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ORIGINAL ARTICLE

The effect of neighborhood size on effective population size
in theory and in practice

L Nunney

The distinction between the effective size of a population (Ne) and the effective size of its neighborhoods (Nn) has sometimes
become blurred. Ne reflects the effect of random sampling on the genetic composition of a population of size N, whereas Nn is
a measure of within-population spatial genetic structure and depends strongly on the dispersal characteristics of a species.
Although Nn is independent of Ne, the reverse is not true. Using simulations of a population of annual plants, it was found that
the effect of Nn on Ne was well approximated by Ne=N/(1− FIS), where FIS (determined by Nn) was evaluated population wide.
Nn only had a notable influence of increasing Ne as it became smaller (⩽16). In contrast, the effect of Nn on genetic estimates
of Ne was substantial. Using the temporal method (a standard two-sample approach) based on 1000 single-nucleotide
polymorphisms (SNPs), and varying sampling method, sample size (2–25% of N) and interval between samples (T=1–32
generations), estimates of Ne ranged from infinity to o0.1% of the true value (defined as Ne based on 100% sampling).
Estimates were never accurate unless Nn and T were large. Three sampling techniques were tested: same-site resampling,
different-site resampling and random sampling. Random sampling was the least biased method. Extremely low estimates often
resulted when different-site resampling was used, especially when the population was large and the sample fraction was small,
raising the possibility that this estimation bias could be a factor determining some very low Ne/N that have been published.
Heredity (2016) 117, 224–232; doi:10.1038/hdy.2016.76; published online 24 August 2016

INTRODUCTION

Two measures that help us predict the influence of genetic drift on a
population are the (effective) neighborhood number (Nn) and effective
population size (Ne). However, the distinction between them is often
misunderstood and here my aim is to clarify their relationship,
emphasizing that these two measures are conceptually very different.
Ne is the effective number of individuals within the whole population,
defined as the size of an ideal population affected by random genetic
sampling at the same rate as the population being studied (Wright,
1931,1938), whereas Nn is the effective number of individuals within
an area of a population (the neighborhood) defined such that the
parents of a focal individual can be considered to be genetically
representative of the neighborhood’s occupants (Wright, 1946).
To avoid confusion, the notation Nn is used for the neighborhood
number instead of Nb (Slatkin and Barton, 1989) as Nb has been used
for the effective number of breeders in a given year in species with
overlapping generations (Waples, 2005), and, more generally, for the
effective number of parents producing the sample used in the
estimation of Ne when there is temporal or spatial population
structure (Neel et al., 2013).
Both Ne and Nn increase with the density of individuals within a

population, and some of the species-specific factors that influence
Ne by altering the variance in reproductive success (Wright, 1938)
such as longevity and mating system (Nunney, 1993) can also
influence Nn; however, the two measures differ in scale and, as a
result, they differ in the nature of their influence on the genetic
composition of a population. A major factor determining Ne is the size

of the population (N), and that is largely dependent upon the area of
available habitat. In contrast, Nn is independent of N as it is defined at
a local scale by the dispersal biology of the species. Any population
exhibiting spatial structure must encompass an area greater than a
single neighborhood, as when this is not the case the population is
panmictic.
Ne is expected to vary substantially across populations because of its

strong dependence upon the area of suitable habitat availability, an
area that can vary enormously from population to population, whereas
Nn is expected to vary little among populations of the same species
given the relative constancy of species-specific dispersal patterns.
Moreover, as Ne is affected by the spatial structure of a population
(Whitlock and Barton, 1997; Nunney, 1999), Nn can directly affect
Ne, whereas the reverse is not true.
The rate at which neutral genetic variation is lost from a population

because of genetic drift is determined by the effective population size
(Ne). Although this measure is primarily dependent upon N, it is
modified by a variety of factors (see Hare et al., 2011). One such factor
is nonrandom mating. Wright (1943) showed how two different
sources of nonrandom mating affect Ne under otherwise ideal
conditions. First, given local inbreeding (such as selfing or brother/
sister mating) but no spatial structure, then Ne=N/(1+FIS);
and second, given a spatial structure of semi-isolated island
sub-populations (and random mating within each), Ne=N/(1− FST).
In these formulae, FIS and FST are the hierarchical inbreeding
coefficients (Wright, 1951). These two results can be combined into
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a single relationship (Nunney, 1999):

Ne ¼ N= 1þ FISð Þ 1� FSTð Þ½ � ð1Þ
that illustrates how FIS, derived from local inbreeding, and FST, derived
from the isolation of the island sub-populations, influence Ne in
opposite ways.
This observation that FIS generated by a regular system of

inbreeding acts to reduce Ne extends to nonideal populations (see
Caballero and Hill, 1992; Wang, 1996; Yonezawa, 1997; Nunney,
1999); however, the effect of the larger scale inbreeding due to the
island subdivisions (FST) depends on the model used. The influence of
FST in the island model in increasing Ne (Equation (1)) is dependent
upon the assumption that island productivity is locally regulated, such
that all islands contribute equally to the dispersal pool (Whitlock and
Barton, 1997). If, on the other hand, a demic model is used, where
population regulation allows productivity differences among the
demes (or islands) to be reflected in the pool of migrants, then these
productivity differences generate interdemic genetic drift. The result is
that the influence of FIS and FST become identical (Nunney, 1999):

Ne ¼ N= 1þ FISð Þ 1þ FSTð Þ � 2FISFST½ � ð2Þ
This difference between the effective size of a metapopulation with
equal dispersal per island (island model, Equation (1)) versus one with
varying dispersal from each island (demic model, Equation (2)) is
important in defining conservation strategies (see, for example, Gilpin,
1991; Hedrick and Gilpin, 1996; Whitlock and Barton, 1997; Nunney,
2000).
The Equations (1) and (2) provide the basis for understanding how

Ne is affected when a deviation from Hardy–Weinberg ratios occurs
either as a result of a regular system of close inbreeding combined with
uniform dispersal (= FIS), and/or as a result of the population being
subdivided into semi-isolated islands (= FST). The situation that these
equations do not directly address, however, concerns how Ne is
affected when genetic structure builds up as a result of ‘isolation-by-
distance’. Wright (1943, 1946) suggested how this could be done.
Wright (1946) introduced the concept of a neighborhood as the

unit of structure that arises from isolation by distance within a
continuously distributed population. He showed that when both sexes
exhibit normally distributed dispersal (of either individuals or
gametes), then Nn is the number of individuals contained in a circle
of radius 2σ, that is,

Nn ¼ 4ps2d ð3Þ
where σ2 is the variance of the distance between a central offspring and
its parents, measured along a diameter (noting that the symmetry in
the position of parents around the focal offspring defines a mean
dispersal distance of zero), and where d is the density of individuals.
Note that Equation (3) indicates that Nn will be relatively constant
assuming that σ2 is a property of the species, but it will vary somewhat
if the density of individuals varies among different populations. Even
the effect of varying density may be minimized if there is some
negative correlation between dispersal and density (for example, if at
very low density, individuals disperse further).
The neighborhood number directly determines how random

genetic drift affects genetic differentiation within a population, with
a smaller neighborhood (because of a shorter dispersal distance)
resulting in greater differentiation. Thus, within a large continuously
distributed population, Nn provides information on the spatial
distribution of genetic variation contained within a population. This
genetic structure develops regardless of the total population size
(assuming Ne » Nn ). The value of Nn affects the level of genetic

variation within the total population indirectly via the influence of this
genetic structure that affects Ne by creating a pattern of nonrandom
mating. As genetic structure created by limited dispersal is often a
feature of natural populations, it is important to determine accurately
what influence Nn has on the effective size of the total population.
Wright (1943) suggested that a random breeding unit in a

continuous population (later called a neighborhood in Wright,
1946) was analogous to an island of the island model if neighborhoods
were sampled at random. To formalize the analogy he showed that, if
these units regulate their numbers locally, then:

Ne ¼ N= 1� FSTð Þ ð4Þ
where FST is the genetic differentiation among randomly sampled
neighborhoods. Equation (4) predicts that as the genetic structure
becomes more extreme (FST increases), then Ne increases.
Maruyama (1972) derived a more exact expression for the decline

in heterozygosity given the isolation-by-distance model and using
numerical examples of his formula concluded that:

Ne ¼ N if s2d41 ð5aÞ

Ne ¼ N=ðs2dÞ if s2do1 ð5bÞ
From Equation (3), this result indicates that if Nn44π (= 12.6), then
neighborhood size has no noticeable effect on the global effective
population size, but if the neighborhood size is small then:

Ne ¼ 4pN=Nn ð6Þ
that is, Ne increases as Nn decreases, with Ne= 4πN when Nn= 1.
This result is qualitatively (but not quantitatively) the same as
Equation (4).
To further examine the link between Nn and Ne, Kawata (1995)

simulated a continuously distributed population where limited
dispersal created genetic structure. During the initial nonequilibrium
phase (he used the first 15 generations), while the genetic structure
was being established, estimates of Ne (using the decline in hetero-
zygosity) were closely related to Nn, but later, when the genetic
structure of the population had equilibrated, the estimates of Ne were
more influenced by N. However, Kawata (1995) found that at these
late stages the estimated Ne was always less than or equal to the
population size, a result conflicting with Equation (4).
Neel et al. (2013) also simulated a neighborhood-structured

population, estimating Ne with a single-sample estimator (based on
linkage disequilibrium). Like Kawata (1995), they found that under
some conditions (in their case, when the genetic sampling was at the
scale of a single neighborhood) the estimated Ne was close to Nn.
Larger scale sampling encompassing several neighborhoods produced
higher estimates of Ne, but they never approached the expected
theoretical value defined by Equation (4). For example, given the
largest neighborhood size tested (= 84) and a sample area of 5% of a
population of 90 000, the estimate of Ne was under 800.
The present paper was motivated by questions arising from these

two previous simulation studies. First, was Wright (1943) correct in
his contention that the equilibrium interrelationship of Ne, Nn and
N is closely approximated by the results derived for the island model,
that is, that the effect of neighborhood structure on Ne is analogous to
the effect of island sub-populations on the effective size of the total
population, as defined by Equation (4). The results of Kawata (1995)
were inconsistent with this contention. Second, the two previous
studies showed that, under some conditions in populations with
significant spatial genetic structure, traditional estimators of Ne can
lead to substantial underestimates closer to Nn than the expected Ne.

Effective size and neighborhood size
L Nunney

225

Heredity



Furthermore, Neel et al. (2013) concluded that single-sample estimates
of Ne will generally result in an underestimation of the true Ne, and
raised the question of whether this bias also applies to the more
traditional two-sample temporal method (see Waples, 1989). If the
temporal method underestimates the true Ne to a degree similar to
that revealed by the simulation estimates of Neel et al. (2013) using a
single-sample linkage disequilibrium method, then this might account
for many of the unusually low estimates of Ne/N reported in the
literature.
These two questions were investigated using simulations of a

spatially structured plant population. First, to examine the accuracy
of Equation (4), the ‘true Ne’, that is, the value of Ne realized in a
simulation over a period of 32 generations, was calculated from the
gene frequency change occurring across 1000 single-nucleotide poly-
morphisms (SNPs) estimated from the total population. The reliability
of this estimate was independently verified using FST values resulting
from simulations of an island-structured metapopulation (of 1000
islands with 1 polymorphic locus), where each island showed internal
genetic structure because of isolation by distance. Second, the bias in
estimating Ne in a spatially structured population was evaluated using
the temporal method under varying conditions of sample size,
sampling method and time interval. Until recently, the temporal
method was the main approach for estimating Ne using genetic data.
In summary, this paper addresses the theoretical problem of

whether Equation (4) defines Ne, and the practical problem of
whether the temporal method can accurately estimate Ne. Under-
standing the extent to which spatial genetic structure is expected to
increase (or decrease) Ne is important in predicting the effect of
factors such as habitat loss on the long-term genetic composition of
populations using the theoretical links between ecological/demo-
graphic factors and Ne (Nunney and Elam, 1994). It is also important
in evaluating genetic estimates of Ne, given the concern over
substantial bias noted by Neel et al. (2013). Documenting this bias
across the available genetic estimators is the first step in moving
toward a resolution of the problem.

MATERIALS AND METHODS

Simulation model
The simulation model assumed a plant population of monoecious annuals. The
habitat consisted of a rectangular array of regularly spaced sites, each of which
always supported a single plant so that the population size N was constant.
Pollen dispersal was normally distributed around each paternal plant and seed
dispersal was zero; thus success through female function was fixed at one,
whereas male success was approximately Poisson (although it was expected to
be somewhat influenced by the neighborhood size). To avoid edge effects, it
was assumed that locally dispersing pollen was reflected back from the
boundaries of the population. The model was coded in PureBasic (Fantaisie
Software, Fegersheim, France).
The simulated system tracked 1000 independent biallelic loci (or SNPs)

initiated with equal allele frequencies. As noted above, the true value of Ne

determining drift over a period of 32 generations was calculated using the
temporal method by genetically sampling every individual before and after the
32-generation interval. This value was compared with shorter sampling
intervals of 1, 2, 4, 8 and 16 generations. To examine the effect of less than
complete sampling, three different sampling strategies were employed using
intervals of 1, 2, 4, 8, 16 and 32 generations. These strategies were: (1) random
sampling over the whole population (without replacement), (2) sampling and
resampling a single site and (3) sampling one site but resampling a different
site. All sampling was nondestructive, and each sampling or resampling of a site
included all individuals at that location. Sampling was initiated after an
N-generation burn-in. The population sizes simulated were N= 256, 1024 or
4096 and the fraction of the population sampled was 25, 10 or 2%. If either one

of an initial/final pair of samples was not polymorphic at a locus, then that
locus was omitted as the time period over which drift was acting was unknown.
To estimate Ne, the temporal method was applied using the statistic Fc and

the appropriate sample size correction (Equations (8) and (12) from Waples,
1989). Each 1000-locus scenario of each of the three population sizes and each
of the three sample sizes (that is, 9 cases) was replicated 5 times, with the three
sampling methods being simultaneously implemented within each simulation.
The expected value of Ne given uniform pollen dispersal (that is, Nn=∞)

was used as a reference value (Ne,ref) for testing the fit of the data to theory.
Ne,ref was predicted to be 4N/3 based on Wright's (1938) classic result of
Ne=4N/(2+V), noting that the reproductive variance V is made up of male plus
female variance. Given the conditions of the simulation, Vf=0 whereas Vm≈1.
To provide an independent estimate of Ne given the conditions of the

simulation, Ne was also estimated from the equilibrium FST using simulations
of 1000 neighborhood-structured island populations (each of N= 256, 1024 or
4096) linked by a low level of migration (Nm= 1) and segregating a
single biallelic locus, so that Ne= (1− FST)/(4mFST). Simulations were run for
4N generations, and estimates of FST were based on the final N generations.

RESULTS

The effect of Nn on Ne

When the neighborhood size was infinite (that is, uniform pollen
dispersal), the effective size determined from gene frequency change
occurring over 32 generations (Ne,32) was in close agreement with the
expected value of 4N/3 (=Ne,ref): Ne,32= 360± 15 (mean± 1 s.d.)
with Ne,ref= 341.3 (N= 256); Ne,32= 1396± 78 with Ne,ref= 1365
(N= 1024); and Ne,32= 5526± 230 with Ne,ref= 5461 (N= 4096),
where each value was based on 15 replicates. Under these conditions,
genetic structure was minimal (FIS= 0.00), and, as expected, when
neighborhood size was reduced (using a series of fourfold reductions
down to Nn= 1), genetic structure increased, as measured by
FIS (Table 1). Determining Ne from the gene frequency change
occurring over 32 generations (Ne,32), it was found that reducing Nn

increased Ne, although the effect was relatively minor until the
neighborhood size was very small (roughly less than 16; Figure 1).
This increase was compared with the expected effective size (Ne,exp)
calculated as:

Ne;exp ¼ Ne;ref= 1� FISð Þ ð7Þ

Using Equation (7) provides a practical test of the suggestion of
Wright (1943) that the isolation-by-distance model should exhibit the
same genetic structure as the island model among neighborhoods.
As neighborhood dimensions cannot be easily identified in the field,
an alternative to comparing neighborhoods is to quantify genetic
structure using the population-wide FIS. The results showed that
Equation (7) generally provides a good estimate of Ne (Figure 1).
It did overestimate the effective size somewhat when Nn was very small
(⩽4). Thus for Nn= 4, the bias was limited to 7%, but increased to
∼ 20% when Nn= 1 (18% when N= 256 and increasing to 23% when
N= 4096).
The Ne based on the population-wide gene frequency changes

observed across 32 generations (Ne,32) were compared with indepen-
dent estimates derived from a separate set of simulations in which
1000 replicate populations were linked by random dispersal (Nm= 1).
Ne was calculated from FST among the island populations. The results
are shown in Table 1 and are very similar to the temporal method
values, except when Nn is very small. For Nn⩽ 4, the FST-based
estimates were significantly lower, an effect apparently linked to
reduced genetic structure within the populations (that is, reduced
FIS; see Table 1) because of immigration.
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Accuracy of Ne estimates
The temporal method (see Waples, 1989) uses drift-induced gene
frequency change to estimate Ne. In this present simulation study, the
two required samples were separated by T= 1 to 32 generations in
populations of N= 256, 1024 and 4096 with 1000 biallelic SNPs, and
the samples were based on 2, 10, 25 or 100% of the population.
The first question was to determine the accuracy of effective size

estimates (Ne,est) when the whole population was sampled, but the
time interval between samples was small. It was found that even a one-
generation sampling interval (T= 1) gave very good estimation relative
to the T= 32 value, only very slightly underestimating Ne when N was
small (Table 1).
When 25% of the population was sampled (Figure 2), the accuracy

of the estimates of Ne depended on the sampling strategy. The first
strategy was to resample the same site. Using this approach, if the
sampling interval was only one or two generations, then at least one of
the five replicate estimates was infinite, regardless of Nn, and hence the
average was infinite. For the smallest neighborhood size (Nn= 1), this
was also the case when the interval was four generations. In all other
situations, the estimates were constrained to a more realistic range
declining from infinite overestimates to underestimates as the sam-
pling interval increased (Figure 2a). Given a low level of genetic
structure (Nn= 256; dotted lines, Figure 2a), in the smallest popula-
tion simulated (N= 256) Ne,est was fairly close to the true value
(that is, less than 25% below) and was a good estimate when T was
32 generations, but for larger values of N, the underestimate increased
to substantial levels (40–60%). As structure in the population was
increased, estimates dropped from being unrealistically high (that is,
infinity) down to underestimates of 50–75% (that is, Ne,est/Ne of 0.50
to 0.25) as the sampling interval was increased (Figure 2a).
The second sampling technique was to take the first and second

samples from different sites within the population (specifically,
opposite corners). Using this method, no estimates were infinite; in
fact, in stark contrast to same-site sampling, when T was one or two
generations, Ne,est was dramatically underestimated (Figure 2b). Even
when genetic structure was minimal (Nn= 256; dotted lines,T
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Figure 1 Ne of populations of varying size (N) and neighborhood size (Nn)
compared with Wright’s expectation. The theoretical expectation of
Ne (Ne,exp; see Equation (7)) is shown by the solid lines for N of 256
(squares), 1024 (triangles) and 4096 (diamonds). The dashed lines link the
values of Ne realized in the simulations (Ne,32), estimated from the
multilocus gene frequency changes (using 1000 SNPs) over 32 generations.
Each point (±1 s.d.) was based on 15 replicate simulations where the whole
population was sampled.
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Figure 2b), the underestimate was such that Ne,est/Ne was 0.12
(N= 256) to 0.008 (N= 4096) when T= 1. The underestimate became
more extreme as the neighborhood size decreased. For Nn= 1, the

ratio of Ne,est/Ne was 0.001 (N= 256) to 0.0001 (N= 4096) given
T= 1, a situation that improved as T increased, but the underestimate
remained extreme even for T= 32 (when the equivalent ratios were
0.04 to 0.002).
The third sampling technique, random sampling across the whole

population, was generally the most accurate of the three methods. This
accuracy was notable when Nn= 256 (dotted lines, Figure 2c);
however, especially when the sampling interval was small (T= 1 or
2), there was an increasing downward bias as genetic structure
increased. Thus when Nn= 1 (solid lines, Figure 2c), Ne,est was
∼ 5% of Ne when T= 1 and ∼ 10% when T= 2.
Reducing the sample size to 10 or 2% of the total population had

qualitatively the same effect on the estimate of Ne as a 25% sample;
however, quantitatively the estimates of Ne became smaller as the
sample size decreased. Figure 3 shows the pattern for N= 1024.
The only exceptions to this pattern were estimates from smaller
unstructured populations, some of which became infinite. For
example, given same-site sampling, the estimates that were infinite
given 25% sampling, remained so given 10 and 2% sampling, but
others were added under 2% sampling. For example, when Nn= 256,
average estimates were infinite over a broader range of T: for T⩽ 16
when N= 256; for T⩽ 8 when N= 1024; and for T⩽ 4 when
N= 4096. Under the same conditions (2% sampling and Nn= 256),
infinite estimates were also seen with random sampling (for T⩽ 16
when N= 256; for T⩽ 8 when N= 1024; and for T⩽ 2 when
N= 4096), whereas different-site resampling only gave infinite
estimates when N= 256 (for T⩽ 16).
The degree of underestimate given 10 and 2% sampling is further

quantified in Table 2 for Nn= 16, a case of moderate spatial structure
(0.1oFISo0.2; see Table 1), that one would hope would not be too
much of a challenge for estimating Ne. However, this was not the case.
Although the estimates were consistent (that is, a low coefficient of
variation), the accuracy was generally poor, and often very poor. Given
different-site resampling (Figure 3b), the estimates were often more
than two orders of magnitude in error, an effect that was most
pronounced when the population was large (underlined values in
Table 2b). The accuracy improved when the time period between
generations was long (for example, T= 32 generations), but the
estimates were still very biased. Given same-site resampling, the
underestimation was reduced relative to the case of different-site
resampling (Table 2a); however, the underestimate was still ∼ 3–30-fold
(dashed and solid lines, Figure 3a). As noted earlier, the pattern of
underestimation was reversed if the sample interval was only one or
two generations when Ne was overestimated, generally as infinite
(Figure 3a).
In contrast, random sampling across the whole population gave

markedly better estimates (Figure 3c). The accuracy was generally
good across all sampling proportions when T= 32 generations, except
when the genetic structure was extreme (Nn= 1; see triangles,
Figure 3c). Accuracy deteriorated as the time interval between samples
was shortened, but the underestimation was modest compared with
the other methods (Table 2c), provided the neighborhood size was not
too small (Figure 3c); however, as T was reduced, the estimator could
flip from significant underestimation to infinite overestimation
(Table 2c and Figure 2c).

DISCUSSION

The work presented was designed to emphasize the important
distinction between the effective size of a population (Ne) and its
internal neighborhood size (Nn). Random genetic change at
the population level is determined by Ne that is largely dependent

Figure 2 The accuracy of temporal-method estimates of Ne based on
sampling 25% of the population after various intervals (T). The estimate of
Ne is shown relative to Ne,32, the value derived from sampling the whole
population over a period of 32 generations (see Figure 1). Three sampling
methods are illustrated: (a) resample all individuals in the same site; (b)
sample all individuals in one site and then resample all individuals from a
non-overlapping site; and (c) randomly sample individuals for both samples.
The results are shown for different populations sizes (N=256, 1024 and
4096) and neighborhood sizes (Nn=1, 16 and 256). Five sets of
simulations with 1000 loci were run for N generations. Points that included
infinite estimates of Ne were omitted.
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upon N, the number of adults in the population, that in turn is largely
determined by the area of the suitable habitat. It is Ne that determines
the long-term effects of genetic drift on the genetic composition of a
population. In contrast, Nn is primarily dependent upon the dispersal
patterns of the species (see Equation (3)), and provides no direct
information on the fate of genetic variation in the population as
a whole.

In a population structured by the influence of isolation by distance,
neighborhoods are, to some degree, genetically differentiated from
each other; however, the genetic composition of each neighborhood
also varies over time. In essence, given spatial structure, gene
frequency contours drift over time, even in a large population where
the overall gene frequency remains largely unchanged. This spatial
drift has important consequences for the estimation of Ne (see below).
It is important that the distinction between these two measures is

kept clear, but the terminology can sometimes be confusing. For
example, Nn is sometimes called the neighborhood or local effective
population size (see, for example, Eguiarte et al., 1993; Neel et al.,
2013), and the neighborhood size is sometimes symbolized by
Ne (Kawata, 1995). This can lead others to the incorrect assumption
that Nn exhibits the properties of Ne that are important in maintaining
genetic variation in a population. For example, Lode and Peltier
(2005) in their study of mink concluded that their estimate of Nn

(of 16–23) was far below values considered critical for long-term
viability. This was not an appropriate conclusion; they were comparing
estimates of Nn with a suggested theoretical minimum applying to Ne.
Under most circumstances, and especially in the context of popula-
tions at risk for extinction, Ne is the critical parameter determining the
long-term maintenance of genetic variation (see Nunney, 2000).
The magnitude of Nn is only relevant in such studies to the extent
that Nn influences Ne.
However, Nn does have an indirect effect on the level of genetic

variation by its influence on Ne. Wright (1943) predicted that a
continuous population structured by limited dispersal would behave
much like a population consisting of a set of island sub-populations.
The link between such ‘isolation-by-distance’ populations and a
system with separate island sub-populations was supported by
Slatkin and Barton (1989), who noted that the stepping stone and
neighborhood models can be equated using Nn= 2πnm, where n is the
size of a sub-population and m is the migration rate among adjacent
sub-populations in a stepping-stone model.
The simulations of annual plant populations presented here

supported this view: neighborhood size (Nn) affected the effective size
of the population (Ne) in a manner consistent with Equation (7), a
simple reformulation of the island model Equation (4). The only
notable deviation occurred when Nn was very small (= 1; see
Figure 1). In any event, as Nn decreased, causing genetic structure
to become more pronounced, Ne increased. This is to be expected,
because as neighborhoods become increasingly different from each
other, local structure protects genetic variation from being lost from
the population by drift, provided population regulation is local
(see below). The effect of Nn on Ne is only apparent when the
neighborhood size is o16 when N= 4096 (when FIS= 0.16; see
Table 1), and when Nn is a little smaller for smaller N (Figure 1).
This result is in general agreement with the conclusion of Maruyama
(1972), who suggested that Nn had little effect on Ne if σ

2d41 that, as
noted earlier, translates to Nn412.6; however, the results did not fit
well with the prediction of Maruyama (1972) (Equation (6)) for
Ne when Nn is small. For example, when Nn= 1, the prediction is that
Ne is increased 16.7-fold by genetic structure, whereas the simulations
gave much lower values, between 2.9 (N= 256) and 3.7 (N= 4096)
(Table 1).
In contrast to these patterns, Kawata (1995) found, in a series of

simulations, that Ne decreased when Nn was reduced. Although the
reasons for this apparently contradictory result cannot be identified
with certainty, the simulations are consistent with a decrease in
Ne because of two factors: the mating system and global population
regulation.

Figure 3 The effect of sampling fraction on the accuracy of temporal-
method estimates of Ne given the three different sampling strategies of (a)
resampling the same site, (b) resampling a different site or (c) random
sampling. The fraction of the population (N=1024) sampled was 25, 10 or
2%. Details are as described in Figure 2.
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In his simulations, individuals were non-selfing hermaphrodites.
Female parents were chosen randomly (with replacement) from across
the population and for each a male parent was chosen within a circle
of radius M. When M is large, this mating system approximates a
random union of gametes model; however, when M is small the
system becomes more complex. For example, some individuals have
zero fitness because they do not have any potential mates within the
specified area, thus increasing the overall variance in reproductive
success and decreasing Ne (Kawata, 1995).
The effect of M on the mating system accounted for some of the

reduction in Ne below N (see figure 6b of Kawata, 1995), but the effect
was not strong enough to explain why reducing Nn showed no
indication of driving the increase in Ne predicted by Equation (4).
The primary reason why Nn reduced rather than increased Ne appears
to be because of the nature of the population regulation.
Kawata (1995) implicitly assumed that population regulation acted

globally, that is, limiting the whole population to size N, whereas the
simulations presented here imposed strong local regulation (one
individual at each of the N sites). Given local regulation at or below
the level of the neighborhood makes the isolation-by-distance model
analogous to the island model (as pointed out by Wright, 1943);
however, global regulation changes the model to one that is more
analogous to a demic model (Nunney, 1999). In the island model,
shifting from local (island level) to global (population level) regulation
of dispersal reverses the effect of FST on Ne (compare Equations
(1) and (2)). Similarly, given isolation by distance, global population
regulation results in random neighborhood productivity differences
driving increased genetic drift and hence lowering Ne.

Whether population regulation is local or global will depend on the
specific factors acting; however, many density-dependent factors
(notably intraspecific and interspecific competition) act locally,
suggesting that regulation may generally act at the neighborhood level.
Estimates of Ne based on both the temporal method and using

FST from independent simulations of a metapopulation of replicate
populations (islands) linked by dispersal were highly concordant,
except when Nn was very small (⩽4). This divergence was most
probably because of the effect of immigration in reducing the internal
genetic structure (that is, reducing FIS, see Table 1). It is expected that
reduced FIS would result in reduced Ne (see Equation (7)), and this is
what is observed.
The presence of genetic spatial structure has been shown to strongly

bias estimates based on the single-sample linkage disequilibrium
method for the estimation of Ne. Neel et al. (2013) found that
estimates of Ne were close to Nn when the sample area was small
relative to the neighborhood, and increased only slowly as the sample
area increased, never approaching the true value of Ne. In the present
study, this pattern was only weakly supported given the comparable
approach of same-site sampling, and required T to be large enough to
avoid infinite estimates (see Figures 2a and 3a). For example, when
T= 32 and N= 1024, the 2% sample size was well within a single
neighborhood given Nn= 64 and 256, but Ne,est was 201 and 578
respectively, values substantially larger than Nn, although substantially
smaller than Ne (estimated at 1415 and 1365, respectively, based on
sampling the entire population).
The general conclusion regarding the two-sample temporal method

for estimating Ne must be that the results cannot be trusted. The only
conditions yielding relatively accurate results were random sampling

Table 2 The bias in effective size estimates (Ne,est) given a neighborhood size (Nn) of 16

Sample% N=256 1024 4096

T Ne,est CV Ne,est/Ne,32 Ne,est CV Ne,est/Ne,32 Ne,est CV Ne,est/Ne,32

(a) Same-site resampling
10 32 116 0.055 0.2912 261 0.060 0.1698 875 0.058 0.1372

8 82 0.133 0.2050 272 0.053 0.1771 1023 0.064 0.1603

2 ∞ ∞ ∞
2 32 81 0.357 0.2042 104 0.093 0.0630 233 0.044 0.0364

8 43 0.123 0.1091 78 0.165 0.0472 261 0.076 0.0407

2 ∞ ∞ ∞

(b) Different-site resampling
10 32 68 0.029 0.1712 65 0.033 0.0427 68 0.072 0.0107

8 17 0.069 0.0423 16 0.049 0.0105 17 0.070 0.0027

2 4 0.113 0.0107 4 0.048 0.0026 4 0.073 0.0007

2 32 52 0.227 0.1313 43 0.038 0.0264 43 0.039 0.0067

8 12 0.160 0.0316 11 0.061 0.0065 11 0.035 0.0017

2 3 0.130 0.0078 3 0.076 0.0017 3 0.048 0.0004

(c) Random sampling
10 32 383 0.068 0.9597 1475 0.061 0.9609 6174 0.088 0.9680

8 299 0.045 0.7505 1072 0.211 0.6982 4176 0.117 0.6547

2 169 0.307 0.4227 691 0.284 0.4501 1750 0.154 0.2743

2 32 549 0.287 1.3902 1302 0.198 0.7922 3555 0.099 0.5539

8 409 0.806 1.0363 642 0.588 0.3905 1806 0.193 0.2813

2 ∞ ∞ 639 0.206 0.0996

The size of the two samples was 10 or 2% of the total population (N=256, 1024 or 4096), taken T generations apart. The values shown are Ne,est, its coefficient of variation (CV) based on 5
estimates and the ratio of Ne,est to the estimate of Ne based on sampling the whole population with T=32 (Ne,32). Estimates of Ne,est/Ne,32 in bold are underestimates of at least 10-fold, and those
that are also underlined are 4100-fold underestimates.
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of a large fraction (∼25%) of a population with moderate to low
structure (FISo0.2) across an interval of ⩾ 8 generations (Figure 2c).
If the proportion of the population sampled drops and/or there is
significant spatial structure then accuracy quickly declines, an effect
exacerbated by a reduced interval between samples (Figure 3c and
Table 2c). In general, the values obtained with random sampling were
underestimates, but when Nn was large and the sample size was small,
they were overestimates. For example, it can be seen in Figure 3c
(where N= 1024 throughout) that when the sample size was 2%, the
estimates for Nn= 256 were slight overestimates for T= 16 or 32
generations, but for shorter intervals (T⩽ 8) the estimates were
infinite.
Same-site sampling yields dramatic (generally infinite) overestimates

of Ne when T is small, and underestimates when T is larger. These
underestimates can become substantial (that is, an order of magnitude
or more) if the neighborhood size is small and the sample is taken
from an area that represents a small fraction of the population
(Figure 3a and Table 2a). It is important to understand the cause of
this switch from extreme overestimation to underestimation as T is
increased. When T is small, it is clear that limited (local) dispersal has
the effect of buffering genetic change so that sampling the same site
will result in less genetic change than is occurring in the population as
a whole. This results in infinite estimates of Ne. However as the time
interval increases, the contours of gene frequency within the popula-
tion shift in space, so that the change in gene frequency at a particular
site is a combination of both population-wide drift and these local
changes in gene frequency. The result is that Ne is underestimated.
The effect of internal genetic structure is even more apparent when

different-site resampling is employed. It is clear that unless the time
interval between samples is substantial, the gene frequency difference
between the initial and final samples includes both the effect of
population-wide drift and the effect of gene frequency differences
between the two locations. This inevitably results in a very low
estimate of Ne (see Figures 2b and 3b). It was shown that these low
estimates were often two or more orders of magnitude below the
correct value, especially when T was small and N large (Table 2b).
The results presented were from simulations with varying levels of

pollen dispersal but zero seed dispersal. This scenario may create
particular difficulties for the estimation methods; however, the general
pattern of very limited gene flow in one sex is neither uncommon nor
restricted to plants. In animal species, it is frequently the case that one
sex is philopatric, whereas the other disperses. Furthermore, the
enormous bias observed in the estimates of Ne were also apparent in
the results of Neel et al. (2013) given two-sex dispersal. It is clear that a
new approach to the estimation of Ne in spatially structured
populations is needed.
An important question raised by Neel et al. (2013) was whether

isolation by distance could contribute to the unexpectedly low Ne/N
ratios sometimes observed. At first sight this may appear paradoxical
given that, under conditions of local population regulation, the
simulations showed how a small Nn increases the true Ne in accord
with Equation (4) (see Figure 1); however, in contrast to the effect of
Nn on the true Ne, it is apparent that a small Nn can lead to estimates
of Ne that dramatically underestimate the true Ne (Table 2).
Theory suggests that in general Ne/N⩾ 0.1 (Nunney and Campbell,

1993; Frankham, 1995; Vucetich et al., 1997), and although empirical
evidence is broadly supportive of this conclusion (Palstra and
Ruzzante, 2008), some exceptionally low ratios in the range 10− 3–

10− 5 have been published, many of which are derived from marine
populations (reviewed in Hare et al., 2011). These studies typically
used samples stored by previous researchers and, as such, may well

result in resampling in a location that was different from the original.
In addition, the populations are generally very large. It is perhaps
notable that in the simulations these two factors resulted in the highest
degree of underestimation (see Table 2).
The effective population size Ne is a very important population

parameter for understanding long-term genetic change, whereas the
neighborhood size Nn provides very different information concerning
the degree to which the standing genetic variation becomes spatially
structured. Ne is especially important in the context of predicting
genetic loss from small populations of threatened species (Nunney,
2000), but it is also important for understanding genetic change in
larger populations of commercially important species, notably fish
(Hare et al., 2011). For these reasons accurate estimation of Ne is
important.
The present work using the temporal method builds on the results of

Neel et al. (2013) using the linkage disequilibriummethod to demonstrate
that current procedures for estimating Ne are woefully inaccurate in
populations exhibiting spatial genetic structure. Strong biases were
apparent even though the genetic data (based on 1000 SNPs) were
extensive. Further theoretical work is urgently needed to resolve the
confounding effect of spatial variation in the estimation of Ne.
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