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Abstract
For binary experimental data, we discuss randomization-
based inferential procedures that do not need to invoke
any modeling assumptions. In addition to the classical
method of moments, we also introduce model-free likeli-
hood and Bayesian methods based solely on the physical
randomization without any hypothetical super population
assumptions about the potential outcomes. These estima-
tors have some properties superior to moment-based ones
such as only giving estimates in regions of feasible support.
Due to the lack of identification of the causal model, we also
propose a sensitivity analysis approach that allows for the
characterization of the impact of the association between
the potential outcomes on statistical inference.
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1 INTRODUCTION

In randomized experiments, the outcome of interest is often binary, in which case the resulting
data can be summarized by a 2 × 2 table. In this paper, we give an in-depth discussion of esti-
mating causal effects for those 2 × 2 tables generated by completely randomized experiments.
Under the potential outcomes framework (Neyman, 1923; Rubin, 1974), each unit has pretreat-
ment potential outcomes corresponding to the potential treatments that unit could receive. Finite
population causal inference (e.g., Imbens & Rubin, 2015; Li & Ding, 2017; Rosenbaum, 2002)
focuses on the experimental units at hand and treats all potential outcomes as fixed with the
randomization of treatment assignment as the only source of randomness. This view allows for
weak modeling assumptions and inferential methods that are valid due to the randomization
mechanism itself rather than any stated belief in a data generating process. Furthermore,
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by focusing on the finite population, the precision of the usual difference-in-means estimator is
greater than that of comparable infinite population models. Unfortunately, the uncertainty of the
estimator depends on the association between the potential outcomes, an unidentifiable quantity
that can complicate finite population inference (Imbens & Rubin, 2015; Neyman, 1923).

Binary outcomes, however, lend enough structure to the problem that these issues can be
somewhat circumvented. Because of the discrete nature of the problem, there are only a small
number of possible types of units that could exist, which allows for two things. First, we can
achieve sharper bounds on the variance of the moment estimator. Second, we can actually imple-
ment model-free likelihood and Bayesian procedures for treatment effects. These estimators have
superior performance to the usual moment estimators because they exploit the structure of the
problem in order to limit possible estimates to a restricted parameter space. In particular, the
observed data assign zero likelihood outside a well-defined region of possibilities, and so, pro-
cedures based on this likelihood will not return any of these impossible estimates. Moment
estimators, on the other hand, could return such values.

It is well known that the association between the potential outcomes plays an important role
in estimating the average causal effect. Different approaches have been used to address this dif-
ficulty. Some restrict attention to testing the sharp null hypothesis of zero causal effect for all
experimental units (Copas, 1973; Fisher, 1935). Some enumerate all possible combinations of the
potential outcomes in order to construct exact confidence intervals (Li & Ding, 2016; Rigdon &
Hudgens, 2015b). Some derive bounds on the variances of the estimators over all possible ran-
domizations using the marginal distributions (Aronow, Green, & Lee, 2014; Ding & Dasgupta,
2016; Fogarty, Mikkelsen, Gaieski, & Small, 2016; Robins, 1988). Some assume nonnegative indi-
vidual causal effects, allowing causal effects to be estimated directly (Rosenbaum, 2001) or use
structures such as constant shifts (Rosenbaum, 2002) or dilations to dictate all the individual
outcomes (Rosenbaum, 1999). Recent work on Bayesian inference imputes missing potential out-
comes based on their posterior predictive distributions, which requires modeling the potential
outcomes as binomial samples from a hypothetical infinite population (Ding & Dasgupta, 2016).

The methods we present in this paper are distinct from these. Extending Copas (1973),
we show that the randomization itself allows for obtaining a likelihood function and, conse-
quently, a Bayesian posterior distribution (under a prior distribution) without any outcome
modeling assumptions. To acknowledge the weak identifiability of the association between
potential outcomes, we advocate a sensitivity analysis strategy to show the dependences of the
repeated-sampling, likelihood, and Bayesian inferences on a sensitivity parameter. All proofs have
been relegated to the Appendix and supplementary material.

2 POTENTIAL OUTCOMES, CAUSAL ESTIMANDS, AND
OBSERVED DATA

Consider an experiment with N units, a binary treatment W, and a binary outcome Y. Under the
Stable Unit Treatment Value Assumption (Rubin, 1980), we define Yi(w) as the potential outcome
of unit i under treatment w, with w = 1 for treatment and w = 0 for control, respectively.
Therefore, the potential outcomes form an N × 2 matrix {(Yi(1),Yi(0))}N

i=1, which is sometimes
referred to as the “Science” (Rubin, 2005). With a binary outcome, there are only four types of
individuals possible, defined by the pair (Yi(1),Yi(0)) of potential outcomes. In particular, if we
imagine Y being a binary outcome of survival status, (Yi(1),Yi(0)) = (1, 1) would be those who
always survived, (Yi(1),Yi(0)) = (0, 0) would never survive regardless of treatment, and so forth.
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TABLE 1 The summarized Science Table
Y (1) = 1 Y (1) = 0 row sum

Y(0) = 1 N11 N01 S = N11 + N01
Y(0) = 0 N10 N00 N − S

TABLE 2 The observed Data
Y obs = 1 Y obs = 0 row sum

W = 1 nobs
11 nobs

10 N1

W = 0 nobs
01 nobs

00 N0

The treatment has a positive impact for those with (Yi(1),Yi(0)) = (1, 0) and a negative impact
for those with (Yi(1),Yi(0)) = (0, 1). Because there are only four types of units, the full N × 2
Science Table can be summarized by a 2 × 2 table formed by the cell counts Njk = #{i ∶ Yi(1) =
j,Yi(0) = k} for j and k = 0, 1 (see Table 1).

Causal effects are defined as comparisons between the potential outcomes. On the difference
scale, ! i = Yi(1) − Yi(0) is the individual-level causal effect for unit i. Define pw = ∑N

i=1Yi(w)∕N =
Ȳ (w) as the proportion of the potential outcome Yi(w) being 1. Then, the average causal effect is
defined as

! = 1
N

N∑
i=1

!i = p1 − p0 = N10 − N01
N .

We focus on !. It is conceptually straightforward to extend our discussion to other causal measures
(Ding & Dasgupta, 2016; Robins, 1988).

Consider a completely randomized experiment with N1 units receiving treatment and N0
control. The observed outcomes are deterministic functions of the treatment assignment and
potential outcomes, that is, Y obs

i = WiYi(1) + (1 − Wi)Yi(0). Because both the treatment assign-
ments and observed outcomes are binary, there are four observed types of the units classified
by (Wi,Y obs

i ), which gives a different 2 × 2 table formed by the cell counts nobs
w# = #{i∶Wi =

w,Y obs
i = #} for w = 0, 1 and y = 0, 1 (see Table 2). This Table is distinct from the unknown Sci-

ence Table 1. Importantly, the potential outcomes, the cell counts Njk's, and the causal estimand
! are all fixed. The observed cell counts nobs

w# 's, however, are random, but the randomness comes
solely from the physical randomization of the treatment assignment.

3 INFERENCE UNDER MONOTONICITY

We first discuss an important simplifying case where the potential outcomes satisfy monotonicity.

Assumption 1. (Monotonicity) Yi(1) ≥ Yi(0) for each unit i.

Monotonicity means that treatment is not harmful to any unit, which rules out the existence
of potentially harmed units with (Yi(1),Yi(0)) = (0, 1), making N01 = 0. The case with Yi(1) ≤
Yi(0) for all i is analogous. Monotonicity is not refutable based on the observed data as long as
the treatment is not harmful to the outcome on average. Monotonicity is a strong assumption: It
imposes a maximal correlation between the potential outcomes Y(1) and Y(0) and guarantees the
identifiability of all the cell counts Njk's, as described by Proposition 1.
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Proposition 1. Under monotonicity, N01 = 0, and we can identify (i.e., express parameters as
expectations of observed data) the Njk's by

N11 = E
(

N
N0

nobs
01

)
, N00 = E

(
N
N1

nobs
10

)
, N10 = E

(
N − N

N0
nobs

01 − N
N1

nobs
10

)
.

Proposition 1 immediately results in unbiased moment estimators for the Njk's made by
plugging in sample moments. In particular, N̂10 = N − (N∕N0)nobs

01 − (N∕N1)nobs
10 and

!̂ = N̂10
N = 1 −

nobs
01

N0
−

nobs
10

N1
=

nobs
11

N1
−

nobs
01

N0
≡ p̂1 − p̂0,

where p̂1 and p̂0 are the observed proportions of the outcomes being one under treatment and con-
trol, respectively. Monotonicity also allows for estimation of the correlation of potential outcomes,
giving the following extension of Neyman (1923).

Proposition 2. Suppose Assumption 1 holds. The randomization distribution of !̂ has mean !
and variance

var (!̂) = N
N − 1

{p1(1 − p1)
N1

+ p0(1 − p0)
N0

− !(1 − !)
N

}
. (1)

The variance can be estimated by plugging in

V̂ = N
N − 1

{ p̂1(1 − p̂1)
N1

+ p̂0(1 − p̂0)
N0

− !̂(1 − !̂)
N

}
. (2)

Furthermore, (!̂ − !)∕V̂ 1∕2 → ! (0, 1) in distribution.

Unlike the classic Neyman (1923) variance expression, all terms in expression (1) are identi-
fiable. Although a moment estimator with an explicit form such as this can be useful to illustrate
sources of information, it might not make full use of the information and can sometimes give esti-
mates outside of the parameter space. An alternative approach is to utilize likelihood and Bayesian
inferences for the parameters of interest, which restricts our attention to only those values that are
possible. Now, because {(Yi(1),Yi(0))}N

i=1 are fixed numbers, we cannot write down the likelihood
function based on the usual binomial models. We can, however, write it down according to an urn
model induced by the completely randomized experiment. In particular, view the finite popula-
tion as a fixed urn containing three types of balls corresponding to the three types of units defined
by (Y(1),Y(0)) = (1, 1), (1, 0), and (0, 0). We have N11 balls of type (1, 1), N10 balls of type (1, 0), and
N − N11 − N10 balls of type (0, 0). We can thus parameterize the population with only N11 and N10.
A completely randomized experiment is then equivalent to drawing N1 balls from this urn to form
the treatment arm and using the remaining N0 balls to form the control arm. This allows for writ-
ing down the likelihood based on the observed data as a multivariate hypergeometric distribution
as given in Theorem 1 below.

Theorem 1. Under monotonicity, the likelihood function of (N10,N11) is
(

N11

N11 − nobs
01

)(
N10

nobs
11 + nobs

01 − N11

)(
N − N10 − N11

nobs
10

)/(
N
N1

)
,

for any (N10,N11) in the region
{
(N10,N11) ∶ nobs

01 ≤ N11 ≤ nobs
11 + nobs

01 ≤ N10 + N11 ≤ N − nobs
10

}
. (3)

The likelihood is zero elsewhere.
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There are several curious aspects and consequences to this theorem, which we now discuss.
First, before obtaining data, the condition N10 + N11 + N00 = N restricts (N10,N11) to take
(N + 2)(N + 1)∕2 possible values, and ! can take values k∕N for any integer k ∈ [−N,N ]. After
observing the data, (N10,N11) can take only (nobs

11 + 1)(nobs
00 + 1) < (N + 2)(N + 1)∕2 possible values

due to (3), and there are, at most, nobs
11 + nobs

00 + 1 possible values for !, a fact noticed by Rigdon
and Hudgens (2015a) from a different perspective.

Second, there are no modeling assumptions on the outcomes. The likelihood is completely
driven by the physical randomization. This idea is not entirely new: Such an urn model was used
in Neyman's (1923) seminal causal inference paper for deriving the unbiased moment estimator
and confidence interval for !.

Third, Theorem 1 allows for a maximum likelihood estimate of !, obtained by maximiz-
ing the likelihood over all possible (N10,N11) values. This likelihood function can also play a
central role in model-free Bayesian inference. For example, if we put a uniform prior on the
(N + 2)(N + 1)∕2 feasible points of (N10,N11), the posterior distribution of (N10,N11) concentrates
only on the (nobs

11 + 1)(nobs
00 + 1) points within region (3) and is proportional to the likelihood. If

we have prior information other than the uniform distribution, we could also incorporate it into
our Bayesian inference. Based on the posterior distribution of (N10,N11), it is straightforward to
obtain the posterior distribution of !.

4 INFERENCE WITHOUT MONOTONICITY

We next relax the monotonicity assumption. Without monotonicity, the unknown parameters
in the Science Table, (N11,N10,N01,N00), are no longer identifiable by the observed data. This
introduces an additional complication from before, but the overall intuition is the same. With-
out identifiability of (N11,N10,N01,N00), the sampling variance of !̂ cannot be identified by the
observed data, the likelihood function will be flat over a region with multiple points, and Bayesian
inference will be strongly driven by the prior distribution. We can, however, weaken monotonic-
ity in such a way that preserves identifiability in a sensitivity analysis approach. This can also be
used to generate estimation regions rather than point estimates. Finally, this approach also allows
for continued use of the likelihood approach discussed above.

The key insight is that, for a known N01, all the cell counts of Njk's are identifiable, allowing us
to parameterize our urn model with (N10,N11) as before. We therefore choose N01 as the sensitivity
parameter, with N01 = 0 corresponding to monotonicity.

We first present some extensions of the previous propositions and then discuss how to use
them for this sensitivity analysis approach to variance estimation. We then extend the likelihood
and Bayesian inference procedures from before.

Proposition 3. When N01 is known, we can identify the Njk's by

N11 = E
(

N
N0

nobs
01 − N01

)
, N00 = E

(
N
N1

nobs
10 − N01

)
, N10 = E

(
N + N01 −

N
N0

nobs
01 − N

N1
nobs

10

)
.

The above derives from the marginal distributions of the potential outcomes, which imposes
weak restrictions on their association, captured by bounds on N01, given the data being binary.

Proposition 4. The number of potentially harmed units, N01, is bounded by

max(0,−N!) ≤ N01 ≤ min {Np0,N(1 − p1)} . (4)
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The bounds in (4) are the Frechét–Hoeffding bounds (cf. Nelsen, 2007) for N01 based on the
marginal distributions of the potential outcomes.

In many realistic cases, it seems plausible to assume a nonnegative correlation between the
potential outcomes.

Assumption 2. (Nonnegatively correlated potential outcomes) The potential outcomes are
uncorrelated, that is, {Yi(1)}N

i=1 and {Yi(0)}N
i=1 have nonnegative finite population covariance

S10 = 1
N − 1

N∑
i=1

{
Yi(1) − Ȳ (1)

}{
Yi(0) − Ȳ (0)

} ≥ 0.

It seems implausible that the potential outcomes {Yi(1),Yi(0)} for unit i are negatively corre-
lated because they are about the same aspect of the same unit. Under a superpopulation model,
Assumption 2 could be justified if the individual potential outcomes are driven by the same latent
factor in the same direction. For example, Assumption 2 holds if Yi(w) = fw(Ui, %iw), where Ui is
a variable representing unit i's characteristic, {f1(u, e), f0(u, e)} are two monotone functions in u,
and the %iw's are independent errors.

Proposition 5. Under Assumption 2, max(0,−N!) ≤ N01 ≤ Np0(1 − p1); if we further assume
a nonnegative average causal effect ! ≥ 0, then

0 ≤ N01 ≤ Np0(1 − p1). (5)

Without loss of generality, we assume that our data have !̂ > 0, and therefore, we either
assume monotonicity or conduct sensitivity analysis within the empirical range of (5).

Proposition 6. With a known N01, the variance of !̂ is

var(!̂) = N
N − 1

{p1(1 − p1)
N1

+ p0(1 − p0)
N0

− !(1 − !)
N − 2N01

N2

}
. (6)

The bounds of the above variance over the possible values of N01 as delineated by region (5) are

N
N − 1

{ N0
N p1(1 − p1)

N1
+

N1
N p0(1 − p0)

N0

}
≤ var(!̂)

≤ N
N − 1

{p1(1 − p1)
N1

+ p0(1 − p0)
N0

− !(1 − !)
N

}
.

In Proposition 6, the upper bound of var(!̂) corresponds to monotonicity with N01 = 0, and
the lower bound corresponds to uncorrelated potential outcomes with S10 = 0.

4.1 Variance estimation in a sensitivity analysis
Although ! depends only on the marginal distributions of the potential outcomes, the variance of
!̂ depends further on the correlation between the potential outcomes. Ding and Dasgupta (2016)
showed that (1) is an upper bound for the true sampling variance of !̂ without monotonicity.
However, this result does not show explicitly the impact of the correlation between the potential
outcomes on the variability of the estimator for !. Proposition 6 does. In particular, we can conduct
a sensitivity analysis by varying N01 within (5) to get a series of variance estimators according to
(6). If we believe that N01 is in a specific range, we can take the maximum and minimum of the
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variances as a range of possible uncertainty estimates. Generally, as N01 increases, the variance
goes down; the most conservative (largest) variance estimate corresponds to monotonicity.

To close this subsection, it is worth commenting on an exact interval for ! by inverting random-
ization tests for all Science Tables (Rigdon & Hudgens, 2015b). To achieve finite-sample exactness,
Rigdon and Hudgens' (2015b) confidence interval will often be wider than the Wald interval cor-
responding to the most conservative variance estimate under monotonicity. We do not claim to
replace Rigdon and Hudgens' (2015b) confidence interval with the sequence of variance estima-
tors obtained from (6), because our analysis is fundamentally asymptotic. Our focus is sensitivity
analysis, which can also be adapted into Rigdon and Hudgens' (2015b) strategy. In particular, we
can construct exact confidence intervals for ! by inverting randomization tests for fixed values of
the sensitivity parameter N01. Rigdon and Hudgens' (2015b) confidence interval is the union of
these confidence intervals under all possible values of N01.

4.2 Likelihood and Bayesian inferences
The discussion above allows for getting sharper estimates on the variance of the classic moment
estimators, as compared to the classic Neyman approach. We can also extend the likelihood
approach shown for monotonicity in a similar fashion to obtain estimators restricted to the sup-
port of the parameter space. For a fixed N01, the likelihood function, based on an urn model with
four types of balls, is given by the following theorem.

Theorem 2. Given a fixed N01, the likelihood function for (N10,N11) is
∑
x∈ℱ

(N11
x

)(
N10

nobs
11 − x

)(
N01

N01 + N11 − nobs
01 − x

)(
N − N11 − N10 − N01

nobs
10 + nobs

01 + x − N01 − N11

)/(
N
N1

)
, (7)

where the feasible region of the above summation is ℱ = {x ∶ L ≤ x ≤ U} with

L = max
(
0,nobs

11 − N10,N11 − nobs
01 ,N01 + N11 − nobs

10 − nobs
01

)
,

U = min
(

N11,nobs
11 ,N01 + N11 − nobs

01 ,N − N10 − nobs
10 − nobs

01
)
.

Note that the x in the sum in (7) represents the number of “always survivors” randomized
to the treatment group; the formula marginalizes over this to get the overall likelihood. When
N01 = 0, the feasible region of x collapses to the point x = N11−nobs

01 , and the likelihood function in
Theorem 2 reduces to the one in Theorem 1. The proof of Theorem 2 in the Appendix shows that,
for fixed 0 ≤ N01 ≤ Np̂0(1 − p̂1), the likelihood is zero outside the following region of (N10,N11):

max
(
0,nobs

01 − N01
)≤ N11 ≤ min

(
nobs

01 + nobs
11 ,N − nobs

00 − N01
)
,

0 ≤ N10 ≤ N − nobs
01 − nobs

10 ,
max

(
nobs

11 + nobs
01 − N01,nobs

11
)≤ N10 + N11 ≤ N − nobs

10 .
(8)

We can then do a sensitivity analysis to see how the likelihood function and the maximum like-
lihood estimator change as we increase N01. These curves can also be calculated for any estimand
of interest as the population is fully specified by (N11,N10), given N01. For Bayesian inference, if
we impose a uniform prior on (N10,N11), the posterior distribution of (N10,N11) is proportional to
(7). This immediately gives posterior distributions of !.

Copas (1973) treated (7) as a likelihood function for (N11,N10,N01) and observed its patholog-
ical behaviors due to the unidentifiability issue. An alternative Bayesian approach might impose
a prior distribution on the sensitivity parameter N01. Regardless of the identifiability issue, the
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posterior distributions of the parameters of interest will always be proper because of finite support.
Watson (2014) gave a detailed discussion on Bayesian inference by imposing prior distributions on
(N11,N10,N01) and making connections to posterior predictive checks (Rubin, 1984, 1998). How-
ever, inference might then be driven by the prior distribution of N01, an unidentifiable parameter
from the data. Therefore, we recommend the sensitivity analysis approach in both likelihood and
Bayesian inferences to explicitly show the impact of the correlation between potential outcomes.

5 THE ATTRIBUTABLE EFFECT AND THE TREATMENT
EFFECT ON THE TREATED

In the previous sections, we focused on the average treatment effect, which is a fixed parameter
depending only on the Science Table. In practice, other causal quantities may be of scientific inter-
est. For instance, Rosenbaum (2001) proposed to estimate the effect attributable to the treatment,
that is,

A =
N∑

i=1
Wi!i,

which is closely related to the average treatment effect on the treated units !W = ∑N
i=1 Wi!i∕N1 =

A∕N1. Because the difference between A and !W is the fixed scaling factor N1, we discuss only
the inference of the attributable effect A. Both causal quantities A and !W depend on the treat-
ment assignment as well as the Science Table, and thus, they are themselves random variables.
Therefore, as Rosenbaum (2001) suggested, we need to extend the traditional concepts of point
and interval estimation to point and interval prediction of random variables in frequentists' infer-
ence. Rosenbaum (2001) proposed a Hodges–Lehmann-type prediction interval for A by inverting
a sequence of randomization tests. We extend Rosenbaum's (2001) discussion in the Appendix
and focus on Neyman-type and Bayesian inferences for A in the main text below.

5.1 Neyman-type repeated-sampling evaluation
A natural estimator for A is N1!̂. The following proposition shows that N1!̂ is an unbiased predic-
tor of A, and the mean squared error for this prediction depends only on the marginal distribution
of Y(0).

Proposition 7. Over all possible randomizations, E(A − N1!̂) = 0 and

var(A − N1!̂) =
NN1
N0

S2
0 = N2N1

N0(N − 1)p0(1 − p0), (9)

where S2
0 = (N − 1)−1 ∑N

i=1 {Yi(0) − Ȳ (0)}2 = Np0(1 − p0)∕(N − 1) is the finite population
variance of the control potential outcome. Therefore, A can be unbiasedly predicted by N1!̂ with
estimated mean squared error N2N1p̂0(1 − p̂0)∕{N0(N − 1)}.

Based on Proposition 7 and a normal approximation, we can use N1!̂ ± Φ−1(1 − &∕2) ×√
N2N1 p̂0(1 − p̂0)∕ {N0(N − 1)} as a 1−& asymptotic prediction interval of A, where Φ−1(1−&∕2)

is the upper 1 − &∕2 quantile of the standard normal distribution. Proposition 7 does not rely on
monotonicity. Moreover, the first identity in (9) also holds for general outcomes. Interestingly, the
variance formula (9) does not depend on the correlation between the potential outcomes, which
was hinted at by Robins (1988) and Hansen and Bowers (2009). In particular, by allowing the
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target of estimation to vary in a randomized experiment, one can seemingly avoid the uniden-
tifiable issue, but the resulting analysis is then conditional, in some sense, on the realized
assignment.

5.2 Bayesian inference
As shown in (A1) in the proof of Theorem 2 in the Appendix, the attributable effect can be
written as

A = nobs
11 + nobs

01 − N01 − N11 = nobs
11 + nobs

01 − S, (10)

with S = N01 + N11 defined in Table 1. Note that S is a parameter depending on the Science
Table 1. Formula (10) shows a linear relationship between A and S, which makes the statistical
inference of A simpler via the statistical inference of S. Based on (10), the posterior distribution of
S = N01 + N11 determines the posterior distribution of A. Therefore, with fixed N01 (zero under
monotonicity and positive for a sensitivity analysis), obtaining the posterior distribution of A is
straightforward once we obtain the posterior distribution of N11.

6 ILLUSTRATION

We reanalyze the data in Rosenbaum (2002, p. 191) concerning death in the London underground.
In the London underground, some train stations have a drainage pit below the tracks. When
an “incident” happens (i.e., a passenger falls, jumps, or is pushed from the station platform),
such a pit is a place to escape contact with the wheels of the train. Researchers are interested
in the mortality in stations with and without such a pit. In stations without a pit, only 5 lived
out of 21 recorded “incidents.” For “incidents” in stations with a pit, 18 out of 32 lived. There-
fore, the observed data can be summarized by (nobs

11 ,nobs
10 ,nobs

01 ,nobs
00 ) = (18, 14, 5, 16), viewing

“pit” versus “no pit” as treatment versus control, and life as the outcome. For illustration, we
view this data set as from a hypothetical completely randomized experiment, ignoring any issues
of confounding.

Under monotonicity, the moment-based estimator is !̂ = 0.324, that is, we estimate that the
chance of survival is about 32 percentage points higher for stations with a pit. Using the variance
estimator in (2), we end up with a confidence interval of [0.106, 0.543], which is 13% narrower
than Neyman's (1923) confidence interval of [0.072, 0.577] (see the first row of Table 3).

We then conduct a sensitivity analysis on monotonicity by varying the value of N01, where
N01 = 0 corresponds to monotonicity, N01 = 5 corresponds to uncorrelated potential outcomes,
and N01 = 2 is a value between these two extreme cases. Rows 2 and 3 of Table 3 show esti-
mates and associated confidence intervals for these two different values of N01. They are smaller.
If we believe some would be harmed, we are then more certain of the average causal effect.
Our improved variance estimator (2) and the Bayesian approach (with a uniform prior and thus

TABLE 3 Moment and Bayes estimators with (nobs
11 ,nobs

10 ,nobs
01 ,nobs

00 ) = (18, 14, 5, 16).
Columns 2–4 show the point estimator, the interval estimator, and its length

N01 Neyman's variance Improved variance Bayes
0 0.324 [0.072, 0.577] 0.505 0.324 [0.106, 0.543] 0.437 0.301 [0.075, 0.509] 0.434
2 same as above 0.324 [0.119, 0.530] 0.411 0.301 [0.075, 0.490] 0.415
5 same as above 0.324 [0.141, 0.508] 0.367 0.301 [0.094, 0.472] 0.378
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(a)

(b)

FIGURE 1 Example with observed data (nobs
11 ,nobs

10 ,nobs
01 ,nobs

00 ) = (18, 14, 5, 16). (a) Sensitivity analysis for the
posterior distribution of !. Three posterior distributions of ! correspond to three values of the sensitivity
parameter N01. (b) Attributable effect under monotonicity. The p values are standardized to have summation 1, in
order to compare with the posterior distribution

posterior proportional to the likelihood (7)) both provide improved inference. The moment
estimator is close to the Bayesian posterior modes, but there is slight shift of 2 percentage points.

Figure 1a shows the posterior distributions of ! with N01 = 0, 2 and 5. The posterior dis-
tribution has a higher peak and lighter tails with larger N01. This conforms to the frequentists'
property that the variance of !̂ becomes larger when N01 gets smaller, with monotonicity being
the extreme case.

Regarding the attributable effect under monotonicity, the Hodges–Lehmann-type estimator
is 9, 10, or 11, and the 95% interval estimate is [2, 16], based on Rosenbaum (2001). The posterior
mode for A is 10, and the 95% highest probability interval for A is [1, 16]. Figure 1b compares
the posterior probabilities and standardized p values for testing A = a, showing that they have
similar shapes. The moment estimator for A is 10.38 with confidence interval [1.56, 19.20]. The



210 Scandinavian Journal of Statistics DING AND MIRATRIX

moment estimator is outside of the range of the parameter because A must be an integer. Worse,
the associated interval estimate is wider, with an upper limit larger than nobs

11 = 18, the maximum
possible value of A under monotonicity due to A = nobs

11 + nobs
01 − N11 ≤ nobs

11 .

7 CONCLUSION

For binary experimental data, we proposed several model-free inferential procedures for the aver-
age treatment effect and the attributable effect. We believe demonstrating that likelihood and
Bayesian estimation without modeling is possible is a worthwhile proof of concept for an alter-
nate form of thinking about estimation when the assignment mechanism is known. For further
connections and comparisons, see Greenland (1991), Ding (2017), Chiba (2015), and Ding and
Dasgupta (2016).

Some researchers have proposed randomization-based procedures for causal effects with non-
compliance (Imbens & Rosenbaum, 2005; Keele, Small, & Grieve, 2017; Rubin, 1998), with general
intermediate variables (Nolen & Hudgens, 2011), and with interference (Rigdon & Hudgens,
2015a; Rosenbaum, 2012). It is our ongoing work to extend the current approaches to these
settings.

ACKNOWLEDGEMENTS
The authors thank two reviewers and Dr. Avi Feller at Berkeley for helpful comments. Mr. Yuanzhi
Li from the University of Michigan carefully read the paper, which greatly improved the quality
of the paper. Miratrix and Ding were partially supported by the Institute for Education Science
(IES Grant R305D150040), and Ding was partially supported by the National Science Foundation
(NSF Grant 1713152).

ORCID

Peng Ding http://orcid.org/0000-0002-2704-2353

REFERENCES
Agresti, A. (2013). Categorical data analysis (3rd ed.). Hoboken, NJ: John Wiley & Sons, Inc.
Aronow, P. M., Green, D. P., & Lee, D. K. (2014). Sharp bounds on the variance in randomized experiments. The

Annals of Statistics, 42, 850–871.
Chiba, Y. (2015). Exact tests for the weak causal null hypothesis on a binary out come in randomized trials. Journal

of Biometrics & Biostatistics, 6, 244. https://doi.org/10.4172/21556180.1000244
Copas, J. (1973). Randomization models for the matched and unmatched 2× 2 tables. Biometrika, 60, 467–476.
Ding, P. (2017). A paradox from randomization-based causal inference. Statistical Science, 32, 331–345.
Ding, P., & Dasgupta, T. (2016). A potential tale of two-by-two tables from completely randomized experiments.

Journal of the American Statistical Association, 111, 157–168.
Fisher, R. A. (1935). The design of experiments (1st ed.). Edinburgh, UK: Oliver & Boyd.
Fogarty, C. B., Mikkelsen, M. E., Gaieski, D. F., & Small, D. S. (2016). Discrete optimization for interpretable study

populations and randomization inference in an observational study of severe sepsis mortality. Journal of the
American Statistical Association, 111, 447–458.

Greenland, S. (1991). On the logical justification of conditional tests for two-by-two contingency tables. The
American Statistician, 45, 248–251.

http://orcid.org/0000-0002-2704-2353
http://orcid.org/0000-0002-2704-2353
https://doi.org/10.4172/21556180.1000244


DING AND MIRATRIX Scandinavian Journal of Statistics 211

Hansen, B. B., & Bowers, J. (2009). Attributing effects to a cluster-randomized get-out-the-vote campaign. Journal
of the American Statistical Association, 104, 873–885.

Hodges, J. J. L., & Lehmann, E. L. (1963). Estimates of location based on rank tests. The Annals of Mathematical
Statistics, 34, 598–611.

Imbens, G. W., & Rosenbaum, P. R. (2005). Robust, accurate confidence intervals with a weak instrument: Quarter
of birth and education. Journal of the Royal Statistical Society: Series A (Statistics in Society), 168, 109–126.

Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences: An introduction.
New York, NY: Cambridge University Press.

Keele, L., Small, D., & Grieve, R. (2017). Randomization-based instrumental variables methods for binary
outcomes with an application to the ′IMPROVE′ trial. Journal of the Royal Statistical Society: Series A (Statistics
in Society), 180, 569–586.

Li, X., & Ding, P. (2016). Exact confidence intervals for the average causal effect on a binary outcome. Statistics in
Medicine, 35, 957–960.

Li, X., & Ding, P. (2017). General forms of finite population central limit theorems with applications to causal
inference. Journal of the American Statistical Association, 112, 1759–1769.

Nelsen, R. B. (2007). An introduction to copulas (2nd ed.). New York, NY: Springer.
Neyman, J. (1923). On the application of probability theory to agricultural experiments. Essay on principles.

Section 9. Statistical Science, 5, 465–472.
Nolen, T. L., & Hudgens, M. G. (2011). Randomization-based inference within principal strata. Journal of the

American Statistical Association, 106, 581–593.
Rigdon, J., & Hudgens, M. G. (2015a). Exact confidence intervals in the presence of interference. Statistics and

Probability Letters, 105, 130–135.
Rigdon, J., & Hudgens, M. G. (2015b). Randomization inference for treatment effects on a binary outcome. Statistics

in Medicine, 34, 924–935.
Robins, J. M. (1988). Confidence intervals for causal parameters. Statistics in Medicine, 7, 773–785.
Rosenbaum, P. R. (1999). Reduced sensitivity to hidden bias at upper quantiles in observational studies with dilated

treatment effects. Biometrics, 55, 560–564.
Rosenbaum, P. R. (2001). Effects attributable to treatment: Inference in experiments and observational studies with

a discrete pivot. Biometrika, 88, 219–231.
Rosenbaum, P. R. (2002). Observational studies (2nd ed.). New York, NY: Springer.
Rosenbaum, P. R. (2012). Interference between units in randomized experiments. Journal of the American

Statistical Association, 102, 191–200.
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of

Educational Psychology, 66, 688–701.
Rubin, D. B. (1980). Comment on “Randomization analysis of experimental data: The Fisher randomization test”.

Journal of the American Statistical Association, 75, 591–593.
Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. The

Annals of Statistics, 12, 1151–1172.
Rubin, D. B. (1998). More powerful randomization-based p-values in double-blind trials with non-compliance.

Statistics in Medicine, 17, 371–385.
Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, and decisions. Journal of the

American Statistical Association, 100, 322–331.
Wang, W. (2015). Exact optimal confidence intervals for hypergeometric parameters. Journal of the American

Statistical Association, 110, 1491–1499.
Watson, D. A. (2014). Complications in causal inference: Incorporating information observed after treatment is

assigned (PhD thesis). Harvard University, Cambridge, MA.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at
the end of the article.

https://doi.org/10.1111/sjos.12343


212 Scandinavian Journal of Statistics DING AND MIRATRIX

How to cite this article: Ding P, Miratrix LW. Model-free causal inference of binary
experimental data. Scand J Statist. 2019;46:200–214. https://doi.org/10.1111/sjos.12343

APPENDIX

Proofs of the theorems
The proofs of the propositions are relatively straightforward, and we relegate them to the
supplementary material. Here, we give the proofs for the theorems.

Proof of Theorem 1. Under monotonicity, the units with (Wi,Y obs
i ) = (1, 1) are (1, 1) or (1, 0)

units, the units with (Wi,Y obs
i ) = (1, 0) are all (0, 0) units, the units with (Wi,Y obs

i ) = (0, 1) are
all (1, 1) units, and the units with (Wi,Y obs

i ) = (0, 0) are (0, 0) or (1, 0) units. Define Nbc,w as the
number of (b, c) units within observed treatment group w (b, c,w = 0, 1). Then, the observed
data allow us to obtain

N11,1 = N11 − nobs
01 , N11,0 = nobs

01 ,
N00,1 = nobs

10 , N00,0 = N00 − nobs
10 ,

N10,1 = nobs
11 − N11,1 = nobs

11 + nobs
01 − N11, N10,0 = N10 − N10,1 = N10 + N11 − nobs

11 − nobs
01 .

The above shows that we know the number of each type of unit in both treatment arms, based
on the observed counts and the totals Nbc. Because all the counts are nonnegative integers, we
have the following restriction on (N10,N11):

nobs
01 ≤ N11 ≤ nobs

11 + nobs
01 ≤ N10 + N11 ≤ N − nobs

10 .

We can count that there are (nobs
11 +1)(nobs

00 +1) possible values for (N10,N11) and (nobs
11 +nobs

00 +1)
possible values for !.

The completely randomized experiment corresponds to an urn model. We have an urn
with N11 (1, 1) balls, N10 (1, 0) balls, and N00 (0, 0) balls. The experiment is that we randomly
draw N1 balls without replacement to form the treatment arm and use the remaining balls to
form the control arm. We then observe the outcomes. The above restrictions allow us to deter-
mine, based on observed data, the count vector for the three types of balls (N11,1,N10,1,N00,1)
that we have in the treatment arm, and similarly for control. Therefore, the probability of
obtaining (N11,1,N10,1,N00,1) is a multivariate hypergeometric distribution, given the values of
N11 and N10. Express this in terms of the observed data to obtain
(

N11
N11,1

)(
N10

N10,1

)(
N00

N00,1

)/(
N
N1

)
=
(

N11

N11 − nobs
01

)(
N10

nobs
11 + nobs

01 − N11

)(
N − N10 − N11

nobs
10

)/(
N
N1

)
.

This is the likelihood, a function of N11 and N10, our parameters.

Proof of Theorem 2. Without monotonicity, the observed data classified by (Wi,Y obs
i ) are mix-

tures: The observed group (Wi,Y obs
i ) = (1, 1) contains (1, 1) and (1, 0) units, the observed

group (Wi,Y obs
i ) = (1, 0) contains (0, 1) and (0, 0) units, the observed group (Wi,Y obs

i ) = (0, 1)

https://doi.org/10.1111/sjos.12343
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contains (1, 1) and (0, 1) units, and the observed group (Wi,Y obs
i ) = (0, 0) contains (1, 0) and

(0, 0) units. Assume that N11,1 = x, we have

N11,1 = x, N11,0 = N11 − x,
N10,1 = nobs

11 − x, N10,0 = N10 + x − nobs
11 ,

N01,1 = N01 + N11 − nobs
01 − x, N01,0 = nobs

01 + x − N11,
N00,1 = nobs

10 + nobs
01 + x − N01 − N11, N00,0 = N − N10 − x − nobs

10 − nobs
01 .

As a by-product, the attributable effect is

A = N10,1 − N01,1 = nobs
11 + nobs

01 − N01 − N11. (A1)

The above counts must all be nonnegative, implying the following inequality on x:
max

(
0,nobs

11 − N10,N11 − nobs
01 ,N01 + N11 − nobs

10 − nobs
01

)≤ x
≤ min

(
N11,nobs

11 ,N01 + N11 − nobs
01 ,N − N10 − nobs

10 − nobs
01

)
.

(A2)

When N01 = 0, the inequality collapses to x = N11 − nobs
01 , which is coherent with Theorem

1. The above inequality (A2) also imposes the following restrictions on (N10,N11) for a given
value of N01 and the observed data:

0 ≤ N11, 0 ≤ nobs
11 ,

0 ≤ N01 + N11 − nobs
01 , 0 ≤ N − N10 − nobs

10 − nobs
01 ,

nobs
11 − N10 ≤ N11, nobs

11 − N10 ≤ nobs
11 ,

nobs
11 − N10 ≤ N01 + N11 − nobs

01 , nobs
11 − N10 ≤ N − N10 − nobs

10 − nobs
01 ,

N11 − nobs
01 ≤ N11, N11 − nobs

01 ≤ nobs
11 ,

N11 − nobs
01 ≤ N01 + N11 − nobs

01 , N11 − nobs
01 ≤ N − N10 − nobs

10 − nobs
01 ,

N01 + N11 − nobs
10 − nobs

01 ≤ N11, N01 + N11 − nobs
10 − nobs

01 ≤ nobs
11 ,

N01 + N11 − nobs
10 − nobs

01 ≤ N01 + N11 − nobs
01 , N01 + N11 − nobs

10 − nobs
01 ≤ N − N10 − nobs

10 − nobs
01 .

These inequalities can be simplied to be (8) in the main text. The inequality for N01 is N01 ≤
nobs

10 + nobs
01 , redundant over the sensitivity analysis region N01 ≤ Np̂0(1 − p̂1), because nobs

10 +
nobs

01 ≥ Np̂0(1 − p̂1).

Additional comments on exact inference for the attributable effect
Previously, Rigdon and Hudgens (2015b) and Li and Ding (2016) discussed the exact inference
for !, and Rosenbaum (2001) discussed the exact inference for A under monotonicity. Here, we
extend Rosenbaum (2001) without assuming monotonicity.

Recall that A = nobs
11 + nobs

01 − N01 − N11 = nobs
11 + nobs

01 − S in (10) and (A1). If we had a point
estimator Ŝ for S, then we would have a point predictor Â = nobs

11 + nobs
01 − Ŝ for A. Furthermore,

if we had an interval estimator [Ŝl, Ŝu] for S, then we would have an interval predictor [Âl, Âu] for
A, where Âl = nobs

11 +nobs
01 − Ŝu and Âu = nobs

11 +nobs
01 − Ŝl. We can thus separate out and capture the

randomness in our target estimand with observed data, reducing the statistical uncertainty to a
classic parameter estimation problem.

Randomization induces a hypergeometric distribution nobs
01 ∼ HS, where HS has probability

mass function P(HS = h) =
(

S
h

)(
N−S
N0−h

)
∕
(

N
N0

)
for max(0, S − N1) ≤ h ≤ min(S,N0). This hyper-

geometric distribution depends on the unknown parameter S, and we can thus use the number
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of positive outcomes under control, nobs
01 , as our observed statistic for conducting inference on S.

Fortunately, inference on S based on the hypergeometric nobs
01 is a classical statistical problem. For

example, we can conduct a series of tests H0s ∶ S = s and calculate the p value for each fixed s by
measuring the extremeness of nobs

01 given S. A choice of the two-sided p value is

p(s) =
∑

h∶P(Hs=h)≤P(Hs=nobs
01 )

P(Hs = h), (A3)

that is, the sum of all the probability masses that are smaller than or equal to the probability mass
of the observed value of the hypergeometric random variable. This effectively orders the possible
values of Hs, given s, by their likelihood, and the sum in (A3) captures the total probability mass
in the tails given this ordering. The Hodges–Lehmann-type point estimator for S corresponds to
the s values that attain the maximum p value (Hodges & Lehmann, 1963; Rosenbaum, 2002); the
point estimator may not be unique due to discreteness. The 1 − & interval estimator contains all
the s values such that p(s) ≥ &.

The choice of the two-sided p value in (A3) leads to the same procedure as in Rosenbaum
(2001) and Rigdon and Hudgens (2015b). We note, however, that the classical literature on Fisher's
exact test also proposed other choices of the two-sided p values based on a hypergeometric random
variable (cf. Agresti, 2013, p. 92). Moreover, we could alternatively directly construct confidence
intervals for S based on the hypergeometric nobs

01 without inverting tests. Please see the work of
Wang (2015) for classical methods and recent developments in constructing confidence intervals
for hypergeometric parameters. Overall, the relationship (10) allows for constructing different
point and interval estimators for A based on different approaches for S, of which the previous
approaches in Rosenbaum (2001) and Rigdon and Hudgens (2015b) are special cases. Further-
more, to make exact inference of the attributable effect, Rosenbaum (2001) invoked monotonicity,
but our discussion above does not. The inference with or without monotonicity is the same.
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These proofs of the propositions rely on the following lemma:

Lemma 1. Assume (c1, . . . ,cN) are constants with c̄ = ∑N
i=1 ci/N and S2

c = ∑N
i=1(ci− c̄)2/(N−1). Let

(W1, . . . ,WN) be the treatment indicators of a completely randomized experiment. We have that

E

(
N

∑
i=1

Wici

)
= N1c̄, var

(
N

∑
i=1

Wici

)
=

N1N0

N
S2

c .

See classical survey sampling textbooks (e.g., Cochran, 1977) for the proof.

Proof of Proposition 1. Verify that

E(nobs
01 ) = E

{
N

∑
i=1

(1−Wi)Yi(0)

}
=

N0

N
N11, E(nobs

10 ) = E

[
N

∑
i=1

Wi{1−Yi(1)}
]
=

N1

N
N00.

The conclusion follows.

Proof of Proposition 2. Following Neyman (1923) (presented using modern notation in Imbens &

Rubin (2015)), τ̂ is unbiased for τ with variance

var(τ̂) = S2
1

N1
+

S2
0

N0
− S2

τ
N
, (1)

where

S2
1 =

1
N −1

N

∑
i=1

{Yi(1)− p1}2 =
1

N −1
(N p1 −N p2

1) =
N

N −1
p1(1− p1),

S2
0 =

1
N −1

N

∑
i=1

{Yi(0)− p0}2 =
1

N −1
(N p0 −N p2

0) =
N

N −1
p0(1− p0),

S2
τ =

1
N −1

N

∑
i=1

(τi − τ)2 =
1

N −1

(
N10 −

N2
10

N

)
=

N
N −1

τ(1− τ)
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are the finite population variance of Y (1),Y (0), and τ . For estimating the variance, note that the

variance term S2
τ is identifiable because N01 = 0 under monotonicity, and the conclusion follows.

The consistency and asymptotic normality of τ̂ follows from the finite population central limit

theorem (Li & Ding, 2017). And the variance estimator can be obtained by a simple plug-in.

Proof of Proposition 3. From Lemma 1, we have E(p̂1) = p1 and E(p̂0) = p0. Then

E
(

N
N0

nobs
01 −N01

)
= E (N p̂0 −N01) = N p0 −N01 = (N01 +N11)−N01 = N11,

E
(

N
N1

nobs
10 −N01

)
= E{N(1− p̂1)−N01}= N(1− p1)−N01 = (N01 +N00)−N01 = N00,

E
(

N +N01 −
N
N0

nobs
01 − N

N1
nobs

10

)
= N +N01 −N p0 −N(1− p1) = N10.

Proof of Proposition 4. As a byproduct of the derivations in the proof of Proposition 3, we have

N p0 −N01 ≥ 0, N(1− p1)−N01 ≥ 0, N +N01 −N p0 −N(1− p1)≥ 0,

which further implies max(0,−Nτ)≤ N01 ≤ min{N p0,N(1− p1)}.

Proof of Proposition 5. Using simple algebra, we can verify that S10 is proportional to N11N00 −

N10N01 up to a positive constant. We also have that N00 = N(1− p1)−N01, N11 = N p0 −N01, and

N10 = N +N01 −N(1− p1)−N p0, giving

0 ≤ N11N00 −N10N01 = (N p0 −N01){N(1− p1)−N01}−{N +N01 −N(1− p1)−N p0}N01

= N2 p0(1− p1)−NN01,

or, equivalently, N01 ≤ N p0(1− p1).

Proof of Proposition 6. According to the variance formula of τ̂ in (1), we need to calculate S2
τ/N with

a known N01. We have

S2
τ

N
=

1
(N −1)N

(
N

∑
i=1

τ2
i −Nτ2

)
=

1
N −1

{
N10 +N01

N
−
(

N10 −N01

N

)2
}

=
1

N −1

(
τ − τ2 +

2N01

N

)
,

and its bounds follows directly from 0 ≤ N01 ≤ N p0(1− p1).

2



Proof of Proposition 7. We have E(A) = N1τ = E(N1τ̂), and

var(A−N1τ̂) = var

[
N

∑
i=1

Wi{Yi(1)−Yi(0)}−
N

∑
i=1

WiYi(1)+
N1

N0

N

∑
i=1

(1−Wi)Yi(0)

]

= var

[
N

∑
i=1

Wi

{
Yi(1)−Yi(0)−Yi(1)−

N1

N0
Yi(0)

}]

= var

{
N

∑
i=1

WiYi(0) ·
N
N0

}
=

N2

N2
0
· N1N0

N(N −1)
·

N

∑
i=1

{Yi(0)− Ȳ (0)}2

=
NN1

N0
S2

0 =
N2N1

N0(N −1)
p0(1− p0),

where the penultimate line of the proof is due to Lemma 1.
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