ρ = 0.76 and ρ = 0.69, respectively [35]. (e) Velocity

fluctuation spectra measured with BES in DIII-D[36]. (f) Spectrum of Doppler frequency

measured with DR in ASDEX-U[37]. Picture taken from Ref.[30]
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Figure 1.9: (a) Power spectra of potential difference (red lines), and coherence between

potential differences (blue line) at the two toroidal locations. The hatched region shows

the noise level for power. (b) An example of phase (divided by π) and coherence between

potential differences at two toroidal locations on a magnetic flux surface. Picture taken

from Ref.[31]

sheared flow. In a few experiments it has been suggested that turbulent Reynolds stress

is the mechanism generating the shear flow. A preliminary investigation was done in

the TJ-IU torsatron and ISTTOK tokamak. In those experiments a radial profile of the

Reynolds stress has been measured in the plasma boundary region[38] and shows a radial

gradient close to the velocity shear layer location. This stress gradient is estimated to

be in the range of 107 − 108m/s−2. The damping term was estimated to be γmpviθ,

where viθ is the ion poloidal velocity assuming to be close to the phase velocity of the

fluctuations (about 1km/s). For the typical edge plasma condition, the flow damping

rate is estimated as γmp ≈ 104s−1. Thus the radial gradient of Reynolds stress is large

enough to possibly drive significant poloidal flows in the plasma boundary region. In HT-
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6M tokamak[39] the Reynolds stress is also measured and used with measurements of a

plasma flow ti evaluate the mechanism leading to an H mode transition. The results show

a clear correlation between the enhanced Reynolds stress gradient and the poloidal flow

acceleration, suggesting the turbulence-induced Reynolds stress might be the dominant

mechanism to create the poloidal flow and Er shear. More recently in CHS a wavelet

analysis reveals that there is a correlation between disparate-scale components of electric

field fluctuations[32]. It is found that the wavelet power of the lower frequency (2.5 <

f < 10kHz) close to the stationary zonal flow is anti-correlated with the power of the

turbulence (30 < f < 250kHz). There are also a few experiments demonstrating the

effect of zonal flows on plasma transport and confinement. In CHS by using HIBPs it is

found that the particle transport is modulated by the zonal flow[40], as shown in Fig.1.10.

It clear shows difference in the fluctuation spectrum according to the zonal flow phase.

The experiments carried out on various magnetic confinement devices, using many

diagnostic techniques, have confirmed that the zonal flows really do exist in toroidal plas-

mas and the available data suggest that the ZF/turbulence interactions are consistent with

the theoretical models. However, there are still many issues unaddressed. One question

is how the turbulent statistical properties (e.g. turbulence amplitudes, cross phases and

cross coherency) lead to the development of the detailed Reynolds stress profile that in

turn drives the shear flow. So far, to our knowledge only the mean Reynolds stress profile

and its link to the shear flow generation have been examined. Furthermore, there have

been no detailed experimental studies of the link between the turbulent Reynolds stress,

background shear flow and formation of bursty or intermittent transport events. Another
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Figure 1.10: The modulation effect of stationary zonal flow on particle transport in

CHS[40]. (a) Temporal evolution of stationary zonal flows and (b) an image plot of par-

ticle flux. (c) Conditional averages of potential fluctuation spectra in the time windows

discriminated by the phase of zonal flow; i.e. maxima, zero and minima. Picture taken

from Ref.[30]
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issue is there has been no full experimental validation of theoretical picture of the drift

wave turbulence/zonal flow self-organization dynamic system in a single experiment-the

existing observations are made across multiple experiments operating in widely varying

conditions.

A full experimental demonstrations needs several observations to be made in one

experimental plasma device. Firstly, an existence of the shear flow with correct symmetric

properties must be demonstrated. Secondly, such shear flow has to be demonstrated to

be generated against damping mechanisms by the turbulent Reynolds stress. Thirdly,

the shearing effect of the resulting shear flow on the turbulence including a reduction

of the turbulence radial correlation length should be observed. Fourthly, there must be

an anti-correlation between the turbulence energy and the flow energy consistent with a

conservation of total energy. No such complete set of observation presently exists. Studies

of this issue will have a great significance to further understand the shear flow generation

mechanism and fill the gap between the theories and the experiments.

1.5 Previous experimental results on CSDX

To study the interaction between drift-wave turbulence and shear flow it is clear

that firstly, a detail transition to drift turbulence should first be demonstrated. Such studies

need have a known source of free energy, an identifiable initial instability, and a known

source of dissipation. And the system should undergo a transition to turbulence so that

the final turbulent state could be compared with theory. In previous work this transition
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has been demonstrated by increasing the value of the magnetic field[19], which decreases

ρs and increases the dimensionless parameter Ln/ρs, which determines the strength of the

convective derivative in the HW model(and this is analogous to increase the Re number

in a neutral fluid experiments). It is found when the magnetic field, B, is increased from

300G to 1kG the floating potential changes from discrete mode consistent with linear

drift wave eigenmode to broadband turbulence (See Fig.1.11). During this transition the

fluctuation energy at low poloidal wavenumbers, which are linearly stable, are found

sharply increase as a turbulent state is realized with the increase of the magnetic field,

which suggests that the turbulence energy is nonlinear transfered from turbulence into

large azimuthal scale fluctuation, as shown in Fig.1.12. Simulations of the collisional

drift turbulence using the HW model in our plasma device have also clearly shown the

formation of the shear flow qualitatively similar to those observed in the experiments[42],

as shown in Fig.1.13,which illustrate that the dynamics of the system are dominated by

the m = 3 mode and the zonal flow.

With the Langmuir probe measurements an azimuthally symmetric radially sheared

plasma flow has been demonstrated. A turbulent momentum conservation analysis has

shown this shear flow is sustained against dissipation by the turbulent Reynolds stress

generated by collisional drift fluctuations in the device. The time-averaged azimuthal

component of the ion momentum equation is shown in Eqn.1.17 as,

1

r2

∂

∂r
(r2 〈ṽrṽθ〉) = −νin 〈vθ〉+ µii(

∂2 〈vθ〉
∂r2

+
1

r

∂ 〈vθ〉
∂r

− 〈vθ〉
r2

) (1.17)

where ṽrṽθ is Reynolds stress, νin is ion-neutral collisional rate and µii is ion-ion viscos-
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Figure 1.11: Radial profiles of potential fluctuation power spectrum with increasing B

field[19]

Figure 1.12: Development of the azimuthal energy wave-number spectrum E(kθ) with

increasing B. Data are from r ∼ 3 cm. Arrows indicate a trend toward larger scales as

turbulence develops. The apparent compression of the abscissa is due to the normalization

by ρs[19].
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Figure 1.13: Snapshots of the potential density during the linear (t = 80) and nonlinear

(t = 210) phases of the limit cycle case[42].
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ity. A detailed derivation of Eqn.1.17 can be found in Ref.[41]. The turbulent Reynolds

stress was measured by a four-tip Langmuir probe. Taking the measured Reynolds stress

into Eqn.1.17 the mean azimuthal flow can be solved with reasonably assumed viscosity

and neutral damping rate profile, as shown by the black solid line in Fig.1.14. The mean

azimuthal velocity was also measured directly by applying TDE technique to azimuthally

separated probe tips measuring floating potential, shown as open diamond in Fig.1.14.

Both show a shear flow existing in the plasma with a peak flow shear located approxi-

mately at r = 3.6cm. The good agreement of these two velocities demonstrated the shear

flow generation by the turbulent Reynolds stress against collisional and viscous damping.

Figure 1.14: Radial profile of azimuthal velocity field measured from different

methods[41].
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1.6 The aim of this dissertation

The aim of this dissertation is to undertake novel studies of drift-wave turbu-

lence/zonal flow self-organization system to understand, from an experimental point of

view, how sheared ZFs can arise from plasma turbulence, and affect the turbulence-driven

transport. Based on the limitations of the existing experimental results and our previ-

ous work on CSDX we perform this study through three primary avenues: The first is

to directly investigate the statistical properties (e.g. turbulence amplitude, cross phase,

and cross coherence) of the mean turbulent Reynolds stresses, radial turbulent particle

transport and the plasma density fluctuations, from which to understand the process of

the drift-wave turbulence driven shear flow generation. The analysis methods include

computing the probability distribution function (PDF) of both turbulent Reynolds stresses

and plasma density fluctuations, joint PDF between different components of the velocity

fields and the spectrum of the turbulent Reynolds stresses. Since the turbulent Reynolds

stresses play an important role in the shear flow generation, investigating the statistical

properties will help to further understand the shear flow generation mechanism. The

simple geometry of the linear cylindrical plasma device and the low plasma temperature

( 3eV ) make it possible to directly measure turbulent stresses by Langmuir probe and

thus provide an opportunity to give such detailed studies. Through this study two ques-

tions could be answered: One is what statistical properties lead to the development of the

detailed Reynolds stress and associated shear flow generation. The other is what is the

relationship, if any, among turbulent Reynolds stress, particle flux and background shear
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flow. To our knowledge, these questions have not been answered prior to this study. In

Chapter 3 we describe these results in details.

The second avenue of study has been an investigation of the dynamical coupling

between the drift-wave turbulence and shear flow using a combination of Langmuir probe

measurements and fast-framing imaging techniques. Theory predicts that the shear flow

and turbulence are in a self-organization dynamical system. An experimental test of this

requires several observations to be made in one plasma apparatus as wee described in

section 1.4. The goal of this study is to provide an experimental investigation of all

requirements, which are necessary for the validation of the theoretical picture of the drift-

wave turbulence/shear flow self-organization dynamical system. To our knowledge this is

the first time to provide such fully experimental investigations in one plasma apparatus.

In Chapter 4 we report such analysis in details.

The third avenue is to investigate the scaling properties of the drift-wave turbu-

lence driven shear flow. Previous work has shown that the magnetic field is an effec-

tive parameter to control the transition to turbulence[19]. In addition, another param-

eter, plasma pressure, is also reported to be a possible way to control the transition to

turbulence[43, 44]. Therefore it would be very interesting to investigate the evolution of

the shear flow with these parameters. In the large scale magnetic confinement plasma

device experiments are mostly performed when the plasma is already in ’turbulent’ state.

Therefore there is no way to study the shear flow evolution with those parameters dur-

ing the transition to turbulence. Our small scale linear machine, which has been clearly

shown an existence of the transition to turbulence process, however, provides such an
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opportunity for this study. In Chapter 5 we report the results of this study.

This thesis is organized as follows: In chapter 2 we describe the basic experimen-

tal setup, hardware arrangements and summarize the various analysis methods we use for

this study. In chapter 3 the results of the statistical properties of the turbulent Reynolds

stress are extensively discussed. In chapter 4 we discuss the results of the dynamical cou-

pling between drift-wave turbulence and shear flow using a combination of probe based

measurements and fast-framing camera. In chapter 5 we exam the variation of the shear

layer and turbulence as magnetic field and neutral gas damping are varied. Lastly in

chapter 6 we summarize our results and suggest several measurements for future studies.



2

Experimental set up and methods of

analysis

In this chapter we will describe the basic mechanical and electrical hardware used

in our experiments, and give an overview of the various methods utilized for our data

analysis.

2.1 CSDX linear plasma machine

The (C)ontrolled (S)hear (D)ecorrelation E(x)periment (CSDX) is a cylindrical

linear plasma device. The overall length is about 2.8m and the vacuum vessel diameter is

0.2m. Fig.2.1 provides a picture of the machine. This device is operated with a 13.56MHz

1500W RF helicon wave source via an antenna surrounding a 10cm diameter, 45cm length

glass belljar. A matching circuit is adjusted such that less than 30W of power is reflected.

A more detailed description of the RF source characteristics can be found in the Ref.[45].

30
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Both source and vacuum chamber are surrounded by a set of disk-shaped electromagnet

coils, providing a solenoidal magnetic field that can be varied from 0 up to 1kG. Each

of these coils has an inner diameter of 28cm and outer diameter of 91cm. Each coil has

a center-to-center axial core separation of 12cm. All of the magnetic field lines exiting

the two ends of the device terminate on insulating surfaces to eliminate the possibility of

currents flowing through the end plates of the device. Thus any fluctuating axial currents

due to drift waves must be balanced by fluctuating cross-field currents carried by ion

polarization drifts (which are equivalent to the turbulent Reynolds stress[46]). An axial

fall-off of the solenoidal magnetic field intensity is only appreciable at the end of the

vessel (40%), but is negligible at the center part of the chamber where all the experimental

data in this thesis are taken. A roughing pump located at the end of the machine is used

to maintain a low base pressure. Further pumping is provided by a 1000liter/sec turbo

pump. A calibrated mass flow controller provides gas injection and the plasma pressure

is measured by a Baratron gauge located at the end of the machine.

2.2 Plasma diagnostics

2.2.1 Multi-tip Langmuir probe

Measurements of mean plasma profiles, the fluctuating density, potential, and

electric fields along with the resulting turbulent Reynolds stress are made by an 18-tip

Langmuir probe inserted radially in a port located 1.7 meter downstream from the source.

Fig.2.2 is a schematic and a picture of the 18-tip probe. The probe array is arranged as
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Figure 2.1: A schematic (top) and a picture (bottom) of CSDX
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two 3× 3 arrays are shifted along the magnetic field by 1.5mm. One array measures ion

saturation current with probe tips biased at -25V dc voltage, and the other array measures

floating potential with probe tips connecting to 100kΩ resistor. The electrical circuit is

shown in Fig.2.3. The radial displacement of the probe tips is 1.5mm and the azimuthal

displacement is 2.5mm. Each tungsten tip is 0.33mm in diameter and 1mm in length.

Each tip is inserted in a single ceramic tube with a diameter only 1.2mm. The arrange-

ments of the probe tips in both radial and azimuthal directions allow the measurements of

the electric field from floating potential. Here it is assumed that the electron temperature

fluctuations are negligible. Thus from the relation φp ∼= φ + χTe [48] (with χ ∼= 5.1 for

argon in our data), where φp is plasma potential and φ is floating potential, fluctuating

plasma potential is approximately equal to the fluctuating floating potential, i.e., φ̃p ≈ φ̃.

The electric field can be obtained by ~E = −~∇φ. Besides, such arrangements of the probe

tips allow the measurements of the radial and azimuthal electric field at the same location

(φ6 and φ4 are used to compute Eθ, and φ8 and φ2 are used to compute Er). Thus at later

time when analyzing the cross-phase between different components of the velocity fields

there is no spurious phase difference since the measurements are made at the same spatial

location.

2.2.2 Data acquisition system

Fig.2.3 is the circuit schematic of the density and potential measurements from

the Langmuir probe described above. For the density measurements the voltage across the

50Ω resistor passes through a AC coupled amplifier, which has 50Ω input impedance and
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Figure 2.2: A schematic (top) and a picture (bottom) of the 18-tip probe
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1MHz band width, and is recorded by a 16 bit 96 channel digitizer with 500kHz sampling

rate (D-TACQ ACQ196CPCI). The resulting Nyquist frequency is 250kHz well above

the electrostatic fluctuation frequency. For equilibrium density measurements the volt-

age across the 50Ω resistor passes through a DC-coupled differential amplifier (Lecroy

DA1855A-PR2) and connects to the digitizer which has 1MΩ input impedance (a 50Ω

resistor is parallel to the digitizer for impedance match ). For the floating potential mea-

surements the voltage passes through a DC coupled amplifier (50Ω input impedance and

≥ 2MHz band width) with a gain of A = ×28 for the high impedance output. A mil-

lion samples (2sec) are usually obtained for the fluctuation data at each radial location,

allowing for low-variance estimation of the fluctuation statistics.

Figure 2.3: A circuit schematic of density and potential measurements



36

2.2.3 Fast-framing camera

A Phantom V.7 fast-framing camera is used to capture the visible light emission

from the plasma. It uses 800×600 pixel SR-CMOS 12 bit monochrome sensor that is sen-

sitive to visible light. For 128× 64 resolution the sampling rate is as high as 102, 000/sec.

It has continuously variable pre/post trigger allowing synchronizing Langmuir probe and

camera. In experiments a Pentax 25mm f/1.4 lens is used with the camera to capture

images through a telescope, which will be described in the next section.

2.2.4 Optical system

A large telescope (Celestron C11-SGT(XLT)) with small angle of view (0.71 ◦)

provides optical path with rays that are very nearly parallel to the magnetic field. This

view then effectively integrate light emission along the magnetic field, providing a line-

integrated (r, θ)cross section of light emission. The aperture of the telescope is 280mm

and focal length is 2800mm. Because of the large minimal focal length of the telescope

and limited size of the lab, we use two mirrors to reflect the visible light from the plasma

to insure enough distance for the focusing. The fast-framing camera is placed after the

telescope to capture images. The whole setup is shown in Fig.2.4. The telescope and the

camera are on a same optical table with leveling feet.

In this setup the camera and the two mirrors have adjustments in three dimensions,

as well as pitch and yawn, while the telescope is fixed. Before taking images an alignment

among camera, telescope and the vacuum chamber needs to be made. This is done by two
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Figure 2.4: Layout of the optical system

steps. The first step is to align camera with telescope. We located the camera with lens

close to the telescope and adjusted the camera focal plane to be the secondary mirror

of the telescope. Then the transverse camera position is adjusted until the image of the

secondary mirror is located at the center of the camera (See Fig.2.5a). Once the camera

is aligned with the telescope, the second step is to align camera and telescope with the

vacuum chamber. This is accomplished by first adjusting the camera focal plane to be

the end window of the vacuum chamber. The center of the vacuum chamber window

is located by a mechanical cross-hair mounted to the window. The alignment of the

camera/telescope to the vacuum chamber is then done by adjusting the two mirrors such

that the image of the center of the vacuum chamber is also the center of the source belljar

located at the source end of the machine (See Fig.2.5b). Note that the images taken this

way are reversed in left and right, up and down.
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Figure 2.5: (a) Alignment between camera and telescope. (b) Alignment with vacuum

chamber.

The light collected by the camera is a line-integrate light emission along the op-

tical path for all wavelength λ, i.e., Itotal =

∫
I(λ) dλ, where I(λ) is the light emission

intensity of wavelength λ. In general, the light emission from a given line is given by[47],

I(λ) = (const)neni 〈σv〉 (2.1)

where ne is the electron density, ni is the ion density and 〈σv〉 is the excitation rate of the

spectral line of that ion. Therefore, Itotal ∝ nef(Te), where Te is the electron temperature.

2.3 Methods of analysis

After the data was taken from the plasma, they are analyzed to study the underly-

ing physics. This section describes the main analysis method we used in this thesis.
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2.3.1 Statistical analysis

Most data are in the form of turbulent fluctuations, e.g., density, potential or light

emissions, which are suitable for statistical analysis. The main statistical analysis methods

include computing the auto-power spectrum Sxx(f), cross-power spectrum Sxy(f), cross-

correlation Cxy(f), coherence γxy(f) and cross-phase αxy(f) , as well as probability

distribution function(PDF), joint PDF and skewness. The definitions of these used in this

thesis are described as below:

Sxx(f) =
〈
|X(f)|2

〉
(2.2)

Sxy(f) = 〈X?(f)Y (f)〉 (2.3)

γxy(f) = |Sxy(f)| /
√
Sxx(f)Syy(f) (2.4)

αxy(f) = Im(Sxy(f))/Re(Sxy(f)) (2.5)

Cxy(τ) =

∫ T

0

x(t)y(t− τ) dt (2.6)

where X(f) and Y (f) are the Fourier transform of the zero-mean time series data x(t)

and y(t) respectively, ? denotes complex conjugate, Im denotes the imaginary part, Re

denotes the real part, and τ is the time lag between two time series data. Windowed FFT

(fast Fourier transform) is used for the spectrum computation. Then the average value is

obtained by taking ensemble average of all windows (denoting the number of windows

to be M ). Each realization is T = Nts seconds in duration, with N denoting the total

number of samples in each window and ts the sampling rate. The minimal frequency

resolution is df = 1/T and the highest frequency that can be resolved is the Nyquist

frequency fNyq = 1/2ts. Therefore, the value of N should be chosen to be large enough
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to obtain sufficient frequency resolution. In our experiments for the ensemble averaged

quantities N is chosen to have T ∼ 16ms. Thus the minimal frequency resolution is ∼

60Hz. Hundreds of ensembles are usually obtained for the total 2s duration data allowing

for low-variance estimation of the fluctuation statistics.

The probability distribution function (PDF) is computed by the histogram of the

time series data normalized by its root mean square. The skewness is the third standard-

ized moment, and defined as

γ1 =
µ3

σ3
(2.7)

where,µ3 = 〈(x− 〈x〉)3〉 is the third moment about the mean 〈x〉. σ is the standard

deviation. PDF and skewness are measures of the intermittency of the fluctuations. It has

been reported that there is a universal nature to bursts of outward-going blobs of plasma

in the edge of magnetic confinement laboratory plasma devices[49]. Such events are

normally characterized by the non-Gaussian PDF of the ion-saturation current in regions

where these events are being generated and propagating.

2.3.2 Bispectral analysis

The statistical analysis methods described in the previous section generally char-

acterize the linear properties of the systems, and provide limited information about the

nonlinear processes involved in the dynamics of the system. Bispectral analysis, on the

contrary, is relevant in all system featuring quadratic nonlinearity in their governing equa-

tions, such as the convective derivative found in the plasma fluid description.

Bispectrum statistics maybe considered as Fourier transformed triple-point corre-
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lations, or frequency resolved skewness. Bispectra are transformed triple-point correla-

tions in same sense that power spectra are transformed two-point correlations. Define the

autobispectrum Sk3(k1, k2) of a signal φk as,

Sk3(k1, k2) =
〈
φ?k3φk1φk2

〉
(2.8)

where φk represents a Fourier transform of signal in wavenumber k space. The same

definition may be easily written in frequency domain. The bicoherence bk3(k1, k2) is

defined as,

bk3(k1, k2) =

∣∣〈φ?k3φk1φk2〉∣∣√〈
|φk3 |

2〉√〈|φk1 |2 |φk2|2〉 (2.9)

and the biphase Θk3(k1, k2) as

Θk3(k1, k2) = arctan(
Im(Sk3(k1, k2))

Re(Sk3(k1, k2))
) (2.10)

These measures represent an ensemble-averaged coherency of the three modes which

satisfy the matching condition k3 = k1 + k2, or equivalently in frequency space f3 =

f1 + f2.

To see the utility of the bispectrum, consider a highly simplified model of the az-

imuthal momentum balance as we have described in Section 1.3, Eqn.1.13-1.16. Eqn.1.16

shows that to obtain the amount of the energy exchanged between a given triplet waves

requires the knowledge of the coupling coefficient, which requires the bispectrum three

waves analysis. However, in this thesis, we will just evaluate the auto-bicoherence defined

as Eqn.2.9 from one field model to look at the nonlinear energy transfer, which will only

tell the possible nonlinear coupling between different modes, but not the actual energy
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transfer directions and amount. A full bispectral analysis of the turbulence kinetic energy

is performed underway by others in our research group.

2.3.3 Velocity measurements

To study the drift-wave turbulence/shear flow interactions the capability of mea-

suring velocity field of the plasma is a necessary. In this section we will describe several

methods used in this thesis to determine the velocity field.

2.3.3.1 Velocity measurements from 1D TDE technique on probe and imaging

The time-delay estimation (TDE) technique has been used in some plasma exper-

iments to determine the mean fluctuating velocity field[5, 50]. The detailed investigation

of this technique can be found in Ref.[52]. The main idea of this technique is to measure

the advection of a quantity such as the density or potential, and then compute the cross-

correlation (Eqn.2.6) between two measurements obtained at two separate locations that

are separated by some distance less than the turbulent correlation length. The correla-

tion function Cxy(τ) has a maximal value at some time lag τmax , from which the TDE

velocity is calculated by u =
∆x

τmax
, where ∆x is the separation distance. Applying this

technique to two azimuthally separated probe tips will provide a azimuthal velocity at

that location. In the calculation presented in this thesis, to get a time-averaged velocity

field, we choose a time window to be 1ms, which is larger than the fluctuation time scale

(in the order of 10 − 100µs ). By moving the time window T and repeating the calcula-

tion, an ensemble of different correlation function is calculated. Let us denote the total
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number of time windows as M . These M correlation functions from all time windows

are then averaged, and the mean velocity is found from the peak of this averaged cor-

relation function. To find a slowly-varying velocity field, the time window T is kept as

1ms and the window is slided with 128µs spacing, but no ensemble average is computed.

Since the plasma rotates once in ∼ 0.5ms and the sheared azimuthal flow evolves at a

frequency of hundreds of Hz (which will be described in details in chapter 4), we there-

fore choose an intermediate time window length, T = 1ms. This window will average

the azimuthal mode number m >0 turbulence, but still resolve the more slowly varying

sheared azimuthal flow. The choice of 128µs spacing ensures the highest frequency that

can be resolved of the varying azimuthal flow is ∼ 4kHz, well above the slowly varying

sheared azimuthal flow frequency.

The TDE technique can also be applied to the fast-framing imaging data. To obtain

we first perform a time average image from 2000 frames. Then subtract this averaged

intensity from the instantaneous image. This then results in an image of the fluctuation

intensity, which is related to plasma density. We then select a series of pixel points along

the azimuthal direction with radius R on the density fluctuation images (see Fig.2.6)and

denote the pixel point located at θ = 0 as the reference point and then calculate the cross-

correlation between the first two pixel points’ time history data (as described above). The

separation between the two pixel points that are cross-correlated is then increased and the

correlation function is computed and another τmax and velocity u are found. This process

is repeated with increasing separation until the correlation peak value reaches a threshold.

Here we set the threshold value to be 0.4. Fig.2.6b shows the decreasing of correlation
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peak value with increasing separation. By doing this, a series of ∆x − τmax pairs are

obtained, which are the symbol star shown in the Fig.2.6c. Lastly we linear fit these data

points and the velocity is computed as the gradient of this fit line, i.e., u =
dx

dτ
.

Figure 2.6: (a) Image with selected circular pixel points high lightened. (b) Cross-

correlation Cxy(τ) between two pixel points with increasing separation ∆x. (c) Distance

∆x between two-pixel points v.s. time lag τ .

2.3.3.2 Velocity measurements by 2D TDE on fast-framing imaging

A 2D flow field was obtained by applying 2D TDE to the fast-framing images.

The principle of this algorithm is: instead of computing the cross-correlation between

1D data sets(azimuthal or radial), we compute the cross-correlation in a range of A × B

2D area with a series of given increasing time lag τ from τ = 0 with a time step δτ . For

example, Fig.2.7 is a 2D 11×11 grid centered at point P0(x0, y0). To compute the velocity

at point P0(x0, y0) we first compute the cross-correlation between point P0(x0, y0) and

other points located in a square range from (x0 − 5, y0 − 5) to (x0 + 5, y0 + 5) for a time



45

lag τ = 0. A 2D 11 × 11 cross-correlations are obtained with the maximal value Rmax

located at point P0(x0, y0). This process is then repeated for a new time lag τ1 = τ + δτ ,

and a new 2D cross-correlations is obtained with the maximal valueRmax located at point

P1. Same process is repeated for increasing time lag until the maximal cross-correlation

Rmax is smaller than some threshold set initially as R0. The velocity vector ~v is then a

linear fit of these Rmax data points shown by the blue arrow.

Figure 2.7: 2D time-delay estimation (TDE) technique.

2.3.3.3 Velocity measurements from probe by Two-point technique

The two-point technique was first proposed by Beall et al.[53]. The two-point

spectrum S(k, ω) is the power spectrum of the fluctuations in both frequency (ω) and

wavenumber (k) space. It reveals the dispersion relation ω(k) of the fluctuations. When

S(k, ω) is integrated over k, the standard power spectrum as a function of frequency S(ω)

is obtained. When it is integrated over frequency ω, a spectrum in wave number space
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S(k) is obtained.

Velocity from two-point technique can be realized by utilizing two spatially sep-

arated probe tips measuring same field quantities. A cross-phase α of the mode between

two probe tip pairs is firstly estimated for a series M FFT time window. The local wave

number is then obtained from k(ω) =
α

∆x
. For each FFT window the power-weighted

phase velocity can be computed as un =
∑

ω

∑
k

ω

k
S(k, ω)/

∑
ω S(ω). The averaged

velocity is then the ensemble average of all the FFT windows u =

∑
n un
M

. A key as-

sumption for the two-point technique to work is a unidirectional flow in the direction of

the probe tip difference. A violation of this would be the case of counter-propagating

modes. In previous work, Burin[19] has tested this with a quartet of the sinusoids sig-

nals, y(t) =
∑4

1 yi, where yi = sin(ωit + θi), and where θi may vary between members

of ensembles. It is found for the counter-propagating mode the dispersion relation is er-

roneously lying along a vertical line at the average phase delay α ≈ 0. In CSDX this

assumption is satisfied since the plasma flows mainly in one azimuthal direction (can be

verified by the fast-framing imaging).

2.3.4 Estimation of turbulent Reynolds stress

The turbulent Reynolds stress is given as RS = 〈ṽrṽθ〉, where ṽr and ṽθ are com-

puted from ~E × ~B drift velocity, i.e., ṽr = Ẽθ/B0 and ṽθ = −Ẽr/B0, and 〈〉 denotes a

time or ensemble average. This is based on the assumption that the dominant plasma flow

is ~E × ~B drift. Since for CSDX the fluctuation frequency is much less than the ion cy-

clotron frequency (
ω

Ωci

≈ 0.03− 0.3) and the ion-ion collisional frequency is marginally
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below the ion cyclotron frequency (
µii
Ωci

≈ 0.3 − 1.0), this assumption is reasonable for

our experimental conditions. The radial and azimuthal electric fields are computed from

the gradient of the measured floating potential, assuming the electron temperature fluctu-

ations are negligible, i.e., Ẽr = − ∆φ̃

∆xr
and Ẽθ = − ∆φ̃

∆xθ
.

The turbulent Reynolds stress could also be computed spectrally as [57],

〈ṽrṽθ〉 = Cṽr ṽθ =

∫ ∞
−∞

Sṽr ṽθ(f)ei2πfτ |τ=0 df (2.11)

where, Cṽr ṽθ is the cross-covariance between ṽr and ṽθ. τ is the time lag and Sṽr ṽθ(f) is

the cross-spectrum between ṽr and ṽθ. Since the cospectrum (Re(Sṽr ṽθ(f))) is an even

function of f and the quadspectrum (Im(Sṽr ṽθ(f))) is an odd function of f , Eq.2.11

becomes,

〈ṽrṽθ〉 = 2

∫ ∞
0

Re(Sṽr ṽθ(f)) df (2.12)

and we arrive at,

〈ṽrṽθ〉 =

∫ ∞
0

2γṽr ṽθ cosαṽr ṽθ
√
Sṽr ṽr(f)

√
Sṽθ ṽθ(f) df (2.13)

This representation would allow us to determine how the cross-spectrum Sṽr ṽθ(f), cross-

phase αṽr ṽθ and the cross-coherence γṽr ṽθ contribute to the Reynolds stress. We will

utilize this representation to investigate the statistical properties of the turbulent Reynolds

stress and the detailed results are described in the next chapter.
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Statistical properties of the turbulent

Reynolds stress and its link to the shear

flow generation

3.1 Introduction

In magnetic confinement fusion devices the anomalous transport across the mag-

netic field is thought to be caused by plasma turbulence. The two fundamental instabilities

are thought to be the interchange instability and the drift wave instability[17, 58]. Theory

suggests for a given background pressure gradient, the turbulence saturation occurs via

the formation of a large-scale shear flow that is generated by the turbulence Reynolds

stress (radial transport of azimuthal momentum) which mediates the nonlinear transfer

of turbulent momentum and kinetic energy into the larger scaled shear flow. The shear

48
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flows can also mitigate turbulence by tearing apart turbulent eddies, resulting in the for-

mation of a self-regulating complex system[8]. Many experimental studies in tokamaks

have provided evidence of the existence of shear flow during the transition from L mode

to H mode[39, 50, 37], as well as in stationary discharges[31]. In recent experiments

carried out on the Controlled Shear Decorrelation eXperiment (CSDX) linear device, a

radially sheared azimuthal flow has been demonstrated to be sustained by the Reynolds

stress against ion-neutral collisional and viscous damping through the analysis of mo-

mentum balance (see Fig.1.14), providing a direct experimental test of the theory of drift-

turbulence/shear flow interaction[41, 59].

In all the theoretical and experimental studies of turbulence/shear flow interactions

the Reynolds stress plays an important role. However, in the existing publications, only

the measured mean Reynolds stress profile and its link with the large-scale shear flow

have been examined[39, 60, 61, 62]; to date there has been no study of how the turbulent

statistical properties (e.g. turbulence amplitudes, cross phases, cross coherency) lead to

the development of the detailed Reynolds stress profile associated with the shear flow.

Furthermore, no detailed experimental study of the link between the turbulent Reynolds

stress, background shear flow, and formation of bursty transport events has been carried

out.

This chapter describes such a detailed study of the statistical properties of the tur-

bulent Reynolds stress in a laboratory-scale plasma device and uses these results to build

a physical picture of shear flow generation from turbulent momentum transport that is

consistent with experimental observations. The results show that the cross-phase between
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turbulent radial and azimuthal velocity fields plays a critical role in determining the di-

vergence of the turbulent Reynolds stress, which drives shear flow between the density

gradient maximum and the peak shear layer (we denote this region as the negative viscos-

ity region, since the turbulent shear stress is acting to reinforce the shear flow); at other

radial locations the Reynolds stress acts to dissipates shear flow. Bursts of outward going

positive density fluctuations are born at or near the density gradient maximum, and carry

positive azimuthal momentum, resulting in a positive Reynolds stress in this region. As

the fluctuations move outwards from the maximum density gradient and towards the shear

layer their amplitudes decrease, resulting in a gradual decrease in the positive Reynolds

stress, which then results in a negative stress divergence that reinforces the shear flow.

These results indicate that a system of radially propagating turbulent structures which are

immersed within a background seed shear flow naturally form a Reynolds-stress profile

that then acts to reinforce the shear flow.

We have also examined the role that the collisional ion-ion viscosity plays in de-

termining the time-averaged azimuthal flow profile. Collisional viscosity acts to transfer

azimuthal flow from the shear layer located at the periphery of the plasma column into

the central plasma region. If this viscosity is strong enough then it will give (nearly) solid

body azimuthal rotation near the plasma axis resulting in the formation of plasma rota-

tion in the central region away from the shear layer. The similarities of these results with

observations in tokamak devices are pointed out, suggesting that the observations may

be a universal signature of turbulent-driven shear flows interacting with bursty transport

events, and may also be related to recent reports of links between edge plasma flows and
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so-called ”intrinsic rotation” in the core of tokamak plasmas.

The rest of this chapter is organized as follows: In Sec. 3.2 we briefly describe

our experimental set up. In Sec. 3.3, we present our probe measurements of turbulent

Reynolds stress, while in Sec. 3.4 we show the statistical properties of the Reynolds

stress. In Sec. 3.5 we compare with intermittent density fluctuations, following it is the

section 3.6 discussions, and lastly in Sec. 3.7 we review and summarize our results.

3.2 Radial profiles of equilibrium and fluctuating quantities

The measurements presented here are made on the linear machine CSDX plasma

device described in the precious chapter. The plasma was operated with 4mTorr Argon gas

pressure, 1kG magnetic fields and 1.5kW power input. Measurements are made by the 18-

tip Langmuir probe (See Fig.2.2) located at an axial position Z = 170cm downstream of

the exit of the plasma source. The frame rate for the fast-framing imaging measurements

is 100, 000/sec with 64 × 64 image resolution, and a Pentax 50mm f/1.4 lens is used in

the experiments. The Langmuir probe is out of the plasma when recording images.

Fig. 3.1(a, b) shows the radial profile of time-averaged plasma density and the

amplitude of the density fluctuations, as well as the radial particle flux. As can be seen the

fluctuation amplitude peaks near the region of maximal density gradient, i.e. r ≈ 3.1cm

(This position is shown by the dot-dashed line on all the radial profiles in this chapter).

Previous work has shown these fluctuations are collisional drift waves driven unstable by

electron-ion collisions[19]. Measurements of the mean azimuthal plasma velocity using
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the two-point estimation technique, along with the momentum balance analysis discussed

in chapter 1 [59], using the model of the ion-ion viscosity profile shown in Fig.3.1 (d) are

also shown in Fig.3.1 (e). The results show that the plasma exhibits roughly solid body

rotation for r < 3.5cm , while for the region r > 4cm the azimuthal velocity is inversely

proportional to the radius. A radial shear layer of the azimuthal velocity then exists at

the interface region located between 3.5cm< r < 4cm, which is shown by the shadow

region on all the radial profiles in this chapter. In previous work we have shown that this

shear layer is consistent with the experimentally observed turbulent Reynolds stress for

reasonable estimates of the collisional ion-ion viscosity[59, 41]. The effect of different

ion-ion viscosity profiles are also examined here, and are discussed in section 3.6.

Fig. 3.1(c) shows the radial profile of the time-averaged Reynolds stress 〈ṽrṽθ〉.

In this chapter we use an averaging timescale of 0.45msec, which corresponds to the

timescale needed for the plasma at r = 3.6cm to rotate once in the azimuthal direction

(and thus this timescale provides an effective average over all fluctuations with azimuthal

mode number m > 0). Because CSDX operates in a steady state we record several

103 plasma rotation periods resulting in small statistical variance (which is within the

thickness of the lines for these results). As a result, these results present an ensemble

averaged picture and average out slow variations that occur.and In this figure the 〈ṽrṽθ〉

profile peaks at r ∼ 3.3cm, while at r < 2.8cm and r > 3.8cm, the Reynolds stress

becomes negative. Earlier results show that the divergence of the Reynolds stress (which

then indicates either the concentration or diffusion of angular momentum) is balanced by

the dissipation profile[59, 41].
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Figure 3.1: Radial profiles of relevant equilibrium quantities: (a) Time-averaged density

profile (black solid line) and RMS amplitudes of density fluctuations (solid red line). (b)

Time-averaged turbulent radial particle flux. (c) Time-averaged turbulent Reynolds stress.

(d) Model of ion-ion viscosity profile estimated from measured plasma density and line-

averaged ion temperature. (e) Mean azimuthal velocity profiles measured by two-point

technique (?) and predicted by turbulent ion momentum balance (red solid line). In all

figures the dot-dashed line is the position of the density gradient maximum. Shadow

region indicates the shear layer location
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3.3 Statistical Properties of Reynolds Stress

In this chapter, we are interested in the origin of the shape of the turbulent Reynolds

stress profile, since it is this shape that enters most critically into the turbulent momentum

conservation equation. We therefore use different statistical analysis tools to investigate

the statistical properties of the turbulent Reynolds stress, including calculation of the

power spectrum, cross-phase, and cross-coherence between the two fluctuating velocity

components, as well as the PDF of the velocities.

The absolute magnitude of the frequency-resolved power spectrum SR(t)(f) of the

turbulent Reynolds stressR(t) = ṽrṽθ at 1kG is shown in Fig. 3.2(a). The strongest power

featured at 15kHz-23kHz is located at approximately r ∼ 3.3cm, which is close to the

region of density gradient maximum. Using previously published azimuthal wavenumber

spectra[19], these frequencies correspond to azimuthal wave numbers in the range of

2 − 3cm−1, which correspond to fluctuation φ̃ ∝ eimθ with azimuthal mode number

m = 5 − 10. Thus the Reynolds stress is associated with fluctuations with spatial scales

that are significantly smaller than the plasma column radial scale∼ 4−5cm. Most power

of the turbulent Reynolds stress is concentrated in the region from r ∼ 2cm to r ∼ 5cm

with broadband frequency properties. Outside this region the power drops off rapidly.

Fig.3.2(b) and (c) show the radial and frequency resolved cross-phase αṽθ ṽr between ṽr

and ṽθ and the squared cross-coherence γ2
ṽr ṽθ

. In both figures we see significant variations

in a region from r ∼ 3.0cm to r ∼ 3.8cm, with cross-phase first changing from −π to 0

then to π (or equivalently−π), and the coherence changing from 0.8 to 0 then back to 0.5.
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(The sign here is such that a positive cross-phase means ṽr leads ṽθ in time). This region

is the same as where the shear flow is located. It is also interesting to note that the inner-

most location of this phase change coincides with the mean density gradient maximum

location and, as shown below, coincides with the birth location of outward going positive

density events.

The power-weighted averages over frequency of these two quantities defined as

〈αṽr ṽθ〉 =

∫
αṽr ṽθ |Sṽr ṽθ(f)| df∫
|Sṽr ṽθ(f)| df

and
〈
γ2
ṽr ṽθ

〉
=

∫
γ2
ṽr ṽθ
|Sṽr ṽθ(f)| df∫

|Sṽr ṽθ(f)| df
are shown in Fig.3.3

(a) and (b). It is clear that at r ∼ 3.4cm the cross-phase goes to 0, while the coherence

drops down to 0.2. The fact that the cross-coherence nearly vanishes at the shear location

indicates that there is only a weak statistical correlation between the two fluctuation ve-

locity components at this position. As a result, the cross-phase between the two velocity

components must vary nearly randomly between [−π, π] at the shear layer location from

one ensemble to the next, as might be expected for two randomly phased signals. When

averaged over many statistical ensembles, the cross-phase then averages to a small value

at the point where the cross-coherency vanishes as seen in our results.

We now use the expression described in Eqn.2.13 to investigate how the cross-

spectrum Sṽr ṽθ(f), cross phase αṽr ṽθ and cross-coherence γṽr ṽθ contribute to the total

Reynolds stress. Fig.3.4 shows the comparisons between the time-averaged Reynolds

stress directly measured in experiments and from the above computations, in which the

black solid line includes all the factors of power-spectrum, cross-phase and cross-coherence,

and the blue, red and purple solid line exclude the cross-phase, cross-coherence and both
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Figure 3.2: (a) Absolute magnitude of the power spectrum of the turbulent Reynolds stress

(log10). (b) Cross-phase between radial and azimuthal turbulent velocity fields αṽr ṽθ . (c)

Squared cross-coherence between radial and azimuthal turbulent velocity fields γ2
ṽr ṽθ

.

Figure 3.3: (a) Power-weighted average cross-phase 〈αṽr ṽθ〉 . (b) Power-weighted average

squared cross-coherence
〈
γ2
ṽr ṽθ

〉
.
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respectively. It is found that when the cross-phase is excluded, the profile differs signif-

icantly from the experimental measurements, which are represented by the symbol ’+’.

However, when the cross-coherence only is excluded, the profile agrees strikingly well

with direct measurements. This shows that the cross-phase provides the dominant con-

tribution to the shape and magnitude of the Reynolds stress. The radial and frequency

resolved cosine of the cross-phase is evaluated, as well as the power-weighted average

cosine of cross-phase, which is shown in Fig.3.5(a) and (b). The cosine of the cross-

phase changes sign at r ∼ 2.8cm and r ∼ 3.8cm, which is the same as where the time-

averaged Reynolds stress changes sign. This result indicates again that the cross-phase

plays a determining role in the shape of the time-averaged Reynolds stress (and thus in

the divergence of the Reynolds stress).

These FFT-based analyses provide a time-averaged view of the turbulence. To

obtain insight into the dynamics of the turbulence, we now look at the PDF and the skew-

ness (i.e. the third moment of the PDF) of the turbulent Reynolds stress. Fig.3.6(a)

shows the turbulent Reynolds stress PDF at three different radial locations. At r ∼ 2cm,

which is inside of the shear layer and density gradient maximum, the PDF shows a signif-

icant negative skewness (see also Fig.3.6b) indicating that on average the Reynolds stress

is composed of either outward going transport of negative perturbed azimuthal velocity

events, or of inward going positive perturbed azimuthal velocity events. At r ∼ 2.8cm

the PDF is close to symmetric, indicating no preferential transport of azimuthal momen-

tum. At r ∼ 3.4cm, which is between the density gradient maximum and shear layer,

the Reynolds stress PDF has a large (> 1) positive skewness indicative of intermittent
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Figure 3.4: Experimentally measured time-averaged turbulent Reynolds stress (plus sign).

Calculation including all factors of power spectrum, cross-phase and cross-coherence

(black solid line), calculation with both cross-phase and cross-coherence excluded (purple

solid line), calculation with cross-phase only excluded (blue solid line), and calculation

with cross-coherence only excluded (red solid line).

Figure 3.5: (a) Radial and frequency resolved cos(αṽr ṽθ), and (b) power-weighted average

〈cos(αṽr ṽθ)〉.
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or bursty momentum transport events which are characterized by outward-going positive

turbulent azimuthal velocities. Fig.3.6(b) shows the radial profile of the skewness of the

turbulent Reynolds stress. A comparison of Fig.3.6b with Fig.3.5b shows that the location

where the skewness of the turbulent Reynolds stress is significantly positive (i.e. where

outward going bursts of positive plasma flow occur) is linked to the variation of the co-

sine of the cross-phase between the radial and azimuthal turbulent velocity fields. This is

borne out by an examination of the joint PDF of the turbulent velocity fluctuations shown

in Fig. 3.7. At r ∼ 2cm and r ∼ 4cm, the PDFs are oriented from the second quadrant

pointing down towards the fourth quadrant, consistent with radial velocities that are out

of phase with the azimuthal velocities. At r ∼ 3.4cm, the velocities are in phase, and

thus the joint PDF is oriented along an axis running from the first quadrant to the third

quadrant.

3.4 Relationship between intermittent density fluctuations and Reynolds

stress

It has been reported that there is a universal nature to bursts of outward-going

blobs of plasma in the edge of magnetic confinement laboratory plasma devices such as

tokamaks[63] and stellarators[64]. These blobs have also been referred to as intermittent

plasma objects (IPOs) in the literature[63]. One simple signature of such events is that the

PDF of the ion-saturation current exhibits strongly non-Gaussian distributions in regions

where these events are being generated and propagating. Several mechanisms of the
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Figure 3.6: (a) Turbulent Reynolds stress PDF at three radial locations (normalized by

standard deviation), and (b) radial profile of the skewness of the turbulent Reynolds stress

ṽrṽθ.

Figure 3.7: Joint PDF of radial and azimuthal velocity fields at three radial locations

(log10). Normalization is standard deviation.
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generation of these intermittent turbulent structures have been reported[65, 66]. These

earlier results, and the behaviors of the Reynolds stress PDF discussed above, motivate us

to examine the PDF of the ion saturation current. Here we provide experimental results

which suggest that the behavior of the turbulent Reynolds stress and the generation of

intermittent density bursts at the region are all related.

Fig.3.8(a) shows the PDF of ion saturation current at three different radial loca-

tions, r = 2cm, r = 2.8cm and r = 3.4cm. At r = 2cm the ion-saturation fluctuation

is skewed negatively, indicating a predominance of negative going density events, while

at r = 3.4cm the fluctuation is skewed positively, indicating a predominance of positive

going density events at this location. At r = 2.8cm the distribution is close to symmetric,

indicating that the outward going (inward going) positive (negative) density events are

generated near the maximum density gradient. The Isat PDF behavior is also similar to

those observed in the linear device LAPD[67] as well as at the edge of tokamak plasma

devices[63]. Fig.3.8(b) shows the radial profile of the skewness of ion-saturation cur-

rent fluctuations computed from the Isat PDF at each radial location. The Isat skewness

changes sign at r ∼ 2.7cm, and reaches a maximum near r ∼ 4cm, after which it decays

at larger radii. This behavior is consistent with the generation of positive bursts of density

near the density gradient maximum.

We can gain additional insight by examining the radial and azimuthal turbulence

correlation lengths computed from fast-framing imaging data (Fig.3.9). These correlation

lengths are obtained by computing the cross correlations between the fluctuating intensity

at two radially or azimuthally separated positions. The cross-correlation function enve-
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Figure 3.8: (a) PDF of the fluctuating ion saturation current at three radial locations (nor-

malized by standard deviation), and (b) radial profile of the skewness of the fluctuating

ion saturation current.
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lope is then used to find the correlation length, defined as the location where the envelope

is down by a factor of 1/e from the peak value at zero spatial separation. The light inten-

sity of the image is somewhat correlated to the density fields, but also likely is influenced

by the electron temperature fluctuations and neutral density. Regardless of this fact, we

can still gain insight into the turbulence dynamics from this analysis. On the core side of

the density gradient maximum the radial correlation length is larger than the azimuthal

correlation length. Near the shear layer, there is a pronounced dip in the radial turbu-

lence correlation length which is reduced to a few millimeters (∼ 3mm) at the location

of maximum flow shear, while the azimuthal turbulence correlation length is unchanged

(1.5 ∼ 2cm). These results, with the Isat PDF shown above, indicate that the density

fluctuations originate at or near the density gradient maximum and have, on average, a

radially elongated shape at this location. Near the shear layer these turbulent fluctua-

tions are elongated in the azimuthal direction, with an azimuthal correlation length that is

about 3− 4 times larger than the radial correlation length. This behavior is similar to the

E × B flow shear decorrelation process that is thought to occur in the edge of H-mode

tokamak plasmas[68]. Outside the shear layer these perturbations recover their radially

elongated shape, and move on average away from the shear layer. This is consistent with

the observation of finger like blobs near 4 ∼ 5cm from imaging in previous studies[49].

The joint PDF of the turbulent radial particle flux and the Reynolds stress is also

investigated as seen in Fig.3.10. At r ∼ 2cm and r ∼ 4cm these PDFs are oriented

from second quadrant to the fourth quadrant, and the largest probabilities lie in the sec-

ond quadrant, indicating that the momentum transport is associated with outward going
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Figure 3.9: (a) Radial turbulence correlation length, and (b) azimuthal turbulence corre-

lation length, both estimated from fast-imaging.

particle flux carrying a deficit of azimuthal momentum (i.e., a negative momentum fluc-

tuation), which is consistent with negative skewness of the turbulent Reynolds stress at

those locations. At r ∼ 3.4cm, the joint PDF is oriented from the first quadrant to the

third quadrant, with the largest probability lying in the first quadrant. This suggests that

near the shear layer the bursty momentum transport is associated with outward going par-

ticle flux fluctuations carrying an excess of azimuthal momentum (a positive momentum

fluctuation), consistent with the positive skewness of the turbulent Reynolds stress. An

empirical investigation between the momentum and the particle transport was reported

in the boundary region of fusion plasmas and suggested the same conclusion[69]. In the

time-averaged analysis above, the cross-phase was shown to determine the detailed shape

of the time averaged Reynolds stress profile, which in turn is linked to the time-averaged
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velocity shear layer. The Reynolds stress measurements, ion saturation current PDF, and

the joint PDF between Reynolds stress and radial particle flux suggest that the turbulent

Reynolds stress is associated with radially-directed plasma density events, which also

carry azimuthal plasma flow and momentum. A significant negative radial divergence

to such bursts of angular momentum transport will then lead to the concentration of az-

imuthal flow in that region[70].

Figure 3.10: Joint PDF of radial particle flux and the turbulent Reynolds stress at three

radial locations (log10). Normalization is standard deviation.

3.5 Discussion

The above results are consistent with the schematic of shear flow generation shown

in Fig.3.11. The density fluctuations, due to collisional drift waves, have a peak ampli-

tude at the largest density gradient region located at r ∼ r2(Fig.3.11a). The Isat skewness

results show that at or near this region the outgoing density bursts or blobs are generated
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and on average form outward going positive density excursions, resulting in a positive

Isat skewness at r2. For r < r1, these perturbations carry angular momentum with fluc-

tuating radial and azimuthal velocity fields that are out of phase (Fig.3.11b), resulting a

joint velocity PDF as shown in Fig.3.11c. As a result, the mean Reynolds stress is neg-

ative in the region r < r1. In the region r > r2, on average the fluctuations consist of

outward going positive density events which have a positive azimuthal velocity increment

associated with them. Thus in the region r2 < r < r4 the fluctuating radial and azimuthal

velocity fields are in phase resulting in a positive mean Reynolds stress in this region

(Fig.3.11b). The joint velocity PDF then has the orientation shown in Fig.3.11c. The lo-

cation of the positive Isat skewness coincides with the positive turbulent Reynolds stress

skewness comparing from Fig.3.6 and Fig.3.8, suggesting that the bursts of positive stress

are associated with bursts of density, consistent with the results shown in Fig.3.10. The

mean Reynolds stress decays for r > r3 since the background density gradient is weaker

here and thus the turbulence drive is weaker. In addition, the Reynolds stress couples

energy from the higher frequency fluctuation scales into the shear flow, resulting in a de-

crease in fluctuation amplitude in this region. As a result, there is a peak in the turbulent

stress located at r ∼ r3, which lies between the density gradient maximum and the shear

layer located at r4. The divergence of the Reynolds stress thus changes sign across the re-

gion from r1 to r4. A negative radial divergence to the momentum flux will act to amplify

a positive azimuthal flow, resulting in the formation of a positive going flow in the region

r3 < r < r4 ; a positive radial divergence to the momentum flux will drive a negative

mean azimuthal flow, so the plasma rotation could be reversed either for r1 < r < r3 or
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for r > r4. Evidence for such a flow reversal at large radius is indeed seen in our data

(see Fig.3.1e). However, we expect that the collisional ion-ion viscosity is largest near

r ∼ 0 and it will act to dissipate the shear flow in the central part of the plasma column,

resulting in nearly solid body rotation in this portion of the plasma. A detailed study of

the effect of the ion-ion viscosity on plasma rotation is discussed below.

Figure 3.11: Physical picture of shear flow generation from drift turbulence.

Theory predicts that, since the turbulence shear flow interaction conserves energy,

the radial correlation length of the turbulence will decrease[8], as seen in our observa-

tions. The reduction in radial correlation length is most pronounced where the Reynolds
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stress changes sign at r4. At this location there is little or no radial transport of azimuthal

momentum even though there are finite velocity fluctuations. Thus either the cosine of the

velocity cross phase and/or cross-coherency of the two velocity components must vanish

at this point. The link between the PDF of the Isat, Reynolds stress and the joint PDF

of particle flux and Reynolds stress suggests a hypothesis where the plasma density fluc-

tuations born near the maximum density gradient also carry angular momentum as well,

and thus may in fact be two elements of the same underlying phenomena. Taken together

with recent results from the TORPEX device[71] which show that the density blobs are

formed by flow-shear ”pinching off” drift-interchange fingers of plasma extending from a

dense core region into a lower density scrape-off layer region, these results point towards

a strong link between turbulent generated shear layer formation, shear layer mediated

bursty transport, angular momentum transport, and spontaneous central plasma column

rotation. We are now planning experiments to test this picture using a combination of

probe-based and fast imaging based diagnostics, and will report the results in future pub-

lications.

In the initial ion momentum balance analysis presented in Ref.[59] and [41], we

assumed a step-like model of the ion-ion viscosity µii = ρ2
i νii ∝ nT

−1/2
i since we did not

measure a radial profile of Ti. Here, we perform an analysis with different µii profiles to

better understand its effect on shear flow generation. Fig.3.12(a) shows several different

plausible µii profiles (step-like model and Gaussian, consistent with the mean density and

ion temperature decreasing with r, since µii ∝ nT
−1/2
i ), and (b) is the mean azimuthal

velocity field computed from ion momentum balance equation with assumed µii profiles



69

in (a). The symbols ? are the experimental measurements of the azimuthal velocity. In

both figures the black dashed lines indicate the largest positive radial divergence to the

angular momentum flux and the red dashed lines indicate the largest negative radial di-

vergence to the angular momentum flux. An examination of vθ(r) for the various µii(r)

shows that if the ion-ion viscosity is large enough at the location of the largest positive

radial divergence to the momentum flux, the ion-ion viscosity drag transfers the azimuthal

flow at the shear layer to the central part of the plasma column and generates nearly solid

body rotation inside the shear layer. If the ion-ion viscosity is small, then the plasma

rotation could be reversed due to the effect of the Reynolds stress. Similar results have

recently been found in numerical simulations[72].

Figure 3.12: (a) Assumed ion-ion viscosity profiles, and (b) mean azimuthal velocity from

ion momentum balance analysis.
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3.6 Summary

In summary, we have directly measured the Reynolds stress using Langmuir probes

in a linear machine and analyzed the data statistically. We found the cross-phase between

radial and azimuthal velocity fluctuations is the key factor to determine the shape and

the amplitude of the Reynolds stress. The skewness of turbulent Reynolds stress shows a

positive peak at r ∼ 3.4cm, and coincides with positively skewed Isat events. The obser-

vations indicate a link between the behavior of the Reynolds stress, its cross-phase and

cross-coherence, generation of bursty radially going density and azimuthal momentum

transport events, and the formation of the large-scale shear layer.

These results were obtained using an ensemble average approach and thus repre-

sent an averaged view of the shear flow generation process. Theory suggests that in fact

this generation should exhibit important temporal dynamics. The next chapter will study

this topic in details.
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Experimental observation of shear flow

dynamics

4.1 Introduction

Heat and particle transport in magnetically confined fusion plasmas is due to tur-

bulent transport driven by pressure gradient-driven instabilities. One of the key issues

of the fusion research is to understand the underlying physics of this turbulent transport

which results in particle and heat fluxes that are significantly larger than that which results

from ’classical transport theory’[73]. The relationship between the fluxes and the mean

gradients is of particular interest, since this is what determines to a large degree the sys-

tem size needed for a positive energy gain. Theory and simulation have both suggested

that this flux-gradient relationship is determined by the saturation of drift wave turbu-

lence (DWT) occurring via the generation of linearly damped radially sheared poloidally

71
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and toroidally extended plasma flows denoted as zonal flows (ZFs) via the action of the

DWT Reynolds stress[9, 8] which acts to nonlinearly transfer turbulence energy into a

large-scale damped motion that does not yield transport itself.

The ZFs have been viewed theoretically as being generated by a nonlinear mod-

ulation instability in which a small seed shear flow acts to scatter DWT energy into the

shear flow itself, resulting in an amplification of the original seed shear and producing a

turbulent-driven sheared flow that is denoted as the ZF. The amplification of the ZF then

comes at the expense of the DWT energy. Thus as the ZF grows the DWT energy should

decrease in this picture. In addition the DWT radial wavenumber is increased due to the

random shearing effect of the ZF. If most of the energy goes into the ZF, resulting in

smaller DWT energy, eventually the nonlinear drive of the ZF is eliminated. As a result

the ZF decays away (via a process that is usually assumed to be linear). The background

plasma pressure gradient, which is sustained by a constant external heat input, then leads

to the growth of DWT energy and the cycle is then repeated. If cross field transport is

interrupted for a significant period of time, the plasma pressure profile can then respond,

resulting in a change to the underlying drive of the DWT. Detailed reviews of the the-

oretical elements of this picture are available in the literature[8, 74]; a summary of the

experimental status of the subject is also available[30].

A complete experimental demonstration of the theoretical picture of the above

DWT-ZF dynamics requires several simultaneous observations to be made in the same

experiment. First, the existence of a radially sheared azimuthal flow must be demon-

strated. Second, the shear flow should be sustained by the turbulent Reynolds stress
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against collisional and viscous damping in order to distinguish it from so-called mean

shear flows which are, by definition, sustained by non-turbulence processes such as the

return current associated with ion orbit losses[75] or the ion pressure gradient associated

with transport barrier formation[25]. This can be done in configuration space by look-

ing at the turbulent momentum conservation equation[59], or in the Fourier domain using

bispectral techniques[25, 76]. Third, the ZF shear should be strong enough to reduce the

radial correlation length of the turbulent fluctuations, which is a key element in the shear

flow dynamics. Finally, the ZF kinetic energy should increase at the expense of the turbu-

lent kinetic energy, while the total kinetic energy is conserved. Qualitatively this could be

manifested by an anti-correlation between the high frequency turbulence kinetic energy

and the low frequency kinetic energy. Observations of some of these predictions have

been reported in the literature[30, 31, 32], but to our knowledge no complete set of such

measurements from a single experiment exist.

In this chapter we show that all of these theoretically predicted behaviors indeed

occur simultaneously in a simple plasma system that is amenable to the detailed multi-

field, multipoint turbulence measurements necessary to examine the fundamental physics

of the coupled DWT-ZF system. An azimuthally symmetric shear flow is observed and

evolves at a low frequency (∼ 250Hz). The mean of this slowly varying shear flow has

already been shown to be consistent with the measured turbulent Reynolds stress and

estimated linear ZF dissipation profiles[41, 77]. Fluctuation quantities such as floating

potential, turbulent Reynolds stress, divergence of the turbulent Reynolds stress, density

gradient and the turbulent radial particle flux are all modulated at the same frequency and
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have the expected phase relationship with the sheared ZF. A detailed analysis of the ion

momentum balance equation demonstrates that this slow evolving shear flow is correlated

with the variation of the measured turbulence Reynolds stress and estimated damping

profiles. The high frequency turbulence kinetic energy and the low-frequency ZF kinetic

energy are anti-correlated and a bicoherence analysis shows that the associated potential

fluctuations are phase-coherent, and therefore energy can be exchanged between the two

scales. An analysis of fast-framing imaging of the plasma emission fluctuations demon-

strates the existence of the same slow oscillating shear flow as the probe measurements

and shows that when the shear is strong (weak), the radial turbulence correlation length

and radial particle transport are both small (large), demonstrating the shearing effect of

the zonal flow on the turbulence.

The rest of the chapter is organized as follows: In Section 4.2, we show that

the shear flow varies slowly in time and that this slow variation is associated with slow

variations in the turbulence statistics. In Section 4.3 we examine the back-reaction of the

shear flow on the turbulence and show via direct imaging the essential elements of the

shear decorrelation process. In Section 4.4 we discuss the experimental results, and lastly

in Section 4.5 we summarize our results.

4.2 Evidences of the slow evolving shear flow

The measurements described in this chapter are made by the 18-tip probe in a

plasma condition of 3mTorr gas pressure and 1kG magnetic fields. Fast-framing imaging
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are also used with the optical set up described in Chapter 2. The frame rate is 97, 560/sec

for the 128 × 64 resolution. A Pentax 25mm f/1.4 lens is used. When capturing images,

the probe is out of the plasma.

Previous work has demonstrated the onset of collisional drift waves in the device

and has documented transition to a state of weak drift wave turbulence[19] as well as the

existence of a time-averaged radially sheared azimuthally symmetric plasma fluid flow

at the interface region located between 3.5 − 4cm which has been shown to be consis-

tent with the experimentally observed turbulent Reynolds stress for reasonable estimates

of the collisional ion-ion viscosity[41, 59, 77] - signatures that are consistent with the

interpretation of this flow as a zonal flow. In present work we investigate the temporal

dynamics of the ZF-DWT system.

The Phantom V7 fast-frame camera is used to capture the visible light emission

from the plasma through the telescope. No interference filter is used and thus the mea-

surements integrate over the entire visible spectrum. However, most of the light emission

occurs from a combination of neutral Ar-I (750nm) and singly ionized Argon (488 nm)

emission. In this work, a total of 24000 (∼ 240ms) frames images are recorded and used

in the analysis. The light intensity of the image is somewhat correlated to the plasma

density[49] but it is also likely to be influenced by the electron temperature and the neu-

tral density. The detailed relationship between these plasma discharge quantities and the

light intensity is currently under investigation and will be discussed in a future publica-

tion. Regardless of this fact, we can still gain insight into the turbulence dynamics from

the fast-framing imaging.
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The azimuthal symmetry of the ZF is best shown by examining images obtained

with the fast-framing camera observing the visible light intensity fluctuations associated

with the DWT fluctuations[49]. To obtain the intensity fluctuation images we first perform

a time average image from 2000 frames, and then subtract this mean image from each

frame. Applying the 2D time-delay estimation (TDE) technique described in chapter

2 to a time-sequence of these images, we obtain the 2D time-averaged flowfield in the

plane normal to the magnetic field. Here we choose L to be 16 pixels, corresponding to

about 2.4cm, and ∆τ to be 6µs (the imaging data are interpolated by a factor 10). In

computing cross-correlation we use ∼1ms time window and then ensemble average all

the windows to get averaged cross-correlation function. The result is shown in Fig.4.1

by arrows overlay on the intensity fluctuations. At r∼ 3.6cm the RMS deviation of the

azimuthal velocities vθ(θ) is only 11% of the azimuthally averaged vθ(θ) showing that

the m = 0 component to the azimuthal flow indeed exists and is a dominant component

of the azimuthal flow. A previous study shows that this azimuthally averaged flow is due

to the combined effect of a mean plasma fluid flow (presumably due to an E×B drift)

and the plasma diamagnetic flow[56] and that the mean plasma fluid flow dominates the

diamagnetic flow. Thus we take the motion of the fluctuations to represent to lowest order

the motion of the plasma fluid in the azimuthal direction.

The radial profile of the time-varying azimuthal flow field is found from 1D TDE

technique described in chapter 2. Several radial profiles at different times are shown in

Fig.4.2a. The azimuthal flow is found to gradually develop a sheared profile, which then

decays back to a flow profile that is close to solid body rotation and then the process re-
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Figure 4.1: 2D flowfield obtained from 2D TDE technique on the fast-framing imaging.

peats. Fig.4.2b shows the time history of the vθ(t) obtained at r=3.6cm, illustrating this

time variation. A probability distribution function (PDF), computed as the histogram of

the vθ(t) at r=3.6cm normalized by the time-averaged vθ(t), is shown in Fig.4.3. This

PDF shows that the most probable velocity is about 80% of the time-averaged vθ(t) and

the distribution is non-Gaussian and asymmetric over that time average. This suggests

that the time-evolving shear flow behaves like a bursty event that remains in the weaker

shear flow condition (see Fig.4.2a yellowish line at around 2820µs for example) and then

has shorter transient into a stronger shear flow state (see Fig.4.2a red line at around 830µs

for example). The frequency spectrum of vθ(t) shows that the mean frequency of this os-

cillation is around 250kHz (Fig.4.4 black solid line); the oscillation is clearly not coherent

as the width of the frequency spectrum is also several 100s of Hz. Our previous studies of

the shear flow in CSDX and the relationship to the turbulent Reynolds stress[59, 41] used
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large numbers of statistically independent ensembles and thus those prior results represent

a time-averaged view of this slowly oscillating shear flow, and is close to (less than 20%

difference) the time-averaged flow field obtained in this experiment from fast-framing

imaging, as shown by the red dotted line in Fig.4.2a

The earlier results showed that the time-averaged shear flow was consistent with

the time-averaged Reynolds stress and estimated flow damping profiles,suggesting a strong

link between the turbulence and the shear flow. Thus the question arises: How does the

slow variation in the shear flow affect the turbulence? In order to address this question,

the time-varying azimuthal velocity field is also measured with two azimuthally sepa-

rated probe tips (separation distance of 5mm) measuring floating potential also by using

the TDE technique[56] with a serial of overlapping time windows each being∼ 1ms. The

frequency spectrum of the time-varying shear flow measured with the probe is shown in

Fig.4.4 as red dot-dash line. Again, the shear flow is found to varying with a low fre-

quency of about 250Hz and has a frequency width also in the order of 100Hz, consistent

with the results obtained with the fast imaging.

To investigate if the turbulence statistics are also modulated at the same frequency,

we look at the envelopes of the fluctuation quantities, such as fluctuation floating poten-

tial, turbulent Reynolds stress, divergence of the turbulent Reynolds stress, density gra-

dient and the turbulent radial particle flux, obtained by applying a high pass digital filter

(using a 5kHz cutoff frequency) to each instantaneous fluctuating quantity measured by

the multi-tip probe array, and then taking the square of the filtered result. The envelopes

are found by applying a smoothing function with a ∼ 1ms time window. Fig.4.5a shows
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Figure 4.2: (a) Radial profiles of azimuthal flow obtained from azimuthally averaging

the visible light TDE flowfield for different observation times. A radially sheared flow is

observed to grow and decay with a period of ∼ 4msec. (b) Time varying azimuthal flow

field at r∼ 3.6cm
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Figure 4.3: PDF of the vθ(t) at r∼ 3.6cm. (Normalized by the time-averaged

vθ(t)).(log 10).

Figure 4.4: Spectrum of the time varying azimuthal velocity field at the shear location

(r=3.6cm) from visible light velocimetry (black solid line) and from Langmuir probe

measurements (red dot-dashed solid line).



81

the square of the fluctuating floating potential, turbulent Reynolds stress, divergence of

the turbulent Reynolds stress, the turbulent radial particle flux and density gradient, as

well as their envelopes, which are shown as the colored line on each panel. A spectral

analysis of these envelopes demonstrates that they are all modulated with the same fre-

quency as the shear flow evolution (Fig.4.5b). A similar result is obtained for 0.5msed

smoothing window indicating that this result is insensitive to the choice of the smooth-

ing window duration. The red dot-dash line on the panels in Fig.4.5b is the spectrum

of the azimuthal velocity field obtained from the probe TDE measurement. Clearly the

fluctuating envelopes exhibit temporal evolutions that are nearly identical to that of the

slowly varying sheared flow. To further look at the modulation effect of the shear flow we

compute the cross-correlation between envelopes of the density gradient, floating poten-

tial fluctuations, particle flux and the flow velocity at shear layer (∼ 3.6cm) respectively

for 2s duration data, as shown in Fig.4.6. In all cases, we find that there are finite anti-

correlations between these turbulence quantities and the shear flow. The values are above

the statistical significant value, and show that the high frequency DWT fluctuations are

modulated out of phase with the ZF.

Keeping in mind our previous results linking the time-averaged shear flow and

the time-averaged Reynolds stress, these results suggest that the variation in fluctuations

may cause a slowly varying Reynolds stress which can in turn be linked with the slowly

varying sheared flow. Therefore, to test this possibility and investigate the modulation of

the turbulent Reynolds stress with ZF, we next consider the turbulent momentum balance

equation.
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Figure 4.5: (a) Square of the turbulent floating potential, turbulent Reynolds stress, diver-

gence of the turbulent Reynolds stress, density gradient and turbulent radial particle flux

and their envelopes. (b) Spectrums of the envelopes of the turbulent floating potential,

turbulent Reynolds stress, divergence of the turbulent Reynolds stress, density gradient

and turbulent radial particle flux. The red dot-dashed line on each figure is the spectrum

of the azimuthal velocity field.
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Figure 4.6: Cross-correlation between envelops of floating potential (black solid line),

density gradient (blue solid line), particle flux (red solid line) and flow velocity at shear

layer.

For the collisional plasmas found in these experiments, the azimuthal component

of the ion momentum equation is[41] :

∂vθ
∂t

+vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+vz
∂vθ
∂z

+
vrvθ
r

=
e

Mi

(Eθ−vrB)−νi−nvθ+µii(∇2vθ+
2

r2

∂vr
∂θ
− vθ
r2

)

(4.1)

where νi−n is ion neutral collision rate and µii is the ion viscosity and where we as-

sume neutrals have negligible velocity, ion pressure fluctuation is negligible since the

ion temperature is low (∼ 0.5eV) and the velocity fluctuations are incompressible. Our

observations show that the plasma rotates once azimuthally in about 0.5msec, while the

time scale of the azimuthal velocity oscillation is approximately 4 msec (corresponding

to the 250Hz frequency above). We therefore chose an intermediate timescale of 1 msec

over which we average this equation. This choice will average over the mode number

m 0 turbulence, but will still resolve the more slowly varying sheared azimuthal flow.
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Introducing the fluctuating radial and azimuthal velocities ṽr and ṽθ, and denoting the az-

imuthal flow that survives the time averaging operation as 〈vθ〉t, the turbulent momentum

conservation equation can then be reduced to:

∂ 〈vθ〉t
∂t

+
1

r2

∂

∂r
(r2 〈ṽrṽθ〉t) = −νi−n 〈vθ〉t + µii(

∂2 〈vθ〉t
∂r2

+
1

r

∂ 〈vθ〉t
∂r

− 〈vθ〉t
r2

) (4.2)

where, 〈〉t denotes 1ms time window average. A detailed derivation can be found in

Ref.[41]. For simplicity, and since no other measurements are available, the dissipation

coefficients νin and µii are assumed to be time stationary and to have values similar to

those reported earlier[59]. From the multi-tip Langmuir probe the slow (1msec) variation

of the turbulent Reynolds stress and the azimuthal velocity field from TDE technique at

shear location (∼ 3.6cm) are calculated. Both quantities are averaged over 1 msec time

window allowing a comparison of the inertial term L(t) =
∂ 〈vθ〉t
∂t

+
1

r2

∂

∂r
(r2 〈ṽrṽθ〉t)

and the force due to dissipation R(t) = −νi−n 〈vθ〉t + µii(
∂2 〈vθ〉t
∂r2

+
1

r

∂ 〈vθ〉t
∂r

− 〈vθ〉t
r2

).

Fig.4.7a shows the time traces of of L(t) and R(t) obtained in this manner. There are

clearly some instances when the two sides of the momentum balance have a similar time

variation, while at other times there appears to be little relationship between the two time

series. The cross-correlation between L(t) and R(t) allows the statistical relationship to

be better quantified. The result (Fig.4.7b), which is computed independently from probe

measured Reynolds stress and the azimuthal velocity fields, has a finite in-phase corre-

lation of around 0.3 − 0.4, a value that is well above the statistical significant level of

∼ 0.05. Although this peak value is lower than expected value ∼1 (probably due to the

combined errors arising from the use of floating potential in place of plasma potential, the
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error associated with the finite differencing of the spatial gradients, and the assumption

that the dissipation rates are fixed), the results show that there is clear in-phase varia-

tion between the slow evolving shear flow and slowly evolving turbulent Reynolds stress

against the collisional and viscous damping, qualitatively consistent with earlier results

showing that the time-averaged shear flow is maintained against flow damping by the

turbulent Reynolds stress.

Figure 4.7: (a) Time traces of the left hand side of the ion momentum equation (black) and

the right hand side of the ion momentum equation (red). (b) Cross-correlation between

the left and right hand side of the momentum equation.

We further illustrate the relationship between the slowly varing shear flow and

the turbulence by examining the auto-bicoherence of floating potential fluctuation, which

provides a measure of the phase coherence between fluctuations at two frequencies f and
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f1 and which is defined as[57],

b̂2XXX(f, f1) =

∣∣∣ŜXXX(f1, f2)
∣∣∣2

1

M

∑M
k=1 |X(k)(f)|2 1

M

∑M
k=1 |X(k)(f1)X(k)(f2)|2

(4.3)

where, ŜXXX(f1, f2) is the bispectrum of floating potential fluctuations, defined as,

ŜXXX(f1, f2) ≡ E [X(f)X?(f1)X
?(f2)] =

1

M

M∑
k=1

X(k)(f)X?(k)(f1)X
?(k)(f2) (4.4)

In the above equations (k) indicates the kth realization, M is the total number

of realizations and the symbol ? denotes a complex conjugate. Fig.4.8a shows the bico-

herence b2(f = 300Hz, f1)with f = f1 + f2 = 300Hz (which corresponds to the slow

variation of the shear flow). This result shows that the slowly varying ZF is nonlinearly

coupled to other frequencies, which can be identified by examining b2(f, f1) shown in

Fig.4.8b. It is clear that the low frequency ZF is coupled with fluctuations with frequen-

cies in the range of ∼ 5kHz up to ∼ 11kHz; the coupling with fluctuations near 10kHz

appears to be particularly strong. These frequency range have been previously identified

as drift wave turbulent fluctuations[19]. Thus energy is clearly exchanged between DWT

and the ZF. A detailed measure of the nonlinear energy transfer between the different fre-

quency ranges using cross-bispectral analysis with a two-field model of the fluctuations

is underway and will be reported in another paper[78].

Additional evidence showing a link between the time-varying ZF and the turbu-

lence comes from examining the relationship between the turbulence kinetic energy and

the ZF kinetic energy in the time domain. However, this comparison is complicated by the

results above which show that the density gradient is modulated. Since this gradient is the
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Figure 4.8: (a) Auto-bicoherence of the floating potential fluctuations at r∼ 3.6cm for

f = 300Hz. (b) 2D plot of the auto-bicoherence of the floating potential fluctuations at

r∼ 3.6cm.
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principle drive behind the DWT, the resulting energy contained in the DWT can vary due

simply to this change in linear drive since the estimated growth rates are sufficiently fast

for the DWT amplitude to increase during one oscillation of the ZF. To account for this ef-

fect, we examine the variation in the fluctuating ZF and DWT energy normalized to the to-

tal fluctuating energy[79] to study the exchange of energy between the DWT and ZF range

of frequencies. Here, the normalized power is defined as Sfhighflow
=

∫ fhigh

flow

P (f) df∫ ∞
0

P (f) df

,Where

P(f) is the sum of the radial and azimuthal electric field spectra. The ZF frequency range

is taken to be 0 to 2kHz, while the DWT frequency range is taken to be 5kHz to Nyquist

frequency 250kHz. Fig.4.9a shows the normalized powers fractions Sfhighflow
of three dif-

ferent frequency ranges (5 − 250kHz, 2 − 5kHz and 0 − 2kHz). And Fig.4.9b and 4.9c

is the cross correlation between high frequency range (5 − 250kHz) with low frequency

range (0−2kHz), and intermediate frequency range (2−5kHz) with low frequency range

(0 − 2kHz) respectively. It is found there is a high anti-correlation between the high fre-

quency turbulence and the low frequency range, while there is no significant correlation

between the intermediate frequency range and the low frequency range. This suggests a

direct energy exchange between fluctuations of high frequency and low frequency ranges,

qualitatively consistent with an exchange of energy between the DWT kinetic energy and

ZF energy. Similar results are also reported in the literature [79]. We note that by doing

normalization we force the total energy to be constant and this may overemphasize the

correlation between the high frequency and low frequency ranges. We have repeated this

analysis without this normalization (and thereby ignoring the effect of the change in mean
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gradient) and find a cross- correlation of−0.3 peaking at zero-time delay for the ZF-DWT

case, consistent with an anti-phased relationship between these two spectral components.

Figure 4.9: (a) Time-varying DWT kinetic energy in different frequency ranges, 5 −

250kHz, 2 − 5kHz and 0 − 2kHz. (b) Cross-correlation between high frequency kinetic

energy (5− 250kHz) and low frequency kinetic energy (0− 2kHz). (c) Cross-correlation

between intermediate frequency range (2 − 5kHz) and low frequency range (0 − 2kHz)

kinetic energy.
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4.3 Effect of shear flow back on the turbulence from fast-framing

imaging

The effect of the ZF on the scale lengths of the DWT is also of interest since at

the end of the day it is this effect that impaches the energy transport across the pressure

gradient. This process can be visualized by selecting a sequence of fast-framing images

obtained in both the strong shear case and the weak shear case. A representative example

is shown in Fig.4.10a and Fig.4.10b, which provide two sets of four consecutive images

of the density fluctuation with time interval 20µs for strong shear case (the case shown

in Fig.4.2a by the red line, which is around 830µs) and weak shear case (the case shown

in Fig.4.2a by the yellowish line, which is around 2820µs) respectively. It is found that

for the strong shear case (Fig.4.10a) the positive visible light perturbation, which is high-

lighted by a green ellipse, is formed near the density gradient maximum (indicated by the

dashed blue lines) and moves outward radially and azimuthally in the clockwise direc-

tion. As it approaches the shear layer (indicated by the dashed black lines) the structure is

distorted in the azimuthal direction and eventually becomes highly elongated azimuthally.

The radial scale length of the structure is reduced from∼ 2cm to less than∼ 1cm. On the

contrary for the weak shear case (Fig.4.10b) the positive visible light perturbation is not

distorted during the radial and azimuthal propagations, as a result there is no observable

reduction of the radial scale length. This phenomenon suggests a time varying shearing

of the turbulent structure by the shear flow and provides the first direct visualization of

this important process. For the typical conditions of our experiment we find the turbu-
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lence correlation time τc is ∼ 50µs, so the turbulence decorrelation rate, ωτ =
1

τc
, is

∼ 2 × 1041/s. In the strong shear case the shearing rate defined as ωs = r
d

dr
(
vθ
r

) at

r∼ 3.6cm is estimated to be ∼ 4× 1041/s, and for the weak shear case the shearing rate

is estimated to be ∼ 0.7 × 1041/s. Therefore in the strong shear case the shear flow sat-

isfies ωs >ωT , sufficient to have impact on the turbulence[27], while for the weak shear

case, ωs <ωT and thus can not effectively decorrelate the turbulence, and that when the

shear is strong (weak), the radial scale length of the turbulent structure is small (large).

We can also statistically test the shearing effect by using the imaging data to com-

pute the time varying radial correlation length from a long series of images obatined at

∼ 100kHz framing rate over a period of 240ms. The radial turbulence correlation length

at any point in time is obtained by computing the cross correlation (using ∼1ms time

window) between the fluctuating intensity as a function of the radial separation between

a reference point located at r = 3.6 cm and a second point located at a variable radial

separation. The cross-correlation function envelope is then used to find the correlation

length, defined as the location where the envelope is down by a factor of 1/e from the

peak value at zero spatial separation. This correlation length then varies slowly in time,

and this variation can then be cross-correlated with the time variation of the shearing rate.

Fig.4.11 shows the result for data obtained at r∼ 3.6cm which is the shear layer location.

We find that there is a finite anti-correlation lying outside the noise level confirming that

the the radial turbulent correlation length is related to the shearing rate, qualitatively con-

sistent with the theoretical picture of the random shearing effect of the shear flow on the



92

Figure 4.10: (a) Snap shots of the four consecutive density fluctuation images with 20µs

time interval for strong shear case. (b) Snap shots of the four consecutive density fluctua-

tion images with 20µs time interval for weak shear case. Black dashed line indicates the

peak shear location, blue dashed line indicates the maximal density gradient location and

the green solid ellipse indicates the positive visible light perturbation structure.
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turbulence[8].

Figure 4.11: Cross-correlation between the azimuthal velocity shear and the radial turbu-

lence correlation length at shear location r∼ 3.6cm.

4.4 Discussion

The above results demonstrate all of the essential elements of the theoretically

predicted ZF-DWT dynamics. An existence of the slowly varying azimuthally symmetric

ZF has been demonstrated from both probe-based measurements and fast-framing imag-

ing. Such flow lies at the bottom or foot of the steep pressure gradient, and that this region

is determined by the radius of the heat input into the system (which is the source size).

The slowly varying ZF modulates the high frequency floating potential associated with

DWT, density gradient and cross-field transport. A strong anti-correlation is found be-

tween normalized DWT kinetic energy (5-250kHz) and the ZF energy (0-2kHz), but not
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between the intermediate frequency range (2-5kHz) and ZF. This suggests a direct energy

exchange between DWT and ZF. The results shown here are qualitatively consistent with

the theory of the modulation instability in which a small shear flow scatters energy from

turbulence into the shear flow resulting in amplification of the shear flow while the total

energy is conserved. However, thus picture is complicated by the fact that the density

gradient also increases as the turbulence is damped by the shear flow, resulting in an in-

crease in the turbulence drive. Such an increased drive is neglected in current theoretical

models. The momentum balance analysis shows that this energy exchange is mediated

by the turbulent Reynolds stress. This exchange is also observed in the frequency domain

by a bicoherence analysis of the DWT and ZF. Fast-framing imaging has also shown an

existence of the strong and weak shear flow and found that when the shear flow is strong,

the radial correlation length is small, and vise verse. The imaging also directly demon-

strates that the ZF can shear apart and decorrelate the DWT structures that move into the

ZF, which is also qualitatively consistent with turbulent decorrelation process.

It is also interesting to note that the imaging data show a dominantm = 1 intensity

emission pattern when the shearing is weak, while the fluctuations have smaller spatial

scales in periods with stronger flow shear. In previous work[49, 80] such m = 1 flow

patterns have been found to be associated with the formation of blobs or intermittent

edge transport events in which a burst of dense plasma breaks off from the central plasma

region and propagates outwards into the low density halo region surrounding the main

plasma column. The results reported here suggest that the shear flow dynamics may be

linked to the birth of such intermittent transport events. A detailed study is needed to
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determine if indeed this is the case.

4.5 Summary

In summary we have presented experimental results that are qualitatively consis-

tent with the theoretic picture of the DWT/ZF dynamics. The slowly evolving ZFs are

found to exist modulate plasma turbulence and resultant transport. ZFs can shear turbu-

lent eddies and reduce the radial correlation length. Energy is exchanged between DWT

and ZF and is mediated by the slowly varying turbulent Reynolds stress. Therefore the

experimental results support the theoretical expectation of the DWT-ZF dynamics. Fu-

ture work will be focused on studying the nonlinear energy transfer from DWT to the ZF

by bispectral analysis from two-field model in the frequency domain, which will be an

additional important evidence of the ZF generation from DWT.



5

Scaling properties of turbulence driven

shear flow

5.1 Introduction

In Chapter 3, the detailed spatial variation of the turbulence statistics was exam-

ined. Those results showed that the cross-phase between the turbulent radial and az-

imuthal velocity fluctuations played a key role in determining the shape of the Reynolds

stress profile. Since the shape is related to the time-averaged momentum balance through

the divergence of the Reynolds stress, this cross-phase thus plays a key role in setting the

conditions for the generation of the time-averaged shear flow. In Chapter 4, the tempo-

ral dynamics of this shear layer were studied in detail. The results showed that the shear

layer in fact exhibits slow (∼ 200−300 Hz) variations, and that these variations are linked

to corresponding changes in the turbulence amplitudes, cross-field particle transport, and

96
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plasma density gradient- observations which are consistent with theoretical expectations.

These previous results were all obtained well above the threshold for the onset of

drift wave turbulence, i.e., at 1000G magnetic field. Previous results[19] have shown that

the magnetic field strength is an important control parameter governing the development

of drift turbulence. As the magnetic field was increased from 400G to 1000G the plasma

drift wave fluctuations evolve from narrow-band (i.e. frequency width much smaller than

the wave frequency) coherent wave-like perturbations that were consistent with collisional

drift turbulence linear eigenmodes into a state of weak drift turbulence that was charac-

terized by broad frequency and wave number spectra that still roughly follow the linear

dispersion relation (and hence these fluctuations were characterized as being in a state of

weak turbulence). The role of the magnetic field acting as a control parameter for the

transition to drift turbulence has also reported in other literatures[81, 82]. This effect is

attributed to the reduction of ion-ion collisional viscosity µii ∝ ρ2
i νii ∝

1

B2
that occurs at

higher magnetic fields. As the viscosity is reduced the convective derivative, and hence

the nonlinear interactions that are mediated by it, becomes more prominent in the fluid

conservation equations[19] in a manner analogous to the transition to turbulence that oc-

curs in neutral turbulence when the Reynolds number is increased. Given these earlier

results, and the observations that the turbulence and zonal flows form a nonlinearly cou-

pled system, the question naturally arises: how does this coupled system evolve as the

magnetic field is increased? The neutral gas pressure has also been used to control the

transition to turbulence[43, 44]. Ion-neutral drag due to collisions between these species

can also act to damp out turbulent-driven shear flows[59] in a process that is analogous
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to the damping of zonal flows in toroidal devices due to collisions between trapped and

passing ions[10], and is thus of fundamental interest as well. Therefore it would be very

interesting to study how the shear flow and its generation change when the flow damping

is also changed.

There is no straightforward way to study the scaling properties of the shear flow

generation with magnetic field or flow damping in larger confinement devices, and thus

the experiments discussed here provide the first such experimental study of the onset of

turbulent-driven shear flows in plasmas, as well as the first controlled study of the effect

of flow damping on these flows.

The rest of the Chapter is organized as follows: In Sec. 5.2 we discuss the mag-

netic field scaling properties of the turbulence driven shear flow. In Sec. 5.3 we discuss

the pressure scaling properties of the turbulence driven shear flow. Lastly in Sec. 5.4 we

discuss and conclude our experimental results.

5.2 Magnetic field scaling of the turbulence driven shear flow

The experiments presented here are carried on the CSDX device that has been

described elsewhere[19, 45]. A dual 3 × 3 array of Langmuir probes is used to measure

the plasma density and floating pressure at several radial locations for various magnetic

fields and plasma pressure conditions. A detailed description of this probe can be found

in Chapter 2. A two-point time delay estimation (TDE) technique is applied to the den-

sity fluctuation measurements to obtain a radial profile of the azimuthal velocity fields.
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Fig.5.1 provides a plot of time-averaged plasma density for different magnetic fields ob-

tained from the ion saturation current measurements, while Fig.5.2 provides the density

fluctuation amplitude and radial particle flux near the density maximal gradient location

(r=3cm). All the data are taken at an Argon fill pressure of 3.18mTorr and a source power

input of 1.5kW. The density fluctuations and radial particle flux are all normalized by

the corresponding values at 1000G magnetic field. The results show that plasma time-

averaged density gradient increases slightly as the magnetic field is increased, but that

this gradient increase appears to saturate once the magnetic field exceeds ∼700-800G.

The density fluctuation amplitude and the radial particle flux both become significant

once the magnetic field exceeds ∼600G, and they rapidly increase as the magnetic field

is increased towards 1000G, consistent with previous results[19].

Figure 5.1: Equilibrium plasma density profile for different magnetic fields.

Fig.5.3 shows the time-averaged radial profile of the azimuthal velocity, which is
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Figure 5.2: Density fluctuation amplitude (black solid line and symbol ?) and radial par-

ticle flux (red solid line and symbol ∆) at 3.18mTorr for different magnetic fields. Each

is normalized by the corresponding value at 1000G magnetic field.

averaged over the slowly varying results discussed in Chapter 4 in a 3.18mTorr 1.5kW Ar-

gon discharge at five different magnetic fields. Fig.5.3b is the shearing rate at r = 3.8cm

at different magnetic fields. The result shows that shear flow exists when the magnetic

field B ≥ 700G, while for lower magnetic fields (600G is shown in the figure) the fluc-

tuations propagate close to solid body rotation. The power spectra of both ion saturation

current and floating potential fluctuations obtained at the shear layer (r = 3.8cm) are

shown in Fig.5.4, with dashed line indicating the density fluctuation spectrum and solid

line indicating floating potential fluctuation spectrum. Several features are of note. First,

note that as the magnetic field is raised, the low frequency (<2kHz) potential fluctuation

power increases substantially. We interpret this as representing the onset of the slowly

varying shear flow that was documented in Chapter 4. Second, as the magnetic field be-
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gins to exceed 700G, a new set of fluctuations in the frequency range of∼7-8kHz appear.

As the magnetic field is raised to 1000G these fluctuations move up to∼9-10kHz. As was

shown in the bicoherence analysis of Chapter 4, at 1000G it is this frequency range that is

most strongly coupled to the slowly varying shear flow. Comparing with the results shown

in Fig.5.3, and keeping in mind the results from Chapter 4 that showed a slow variation

in the shear flow and also a strong phase coherent coupling between this low frequency

flow and the drift wave fluctuations at ∼10kHz, these observations suggest that the onset

of the shear flow is related to the development of the ∼7-8kHz fluctuations at B∼700G

and then the subsequent evolution of those fluctuations to∼9-10kHz as the magnetic field

is raised to B∼1000G. The amplitude of the low frequency floating potential oscillation,

which is consistent with the slow varying shear flow, is also proportional to the magnetic

field. Taken together, these results indicate that as the magnetic field is increased, the drift

wave turbulence amplitude increases, the nonlinear coupling into the shear flow increases,

and strength of the shear flow increases. This scaling is qualitatively consistent with the

theoretical picture of turbulence driven shear flow that is summarized in the literature[8].

We also note that we do not see the ’Quasi-coherent’ mode at ∼700G as was reported

in the previous work of Burin[19], and the most prominent frequency of both density

and floating potential fluctuations is below 15kHz, not as high as 30kHz reported in that

work. The difference is likely due to a change in end-plate boundary conditions caused

by the removal of the concentric conducting end rings between the time of those earlier

experiments and the current work.

If the shear flow is driven by the fluctuations, as suggested by the above results,
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Figure 5.3: Time-averaged azimuthal velocity fields for different magnetic fields.

then the divergence of the turbulent Reynolds stress should also be small or zero for

B<700G, and then should increase once the magnetic field exceeds this threshold. In

particular, from theory and previous experimental studies for the statistical properties

of the turbulent Reynolds stress discussed in the Chapter 3 we know that the negative

divergence of turbulence Reynolds stress (∇ · (ṽrṽθ)) will reinforce shear flow. Therefore

it would be interesting to look at the evolution of ∇ · (ṽrṽθ) with magnetic fields. In

Fig.5.5 the symbols ? are the absolute values of the∇· (ṽrṽθ) at shear layer (∼3.8cm) for

different magnetic fields. The results show that the amplitude of the∇ · (ṽrṽθ) is small at

600G and then increases with magnetic field consistent with expectations. We also note

that at low magnetic field as 600G, there is a finite divergence of the turbulent Reynolds

stress, but there is no shear flow at that condition. This discrepancy may because that

ion-gyro frequency is small when the magnetic field is small, thus the ion-ion collision
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Figure 5.4: Power spectra of density fluctuations (dashed line) and floating potential (solid

line) at shear layer (∼ 3.8cm), 3.18mTorr, for different magnetic fields.
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rate will be comparable with the ion-gyro frequency thereby invalidating the assumption

of ~E × ~B dominated guiding center drifts.

In Chapter 3 we have known that the cross-phase between the radial and az-

imuthal components of the velocity field is a key factor to determine the detailed tur-

bulent Reynolds stress and hence the shear flow generation. We have also investigated the

evolution of the cross-phase with magnetic field to determine if this statistic governs the

variations of the turbulent Reynolds stress with magnetic fields. Fig.5.6a shows the radial

profile of the turbulent Reynolds stress computed in the frequency domain using Eqn.2.13.

As the magnetic field is increased, the negative divergence of the Reynolds stress needed

to drive the shear slow increases in the region 3.5cm<r<4cm, which is precisely the loca-

tion of the shear flow development. Using an approach similar to that described in detail

in Chapter 3, an examination of the role of the velocity cross-phase (Fig.5.6(b-c)) shows

that the Reynolds stress divergence is determined primarily by the evolution of the tur-

bulent velocity cross phase. In particular, we note that when the cross-phase is excluded

from the turbulent Reynolds stress (Fig.5.6c), there is much less variation near the shear

layer. Our results therefore show that the turbulent velocity cross-phase determines the

variation of the turbulent Reynolds stress and is influenced by the strength of the magnetic

field.

Magnetic field scaling properties of the ion momentum balance equation are also

of interest, and can demonstrate if the theory that the shear flow is driven by turbulence

is valid for different plasma conditions. In order to estimate the ion viscosity and ion-

neutral flow drag, it is necessary to measure ion and neutral temperatures. Previously
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Figure 5.5: Absolute value of the divergence of the turbulent Reynolds stress at shear

layer (∼ 3.8cm) for different magnetic fields.

we used a very high (∼million-Angstrom) resolution spectrometer to make the necessary

measurements. Unfortunately that instrument is not available and thus such measure-

ments and the corresponding momentum analysis must be deferred until such time that

the measurements can be made.

5.3 Neutral gas pressure scaling of the turbulence driven shear flow

Since the neutral gas pressure is also a possible parameter to control the transi-

tion to turbulence[43, 44] and the ion-neutral drag can also damp out turbulence driven

shear flow[59], we have studied the evolution of the drift turbulence and sheared zonal

flow for various neutral gas pressures, while keeping the other discharge conditions con-



106

Figure 5.6: (a) Turbulent Reynolds stress computed in frequency domain using Eqn.2.13.

(b) Cosine of the cross-phase. (c) Cross-phase is excluded from Eqn.2.13.
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stant (a magnetic field of 1000G and a source power of 1.5kW were used). Fig.5.7 shows

the radial distribution of the equilibrium plasma density for different neutral gas pressures

while Fig.5.8 presents the variation of the density fluctuation amplitude and radial particle

flux at 1000G for data obtained at r=3cm. Each quantity is normalized by the correspond-

ing value at 1000G, 4mTorr Argon plasma condition. The results show that the plasma

density increases with neutral gas pressure while the density fluctuation amplitude de-

creases with increasing neutral gas pressure. The radial particle flux peaks at 3.18mTorr

and decreases for higher pressures. Fig.5.9 shows the time-averaged radial profile of the

azimuthal velocity fields at 1000G magnetic field for different neutral gas pressures. The

results show that the shear flow velocity and the overall shearing rate decrease with the

neutral gas pressure. The power spectra of both density fluctuations and floating potential

at shear location (∼3.8cm) for various neutral gas pressures at 1000G magnetic field are

shown in Fig.5.10. It is found that the amplitude of the 8∼10kHz drift wave turbulence

decreases with neutral gas pressure, consistent with our earlier observations linking the

shear flow to the 8∼10kHz components of the drift wave turbulence. We note that there is

also decrease in the amplitude of the low frequency (<2kHz) floating potential oscillation

associated with the shear flow as the neutral gas pressure is increased. Thus an increase

in the neutral gas pressure reduces the turbulence amplitude (which is the nonlinear drive

for the shear flow) and also increases the flow damping rate. As a result, at higher gas

pressure the shear flow becomes weaker.

The divergence of the turbulent Reynolds stress ∇ · (ṽrṽθ) at the shear layer

(∼3.8cm) decreases with an increase in the neutral gas pressure(Fig.5.11), again consis-
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Figure 5.7: Equilibrium plasma density for different discharge pressures.

Figure 5.8: Density fluctuation amplitude (black solid line and symbol ? ) and radial

particle flux (red solid line and symbol ∆) at 1000G magnetic field for different discharge

pressures. Each is normalized by the corresponding value at 4mTorr pressure.
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Figure 5.9: Time-averaged azimuthal velocity fields for different discharge pressures.

tent with expectations. An examination of the role of the cross-phase and cross-coherence

shows that this decrease is caused in large part by the variation of the turbulent velocity

cross phase (Fig.5.12) together with the reductions in fluctuation amplitude discussed

above. Ideally it would also be interesting to look at the ion momentum balance equation,

Eqn.4.2, for different pressure conditions. However, due to the same reason we explained

in the previous section, we will defer this work to the future.

5.4 Discussion and Concluding Comments

These results show that as the relative strength of the convective derivative term

to the viscous damping term is increased by increasing the magnetic field, a sheared

m = 0 flow develops. The onset of this flow coincides with a rapid increase in the

divergence of the turbulence Reynolds stress at the spatial location where the shear layer
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Figure 5.10: Power spectra of density fluctuations (dashed line) and floating potential

(solid line) at shear layer (∼ 3.8cm), 1000G magnetic field, for different discharge pres-

sures.
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Figure 5.11: Absolute value of the divergence of the turbulent Reynolds stress at shear

layer (∼ 3.8cm) for different discharge pressures.

develops. In addition, the onset of the shear flow coincides with the rapid growth in the

drift turbulence frequency components that are most strongly phase coherent with the

slowly varying shear flow. As has been shown elsewhere[25], this phase coherency is a

necessary condition to transfer energy from the turbulence into the shear flow. Finally, the

shear flow is damped when the net ion-neutral collision rate is increased. When coupled

with previous studies that show that the turbulent Reynolds stress is self-consistent with

the shear layer, these parametric variation studies provide additional strong evidence that

the shear flow is indeed driven by the turbulence and, in turn, regulates the turbulence and

associated transport rates.

These parameter scan studies have important implications. Theory and numerical
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Figure 5.12: (a) Turbulent Reynolds stress computed in frequency domain using Eqn.2.13.

(b) Cosine of the cross-phase. (c) Cross-phase is excluded from Eqn.2.13.
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simulation of the coupled drift turbulence/ZF system in large fusion experiments show a

critical gradient behavior in which the turbulence transport and the ZF are weakly driven

when the mean plasma pressure gradient is below a critical value. When this critical

gradient is then exceeded e.g. by increasing the heat flux through the system, the turbulent

transport and the ZF both are predicted to then increase rapidly. This behavior then forces

the system to stay close to the critical gradient, resulting in pressure gradients that are

”stiff” - i.e. the gradients do not depend sensitively upon the heat flux. As a result,

the central plasma conditions (which are essential for achieving energy gain in a fusion

reactor) are determined in large part by the conditions at the plasma boundary, where

other physics mechanisms associated with the transition to open magnetic field lines and

plasma-wall interactions become important. This behavior has been observed in large

confinement experiment and simulation, but the key turbulence/ZF dynamics responsible

for this behavior have never been studied in a confinement experiment.

The results discussed here provide the first such study for the coupled DWT/ZF

system in a plasma experiment. The critical gradient behavior relates the flux Γ to the

gradient scale length via a relation in the form [83],

Γ = Γs(
ρs
L⊥
− ρs
L⊥
|crit)αH(

ρs
L⊥
− ρs
L⊥
|crit) + Γ0 (5.1)

where
ρs
L⊥

and
ρs
L⊥
|crit denote the normalized actual and critical inverse pressure gradient

scale length, H() denotes the Heaviside step function, and the saturated and the minimal

fluxes are given as Γs and Γ0 respectively. The parameter α is usually referred to as

the ”stiffness” parameter and determines how quickly the flux increases once the critical
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gradient is exceeded.

The HW model[26] shows that the dimensionless critical gradient scales as,

ρs
L⊥
|crit ∝

µii
ρ2
sΩci

=
3

10

ρ2
i νii
C2
s

Ωci (5.2)

where the usual Braginskii expression for the ion-ion viscosity is used. Taking note of the

scaling of the ion-ion collision frequency and using the definitions of the other terms we

can then re-write this scaling as

ρs
L⊥
|crit ∝

n

T
1/2
i T

3/2
e

∝ 1

Bα
, 0 < α < 1 (5.3)

where in the last scaling we have taken note that the density does not vary strongly with

(Fig.5.1) and we have used earlier results[19] where the ion and electron temperature vari-

ation with magnetic field was measured. Thus we then expect that if
1

L⊥
≈ const as B is

raised (as seen in the experiment) then at some critical valueB = Bcrit then the inequality

1

L⊥
>

1

L⊥
|crit will occur and the fluctuations will increase rapidly. Since the turbulence

in turn drives the shear flow, we would also expect a rapid onset of the shear flow. Then,

when the shear flow becomes strong enough, it should then begin to affect the turbu-

lence amplitude and correlation lengths via the shear decorrelation process summarized

in Chapter 1 and discussed extensively in the literature[8]. The results shown in Fig.5.2

and Fig.5.3b, i.e. experimentally observed variation of the turbulence amplitude, cross-

field flux, and ZF shearing strength verses magnetic field for the 3.18mTorr 1.5kW Argon

discharges studied in most of this dissertation, have demonstrated such expected behavior

- namely a rapid increase in turbulence amplitude, particle flux, and turbulent-driven shear

flow as the critical gradient, which occurs between 600G<B <700G, is exceeded. As a
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result, one would expect the density profile to exhibit a very stiff behavior once the critical

magnetic field is exceeded. This is indeed the case as seen by a careful examination of

Fig.5.1.

The experimental results presented here have also shown that when the neutral gas

pressure is increased, the increased ion-neutral drag begins to damp the shear flow. Recent

simulation on edge momentum transport has shown that with increase in damping term

(viscosity) the shear flow is reduced because the instability growth rate and the resulting

nonlinear processes are all slowed down[72]. Our observations appear to be consistent

with this simulation result. As what we have pointed out in the discussion of Chapter 4

the shear layer in all conditions lies at the bottom or foot of the steep pressure gradient,

and that this region is determined by the radius of the heat input into the system (which is

the source size).
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Conclusion and future work

In this chapter the results from Chapter 3, Chapter 4 and Chapter 5 are summa-

rized. The contributions to current plasma drift turbulence and structure formation studies

are discussed. Future work based on the accomplishments of present work is recom-

mended and discussed.

6.1 Summary of present work

Theories of the drift wave turbulence have been extensively studied and described,

notably the early works of Hasegawa & Mima [18], Hasegawa & Wakatani[26]. Later

based on their model, numerical simulations[84, 85] confirmed the same predictions: for

2D fluid dynamics a dual cascade of energy and enstrophy wherein the kinetic energy is

transfered to the largest scales and enstrophy is transfered to the smallest scales result-

ing in a formation of the large-scale coherent structure and zonal flows. Experimentally,

the generation of such large-scale coherent structure and zonal flows associated with the

116
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transport barrier has been observed on various magnetic confinement devices as we have

described in Chapter 1. However, there are some limitations of the existing experiments.

Because the plasma on most large scale magnetic confinement plasma device has high

electron temperature and density, it is difficult to direct measure the Reynolds stress with

Langmuir probe. Therefore, to date, there have been no studies of how the turbulent

statistics lead to the development of the detailed Reynolds stress profile associated with

the shear flow. Since the theory suggests that the Reynolds stress plays an important

role in the shear flow generation process, it would be desired and significant to study the

detailed statistical properties of the Reynolds stress. In addition most experiments car-

ried out on the large-scale plasma device are already in ’turbulent’ state, therefore there

is no way to study the scaling properties of the shear flow generation during the transi-

tion to turbulence. On the other hand, most experiments have confirmed the formation

of the transport barrier during the transition from L mode to H mode, but to the author’s

knowledge there have been no conclusive studies of the relationship between the parti-

cle transport, Reynolds stress and shear flow generation. Theories and simulations have

effectively predicted and interpreted the drift-wave turbulence/zonal flow dynamics, how-

ever, no detailed experiments have provided a full validation of such basic theories. In

light of this state of affairs at the beginning of this thesis we identified four questions to

be answered by this experimental work:

1. As a state of turbulence is approached, what statistical properties lead to the

development of the Reynolds stress and what are their contributions to the shear flow

generation?
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2. What is the relationship, if any, between the universally observed ion-saturation

current bursty events, momentum transport and shear flow generation?

3. Is there any evidence in the experiments confirming the theoretical picture of

the drift-wave turbulence/zonal flow self-regulated dynamical system?

4. What are the scaling properties of the turbulence driven shear flow during the

transition to turbulence?

To address these questions we proceeded as follows: From previous studies we

understand the plasma on CSDX undergoes a transition from discrete mode (below 600G)

to broad-band turbulence (1000G) with increasing magnetic fields and the known source

of free energy driving this turbulence has been identified as the radial electron pressure

gradient. Therefore, for the first set of experiments we choose our background plasma

condition to give a state of drift turbulence in the plasma. In these conditions we then

studied the statistical properties of the turbulent Reynolds stress and shear flow dynamics.

For the scaling properties of the shear flow investigation, the measurements were made

in various magnetic fields and neutral pressures. We used a novel multi-tip Langmuir

probe array that was designed to have 18tips that were distributed in a way that allow

the computation of Reynolds stress and various statistical properties analysis. This probe

diagnostic was complemented by the use of a new fast-framing camera that was coupled

to a telescope to capture the visible light emission from plasma providing for the first

time the capability of visualizing the turbulence structure formation and evolution in the

presence of a sheared zonal flow.

For the first question, ’As a state of turbulence is approached, what statistical
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properties lead to the development of the Reynolds stress and what are their contributions

to the shear flow generation?’, the results in this thesis provide answers through two lines.

First, by decomposing the Reynolds stress into the cross-coherence γ, the cross-phase

α and the auto-power of the radial and azimuthal velocity fields S(vrvr), S(vθvθ), and

analyzing how significant of each component in determining the Reynolds stress profile,

we found that the cross-phase between the two components of the velocity fields αvrvθ

plays key role in determining the detailed Reynolds stress profile, which drives the shear

flow. Second, we found the Reynolds stress PDF is non-Gaussian and positively skewed

at the observed shear flow location. Momentum transport therefore behaves like bursty

density transport events that have been reported earlier, and is concentrated in the region

of the shear layer. The radial and azimuthal velocity fields are in phase at shear layer, but

out of phase beyond this region. This results in a radial variation of the Reynolds stress

and the negative divergence of the Reynolds stress which reinforce the shear flow.

For the second question, ’What is the relationship between the universally ob-

served ion-saturation current bursty events, momentum transport and shear flow genera-

tion?’, the results in this thesis show that these three are all linked. Firstly, the PDF of

Reynolds stress and ion-saturation current are found both non-Gaussian and the regions

of positive stress and density skewness coincide with each other. This suggests that the

bursts of particle transport is associated with bursts of momentum transport. A study

of the joint PDF between particle flux and Reynolds stress confirmed the relationship

between the particle transport and the momentum transport.

We used these results to construct a physical picture of the shear flow generation:
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The bursts of outward going density fluctuations born near the maximal density gradient

location carry angular momentum, resulting a positive Reynolds stress in that region. As

they are propagating away from the maximal density gradient and towards the shear layer

the fluctuation amplitude decreases resulting in a decreasing Reynolds stress and hence

a negative divergence of the Reynolds stress which drives or reinforces the shear flow.

These results indicate a system of radially propagating turbulence structures which are

immersed within a background seed shear flow naturally form a Reynolds stress profile

that then acts to reinforce the shear flow.

For the third question, ’Is there any evidence in the experiments confirming the

theoretical picture of the drift-wave turbulence/zonal flow self-regulated dynamical sys-

tem?’, the results in this thesis have provided six observations that qualitatively support

the expected theoretical picture. First, we have observed an existence of shear flow

through the Langmuir probe measurements by applying TDE technique to the floating

potential measured from two azimuthally adjacent probe tips. A 2D velocimetry study

obtained from fast-framing imaging has directly confirmed, for the first time, the az-

imuthally symmetry of this shear flow. Second, spectral analysis of the azimuthal velocity

field both from probe and fast-framing imaging show that such shear flow evolves with

a low frequency about ∼250-300Hz. Quantities associated with higher frequency (∼5-

15kHz) drift turbulence such as floating potential, Reynolds stress and particle flux are

all modulated at the same low frequency. Third, detailed ion momentum balance analy-

sis show that such slow evolving shear flow is sustained by the Reynolds stress against

collisional and viscous damping with a reasonable estimation of the stationary ion-ion
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viscosity coefficient. Fourth, a bi-coherence of the floating potential calculation shows

the ∼300Hz oscillation is phase coherent with the 10kHz turbulence which suggests the

energy transfer between these two could indeed happen. Five, the high frequency turbu-

lence (5kHz above) kinetic energy is found to be anti-correlated with the low frequency

range (0-2kHz), but no correlation is found between the intermediate frequency range

(2-5kHz) and the low frequency range, which is qualitatively consistent with the theoret-

ical picture of the energy conservation between turbulence kinetic energy and shear flow

energy. Six, fast-framing imaging shows the radial turbulence correlation length is anti-

correlated with the flow shear. Thus when the shearing rate is strong, the radial turbulence

correlation length is small, and vice versa. This is consistent with the decorrelation pro-

cess of the turbulence by the shear flow. Taken together, the results in this thesis have

provided evidences qualitatively consistent with the theoretical picture of the drift-wave

turbulence/shear flow as a self-regulated dynamical system.

For the fourth question, ’What are the scaling properties of the turbulence driven

shear flow during the transition to turbulence?’ the results in the present work have shown

that the higher the magnetic fields the stronger the shear flow, and the lower the neutral

pressure the stronger the shear flow. There is a critical value of the magnetic field (which

results in a critical value of the inverse of the normalized density gradient scale length),

above which both turbulence and shear flow are spontaneously excited. When the mag-

netic field is increased above this critical value, the drift wave turbulence amplitude and

zonal flow shearing rate both increase rapidly as might be expected for a system that fol-

lows a critical flux-gradient type of behavior. When the neutral gas pressure is increased,
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the drift wave turbulence is decreased due to the increase of the damping coefficients

from ion-neutral drag. The resulting decreasing divergence of the turbulent Reynolds

stress causes a reduction of the shear flow amplitude. In both situation the cross-phase

between the radial and azimuthal velocity components is critical to determine the turbu-

lent Reynolds stress profiles for various plasma conditions. Taken together the results

have suggested a causal relationship between the drift wave turbulence and shear flow for

various plasma conditions.

6.2 Limitations of present work

In this thesis we have demonstrated experimentally that the shear flow generation

is due to the the momentum transport which is carried by the outward going density

bursts and also provided experimental validation of the theoretical picture of the drift-

wave turbulence/zonal flow dynamical system, as well as an investigation of the scaling

properties of the shear flow. However, in the work presented in the thesis there are several

limitations needed to be kept in mind.

Firstly, in current work we use floating potential φf instead of plasma potential φp

to compute the electric field, i.e., E =
∆φf
∆x

, where ∆x is the distance between the two

spatial locations of floating potential. By applying this we assume there is no significant

electron temperature fluctuations. This assumption is used by many experimentalists.

However this has not been confirmed in our experiments yet. And we also do not know

the spectral properties of the electron temperature fluctuations. This uncertainty could
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cause error in the calculation of turbulent Reynolds stress and kinetic energy.

Secondly, in current work there is no detailed measurements of spatial profile of

ion and neutral temperature. Therefore the spatial profiles of the damping coefficients,

i.e., ion-ion viscosity coefficient µii and ion-neutral collision rate νin are assumed in the

computation of ion momentum balance equation. For the ion-neutral collision rate we

assumed a constant profile along radial direction and for the ion-ion viscosity coefficient

we assume a quasi-step function like profile since the µii ∝ niT
−2
i and the density ni

and ion temperature Ti drop at large radii. In addition we do not have measurements

of time varying damping coefficients. Therefore in studying the dynamics of the shear

flow we assumed a time-stationary damping coefficients. These may cause error in the

ion momentum balance analysis and maybe one of the reasons of the not high value

correlation between the initial term and force term in the ion momentum equation. In the

analysis of the scaling properties of the shear flow we are not able to perform a detailed

analysis of the ion momentum balance equation for various plasma conditions due to the

lack of the damping coefficients.

Thirdly, we assume the light emission intensity from plasma is somewhat corre-

lated with the plasma density fluctuation. However, we do not understand the detailed

relationship between these two so far. The light emission intensity is thought to be not

only correlated with the plasma density fluctuation but also correlated with electron tem-

perature and neutral density. Therefore we should note the velocity field inferred from

light emission intensity of the plasma does not only exactly reflect the velocity of the

plasma density fluctuations.
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6.3 Recommended future work

Based on the accomplishments and the limitations of the present work there are

a number of ways that maybe furthered as we have mentioned sporadically throughout

Chapter 3, Chapter 4 and Chapter 5. In this last section we will describe what future work

will be profitable.

6.3.1 Measuring electron temperature Te

The most straightforward way to measure electron temperature is to measure the

current-voltage characteristic (I-V curve) of the plasma by applying an oscillating (or

sweeping) voltage to a single probe tip at a frequency about 100Hz[19]. As the voltage is

more positive than the floating potential, the current and voltage satisfy the relationship

I ∝ exp(
−eφp
kTe

)[48]. The electron temperature is then found to be the inverse of the

slope of the straight line of this I-V trace on a semi-logarithmic plot. The electron tem-

perature found this way has limited information of the fluctuation properties since it is an

average value over the sweeping frequency. To validate the assumption that we used in

our work, i.e., the electron temperature fluctuation is negligible, fast electron temperature

measurement should be made. One possible method is to use triple probe, consisting of

two electrodes biased with the same voltage and a third which is floating. The schematic

is shown in Fig.6.1. The electron temperature is computed as kTe =
e(Ve − Vf )

ln(1 +
Ai
Ae

)
, where

Ve and Vf are the voltage of the electron collecting tip and floating tip respectively, and

Ai and Ae are the collecting area of the ion tip and electron tip respectively.
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Figure 6.1: Schematic of triple probe measurment.

6.3.2 Measuring ion temperature Ti and neutral temperature

Measurements of ion and neutral temperature should be made in the future by

spectroscopy. This would allow the better estimation of damping coefficients, i.e, ion-

neutral collisional rate and ion-ion viscosity coefficient, and hence the ion momentum

balance analysis. This could be performed by measuring the ArI (750nm) and ArII

(488nm) doppler broadening and deconvolution with Gaussian instrument response at

multiple chords. These results would then need to be Abel inverted to obtain the desired

radial ion and neutral gas temperature profiles.
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6.3.3 Measuring bulk ion flow velocity

In the present work we assume the convecting velocity is dominated by the ~E× ~B

flow since the ion-ion collisional rate is marginally below the ion cyclotron frequency

νii
Ωci

∼ 0.3−1.0. However, to be precise the bulk ion flow is not exactly ~E× ~B flow when

νii ∼ Ωci, especially at low magnetic field. Therefore the bulk ion flow velocity should be

made. This quantity could in principal measured from the Doppler-shift of Ar-II emission

lines or alternatively from Laser-Induced Fluorescence (LIF) technique[86].

6.3.4 Changing source diameter

In the present work the RF source diameter is about 10cm. This dimension deter-

mines the size of the plasma column, the location of the maximal pressure gradient, and

hence the shear layer position. To exam this a larger source could be used in the future

work to demonstrate that the shear layer is indeed linked to the pressure gradient region

and thus to the source diameter.

6.3.5 Studying the relationship between the light emission intensity from the plasma

and plasma parameters

Fast-framing imaging is a promising technique to study the plasma turbulence.

It has been utilized broadly in studying the basic physics of shear flow. A critical issue

of this technique is to understand the relationship between the measuring emission light

intensity from plasma itself or neutral beam injected into the plasma and the plasma pa-

rameters, such as plasma density and temperature. It has been considered in previous
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work that the light emission intensity I is proportional to nTα[49] with α ∼ 3/4 and

in measurements in DIIID that
ñ

n
= C(

Ĩ

I
), where Ĩ is the fluctuation of light emission

intensity and ñ is plasma density fluctuation. C is a proportional factor depending on

the plasma density, temperature, and beam energy. For typical DIIID plasma parameter,

C ∼ 2 − 3[87]. In our linear machine CSDX, however, this relationship has not been

studied in details and quantified. It is currently performed underway by others in our

research group.

6.3.6 Increase resolution of B field strength from 600G to 700G

In the investigation of the scaling properties of the shear flow we have demon-

strated that the shear flow is getting stronger when the magnetic field is increased close

to or above 700G. No shear flow is observed when the magnetic field is as low as 600G.

It would be very interesting to increase the resolution of B field strength from 600G to

700G to clarify the detailed transition from no shear flow to the onset of shear flow.

6.3.7 2D turbulence structure evolution from probe measurements

In the present work fast-framing imaging has been used to provide important in-

formation of the turbulent structure formation and evolution. However, due to the uncer-

tainty information of the relationship between the light emission intensity and the plasma

parameters (plasma density and temperature), it would be useful to study the 2D turbu-

lence structure evolution from probe measurements. This would require a 2D probe array

to be made. This probe array should cover an area of about several cm2 since the average
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radial and azimuthal turbulence correlation length are a few cm. A series of conditional

averaging and 2D cross-conditional averaging could then be applied to study the turbu-

lent structure evolution. Wave number spectrum could also be obtained directly from 2D

probe array instead of previous two-point technique. However, it should be noted that

larger probe array might perturb more to the plasma. Therefore it would be useful to use

both 2D probe array and fast-framing imaging technique and compare their results.

6.3.8 Dynamical bi-spectral analysis of the energy transfer

In the present work we have shown in the configuration space that the time-varying

shear flow is sustained by the turbulent Reynolds stress against collisional and viscous

damping. This would also be manifested by the three-wave coupling processes from bi-

spectral analysis in the frequency domain. Since the shear flow and turbulence are in a

self-organization dynamical system with ∼250-300Hz frequency, the bi-spectral should

in principal also indicate this time varying property. To do this a very long time data

would be needed and short time windows would be applied.
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