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Abstract

Optimization Models and Methods for Large Scale and Complex Systems,
with applications to distributed electricity resources integration

by

Bertrand Travacca

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Scott Moura, Chair

This thesis focuses on models and methods for large scale and complex systems, with
applications to distributed electricity resources. It is organized into three parts. In the
first part, we show how to formulate the participation of distributed electricity resources –
consisting of plug-in electric vehicles and residential photovoltaic panels – in the real-time
and day-ahead electricity markets using convex optimization models. We show how these
large scale problems can be efficiently solved by distributing them using a dual splitting
approach. Using this structure, we then derive algorithms that allow to solve these problems
efficiently and study their convergence properties. Finally, we illustrate our approach with
multiple study cases on different markets. In the second part, we develop novel first-order
heuristics methods, called Hopfield methods, based on Hopfield Neural Networks; in order
to find candidate solutions to large-scale combinatorial optimization problems. We study
the geometry and the convergence of these new methods and show how they connect with
known convex optimization models and algorithms. We then illustrate how these methods
perform on large nonlinear problems. In the last part, we present a new class of optimization
models, implicit optimization, which includes deep learning, nonlinear control, and mixed-
integer programming as special cases. Implicit optimization provides a unified perspective
on these different fields, leading to new algorithms and surprising connections. We propose
two tractable algorithms to solve such problems based on their implicit equation structure:
implicit gradient descent and the Fenchel alternative direction method of multipliers. We
illustrate our theory and methods with numerical experiments and dedicate a whole chapter
on implicit deep learning architectures and methods.
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Notation

Index notations

Given an integer n ≥ 1 we denote by [n] the set of integers between 1 and n (i.e. 1, 2, · · · , n).
Given a vector x ∈ Rn, we denote by xi, i ∈ [n], its components. Given n1 ≥ n2 ≥ 1, we
denote the sub-vector of x with component indices between n1 and n2 as x(n1 : n2).

Sequences

Given a sequence U , we denote the k−th element of the sequence with the exponent notation
uk. We use the following notation for the discrete derivative

∆uk := uk+1 − uk

Vectors

Given two vectors x, y ∈ Rn, we denote the Euclidean scalar product of x and y by x>y
and we denote by ‖x‖ the Euclidean norm of x. We will use the following notation for
normalization, n[x] := x/‖x‖. We denote

‖x‖p :=
( n∑
i=1

|xi|p
) 1

p

the p-norm, with p ≥ 1. The maximum norm (limit case of the p-norm when p → ∞) is
given by

‖x‖∞ := max
i∈[n]
|xi|

We denote ‖x‖S =
√
x>Sx where S is positive semi-definite, the generalization of the eu-

clidean norm to the geometry of S.

The notation x ≤ y refers to the element-wise inequality (i.e. ∀i ∈ [n], xi ≤ yi). The
elementwise product (also known as Hadamard product) between the two vectors is denoted
by x� y. Similarly, we denote the componentwise division as x� y. Given h, a real-valued
function, h(x) is a vector consisting of the map h applied component-wise to x. For instance,



LIST OF TABLES 2

if x > 0, log(x) is the logarithm applied to each component of x. We use the notation
x+ = max(0, x) for the ReLU function.

Matrices

We will denote by I the identity matrix, the size of which can be inferred in context. We
denote Sn the set of symmetric matrices of size n and Sn+ the set of positive semidefinite
matrices (i.e. S ∈ Sn such that all eigenvalues are positive). Alternatively, we will write
S � 0. We use the notation S � 0 to denote positive definite matrices (all eigenvalues strictly
positive). For S1, S2 ∈ Sn, we write S1 � S2 to say that S1 − S1 ∈ Sn+. For S ∈ Sn+ we denote

S
1
2 the matrix square root of S (i.e. the matrix M such that M2 = S) .

For a matrix M , |M | (resp. M+) denotes the matrix with the absolute values (resp.
positive part) of the entries of M .

‖M‖ refers to the operator norm defined by,

‖M‖ = max
x6=0

‖Mx‖
‖x‖

We denote ‖M‖∞ := maxi
∑

j |Mi,j| the max-row-sum norm of M and similarly ‖M‖1 the
max-column-sum norm of M . The Frobenius norm is defined by

‖M‖F =
(∑

i,j

M2
i,j

) 1
2

Any square, non-negative matrix M admits a real eigenvalue that is larger than the modulus of
any other eigenvalue; this non-negative eigenvalue is the so-called Perron-Frobenius eigenvalue,
and is denoted λpf (M).
We will write the stacking of vector rows v1, · · · , vp ∈ R1×n as

V = [v1; · · · ; vp] ∈ Rp×n

Similarly, we will write the stacking of columns vectors u1, · · · , un ∈ Rp as

U = [u1, · · · , un] ∈ Rp×n

Maps and Convexity

Given a map f differentiable at a point x, we denote by ∇f(x) its Jacobian matrix (called
gradient for real valued maps). The convex conjugate of f defined on a real topological space
X is defined by

f ?(v) := sup
x∈X

(x>v − f(x)), ∀x ∈ X ?
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where X ? is the dual space. Given a differentiable function f , we say that it is L-smooth iff

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ X

If f is twice differentiable, L-smoothness is equivalent to

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖y − x‖, ∀x, y ∈ X

If f is convex and twice-differentiable, L-Smoothness is equivalent to

∇2f(x) � LI, ∀x ∈ X

We refer the reader to [20] for a proof of equivalence between these statements. We say that
f is l-strongly convex if it is convex and

f(y) ≥ f(x) +∇f(x)>(y − x) +
l

2
‖y − x‖2, ∀x, y ∈ X (1)

Alternatively, if f is twice differentiable, f is l-strongly convex iff

∇2f(x) � lI ∀x ∈ X

We say that a function f(x1, x2) is bilinear if given x1, the map f(x1, ·) is linear and given
x2, the function f(·, x2) is also linear. We say that a function f(x1, · · · , xm) is m-block
multi-convex if given any i ∈ [m], with all other variables fixed except x1, the resulting
function of xi is convex.
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Chapter 1

Introduction

This thesis focuses on optimization models and methods (algorithms) for large scale and
(or) complex systems with applications to distributed electricity resources applications. We
will start by placing these applications in energy systems in context as it is the source of
motivation for the more theoretical research on heuristics for combinatorial optimization
(Part II) and implicit optimization (Part III).

Arguably, the greatest challenge of this century is reducing the impact developed economies
have on the climate of our planet. Green gas emissions can be attributed directly or indirectly
to our energy use [74], and there are two complementary approaches to tackling this issue:
(1) reducing energy use itself (2) and/or using cleaner energy – by cleaner we mean an energy
usage that leads to less C02 tons equivalent emissions, currently evaluated with the life cycle
analysis methodology [72].

Reducing energy use

Energy use reduction is often approached with technological innovation. For example the
efficiency of cars running on gas has been improved during the last decades: with better
engine combustion strategies, with a reduction of engine internal losses and rolling resistance
(e.g. lighter vehicles) [79], or with the use of regenerative braking [24]. One limitation to
technological innovation strategies is the so called rebound effect. In short, rebound effect
occurs when the reduction of energy use is less than what is expected from a technological
perspective. This phenomenon is often explained as follow: increased efficiency makes the use
of a resource cheaper and therefore more affordable and more widespread [130]. Alternatively,
rebound arises from a ’good conscience feeling’: a resource might be used more because
consumers believe that their behavior has a low polluting impact [151, 143]. For instance,
an individual might use their electric car more than a car running on gas because they
believe it has low impact. This is actually a bad example as research on mile traveled per
electric vehicle suggest the opposite [28]. A better example being the gain in energy efficiency
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of air travel during the last decades and its increasing impact on CO2 emissions [165, 48].
Some researchers argue that it is a rare phenomenon to see such new technologies inducing
an immediate ’backfiring’ rebound effect (i.e. rebound that results in even more energy
consumption than previously observed) [2, 58]. Nevertheless, at a macro level –considering
the long term implications and interactions with other technologies and impact on human
behavior – backfiring is still an open question [130, 143].

These interrogations have lead to a different approach when it comes to reducing energy
use: inducing a change in behavior to consume less energy. A recent example is the flygskam
(’Flight Shame’) movement that aims at discouraging flying to lower carbon emissions. To
this day, this movement is mostly contained to Northern Europe [165, 56]. Such behavioral
changes can also come from policies: for instance the UC Berkeley Institute of Transportation
Studies has focused on understanding the choices being made when it comes to commuting,
one of the aim being to find ways to favor public transportation or bike use [22, 65, 32].
Nevertheless, in the US, policies favoring directly less energy use are scarce, and when they
exist they have an overall moderate impact [33]. As of today, the vehicles per miles traveled
in the US has been increasing for over five decades [106]. The fact is that there is a strong
linear correlation between GDP (i.e. wealth) and primary energy use [1, 70], and between
primary energy use and the amount of goods and services being traded [166]. Given this
fact, there has been limited interest in favoring policies (or funding research) aiming at
reducing substantially energy use and consumption through systemic behavioral change in
the US. This statement might seem contentious at first, we argue that it is a well known
fact that in today’s modern economic system, household consumption level (and therefore
primary energy use), is one of the most important criterion used to assess the health of the
economy. For instance, the fact that EV drivers drive half as less as other drivers seem to
worry policymakers [28]. For these reasons, governments have favored a decarbonized economy
strategy [97]: instead of using less energy, we use cleaner energy. For instance, one of the
strategy of the US in that area is to electrify mobility [49] and increase the share of renewable
energy production in the grid simultaneously [50]. Thereby achieving cleaner energy use. It
is in that specific context that we should place our research in part I.

Cleaner energy use

When it comes to renewable energy integration, solar energy plays a central role, notably
in California [29]. Contrary to non-renewable resources (at the exception of hydro and
geothermal), it is not possible to control the power production capacity of renewable assets.
Most of the time, it is what it is: we cannot control when the sun appears, when a cloud
passes by or when the wind blows. The only controllability is curtailment, used at the expense
of efficiency [164]. For instance curtailment is widely used in the wind energy industry: a
notable example is China with its 50 TWh curtailment in that sector during the year 2016
[126] (for reference this figure matches the annual electricity consumption of Bangladesh
and its 160 million inhabitants). Curtailment is also linked to the unpredictable nature of
renewable electricity, another challenge for renewable integration in the grid. This problem
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can be partly tackled with better prediction models and research on this topic has been
blooming in the last few years [99, 107, 71]. An engineering solution to the controllability and
predictability issues is energy storage. Research and development in energy storage consists
in improving the technology itself or optimizing what can be done with the existing one. For
instance, measuring more precisely the state of charge and state of health of a Li-Ion battery
in order to inform better management strategies is still an active area of research [137, 111].

Distributed Energy Resources integration

One specificity of solar power is that it offers a convenient way of producing electricity at
a local level (notably with rooftop solar [124]) and that it can go hand in hand with the
electrification of mobility. Residential rooftop Photovoltaics (PV) associated with Plug-in
Electric Vehicles (PEV), a form of electricity storage, charging is the local system we will
focus on in the first chapters, and we will see how all these distributed systems can be
coordinated to form a virtual power plant as in [120, 125, 132, 12]. Generally speaking, the
goal of virtual power plants is to coordinate capacities of heterogeneous distributed energy
resources (DERs) for the purposes of enhancing power generation. What do we mean by
’enhancing’ in this context?

Many countries that have integrated a high level of solar power into their energy mix face
the duck curve problem [81]: solar energy is produced during the day, if removed from the
total demand (the result of this subtraction is often called net energy demand), the resulting
power demand across the day displays a significant drop when the sun rises, and a significant
increase when the sun sets. This phenomenon becomes more pronounced when more solar
power is present. As a consequence, in order to follow this demand dynamic, more flexible
generation is needed, which ultimately limits the integration of solar energy. Moreover, in
order to follow these power ramps, costly (and polluting) gas power plants are often needed
[155]. A solution to this issue is to flatten the duck curve with demand response: we can
use the fleet of parked PEVs as a way to alter demand by deciding when to charge or not.
Note that cars are parked approximately 95% of the time [15]. If we only consider all the
Tesla cars sold in 2020, the total aggregated capacity of their batteries is approximately 3.5
GWh [150](for reference the maximum energy that can be produced in an hour by the Diablo
Canyon nuclear power plant is 1GWh [43]). Of course, the 3.5 GWh we just mentioned is
not an available energy resource per se: among others, PEVs, when parked are not always
plugged to the grid and the average state of charge is often far from being zero (and vehicle
discharge to grid is rare), nevertheless this rough figure gives an idea of the potential PEVs
have when it comes to flattening the duck curve. Depending on the country or region, there
are different ways for such demand response to be economically attractive. One such way is
remuneration through electricity markets.

The electricity market purpose is the minimization of the cost for supplying a given
amount of energy during a given time period. The way markets operate is country and
region specific. Nevertheless, the Day Ahead Market (DAM) exists and operates in a very
similar ways in many countries across Europe and in the United States: one day before
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operation, bids (quantity and price) for electricity supply and demand for each hour of the
next day are made. The market operator then proceeds by clearing the bids that minimize
the cost of operation for the whole system (sometimes considering congestion and losses in
the grid). The DAM cleared prices reflect the duck curve indirectly: most of renewable energy
production have zero marginal cost, which tends to mechanically lower the prices during the
day, while ramping up or down electricity production results in higher price because only a
portion of generators are able to provide quick variations of power (e.g. gas power plants).
Moreover prices are high because these flexible generators remunerate themselves only during
these events. Therefore as an objective for operating Distributed Energy Resources (DERs),
composed of PEVs and distributed PV generation, we will consider participation in the DAM,
achieving two purposes that go hand in hand: facilitating the integration of renewable energy
by flattening the duck curve and making the system more efficient by reducing the cost of
operation.

We mentioned earlier that one of the issues with renewable energy integration is unpre-
dictability. More generally speaking, there are many uncertainties at play in the electricity
system [174]: demand is unpredictable, generators can experience failures, and so does the
grid. Therefore, there are other mechanisms in place to align supply and demand during the
lapse of an hour: ancillary services and real time markets (RTM) among others. Participation
of DERs in these markets can therefore also alleviate the unpredictable nature of renewable
energy. Most research on distributed energy resource participation in RTMs do not take into
account its operation specificities. In the last chapter of Part I, our main contribution is to
show how we can formulate the coordination of DERs as a convex optimization problem,
considering when information is available and when a decision can be made.

Distributed optimization

As a start, in the first chapter of part I, we show how we can formulate the participation of
DERs (PEVs and rooftop PV) in the DAM as a convex optimization problem and present
how the computational burden can be distributed to local agents, while limiting the exchange
of private information to a central entity. Distributed convex methods have been used for
coordinating DERs previously in [36, 105, 94, 94], our main contributions in that application
setting are as follow:

• When bidding on electricity markets we do not consider that we know the cleared prices
beforehand. Instead we build a prediction and a statistical model on the error. More
precisely, we estimate a covariance matrix that we use to take into account the risk of
our prediction using a Markowitz portfolio approach [26].

• We consider uncertainty on the aggregate state of DERs within our perimeters (such as
the average state of charge and mobility use).

• We provide a detailed convergence analysis for our distributed algorithms and the
specific structure of the problem: the uncertainty consideration on mobility leads to a
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sub-linear convergence proof. We actually show that this analysis is more pertinent
than research displaying linear convergence when the problem scales up.

• We point out the inherent limitations of some distributed methods when the number
of agents increases and propose the use of distributed algorithms using a combination
of stochastic methods and Nesterov acceleration techniques [114]. We also provide a
convergence rate analysis for these new algorithms.

In this firs part, as it is done in most research on PEV charge scheduling, we model the
charging decision as a continuous variable: at a given point in time we assume that we can
charge at a power level that can be continuously chosen between 0 and 10kW (for example).
In practice most PEV chargers only allow for either charging – possibly at different power
levels – or not charging [133]. This consideration leads to mixed integer or combinatorial
optimization problems (NP-hard and non-convex [96]). In the particular case of distributed
optimization, where agents solve their local problems, this might not be an issue if the local
problems are not high dimensional. For one PEV participating in the DAM per prosumer
as in Chapter 2, the decision variable would be in {0, 1}24 (for each hour of the day decide
whether to charge or not). A problem of this size can be solved locally using combinatorial
optimization solvers such as CPLEX by IBM [23] in less than a second. Nevertheless, for
combinatorial problems in {0, 1}n with n > 50− 100 such solvers can become too slow. This
threshold is already reached if we consider two PEVs simultaneously. Therefore, we see that
even if the problem can be distributed, solving local problems is a bottleneck. Particularly
given the fact that the local problems need to be solved many times in order to reach a
consensus. We remark that most commercial combinatorial problem solvers try to find the
optimum, but for many problems that arise in energy scheduling, sub-optimality is not an
issue. For that reason, we decide to explore and revisit Hopfield Neural Networks, a first
order method heuristic for combinatorial problems introduced in 1985 by Hopfield & Tank.

Combinatorial Optimization and Hopfield Neural Networks

Hopfield neural network consists in the time evolution of a state and a hidden state, in which
the hidden state dynamic is linear with respect to the state and the state itself obtained by
applying a non-linear activation map to the hidden state [76, 77]. Even though HNNs original
purpose was not to solve combinatorial problems (it served as a content addressable memory
[76]), in [78], the authors notice that its dynamic could be used to build an algorithm for the
traveling salesman problem. It was shown during the following years to be a good heuristic
for many combinatorial problems. Seeing the potential of HNNs a a tool to solve problems
in energy systems (among others), we decide to revisit and extend them using a modern
approach. Our contributions are as follow,

• we extend HNNs to non quadratic objective and propose a hidden state evolution that
is nonlinear with respect to the state.
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• we show that HNNs can be interpreted as a gradient descent on a non-euclidean
geometry, called mirror descent and provide a geometric interpretation for HNNs as a
heuristic to solve combinatorial problems.

• we extend HNNs to more general descent methods that can improve the quality of the
heuristic and we propose an algorithm for finding a descent direction at each iteration
similar to that of the Frank-Wolfe algorithm.

• We advance the convergence analysis for HNNs by proving not only numerical conver-
gence of the objective across iterations but also a convergence rate of O(1/k) similar to
that of convex methods.

• We propose a dual method approach allowing the consideration of linear constraints.
Hence, the final method we build is a heuristic for solving nonlinear combinatorial
problems under linear constraints.

We implement our extended Hopfield methods on random combinatorial and nonlinear
problems. We also lead a study case for optimal economic load dispatch where generators
can be turned on or off (with an associated cost to such actions). We show through these
experiments, comparing our solutions to exact solvers or convex relaxation heuristics, that
the Hopfield method offers good solutions in many instances. We believe that there is a
potential for the use of such methods across a variety of problems that arise in energy systems
where some of the optimization variables are discrete and when the problem is too large to
use exact solvers.

To this day a stochastic version of Hopfield methods, called Boltzmann machine is still
widely use as an element of deep learning architectures for unsupervised learning [62] where
it used to evaluate probability distributions on datasets. As we mentioned earlier, one of our
contribution was to show that HNNs are a special case of mirror descent, mirror descent can
be seen as a proximal algorithm using a Bregman divergence (instead of an L2 regularization).

What about other forms of divergence? It is that question that led to the idea of implicit
optimization in part III. In this last part, we introduce the Fenchel divergence, a mapping
that is able to represents whether a constraint of the form x = φ(y) is satisfied. Interestingly,
this type of constraint is present by definition in Hopfield methods. The Fenchel divergence,
via the Fenchel conjugate is also directly related to duality theory, and therefore offers
connections to distributed optimization.

Implicit optimization

Implicit optimization offers even more surprising connections regarding our research in
distributed optimization, HNNs and combinatorial optimization. Implicit optimization
corresponds to optimization programs with constraints that are implicit, meaning that part
of the optimization variable is defined implicitly via an equation of the type x = φ(x, u) with
φ a nonlinear map we call implicit map. We consider two possible conditions for this map: a
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contraction condition or what we call the Fenchel condition (in reference to the Fenchel-Young
inequality [26]). This type of optimization modeling being new, our first contributions are:

• showing, via the universal approximation theorem [30, 40], the generality of the Fenchel
condition, mainly the fact that any nonlinear map φ approximately satisfies it.

• we show that implicit models can be used for a multitude of applications and encompasses
a multitude of optimization problems across different fields. Notably, we show that we
can use it: (1) to represent combinatorial optimization problems, (2) to solve nonlinear
control problems and (3) learn with neural networks.

• we show how to compute the gradient using the implicit function theorem and propose
a stochastic approach.

This new modeling approach also leads to novel methods, and therefore new ways of ap-
proaching combinatorial optimization, nonlinear control, learning with neural networks. We
explored and developed two sets of methods for implicit optimization:

• in some cases, gradient descent can be run in a tractable manner. We show that this is
the case under the contraction condition via the use of the implicit function theorem.

• a novel method called Fenchel Alternative Direction Method of Multipliers (Fenchel
ADMM). Which is an algorithm that uses duality and an augmented Lagrangian with
Fenchel divergence penalization (in lieu of the classic L2 penalization). We show that
each step of the algorithm consists of convex optimization problems.

We remark that dual methods are at the core of distributed methods, this method can be
used to coordinate DERs with nonlinear constraints tying them implicitly. After illustrating
our methods, (1) by solving random quadratic combinatorial optimization program, (2) with
a study case on PEV charging parking management with behavioral modeling; we devote
a whole chapter on implicit deep learning. We show that implicit deep learning, which can
be seen as an infinite sequence of feedforward networks with the same weight at each level,
contains most known deep learning structures. Our contributions on that subject are as
follow:

• We establish rigorous and numerically tractable sufficient conditions for the implicit
deep learning model to be well-posed and show how such models can be composed to
form even more intricate and rich models

• we show how to model a variety of network architectures (fully connected, convolutional
networks, residual and recurrent networks) as implicit models

Finally, we illustrate our new models and methods on (1) synthetic data as well as real
datasets such as (2) MNIST and the (3) German traffic sign recognition dataset.
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All in all we believe that with accelerated distributed methods, Hopfield methods and
implicit optimization; we have advanced modeling capabilities and methods for energy systems
applications. With accelerated distributed methods we show how we can coordinate a large
fleet of DERs to facilitate renewable electricity integration, with Hopfield methods we have
a heuristic for large combinatorial problems that can arise when modeling systems such
as interconnected PEVs. With implicit optimization we propose new methods to tackle
non-linearity in the constraints (e.g. that can arise when considering a behavioral model
or a nonlinear model for a battery) and also solve combinatorial problems. We branch out
with implicit deep learning, a new class of deep learning, that is not directly connected to
energy applications, but that could be extended, for instance, to form a new approach to
reinforcement learning (a technique widely used today in energy systems [93, 117, 86]) or
simply as a tool for learning from energy datasets, may it be forecasting weather conditions
[161] or predicting electricity prices.
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Chapter 2

Distributed Convex Optimization
Methods for DER Participation in
Electricity Markets

In this chapter we present an optimal Day-Ahead Electricity Market (DAM) and bidding
strategy for an aggregator leveraging a pool of residential prosumers: residential customers
with local photovoltaic (PV) production and plug-in electric vehicle (PEV) charging flexibility.
The goal of the aggregator is to optimally manage its pool of flexible resources, in order to
minimize its cost given these two markets.

The aggregator’s point-of-view differs from the social planner angle that is often taken in
the existing literature: mainly the aggregator is considered to be a private entity (e.g. an
electricity retailer). We propose a novel approach to tackling this optimization problem by
including risk management in the objective function and chance constraints on the aggregated
PEV mobility constraints. In a first step, we model local system constraints and define a
stochastic optimization scheme that exploits the problem structure to distribute the objective
among prosumers via dual-splitting. Dual splitting is achieved with two consensus variables:
shadow prices for energy and for PEV charging. In a second step, we propose a projected
gradient ascent algorithm to solve the dual problem and prove a rate of convergence.

In the first part of the chapter, we will focus largely on the day-ahead market (DAM) to
illustrate our methods. In Chapter 4 we will show how to model and incorporate a real time
market (RTM) strategy using Model Predictive Control (MPC).

2.1 Introduction

Context and Motivation

As a global leader in climate change policy, California has one of the highest renewable energy
target in the world; 50% of electricity supply will be from renewable electricity sources (RES)
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by 2030. 1 Most of the RES that California uses are variable and intermittent such as wind
and solar power. The need to ramp up or ramp down controllable, often non-renewable,
generation sources due to the variability of the RES is a current and increasing challenge for
power system operators and policy makers.

Historically, supply-side resources have followed the load. Load, in general, has been
considered to be inelastic, as the prices that are observed by retail customers do not correspond
to wholesale electricity prices. End-users are most of the time subject to flat rates. With the
increase in variable supply resources there is increasing interest in the use of demand-side
resources to participate in the wholesale markets as a mechanism to resolve some of the
supply-demand imbalances that could otherwise occur.

In this context, both demand response and energy storage are considered possible miti-
gating measures and technologies that can provide flexibility to the grid. In many electricity
markets (e.g. Germany, Italy, California) peak demand occurs after sunset, when solar power
is no longer available, this phenomenon is commonly referred to as the duck curve [42] . Peak
power demand creates a need for more flexible power supply [80] which could be leveraged on
the residential demand-side as suggested in [36, 4, 169].

We take the example of the California Independent System Operator (CAISO) that
operates three distinct markets, a day-ahead market, a real-time market, and ancillary
services (such as congestion revenue rights and convergence bidding).

In this chapter, residential end-users with controllable plug-in electric vehicle (PEVs)
chargers and photovoltaic (PV) systems are referred to as prosumers. An aggregator is a
company pooling prosumers to bring them to the Day-Ahead energy Market for electricity
(DAM). The DAM takes place one day before the operating day, and consists in various
market entities bidding prices and quantities for each hour of the next day. The objective
of the aggregator is to maximize the total electricity profits it delivers in the markets. It
is important to highlight the fact that a single prosumer cannot participate in electricity
markets because it does not fulfill the power threshold requirements of the market regulator.
It is true that Time-of-Use tariffs (TOU) and Real Time Prices (RTP) aim to bring the
market to the prosumer level. Nevertheless, there might arguably be at this level a low
acceptance of RTP [7]. Moreover TOU rates are not able to capture entirely the state of the
electricity system and can even create higher peak loads as [131] suggests.

Two main challenges for managing a large population of flexible resources are (i) un-
certainty and (ii) computational scalability. (i) First, we must ensure consumer comfort
(e.g. mobility) in the face of uncertain electricity consumption and limit financial risk in the
face of uncertain DAM prices. (ii) Second, we require computationally scalable scheduling
algorithms that guarantee delivered power from the aggregator to the power system operator.

1In early 2017, California Senate leader Kevin de León put forth a bill that would mandate the State to
use 100% renewable power by 2045.
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Literature Review

A growing body of literature addresses optimal charging of PEV populations and residential
demand response [36, 105, 94, 94]. This research can be classified as having centralized or
distributed protocols. Centralized algorithms [37, 144, 95], use a central infrastructure to
communicate with each agent, gather their information, and compute the optimal aggre-
gated load profile. The challenges for centralized methods are scalability with respect to
communication and computation, as well as privacy issues. In distributed or decentralized
optimization algorithms [94, 129], each local agent solves its own problem and communicates
information to its neighbors or the aggregator.

Market bidding strategies and market uncertainty for aggregated PEVs have been studied
in [156, 157, 21]. The aforementioned methods could successfully address uncertainty in
aggregated load scheduling, but do not provide a rigorous convergence analysis (except [94]).
In particular, finding the necessary number of iterations to reach a specific precision is crucial
if we seek to assess implementation burdens for the aggregator.

In this chapter, we construct a tailored optimization method for scheduling uncertain
electricity resources in the uncertain DAM using aggregated resources. Leveraging the
particular structure of the problem, we derive a distributed dual-optimization scheme. We then
perform a convergence analysis to yield an explicit upper-bound on the rate of convergence,
for the projected gradient ascent algorithm. Finally, a case study is implemented to illustrate
the performance of our algorithm. Ultimately, the contributions of this chapter to ensemble
DER control are twofold:

1. Formulation of a convex optimization scheduling problem and distributed algorithm
that accounts for uncertain DAM and RTM prices and PEV availability.

2. Proof of an upper-bound for convergence

Chapter Structure

The report is structured as follows:

• In Section 2.2, we formulate the DER model with local constraints on power, energy,
and availability. Next, we define an optimization model to address risk management
for DAM bidding, in the face of uncertain DAM prices and uncertain PEV mobility
aggregation.

• In Section 2.3, we show how to exploit the problem structure to enable distributed
computations.

• In Section 2.4, we propose a distributed gradient ascent method to solve the problem
and derive an explicit bound for convergence.
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• In Section 2.5, we illustrate our model for price prediction and corresponding risk
(covariance matrix). We then show how our algorithm performs with a case study of
100 prosumers.

Notation and Nomenclature

The following notation is specific to this chapter. Uppercase letters refer to variables with
units of power (kW ) while lower case letters refer to variables with units of energy (kWh).
Symbol x(t) refers to the value taken by variable x at time t. In the absence of the exponent
we will consider the variable x as a vector with x(t) as its components. The index xi refers to
a local prosumer variable i ∈ [N ] and sum(x) =

∑N
i=1 xi to the sum of these local variables.

Symbol X̂ refers to the average or estimate of a random or unknown variable X. Finally,
x (respectively x) refers to an upper (lower) bound of the variable x. In the following
table we gather the nomenclature that will be used in this chapter. These notations will be
progressively introduced, but the reader can come back to this table at any point for a quick
look up.

2.2 Local System Model and Problem Formulation

for Day Ahead

We start by building the model used in the DAM, we will come back to this local prosumer
model once we tackle the RTM in chapter 4. We will consider that each prosumer has a PEV,
a PV installation and is connected to the grid.

Local Model for the Prosumer

Let us consider a given prosumer i ∈ [N ], with N the number of prosumers.

Local Power Balance

At any point in time the local electricity demand, composed of the residential load Li and
the charging rate of the PEV (EVi), has to be met with supply either with the local PV
installation (Si) or power from the grid (Gi). We have

Li + EVi ≤ Si +Gi (2.1)

Where the inequality here should be interpreted elementwise. In other words, this inequality
must hold at any point in time. Note that the power balance has been relaxed from an
equality constraint to an inequality constraint representing the fact that PV production can
be curtailed.
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Table 2.1: Nomenclature for Part I

N Number of prosumers

∆t Time-step for the Day Ahead Market: 1 hour

∆tRT Time-step for Real Time Market: 0.25 hours (15 min)

T Time-Horizon (hours)

TH Model Predictive Control Time-Horizon for RTM (hours)

ρ or ρDA and ρRT respectively DA and RT risk aversion parameters

δ L2 regularization parameter

All of the following variables are ∈ RT

p or pDA Day-Ahead Market price

Li Uncontrollable residential load of prosumer i

Si Solar PV production of prosumer i

EVi Day Ahead Charging rate of PEV i

evi State of Energy of PEV i

Gi Day Ahead Power imported from the grid for prosumer i

All of the following variables are ∈ R4T

pRT Real-Time Market price

∆EVi Real Time Charging rate of PEV i deviation from day ahead schedule

∆Gi Real Time Power imported from the grid for prosumer i deviation from DA

C covariance matrix for DAM price prediction error, ∈ RT×T

CRT covariance matrix for RTM price prediction error, ∈ R4TH×4TH

Local Grid Constraints

At any given node in the distribution network, there is a limit on power import or export
(2.2). Typically, for residential customers, the power import cap from the grid is Gi ' 10 kW

Gi ≤ Gi ≤ Gi (2.2)

Note that our model makes it possible to export power to the grid (i.e Gi < 0).
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Figure 2.1: Prosumer system representation

Local PEV Constraints

We use a simple model of charge for the PEV: we consider perfect round-trip efficiency for
the battery. Equation (2.3) governs the PEV battery state of energy (SOE) dynamics. The
difference with the model used in [94] is the fact that the PEVs are not in a closed system.
When the i-th PEV leaves its location, it is no longer in the aggregator’s perimeter. For
instance, a PEV can leave with a half state of charge and come back fully charged (because
it has charged elsewhere). Therefore, EVi represents the on-site charge only, while EVD,i is a
value that represents the observed and uncontrolled charge or discharge of the PEV while
off-site. We denote evi the state of charge of a PEV for prosumer i, we have the following
dynamic for the charge of the battery

evi(t) = evi(t− 1) + EVi(t)∆t− EVD,i(t)∆t (2.3)

We consider that the state of charge at each given point in time should be between a minimum
and maximum state of charge (denoted evi(t) and evi(t) respectively), we rewrite (2.3) as an
on-site cumulative energy consumption constraint, which is expressed as:

evi := evi + AEVD,i ≤ AEVi ≤ evi := evi + AEVD,i (2.4)

Where we incorporate in the bounds of the state of charge the uncontrolled charge and
discharge of the PEV while keeping the same notation. In the previous equation, A is the
discrete integration matrix:

A := ∆t


1 . . . 0
...

. . .
...

1 . . . 1

 ∈ RT×T

Finally, the PEVs charging power constraint is given by:

EV i ≤ EVi ≤ EV i (2.5)
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Note that when the PEV is un-plugged at a given time t, we require EV i(t) = EV i(t) = 0
because the battery is not physically present. For the purpose of conciseness, the convex
feasibility set generated by the local constraints (2.1), (2.2), (2.4) and (2.5) is hereby referred
to as Li.

Optimization problem formulation

Aggregator’s objective

We model the DAM price p as a random variable in RT that follows a multivariate Gaussian
distribution

p ∼ N (p̂, C), with C � 0

The total power bought or sold by the aggregator in the DAM is the vector sum(G) =
∑N

i=1Gi.
The choice of the quantity imported from (or exported) the grid sum(G)(t) for t ∈ [T ] can
be considered as a portfolio problem where the assets are the DERs, the returns are the DAM
prices and the budget constraint is the linear flexibility constraints Li described previously.
The optimization of sum(G) involves a trade-off between the expected DAM cost p̂>sum(G)
and its variance sum(G)>Csum(G).

We define the optimization objective f for the aggregator to be given by (2.6), With ρ
representing the risk aversion propensity of the aggregator and δ a regularization parameter.
We aim at producing a Pareto optimal choice that balances the expected cost/benefits and
the risk that comes from making the DAM price prediction p̂

f := p̂>sum(G) +
ρ

2
sum(G)>Csum(G) +R(EV,G) (2.6)

with the regularization

R(EV,G) :=
N∑
i=1

Ri(EVi, Gi) :=
δ

2

N∑
i=1

‖EVi‖2 + ‖Gi‖2 (2.7)

This regularization term penalizes PEV battery degradation as described in [94], [112].
Nevertheless, battery degradation can also depend on other factors than charging power
magnitude. The regularization in sum(G) penalizes the magnitude of the Gi’s and can be
interpreted as a cost linked to local stability of the distribution grid.

Aggregated PEV mobility uncertainty

Predicting PEV mobility at the local level is not tractable, as the local PEV use is highly
unpredictable and it may require access to sensitive private information. This is not the
case at the aggregated level, where local data is not needed and behaviors are smoothed via
the law of large numbers. Therefore we make the choice of modeling PEV mobility and its
uncertainties at the aggregate level via chance constraints – explained next.
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We hypothesize that the aggregated energy and power bounds, that we denote:

sum(ev), sum(ev), sum(EV ), sum(EV )

follow multivariate normal distributions with diagonal covariance matrices. Remark that for
N large, the central limit theorem supports part of this hypothesis (nevertheless there is no
guarantee that the covariance matrix is diagonal). We require these bounds to be respected
for each hour with a probability of at least η. Let us denote Φ(·) the cumulative distribution
function for a zero-mean, unit variance Gaussian random variable. Consider the first lower
bound. We can write

sum(ev)(t) ∼ µ(t) + σ(t)N (0, 1) (2.8)

where µ(t) and σ(t) are the mean and standard deviation. Instead of requiring this lower
bound to be satisfied for all realizations, we require that the lower bound is satisfied with
probability η,

P
(
sum(ev)(t) ≤ (Asum(EV ))(t)

)
≥ η (2.9)

which is equivalent to(
Asum(EV )

)
(t) ≥ µ(t) + σ(t)Φ−1(η) := sum(ev)

η
(t) (2.10)

The same procedure is applied to the other aggregated random lower and upper bounds. The
use of chance constraints allows to be more robust to possible prediction error on mobility
when optimizing for G. In this section, we presented some linear equality constraints to be
considered for robustness purposes. These type of constraints could also be considered for
the grid stability. For instance consider a neighborhood with 100 prosumers connected to a
single substation with a 500kW power limit: in that scenario all the prosumers cannot reach
their Gi = 8kW power cap at the same time. To guarantee the stability of the network, we
could consider the constraints,

Gi ≤ 8 kW ∀i ∈ [N ] and sum(G) ≤ 500kW

Which is similar in structure to the robust constraints we are considering.
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Optimization Problem Formulation

We are now positioned to formulate a robust optimization problem for the aggregator

min
EVi,Gi,sum(EV ),sum(G)

p>sum(G) +
ρ

2
sum(G)>Csum(G) +R(EV,G)

s.to: Local constraints : ∀i Li

Aggregated variable constraints :

sum(EV ) =
N∑
i=1

EVi, sum(G) =
N∑
i=1

Gi

Aggregated EV (robust) constraints :

sum(ev)
η
≤ Asum(EV ) ≤ sum(ev)η (2.11)

sum(EV )
η
≤ sum(EV ) ≤ sum(EV )η (2.12)

We denote f ? the optimal cost for (2.12). This optimization problem couples the local
charging and grid import/export (EVi, Gi) optimization variables in the objective via the
variance term sum(G)>Csum(G). Additionally, coupling terms appear with the aggregated
robust PEV mobility constraints. Without these coupling terms, the optimization problem is
sum-separable (meaning that each local prosumer can solve its own optimization problem).
That said, the problem contains independent local constraints Li as well as a sum-separable
regularization and objective term

p̂>sum(G) =
N∑
i=1

p̂>Gi

This structure can be exploited to distribute the objective – discussed next.

2.3 Distributed Optimization Scheme

Dual splitting can be used to exploit the problem structure the aggregator faces. We show in
the following theorem that (2.12) is equivalent to a dual problem

Theorem 2.3.1. Solving (2.12) is equivalent to solving:

max
µ, ν

s.to: µ ≥ 0

(
− 1

2ρ
ν>C−1ν + c>µ+

N∑
i=1

min
EVi, Gi

s.to: Li

(
G>i (p− ν) + EV >i Bµ+Ri(EVi, Gi)

))

With B ∈ RT×4T , and c ∈ R4T given parameters (cf. Proof).
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Proof. This proof uses duality theory: namely, the aggregated decision variables and chance
constraints from (2.12) are used to form the dual problem and the corresponding Lagrangian
L given by (2.13). Slater condition holds, henceforth the min and max symbols can be
interchanged without generating a dual gap.

L =
N∑
i=1

(
p>Gi +Ri(EVi, Gi)

)
+
ρ

2
sum(G)>Csum(G)

+ µ>1 (sum(ev)
η
− Asum(EV )) + µ>2 (Asum(EV )− sum(ev)η)

+ µ>3 (sum(EV )
η
− sum(EV )) + µ>4 (sum(EV )− sum(EV )η)

+ ν>1 (sum(EV )−
N∑
i=1

EVi) + ν>2 (sum(G)−
N∑
i=1

Gi) (2.13)

where the µ’s≥ 0 and ν’s are the dual variables associated respectively with the inequality
and equality constraints. Using the fact that

min
sum(G)

ρ

2
sum(G)>Csum(G) + ν>2 sum(G) = − 1

2ρ
ν>2 C

−1ν2

And the following equality constraint on the dual variables that ensures the problem is
bounded

A>(µ2 − µ1) + µ4 − µ3 + ν1 = 0

Leads a formulation for the dual function

g(µ, ν) = − 1

2ρ
ν>C−1ν + c>µ+

N∑
i=1

min
EVi,Gi, s.to. Li

G>i (p− ν) + EV >i Bµ+R(EVi, Gi)

with µ = [µ1; µ2; µ3; µ4] , ν = ν2, c = [sum(ev)
η
; −sum(ev)η; sum(EV )

η
; −sum(EV )η]

and
B =

[
−A> A> −I I

]
Which concludes the proof.

Remark 2.3.1. Dual variables are often interpreted as shadow prices. A shadow price
corresponds to a monetary value assigned for a constraint to be enforced. Here the term −ν?
can be interpreted as a shadow price for power export/import and Bµ? as a shadow price for
PEV charging.

Theorem 2.3.1 shows that only the dual variables (µ?, ν?) are needed for the prosumers
to reach a consensus equivalent to solving the primal problem (2.12). With this distributed
scheme the aggregator can partake the primal objective and the computational burden
between the prosumers (each prosumer solves its own linear constrained convex quadratic
program). In the next section, we discuss an algorithm to find the optimal dual variables
(µ?, ν?) and converge to a consensus among prosumers.
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2.4 Distributed Ascent Method

In this section, a projected gradient ascent algorithm with constant step-size is outlined to
solve the Lagrange dual problem in Theorem 2.3.1. The algorithm’s rate of convergence and
its so-called oracle complexity K(ε) are derived. The oracle complexity guarantees that for a
number of iterations k > K(ε):

|f ? − g(µk, νk)| < ε (2.14)

ε > 0 is the desired solution precision, µ?. In practice we do not have access to the value
f ? in advance. Therefore the criterion (2.14) is not practical – except when we can directly
solve the dual problem. In practice,one should consider a criterion of the form,

|g(µk, νk)− g(µk−1, νk−1)| ≤ ε

Dual Ascent Method

The dual ascent method associated to the dual problem consists in updating the dual variables
at a given iteration (k) with the feedback of the aggregated optimal local response of the
prosumers: the aggregator only has to have access to the sum of prosumer response to shadow
prices. Therefore this method allows for privacy as prosumers can be bundled together. The
algorithm reads

Algorithm 1 Dual Ascent Method

1: Initialization: k = 0, µ := µ0 ≥ 0 and ν := ν0

2: while f ? − g(νk, µk) ≥ ε do
3: k + 1← k
4: (1) Find the optimal local solutions EVi and Gi

5: for i = 1 to N do
6: EV k

i , G
k
i = argminG>i (p− νk) + EV >i Bµ

k +Ri(EVi, Gi) s. to: Li

7: end for
8: (2) Update the dual variables µ and ν

9: µk+1 :=
(
µk + αc+ α

∑N
i=1B

>EV k
i

)
+

10:

11: νk+1 := νk − α 1
ρ
C−1νk − α

∑N
i=1G

k
i

12: end while

Where α is the step-size (we will provide an explicit choice of step size in the next
paragraphs). Let us derive the convergence rate of this dual ascent algorithm. Let us re-write
the Lagrangian

g(ν, µ) = g0(ν, µ) +
N∑
i=1

gi(ν, µ)
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with

g0(ν, µ) = − 1

2ρ
ν>C−1ν + c>µ

gi(ν, µ) = min
EVi,Gi, s.to. Li

G>i (p− ν) + EV >i Bµ+Ri(EVi, Gi)

The gradient of g0 w.r.t. (ν, µ) is given by

∇g0 =
[
− 1

ρ
C−1ν ; c

]
(2.15)

Therefore, the Hessian of g0 satisfies the following bound

1

ρλ
I � −∇2g0 (2.16)

where λ is the smallest eigenvalue of C. Using Danskin’s Theorem (refer to[26]) to derive the
gradient of gi w.r.t. (ν, µ) yields:

∇gi =
[
−G?

i (ν, µ) ; B>EV ?
i (ν, µ)

]
(2.17)

Where

EV ?
i (ν, µ), G?

i (ν, µ) = argmin
s.to. Li

G>i (p− νk) + EV >i Bµ
k +Ri(EVi, Gi)

Note that the local optimization problems are strongly convex and therefore the local solutions
are unique for a given {ν, µ}. In the following, we will show that this gradient is smooth.
Given (ν1, µ1) and (ν2, µ2), let i ∈ [N ] and drop the index i temporarily, we denote the
corresponding optimal solutions by G?

1.EV
?

1 and G?
2, EV

?
2 respectively. Considering the

L2 regularization (2.7). Using the first order optimality condition for convex constrained
problems on the local optimization problems{

(p− ν1 + δG?
1)>(G−G?

1) ≥ 0, ∀G satisfying the local constraints

(p− ν2 + δG?
2)>(G−G?

2) ≥ 0, ∀G satisfying(· · · )

As G?
1.G

?
2 satisfy the local constraints, we have that{

(p− ν1 + δG?
1)>(G?

2 −G?
1) ≥ 0

(p− ν2 + δG?
2)>(G?

1 −G?
2) ≥ 0

Summing these two inequalities gives

(ν2 − ν1)>(G?
2 −G?

1) ≥ δ‖G?
1 −G?

2‖2
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Which gives, using Cauchy Schwartz inequality,

‖G?(ν1, µ1)−G?(ν2, µ2)‖ ≤ 1

δ
‖ν2 − ν1‖ (2.18)

using the same approach, we can show that

‖EV ?(ν1, µ1)− EV ?(ν2, µ2)‖ ≤ ‖B‖
2

δ
‖µ1 − µ2‖

all in all the above gradient inequalities allow us to prove that gi is 1
δ
‖B‖2-smooth (‖B‖ ≥ 1).

For T ≥ 10 we have ‖B‖ ≤ T , therefore we will consider the gi to be T 2

δ
smooth. Since gi is

the point-wise minimum of a jointly concave function of (ν, µ) it is also a concave function.
Using this fact, concavity, (2.16) and (2.17), we conclude that g is a L-smooth differentiable
concave function with

L =
1

ρλ
+
NT 2

δ
(2.19)

Remark that from this we have directly L = O(N) (T and λ are independent of N). We
will use this result extensively in our convergence rate analysis in this chapter and chapter 3.
From the smoothness of the dual function, we are able to prove the following convergence
results,

Theorem 2.4.1. Let µ? and ν? be optimal variables and consider Algorithm 1. A step-size
choice of α = 1

L
leads to:

f ? − g(µk, νk) <
M

2k
(‖ν0 − ν?‖2 + ‖µ0 − µ?‖2)

Additionally, the oracle complexity (or wosrt case complexity) of Algorithm 1 is:

K(ε) =
L

2ε
(‖ν0 − ν?‖2 + ‖µ0 − µ?‖2)

In other words our algorithm is O(N
k

)

Remark 2.4.1. A proof of convergence (with derived rate) for L-smooth convex optimization
problems can be found in [20]. We include a proof for comprehensiveness.

Proof. Let k ≥ 1 and ωk := [νk;µk], then by L-smoothness of g:

g(ωk+1)− g(ωk) ≤ ∇g(ωk)>
(
ωk+1 − ωk

)
+
L

2
‖ωk+1 − ωk‖2

Using the non-expansiveness property of (·)+ and the Cauchy-Schwartz inequality we get

g(ωk+1) ≥ g(ωk) +
(
α− Lα2

2

)
‖∇g(ωk)‖2
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The maximum of the quadratic function t 7→ t− Mt2

2
is achieved at t = 1

M
. Substituting

this step-size choice, taking the opposite of the inequality and adding f ? = g(ω?) (ω? ∈
argmax g(ω)) on both sides yields

g(ω?)− g(ωk+1) ≤ g(ω?)− g(ωk)− 1

2L
‖∇g(ωk)‖2 (2.20)

Consequently, the error sequence {g(ω?)− g(ωk+1)}+∞
k=0 is decreasing in k. By concavity of g

we have that
g(ω?) ≤ g(ωk) +∇g(ωk)>

(
ω? − ωk

)
(2.21)

Combining (2.20) and (2.21) leads to

g(ω?)− g(ωk+1) ≤ ∇g(ωk)>
(
ω? − ωk

)
− 1

2L
‖∇g(ωk)‖2

=
L

2

(
‖w? − wk‖2 − ‖w? − wk − 1

L
∇g(wk)‖2

)
Using the fact that for x ≥ 0 and for all y ∈ Rn,

‖x− y+‖ ≤ ‖x− y‖

And the dual ascent update, we have that

‖w? − wk − 1

L
∇g(wk)‖2 ≥ ‖w? − wk+1‖

Therefore

f ? − g(wk+1) ≤ L

2
(‖ωk − ω?‖2 − ‖ωk+1 − ω?‖2)

Using the fact that the error is decreasing, it is possible to write this bound as a telescopic
sum in the following way:

g(ω?)− g(wk) ≤ 1

k

k−1∑
j=0

(g(ω?)− g(wj))

≤ M

2k

k∑
j=0

(‖ωj − ω?‖2 − ‖ωj+1 − ω?‖2)

≤ M

2k
‖ω0 − ω?‖2

Which establishes the claim.



CHAPTER 2. DISTRIBUTED CONVEX OPTIMIZATION METHODS FOR DER
PARTICIPATION IN ELECTRICITY MARKETS 27

2.5 Study Case for Convergence Analysis

In this section we illustrate the proposed dual ascent algorithm with a case study in California
under CAISO including 100 modeled prosumers with PEV and PV panels. We will only
focus on the convergence of the dual algorithm and we will not provide examples of resulting
optimal power profiles for PEV charging and market participation – but we will do so in
Chapter 4. To begin, we describe the simple price forecast model we use for the day ahead
market.

Day-Ahead Energy Market price Model

The day-ahead market in California (CAISO) consist of three separate processes. The first
process assess whether the bidders may be able to exert market power, in a second step
CAISO forecasts the level of supply needed to meet the demand for each hour. Finally,
the additional plants that must be ready to generate electricity are determined. Bids and
schedules can be submitted up to seven days in advance, but the market closes at noon
the day before and the results are available at 1pm. A bid for a given hour consists in
submitting a price and corresponding quantities. Nevertheless, there is the possibility for a
power producer to only submit a quantity, in fact, according to CAISO website, about 70%
goes through the market as self scheduled or as a price taker. We will take that perspective
in the following study case: this is all the more relevant to this case study as we will consider
that the aggregator only uses electricity from the grid (i.e. no power injection, ∀i, Gi = 0).

Three years of data (Jan 2013- Dec 2015) have been collected from CAISO across the
Pacific Gas and Electricity (PG&E) service territory. These data are publicly available [38].
An online prediction model for DAM prices is built using random forest regression with 10
trees [122]. The features for prediction are:

• hourly demand forecast (provided by CAISO)

• year, month, day, and hour

The model is initially trained with data from 2013, and then recursively updated. Let us
denote pD = {p1, ...pD} the available price history. Let us denote MD the random forest
regression model corresponding to this historical data. In order to predict price in the next
day p̂D+1 ∈ R24, the model MD is used. For the next day, an updated model MD+1 using
historical data pD+1 is used to predict the price p̂D+2, etc. In other words, we use an online
model with a retrospective rolling horizon of D days. The obtained DAM price prediction
model has a root mean square error (RMSE) of 3.5 USD and a mean absolute percentage
error (MAPE) of 8.4 %.

A Gaussian mixture model (GMM) is then fitted to the ex-post prediction error. Neverthe-
less, we find that the lowest Bayesian information criterion score is attained for a single GMM
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Figure 2.2: Sparse covariance matrix estimation for DAM prices ($/MWh)

Figure 2.3: Day Ahead Market price predictions

component. This reinforces the choice for using a simple multivariate Gaussian distribution
to model price uncertainty (as we assumed in the previous sections). A sparse covariance
matrix estimator [122, 108] is then fitted to the ex-post DAM price forecasting error with a
L1 regularization parameter tuned to 5. The sparse covariance matrix consists in solving the
following convex problem,

Ĉ−1 = argminΘ�0

1

m
Tr(ΘC)− log(det(Θ)) + γ‖Θ‖1

Where C is the empirical covariance matrix

C =
1

D

D∑
d=1

(pd − p̂d)(pd − p̂d)> ∈ ST+
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Sparse covariance is a log likelihood estimator estimator that allow to delete correlation
between hours that are less significant while empirically increasing the covariance matrix
condition number (which has a favorable impact on the projected gradient ascent convergence)
[108]. In Figure 2.2, we display a heat-map for this covariance matrix: from the data we
collected, we can see that the error is correlated mostly during the day and particularly at
peak hour around 6 PM (at night only diagonal elements appear). Remark that from our
multivariate normal distribution, we can produce more than one prediction for the price using
Cholesky factorization [26], as the covariance is positive semi-definite, we can compute its
matrix square root, C = LL>, we have that

p = p̂+ Lu ∼ N (p̂, C),with u ∼ N (0, I)

which gives a way to simulate more than one price. We illustrate this in Figure 2.3 where the
dashed line is the actual price, and the colored lines are different predictions using this method.
We do not use more than one prediction in our optimization method, the regularization
incorporates already the uncertainty of the price. Using different price predictions would
consist in a scenario based approach which we did not take here.

Prosumer Modeling and Parameters

A total of 100 prosumers are modeled. Each prosumer is considered to have a PEV with
identical battery size of 24 kWh and itineraries based on National Household Travel Survey
[135]. We assume PEVs cannot provide power to the grid: Gi = 0. As the mobility data
[135] does not allow to fit a stochastic model as described in (2.8) (we do not have enough
mobility data to build such a statistical model). Therefore, we make the assumptions that

sum(ev)
η
(t) := (1+0.05)

∑
i∈[N ]

evi(t) ≤ Asum(EV )(t) ≤ (1−0.05)
∑
i∈[N ]

evi(t) := sum(ev)η(t)

sum(EV )
η
(t) := (1+0.05)

∑
i∈[N ]

EV i(t) ≤ sum(EV )(t) ≤ (1−0.05)
∑
i∈[N ]

EV i(t) := sum(EV )η(t)

Table 2.2 details parameter values used for the simulations.

Simulation Results

The projected gradient ascent algorithm described in Section 2.4 is implemented in Matlab
with the parameters displayed in Table 2.2. In Figure 2.4, g(ωk) is plotted with respect to the
number of iterations. The primal optimal cost was obtained by solving the primal problem
with CVX [64]. In the proof of Theorem 2.4.1 we show that the choice of α = 1/L with L
given by (2.19) guarantees convergence to f ?. Using this theory we have that α ' 2.10−7,
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Table 2.2: Model parameter values for aggregation

N 100

∆t 1 hour

ρ 1

δ 10−2

Li Heterogeneous, same load data scaled from [38]

with uniform independent noise added for each prosumer

Si Heterogeneous, same production data generated via [87]

with uniform independent noise added for each prosumer

η 90 %

EV i 1.4 kW ∀i

evi, evi Heterogeneous, generated from [135]

Gi, Gi +/− 10 kW ∀i

p, C cf. Section 2.5

but in practice we find that α = 10−5 gives better convergence behavior because the derived
smoothness value M is conservative. From Theorem 2.4.1 we have that:

f ? − L

2k
‖ω0 − ω?‖2 < g(ωk)

This upper-bound is represented by the solid blue curve in Figure 2.4. For this simulation we
take 1

M
= α = 10−5 to illustrate the fact that the derived M -smoothness bound is indeed

conservative. We find that our simulation is consistent with theorem 2.4.1:

• convergence is sub-linear because the dual problem is not strongly convex

• the derived upper-bound is verified in practice

From Fig. 2.4, it can be seen that the scheme converges approximately in less than 50
iterations. It practice, this means that the aggregator needs to communicate less than 50
times with all the prosumers in order to reach a consensus. Nevertheless, as the convergence
is not linear, extra precision requires more iterations. However, since our main objective is
to schedule the aggregated load sum(G) in the DAM, this algorithm offers an appropriate
convergence rate that is robust and theoretically guaranteed.
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Remember we have

L =
1

ρλ
+
NT 2

δ

Therefore L = O(N) which directly gives a O(N) complexity of the dual ascent algorithm
with respect to the number of prosumers. This can be problematic if we consider one million
prosumers as we could expect convergence in half a million iterations (if we extend the
results from our simulation). We will propose a solution to that scalability issue in Chapter
3 with Accelerated and Stochastic methods. It is important to note that the aggregator
computational burden would still be small in that case.

Figure 2.4: Study case: convergence of dual ascent to the optimal primal cost for 100
prosumers

Conclusion and extensions

In this chapter we studied a scheduling optimization algorithm for the aggregation of residential
energy prosumers in the day ahead market, taking into account uncertainty in market prices
and PEV flexibility. More precisely a model for prosumers with PEVs and PV panels
is considered. We considered stochastic constraints on PEV mobility and presented a
methodology that can be extended to various sources of electricity production, flexibility and
uncertainties.

We saw how the structure of the primal optimization problem can be exploited to distribute
the objective among the prosumers. In a distributed scheme, the aggregator broadcasts price
signals (i.e. dual variables) to the prosumers, and the prosumers send back their corresponding
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energy consumption profile. These price signals are then updated by the aggregator until a
consensus is reached.

We have shown that the price signal can be iteratively obtained via dual ascent. Nev-
ertheless, we have pointed out potential limitations of this algorithm for a large number of
prosumers. We will provide an answer to this issue in the next Chapter.
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Chapter 3

Acceleration and Stochastic Methods
for Distributed Energy Resources

In this chapter, we study algorithms extension to the dual ascent method that was proposed
in the previous chapter: we notably propose the use of stochastic dual ascent, Nesterov
accelerated gradient ascent and a stochastic version of it. We will not prove the convergence
rates but instead rely on the existing literature that derive such results. We then discuss the
different rates of convergence and their implications, and explain why Stochastic Nesterov
Accelerated Gradient Ascent can be seen as a scalable and a practical algorithm.

3.1 Stochastic Gradient

We have seen that for a large number of prosumers, our distributed algorithm might require
a proportionally large number of iterations to converge. One engineering idea to tackle this
issue, could be to regroup prosumers into clusters: given the power profiles and mobility
behavior, we regroup similar prosumers into the same group. If there are M clusters, we
could consider that there are M prosumers instead of N , this is particularly interesting when
N >> M . Even though we believe this approach to be pertinent, proving any convergence or
statistical results with this new model compared to the original one is possible. An approach
similar to this idea and with provable convergence is stochastic gradient. Stochastic gradient
consists in choosing at random a subset M of the prosumers at each dual iteration and use
their response to the dual variable to update it. More precisely, we draw uniformly at random
at iteration k, a subset Sk ⊂ [N ], the dual unbiased dual update is given byν

k+1 = νk − αk

ρ
C−1νk − αk N

|Sk|
∑

i∈Sk Gk
i

µk+1 =
(
µk + αkc+ αk N

|Sk|
∑

i∈Sk B>EV k
i

)
+

Where we used the gradient formulas from the previous chapter, (2.15) and (3.1). Remark
that these updates are very similar to the updates in algorithm 1. The presence of the term
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N/|Sk| (| · | denotes the cardinal of the subset) is here to have an unbiased gradient estimation,
meaning that

E
( N

|Sk|
∑
i∈Sk

Gk
i

)
=

N∑
i=1

Gk
i

Remark that the step size is not consider to be constant. Instead we will take αk = α0√
k

where
α0 is a hyperparameter that can be tuned by the aggregator. For such a choice of step-size, if
α0 is chosen small enough we have that the worst convergence rate to the optimal variable is
O( N√

k
) (We use results on the convergence of stochastic convex methods from [115]). Remark

that in practice, we will only use a constant step size. This guarantee of convergence relies on
the fact that the dual variables are bounded and the fact that the estimate of the gradient is
bounded by

‖ N
|Sk|

∑
i∈Sk

Gk
i ‖ ≤ N

N∑
i=1

Gi

The rate of convergence is slower with respect to the number of iterations, nevertheless
computational burden per iteration is reduced. Nevertheless the convergence rate is still
linear in the number of prosumers. This is of course a worst case rate, in practice - refer to
the study case - we will see that the convergence is similar to that of the non - stochastic
methods. This result could point towards the fact that our engineering solution consisting in
clustering prosumers is more advantageous. Nevertheless, if we assume that the variance is
low between consumption and mobility profiles, the convergence of this algorithm similar to
the one that would be obtained with the clustering approach. For example, if we assume
that there is only one profile of prosumer with no variance, than choosing one prosumer at
random is similar to modeling all prosumers as a single individual. This is not exactly true if
there are K clusters to be considered (with no or very low variance in each cluster), but a
stochastic algorithm that picks at random individuals within each cluster would be equivalent
to the clustering approach. In other words, our stochastic algorithm can be improved given a
more sophisticated statistical model for the prosumers: in this section we only assumed the
prosumers’ profiles to be i.i.d.

In the next section we will show that we can reduce the rate of convergence to be
proportional to

√
N - compared to N - via a gradient acceleration method.

3.2 Accelerated Gradient

By construction the gradient ascent method guarantees the increase of the dual function
g(w) at each iteration, which might be short-sighted. Accelerated methods, exploit the
information from past iterates and adds momentum to the iterates wk. There are various
forms of gradient acceleration methods such as the Heavy-Ball method [123]. In this chapter,
we focus our attention on a particular form of gradient acceleration: Nesterov acceleration.
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The corresponding dual update is given byν
k+1 = νk + k−1

k+2
(νk − νk−1) + α∇gν(w)

µk+1 =
(
µk + k−1

k+2
(µk − µk−1) + α∇gµ(w)

)
+

This form of update is in between the classic gradient update and extrapolation, with
each iteration having the same cost as gradient updates. Moreover we have from [114] (or
alternatively [17, 118, 61, 113, 16, 146]) that

f ? − g(wk) ≤ 2L‖w0 − w?‖
k2

Interestingly the chosen ratio k−1
k+2

and the use of only one historical value for w is optimal
for the convergence rate (meaning that this is the best result - even using more of the history
w - that can be theoretically achieved using momentum). From the previous inequality, we

have that the algorithm worst case convergence is proportional to O(
√
N
k2

). There are two
benefits when we compare this to dual ascent: first, although sub-linear, the convergence
is O( 1

k2
) instead of O( 1

k
), second the algorithm scales better with respect to the number

of prosumer: if convergence for 100 prosumers is achieved for 10 iterations, we can expect
convergence for 106 prosumers in less than 1,000 iterations (we would expect 100,000 for
dual ascent). Even though there is no theoretical result for stochastic Nesterov accelerated
gradient we are aware of, we could consider the following updatesν

k+1 = νk + k−1
k+2

(νk − νk−1)− αk

ρ
C−1νk − αk

∑
i∈Sk

N
|Sk|G

k
i

µk+1 =
(
µk + k−1

k+2
(µk − µk−1) + αkc+ αk N

|Sk|
∑

i∈Sk
B>EV k

i

)
+

Where similarly to the previous section, we draw uniformly at random at iteration k, a
subset Sk ⊂ [N ]. We will see that in practice (study case) this algorithm performs well for
the task of coordinating the prosumers to the optimum.

3.3 Linear convergence for a large number of

prosumers

The dual ascent guaranteed rate of convergence being sub-linear (i.e. O( 1
k
)) stems from

the fact that we consider the robust mobility constraints. Indeed, without them, the dual
function would only be a function of ν and

g(ν) = − 1

2ρ
ν>C−1ν + c>µ+

N∑
i=1

min
EVi,Gi, s.to. Li

G>i (p− ν) +Ri(EVi, Gi)
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Using Danskin’s Theorem [26] to derive the gradient yields

∇gν =
1

ρ
C−1ν −

N∑
i=1

G?
i (ν) (3.1)

Where G?
i (ν) is the unique solution to the local optimization problem at i ∈ [N ] given ν.

Similarly to inequality (2.18), we have that

‖G?
i (ν1)−G?

i (ν2)‖ ≤ 1

δ
‖ν1 − ν2‖

Therefore g(·) is L := 1
ρ
λ + N

δ
-smooth concave function. We also have, using the spectral

theorem

C−1 � 1

λ
I

Which proves that g is l := 1
ρλ

-strongly concave. Using this structure, we can show in a few

steps that the convergence of the dual ascent algorithm with

νk+1 = νk +
1

L
∇g(ν)

is linear, meaning that the convergence to the optimal dual variable is O(rk) with 0 < r < 1.
Indeed,

‖νk+1 − ν?‖2 = ‖νk − ν? +
1

L
∇g(νk)‖2

= ‖νk − ν?‖2 +
1

L
∇g(νk)>(νk − ν?) +

1

L2
‖∇g(νk)‖2

From strong concavity we have the inequality - refer to (1) in Notation & Background

∇g(νk)>(νk − ν?) ≤ (g(νk)− g(ν?))− l

2
‖νk − ν?‖2

Therefore,

‖νk+1 − ν?‖2 ≤ (1− l

L
)‖νk − ν?‖2 − 2

L
(g(νk)− g(ν?)) +

1

L2
‖∇g(νk)‖2

From smoothness of g, concavity and optimality of ν?, we also have that

g(νk)− g(ν?) ≤ − 1

2L
‖∇g(νk)‖2

Hence

‖νk+1 − νk‖2 ≤ (1− l

L
)‖νk+1 − ν?‖2
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Therefore the sequence {‖ν?−νk‖2} is a r = 1− l
L

contraction. To guarantee that ‖νk−ν?‖ ≤ ε,
we have a worst case number of iterations needed (oracle complexity) of

K(ε) = 2
log( ε

‖ν0−ν?‖)

log(1− l
L

)

As r approaches one, the algorithm becomes slower. In fact if r = 1 this bound cannot be
used. We need to use the theorem 2.4.1 from the previous chapter, and we have a sub-linear
convergence. Note that l does not depend on the number of prosumers, as it is related to
the covariance matrix of DAM price prediction, therefore it is easy to show that as N →∞,
r → 1. In practice for N large the convergence is still sub-linear, and the analysis we had in
the previous chapter is not affected. This also means that the Nesterov accelerated method
we proposed in the previous section still keeps its advantage (Remark that in the strongly
concave case, the acceleration provides faster convergence with a dependence on N that is
also
√
N). For simplicity of implementation, we will therefore consider in the study case the

DAM optimization problem without the inequality global inequality constraints.

Simulation Results

Compared to the last section, we choose a slightly higher number of prosumers and smaller
hyperparameter values for DAM risk and L2 regularization. We report the values that are
not the same as the previous chapter in the following table,

Table 3.1: Some parameter Values for the Model

N 120

ρ 10−2

δ 10−2

α 3 · 10−6

Numerically, we have that 1
L
' 1.9 ∗ 10−6, in practice the algorithm diverges for a step

size ρ > 4.10−6, therefore we made the choice of step size α = 3 · 10−6. From figure 1 and
2, it can be seen that the algorithms for gradient ascent and accelerated gradient ascent
behave as predicted. The upper bound for a precision of 10−3 gives an oracle complexity of
42 iterations, which is observed here in practice. We also remark that the accelerated method
converges in approximately 10 iterations. We can also see that the stochastic versions of both
algorithm both follow the non-stochastic one.
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Figure 3.1: Gradient Ascent and Stochastic Gradient Ascent

Figure 3.2: Accelerated Gradient Ascent and Stochastic Accelerated Gradient Ascent

Conclusion

In this chapter we have seen how we can improve the distributed methods of Chapter 1
by tackling the following limitations: (i) scaling with respect to the number of prosumers,
(ii) removing the need for each prosumer to compute their solution for each dual variable
iteration.
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Chapter 4

Convex Optimization Model for RTM
Participation

In the previous chapter we briefly described the functioning of the DAM. Day Ahead Markets,
when they exist, have a common way of functioning in many countries. Real time markets
and ancillary services are more specific: the way they operate vary location from location. In
this Chapter we will focus on the RTM in CAISO. We will briefly mention the functioning
of RTM in other countries, and we believe that the methodology and convex optimization
models we propose can be extended across different markets. The notation for this chapter
are given in table 2.1.

Disclaimer

We will see that the RTM price prediction seems to be the bottleneck for achieving better
resultst. Nevertheless it is important to keep in mind that our main objective is to expose
optimization models and methods to tackle such problems. We do not claim to use state of
the art time series predictions for DAM and RTM prices.

4.1 Real Time Market in CAISO

The real-time market in CAISO has multiple market instruments in which generators can
participate. There are three types of generators: (1) internal generators, ones that operate
inside of the CAISO balancing area (BA) authority; (2) import and export generators,
those that produce power in the BA but for use outside of the BA or those that produce
power outside the BA but for use inside the BA; and, (3) dynamic resources, those genera-
tors located outside the BA that have telemetry and controls for power delivery inside the BA.

We provide a graphical explanation of the RTM in Figure 4.1. The two time periods
that are of most relevance are the 15-minute market and the 5-minute market. Supply-side
bids are submitted, at the latest, 75 minutes prior to the start Trading Hour (T-75). For each
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hour there are four bids submitted, one for each 15-minute period. For generators that are
able to participate in the 5-minute market (i.e. generators internal to the BA and dynamic
resources)1, the bids that are submitted for the 15-minute period will apply to the 5-minute
periods within that same time period. So a generator will provide four bids per hour and
there will be three prices for each bid, thus 12 prices per hour.

The two real-time markets (i.e. 15-minute and the 5-minute) operate with the use of
separate optimizations. The market prices are published 45 minutes and 22.5 minutes prior
to close of the 15-minute and 5-minute markets, respectively. Those prices are published on
a rolling basis, so for each 15 or 5 minute period it is 45 minutes and 22.5 minutes prior to
the start of that trading period.

We denote pRT the prices in the RTM (see 2.1). It is important to note that real time
markets can be positive and negative, but on average, we should expect: E(pRT ) = pDA (pDA
denotes the prices in the DAM). Nevertheless, in practice we observe, E(pRT ) ∼ 0.93pDA.
Based on conversations with CAISO management, this is explained by the fact that some
renewable generators schedule their production in real time which has a tendency to lower
prices (because they have zero marginal cost). Since not all resources participate in both the
DAM and RTM, the price difference is not surprising especially considering that many of the
low cost renewable resources are self scheduled and participate only in the RTM. Nevertheless,
while empirically there exists a price difference between the two markets, we consider the
following two conditions for any given time period:

• pRT > pDA ⇒ electricity System is Short: day ahead supplied schedule is lower than
real time demand.

• pRT < pDA ⇒ electricity System is Long: too much supply was scheduled compared
to real time demand

The prices are received through a program called the California Market Results Interface.
Figure 4.1 displays the Real Time Market timeline. Two hours are depicted (hour h and
hour h+1) for illustrative purposes to indicate that the the bids are rolling. For both hours,
the day-ahead market bids are shown with dotted lines and labeled as ”DAM Bid”. The
real-time (15-minute) bids are submitted at T-75 and the results are published at T-45. The
bids that were accepted are then depicted with solid lines. The difference between the DAM
and RTM is also shown.

1With the introduction of the Energy Imbalance Market (EIM), there are now generators that participate
in the real-time market that are located outside of CAISO, i.e. type 2 generators and type 3 generators. The
majority of these generators can only submit bids for the 15-minute market (type 2 generators), but a subset
also participates in the 5-minute market (type 3 generators).
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Figure 4.1: Graphical Depiction of the Real Time Market Process

Only the 15 min market interval will be considered in this chapter. Note that the Smart
Meters in California allow to give information every 30 min. Therefore, it is already uncertain
how the settlement will be made with CAISO.

Day Ahead Market and Real Time Market

The aggregator could increase their revenue by predicting what is going to happen in the
real time market while participating in the DAM. Such a strategy consists in betting on
the fact that the CAISO forecast of CAISO demand is either short or long for a given
hour. Nevertheless we argue that in the CAISO market, this aspect is considered with
Virtual Bidding. Virtual bids must be virtual, i.e. not associated with physical bids, and
the practice of using physical assets to make virtual bids is forbidden by CAISO. Moreover,
market power exertion is assessed by CAISO – whether intentional or not – through a Market
Power Mitigation (MPM) process. In the case that bids are deemed to be an exertion of
market power, then those bids are rejected and the optimization is run without those bids.
Therefore, we argue that the DAM and the real time market optimization should, or must,
be independent: the real time market must take the results of the DAM as an exogenous input.
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Price prediction and estimation of covariance matrix

As shown in Figure 4.2, the price fluctuation of the RTM (right figure) is much larger than
that of the DAM (left figure). During the considered time period, the DAM price was always
between 0 USD/MWh and 100 USD/MWh. In contrast, the RTM price spikes relatively
frequently and went up as far as 1,000 USD/MWh and down as far as -150 USD/MWh.

Figure 4.2: Comparison of price fluctuations between the Day-ahead Market (Left) and the
Real-time Market (Right)

In the RTM, generation capacity tends to be constrained and supply curve (Short-term
Marginal Cost: STMC) of electricity becomes more vertical (more inelastic). As a result, a
small change in demand can cause price spikes in either a positive or a negative direction.
Such situations are shown in Figure 4.3. The sub-figure on the left shows a change where the
supply is relatively elastic and thus the price difference between pRT and pDA is small. In
contrast, the figure on the right, the demand moves from the elastic portion of the supply
curve to the inelastic portion of the supply curve and the price difference between the DAM
and RTM spikes.
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Figure 4.3: Mechanism of price fluctuation in the RTM

This price fluctuation of the RTM price poses a challenge when it comes to price prediction.
As in the previous chapter, in our convex optimization model, we will not only minimize the
cost in the RTM but also incorporate the uncertainty of the price prediction in the objective
function. We will also estimate the covariance matrix that represents the uncertainty of the
prediction. We use random forest regression to predict both the DAM and RTM prices. For
the DAM price prediction, we used year, date, and hour as features (regressors). In addition
to these features for the real-time forecast we use, DAM demand forecast, DAM prices, and
RTM demand forecast, as well as operating interval labels (0 min, 15 min, 30 min, and 45 min).

Similar to the previous chapter, we assume multivariate normal distribution around the
expected price both for RTM and DAM price prediction:

pDA∼N( ˆpDA, CDA)

pRT∼N( ˆpRT , CRT )

It revealed to be difficult to produce an online prediction model for RTM prices, therefore
we kept a static one for RTM prediction. For coherence we did the same for DAM price
prediction. In our simulations, we get a RMSE of 2$ for DAM and a 15$ RMSE for the RTM.
Given the electricity price data prediction error, we use maximum likelihood estimation to
estimate the covariance matrices CDA and CRT (we give a heatmap representation of these
matrices in the figures 4.1 and 4.1 below). We will use these matrices to incorporate risk
management using the Markovitz Portfolio Optimization as in chapter 2.
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Figure 4.4: Covariance matrix heatmap for the day ahead market

Figure 4.5: Covariance matrix heatmpap for the real time market

4.2 Day-Ahead Market and Real-Time Market

Optimization Model

Optimization objective

Let fDA and fRT denote the DA and RT objectives respectively. For clarity, we will use orange
color to denote the optimization variables of the RTM. The choice of the grid import/export
G (as scheduled in the DAM) or ∆G (as scheduled in the RTM) can be considered as a
portfolio problem where the assets is the flexibility, the returns are the DAM prices, and the
budget constraint is the flexibility constraints [26]. The choice of the portfolio G involves a
trade-off between the expected price and the corresponding variance. For the Day-Ahead,
remember that we chose
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fDA = p>DAG︸ ︷︷ ︸
DA total cost

+

DA Risk︷ ︸︸ ︷
ρDA

2
G>CDAG

Let us denote the time window (h : h+ 4TH − 1) as H. Similarly, for the RT at hour h we
consider the convex objective function

fRT (h) = pRT (H)>∆G(H)︸ ︷︷ ︸
RT total cost

+

RT Risk︷ ︸︸ ︷
ρRT

2
∆G(H)>CRT∆G(H) (4.1)

Let us take a concrete example to understand why (4.1) is the right objective function and
understands what happens with negative prices. These examples are given in the following
table 4.1.

Table 4.1: Real time market cost function explained

∆G = +1MW ≥ 0 ∆G = −1MW ≤ 0

pRT = 40 >
pDA = 30$/MW
(SYSTEM
SHORT)

∆G increases the strain on the sys-
tem. The aggregator has to pay for
this extra quantity at RT market
price: 40 $/MW. Had this extra de-
mand been scheduled in the DA, the
cost would have been 10 $/MW lower

∆G decreases the strain on the sys-
tem. The aggregator is paid as if
it was providing 1MW of power sup-
ply: $40. Had this demand reduction
been included in the DA, the aggrega-
tor would have had a cost $10 higher

pRT = 20 <
pDA = 30$/MW
(SYSTEM
LONG)

∆G decreases the strain on the sys-
tem. The aggregator has to pay
for this extra quantity at RT mar-
ket price: 20 $/MW. Had this extra
demand been scheduled in the DA,
the cost would have been 10 $/MW
higher

∆G increases the strain on the sys-
tem. The aggregator is paid as if
it was providing 1MW of power sup-
ply: $20. Had this demand reduction
been included in the DA, the aggre-
gator would have had a $10 lower
cost

pRT = −10 <
pDA = 30$/MW
(SYSTEM
ULTRA LONG)

∆G decreases the strain on the sys-
tem. The aggregator is paid for ex-
tra quantity at RT market price: -10
$/MW! Had this extra demand been
scheduled in the DA, the cost would
have been 40 $/MW higher

∆G increases the strain on the sys-
tem. The aggregator has to pay as
if was providing 1MW of power sup-
ply: $10. Had this demand reduction
been included in the DA, the aggrega-
tor would have had a cost $40 lower!
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Possible extension for other RTMs

In other countries, the cost function (risk not included) might not be linear. In Germany
and the UK, the aggregator would have to face constant imbalance prices. Let δ+ be the
positive imbalance price and δ− be the negative imbalance price: the aggregator is paid δ+

for beneficial deviations (e.g. system long and ∆G ≥ 0) and has to pay δ− for deviations that
increases strain on the system (e.g. system long and ∆G ≤ 0). In the UK, the Imbalance
market is symmetric (i.e. δ− = δ+), whereas in Germany δ+ < δ−. Let us introduce this
specificities in our Real-Time objective function for which there are four cases to consider,
for each the imbalance cost at time t is given by,
1) System Short and ∆G ≥ 0:

δ−(∆G(t))+

2) System Short and ∆G ≤ 0:
−δ+(−∆G(t))+

3) System Long and ∆G ≥ 0
δ+(∆G(t))+

4) System Long and ∆G ≤ 0
−δ−(−∆G(t))+

Denoting short(t) ∈ {0, 1} and long(t) ∈ {0, 1}, the resulting cost function would be

δ−

(
short>(∆G)+ − long>(−∆G)+

)
+ δ+

(
long>(∆G)+ − short>(−∆G)+

)
This cost function is also convex in ∆G.

Local Model for Prosumers

Here we only display the local prosumer model for the real time model. The DAM prosumer
model was thoroughly described in chapter 2. Let i ∈ [N ]. We denote EV ?

i and G?
i the optimal

schedules from DA. In the real time market optimization, these variables are considered as
exogenous inputs as mentioned in the previous section. As there is a time step difference
between DAM and RTM that is a multiple of 4, we actually extend the vectors EV ?

i and G?
i

the following way,

EV ?
i = [EV ?

i (1);EV ?
i (1);EV ?

i (1);EV ?
i (1), EV ?

i (2);EV ?
i (2);EV ?

i (2);EV ?
i (2); · · · ] ∈ R4T

we do the same with G?
i

Local Power Balance

The power balance (4.2) establishes the link between the control variables ∆EVi and ∆Gi as
in (2.1)

Li + EV ?
i + ∆EVi ≤ Si +G?

i + ∆Gi (4.2)
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Local Grid Constraints

At any given node in the distribution network, there is a limit on power import or export as
in (2.2)

Gi ≤ G?
i + ∆Gi ≤ Gi (4.3)

Local PEV constraints

The PEV dynamics and state of energy constraints can be summarized as follow as in (2.4)

evi ≤ ∆tΣ(EV ?
i + ∆EVi) ≤ evi (4.4)

With Σ, trigonal inferior matrix with ones – the integration matrix as described in chapter 2.
Finally, the PEVs charging power constraint is given by

EV i ≤ EV ?
i + ∆EVi ≤ EV i (4.5)

Note that when the PEV is un-plugged at a given time t ∈ [T ], then EV i(t) = EV i(t) = 0
is enforced. For the purpose of conciseness, the set of local constraints (4.2), (4.3), (4.4) and
(4.5) are hereby referred to as Li.

Model Predictive Control Scheme for Real-Time Operation

We use MPC because of the dynamic aspect of the RTM we described. It is also difficult to
predict the price many hours in advance. It also helps reducing the size of the optimization
problem at hand. We will us a three hour rolling hours horizon in our simulations. The
following algorithm summarizes our MPC strategy for participation in the RTM

Algorithm 2 Model Predictive Control

1: for h from 1 to TH do: do

∆EV ?(H,∆G?(H)) = argmin
s.to.Li

fRT (∆EV (H,∆G(H)),∆EVi(H),∆Gi(H))

Only implement the decision for the first hour: ∆EV ? = ∆EV ?(1 : 4), ∆G? = ∆G?(1 : 4),
etc.

2: End For

4.3 Simulation and Results

For price prediction and covariance matrix estimation, we collected CAISO’s DAM (hourly)
and RTM (15 minutes) price and demand forecast data in PG&E area from January 2013 to
March 2017.
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We used mobility data from 2,000 full electric vehicle’s in the bay area. A single solar
PV generation data was generated using PVsim (SunPower). The load was modeled taking
aggregate load data from CAISO in the PG&E region and adding random noise to it to create
heterogeneity between prosumers (idem for prosumer PV production). Most of the data was
concatenated in the same CVS file using R. Here we display a one day simulation to observe
the behavior of our scheduling and real time operation method. We made a simulation for 100
prosumers, the parameters that were chosen for this simulation are provided in the following
table 4.2

Table 4.2: Model parameter values for aggregation in the real time market

N 100

TH 3 hours

G 10 kW

ρDA, ρRT 1

Figure 4.6: Local uncontrollable load
consumptions (black curves), Average
(red dashed curve)

Figure 4.7: Local solar PV produc-
tion (black curves), Average solar PV
production (red dashed curve)

First, figures 4.6 and 4.7 provide a visualization of the average uncontrollable load and
PV production as well as the heterogeneity inside the pool for DA (i.e. 1 hour time step).
Figure 4.8 provides a visualization of the difference between the DA and RT aggregated
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Figure 4.8: Aggregated uncontrol-
lable load PV production

Figure 4.9: Real-Time prices for one
day of the simulation

Figure 4.10: DA Schedule and RT operation results: G?, black dashed curve, ∆G? solid black
dashed curve, EV ? red dashed curve and ∆EV ? solid red curve

load an PV production. Figure 4.9 shows the real time price for the day. The results of
the MPC convex optimization approach are provided in figure 4.10. This figure shows the
difference between the DA schedule and real time operation. In the DA we predict that our
clearing price will be $68.7 for the next day. In reality, when the DA market clears, the
aggregator realizes that its cost will be $71.1. In the RTM, the total supplementary cost over
the day is $0.30. This means that the aggregator is not able to leverage any value in the RT
market. Nevertheless, our scheme gives us a way to do real time operation over our pool. It
is difficult to determine what costs the aggregator would incur for its real time operation
without this scheme, moreover price spikes only appears for 15 min during the chosen day and
are generally rare events. Based on our simulations, the aggregator does not take advantage
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of this price surge. This is due to the fact that our MPC horizon is too small and there is no
available flexibility by the time we reach spike time (around operating interval 70). When
the risk aversion parameter for Real Time ρRT is set to zero, the total cost is -$0.90, which
means the aggregator leveraged the RTM to reduce its cost.

4.4 Conclusion

In this chapter we developed a forecast model for real-time markets using random forest
regression technique and evaluated a covariance matrix associated to our model. We then
proposed a two-step method for managing a pool of prosumers with local production and
flexibility. In a first step, the aggregator schedules its total supply and demand curve to
CAISO in the day ahead market; in a second step, the aggregator operates in real time using
a Model Predictive Control Technique and makes a decision for the optimal deviation from
the DAM schedule. To do so, we proposed a convex optimization method similar in structure
to that of the DAM formulation of the previous chapters: we can therefore use the same
methodology to distribute the problem in real time among prosumers.
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Part II
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Chapter 5

Hopfield Methods for Combinatorial
Optimization

In the previous chapters we showed how we could use distributed methods for tackling DER
electricity market integration problems. More precisely, we modeled prosumers with PEVs
and PV: remark that we modeled the charging power for PEV as continuous variables, i.e.
variables that can be chosen between a minimum power EV and a maximum power EV . In
practice the choice for charging powers of PEVs are discrete: only a given set of choices are
possible depending on the manufacture of the vehicle, the simplest one being the two following
choices: charge (1) or no charge (0). Paradoxically, it is known that this apparent simplicity
translates into difficult optimization problems. In the literature about DER integration it
is rare to see local flexibility being modeled as hybrid systems (e.g. where some variables
are combinatorial and others continuous). In the particular case of DAM market scheduling,
we do not believe this is an issue, as this is a schedule, not a real time operation. Even for
the RTM application we presented in chapter 4, the possibility of distributing the problem -
even though, in that case, there is no proof of convergence for dual ascent - could allow to
surpass this issue. This is not the case if the problem cannot be distributed: for instance if
we incorporate a model of the grid that connects prosumers. Alternatively, the local problem
itself could be too hard to solve. For instance, in the context of smart home, many more
decisions for turning on or off device could have to be made (e.g. heating, AC, pool pumps,
refrigerators, etc.). Exact solvers could be used in certain cases but as the computational
power needed is exponential with respect to the number of decision variables, the use of these
solvers becomes not tractable. As discussed later in the chapter, these type of combinatorial
problems appear across many applications in energy systems, but also in different fields. In
this chapter, we propose a heuristic method that can be used for some of these applications.

More precisely, we present novel first-order heuristic methods that aim at finding candidate
solutions to large scale nonlinear combinatorial problems. Such problems are generally NP-
hard, i.e. there is no algorithm of polynomial complexity available to compute the optimal
solution. Our heuristic methods build on Lagrangian relaxation and numerical versions of
Hopfield Neural Networks that we call Hopfield Methods. We explain the heuristic behind
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Hopfield Neural Networks and how they can be interpreted as mirror descent and then
generalize using ideas similar to conditional gradient methods (a.k.a Frank-Wolfe). Finally
we prove convergence of these methods as well as a worst case rate of convergence of O

(
1
k

)
for convex functions.

5.1 Introduction

This chapter addresses the problem of efficient algorithms to recover candidate solutions to
large-scale combinatorial optimization problems using a novel first-order heuristic method,
which we refer to as Hopfield Methods.

Notations

We denote by x ∈ Rp the optimization variable and by Ip the set {1, · · · , p}. We will consider
the optimization variable to be restricted to a box lb ≤ x ≤ ub, where the inequalities are
interpreted component-wise. Via rescaling, and therefore without loss of generality, we will
consider that x ∈ [0, 1]p, we use the notation (0, 1) to denote the interior of [0, 1]. We further
denote Ib ⊂ Ip the index set referring to binary constrained variables, such that |Ib| = b ≤ p
and b > 0. We denote the mixed-binary set compactly as

X =

p∏
i=1

Xi where Xi = {0, 1} if i ∈ Ib, Xi = [0, 1] otherwise (5.1)

where operator
∏

above is interpreted as the Cartesian product.

Problem formulation

In this chapter we consider the following linearly constrained mixed-integer nonlinear problem
(MINLP)

min
x∈X

f(x)

s. to: Ax ≤ b, Aeqx = beq
(P)

where f is a differentiable function with L−Lipschitz gradient (we will simply say that it is
L−smooth). Here A,Aeq, b, beq are matrices and vectors of appropriate size, we consider that
all in all there are m = min + meq scalar constraints, where meq is the number of equality
constraints and min the number of inequality constraints. We denote x? an optimal point,
and X ? the optimal set, which we assume non-empty. We will also take the hypothesis that
f is bounded below on [0, 1]p.
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Applications

MINLPs occur across a multitude of applications. They arise frequently in power systems
[149], transportation [89], logistics [110] and robotics [57]. For instance, discrete time hybrid
systems can be approximated as mixed logical dynamic systems [25], which is a MINLP. In
the field of machine learning, problems such as Boolean least squares, two-way partitioning
problems or maximum cut [121] also fall under this general setting.

Tractability

Unfortunately, MINLPs are NP-hard in general as they include mixed-integer linear programs
(MILP) as a special case. In fact, finding polynomial time algorithms for this class of problems

is highlighted as one of the Millennium Prize Problems: P
?
= NP . In this chapter, we develop

approximate methods that converge in polynomial time.

Candidate point

A candidate point, x ∈ Rp, aims at being close to the set of optimal solutions X ?. We do
not require a candidate point to be feasible, as feasibility is often NP-hard itself. Given a
particular application, some metrics can be defined to assess the quality of a given candidate
as it is done in Section 5.5.

Literature review

We divide the various approaches to tackle (P) into four categories: global methods, meta-
heuristics, convex approximations and structured heuristics. Global methods refer to methods
that exactly solve (P) and are often based on the branch-and-bound or branch-and-cut
frameworks [23]. Efficient solvers have been built in the last decades, notably for MILPs
and mixed-integer quadratic problems (MIQPs) with convex objective and constraints [23,
51]. Nevertheless, ultimately these methods have a complexity that grows exponentially with
p, and are therefore limited as the problem grows in size. Metaheuristics include simulated
annealing [88], tabu search [59], genetic algorithms [75], pchapter swarm optimization [85]
and more. The reader can refer to [134] for a comprehensive review of these methods. Convex
approximations methods consist in approximating (P) with a convex problem. These include:
binary relaxation when the objective and constraints are convex [127, 102], the Lagrangian
relaxation technique [140, 121, 159] which is particularly appealing when the objective and
constraints are quadratic because the corresponding dual problem can be explicitly formulated
as a concave semidefinite problem [103, 60, 121]. Alternatively, in the quadratic setting,
the problem can be directly relaxed to a semidefinite problem using a method called lifting
[121]. Other convex procedures have been used, e.g. the convex-concave approach [100, 139,
121], and alternating direction method of multipliers (ADMM) [121, 27]. We call structured
heuristics, methods that take advantage of the MINLP problem structure. These methods
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can be seen as being in between convex approximations and metaheursitics. Hopfield Neural
Networks (HNNs) fall in that category. HNNs were introduced in [76, 77], and were initially
used in machine learning as a way to memorize the state of data [160]. To this day, variants
of HNNs are still in use, notably in Deep Learning with the so called Boltzmann Machine, a
stochastic variant of HNNs. In 1985, Hopfield and Tank showed that HNNs structure and
dynamics could be used to find a candidate solution to the traveling salesman problem [78,
162, 55]. In that setting, contrary to machine learning applications, the weights of the HNNs
are not obtained via training. They are directly defined by the parameters of the problem
[147]. Since then, HNNs have been used for combinatorial problems such as clustering [82],
vertex cover [128] and knapsack problems [119]. We refer the reader to [101, 142] for a
comprehensive review of Hopfield method applications.

Contributions

This chapter advances our understanding of Lagrangian duality and Hopfield methods to
recover candidate solutions to (P). This advanced understanding provides a new (or newly
understood) tool for approximately solving large-scale combinatorial problems.

Chapter organization

In Section 5.2 we introduce HNNs and give some background on their stability and equilibria.
In Section 5.3 we introduce our numerical methods based on HNNs and prove their convergence
properties ( all the proofs are gathered in the final section). In Section 5.5 we provide some
numerical experiments to illustrate how our methods can be used to approximately solve
combinatorial optimization problems.

5.2 Hopfield Neural Nets

In this section we provide the necessary background on HNNs models, stability and equilibria
in the continuous-time case. We then show that HNNs are closely related to continuous
mirror descent which gives a natural geometric interpretation to these models but also brings
to light some of their limitations.

Hopfield Neural Networks

Let us consider the following optimization problem with quadratic objective

min
x∈X

1

2
x>Qx+ q>x
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The corresponding HNN is an autonomous nonlinear dynamic system given by the ordinary
differential equation (ODE) {

ẋH(t) = −Qx(t)− q
x(t) = φ(xH(t))

with initial condition xH(t = 0) ∈ (0, 1)p, where x and xH ∈ Rp are called the state and
hidden state of the system. The function φ : Rp → [0, 1]p is defined component-wise

φ : u 7→ (φ1(u1), · · · , φp(up))

where φ1, · · · , φp are activation functions, introduced in more detail in the next Section.
We extend the classic HNN to non-quadratic objectives: let us consider the problem (P)

without linear constraints
min
x∈X

f(x) (Punc)

We define the corresponding HNN to be{
ẋH(t) = −∇f(x(t))

x(t) = φ(xH(t))
(5.2)

with initial condition xH(t = 0) ∈ (0, 1)p. The extension of classic HNNs consists in replacing
the linear dynamic in x of the hidden state by a nonlinear function of x, −∇f(x).

Activation functions

We consider the activation functions φi, i ∈ Ip to be real-valued, βi− Lipschitz continuous,
symmetric with respect to (w.r.t.) (1

2
, 1

2
), monotonically non-decreasing, surjective in [0, 1]

and differentiable almost everywhere. Moreover we consider smooth activation functions to be
differentiable with β̃i Lipschitz continuous derivative. We consider βi to be a hyperparameter.
In the literature, βi is often called the temperature, a terminology we will also adopt.

As a heuristic, βi = 1 corresponds to an activation function approximating the projection
on [0, 1]. If βi → ∞, φi asymptotically approaches the projection P{0,1} on the set {0, 1}
w.r.t. the L1 Lebesgue space. For continuous variables we typically choose βi = 1 and for
binary variable βi >> 1, e.g. βi = 100. Figure 5.1 shows graphical representations for some
activation functions and for two temperature values β ∈ {1, 5}. We focus on three activations:
tanh, sin and Piecewise-Linear (pwl). The tanh activation is the only one that is a bijection
from R to [0, 1] and that is also differentiable. The sin activation is only surjective and
differentiable. The pwl is not bijective and not differentiable at 1/2± {1/(2β)}.

All the results that will be derived in this chapter are also valid if the activation φi is
chosen to be the identity, which is particularly pertinent for continuous optimization variables
xi ∈ R that are not constrained to [0, 1].
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Figure 5.1: activation functions and corresponding gradient scaling ψ(x) = φ′(φ−1(x)) for
β ∈ {1, 5}

Stability

We now discuss the stability and equilibria of HNNs.

Theorem 5.2.1 (Decreasing objective function). The objective function f decreases along
the unique state trajectory x(t) of the HNN (5.2) - i.e. t→ f(x(t)) is a decreasing function.

Hence, HNN is a descent trajectory for f and since we assumed the objective is bounded
below on [0, 1]p, we directly have convergence of t→ f(x(t)).

This is not surprising considering the fact that, if the activation is differentiable and
bijective, the dynamic system (5.2) can be reformulated equivalently without the hidden
state as

ẋ = −ψ(x)�∇f(x)

with x(t = 0) ∈ (0, 1)p, where ψ is a gradient scaling vector defined as ψ(x) := φ′(φ−1(x)) and
for non bijective activations, ψ(x) = φ′(xH). Graphical representations of gradient scaling
w.r.t the activation function and temperature are given in Figure 5.1. This reformulation is
also true for non-bijective activations as long as x ∈ (0, 1)p. Nevertheless it is fundamental to
understand that this equivalence does not hold for non-bijective activations as soon as there
exists a component i ∈ Ip such that φi(xi) ∈ {0, 1}. We can see from this formulation that
the state dynamic is a scaled version of the gradient flow ẋ = −∇f(x) as by construction
ψ ≥ 0.
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HNN equilibria

From (5.2) the equilibrium points for x are included in

X † :=

p∏
i=1

X †i , where X †i = {x ∈ [0, 1]p : ∇f(x)i = 0} ∪ {0, 1} (5.3)

The hidden state xH might not have an equilibria and diverge if ∇f(x) 6= 0 with x ∈ X †.
Also note the set X † is larger than the set of minimizers for problem (Punc) with binary
relaxation,

min
x∈[0,1]p

f(x) (Prel-unc)

Using Karush-Kuhn-Tucker (KKT) conditions [26] for problem (Prel-unc), the set of local
minimizers is included in

X rel :=

p∏
i=1

X rel
i where X rel

i = X †i ∩ {sgn(xi − 1/2)∇f(x)i ≤ 0}

Hence X rel ⊂ X †. This is a good trait for HNNs because a larger set of equilibria gives access
to a larger set of candidate solutions. More precisely, the constraint sgn(xi − 1/2)∇f(x)i ≤ 0
if xi ∈ {0, 1} implies that the descent direction points outside the boundary of X . The
absence of this constraint is particularly appealing for binary constrained MINLPs as the
descent direction might be pointing inside at the optimum, as illustrated in Fig. 5.2. An
extensive analysis on the stability properties for x in X † is beyond the scope of this chapter.
We refer the reader to [34] and [67] for a more in depth study on the equilibria stability for
HNNs.

Stretching the phase portrait with temperature

The larger the temperature βi, the larger the gradient scaling ψi(x) for all x ∈ [0, 1] will
be. More precisely, for the three activations presented in Figure 5.1 this relationship is
proportional, i.e. ψi(x) ∝ βiψβ=1(x). We can geometrically interpret it as follows: the choice
of a high value for βi stretches the phase portrait along the i−th component. The dynamic
of the state is no longer perpendicular to the contour lines of f as is the case with gradient
flow. Instead we can observe an angle that pushes the state to {0, 1}. As an example let us
consider the MINLP (Punc) with

f(x1, x2) =
1

4
(x1 − 2/3)4 +

1

2
(x2 − 1/3)2 +

1

3
x1x2 (5.4)

and X = {0, 1} × [0, 1]. Figure 5.2 illustrates this phase portrait stretching phenomenon. We
can see that the red arrows that represent the instantaneous direction of xH makes an angle
with the gradient (black arrows) that favors
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Figure 5.2: Normalized phase portrait of f defined in equation (5.4) with comparison between
gradient flow and HNNs with tanh activation and temperatures β1 = 10, β2 = 1

HNNs and mirror descent

In [91], the authors show that continuous time mirror descent can be summarized by the
following ODE {

ẋH = −∇f(x)

x = ∇Φ?(xH)
(5.5)

with initialization xH(t = 0) and where Φ is a mirror map – by definition, (i) a differentiable
and strictly convex function defined on a convex set C such that (ii) the range of ∇Φ is Rp and
(iii)∇Φ(x)→∞ whenever x approaches the boundary of C. If we choose ∇Φ? = φ in (5.5),
then we get the same ODE (5.2) as HNNs. This also implies C = [0, 1]p and Φ? =

∫
φ+ C

(C a constant). Since φ is monotonically non-decreasing, Φ? is convex, and Φ = Φ??. If the
activation is bijective then Φ =

∫
φ−1 + C (C a constant). In that case, Φ is a mirror map.

This equivalence between mirror descent and HNNs has also been proven in [68] using a
different approach. If the activation function is not bijective, than we can still compute Φ
in closed form, nevertheless it does not satisfy the conditions (ii, iii) for it to be a mirror
map. This connection allows us to geometrically interpret HNNs: for instance mirror descent
is often understood as an extension of Euclidean projection (introduced in more detail in
the next section with the notion of Bregman divergence). We also refer the reader to [68]
for an in-depth geometric view on HNNs. This connection allows us to use known results
from continuous mirror descent: in [91, 41], the authors show that for f convex, the flow x(t)
from (5.5) converges to the minimum of f on C. Hence, for bijective activations, we directly
obtain the following result: HNN flow x(t) converges to the optimal solution to (Prel-unc).
Nevertheless, converging to (Prel-unc) is not a goal we have when using HNNs: with f convex,
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we want a convex method that would favor convergence to the optimal set (P). As mentioned
earlier, the equivalence with mirror descent does not hold for all activations: in practice we
discretize (5.2) in time, and, do not choose a numerical scheme that specifically enforces
stability w.r.t. the ODE (5.2). All in all the choice of activation and step size leaves space
for HNNs to converge to a candidate solution in X .

Limitations of HNNs

As it is the case for most non-convex methods, convergence of HNNs depends on the initial
conditions. This sensitivity can be partly explained by the fact that for x ∈ (0, 1)p, the
HNNs dynamic is a scaled version of gradient flow. Therefore the flow x(t) cannot cross the
hypersurfaces Fi = {x ∈ Rp : ∇f(x)i = 0}, ∀i ∈ Ip. Crossing Fi can be wanted if the optimal
solution lies on the other side of it. We illustrate this with the same example as in Section
(5.2). Figure 5.3 builds on Figure 5.2 by displaying the curve F1 = {x : ∇f1(x) = 0} and
the flow x(t), as well as a analytically tailored descent trajectory that crosses F1 and does
converge to the optimum. In the next section we will develop methods that can produce
similar trajectories.
The dependence on the initial condition is also due to HNN being a descent method (Theorem
5.2.1): if f(x(t = 0)) < f(x?) then the trajectory will not be able to converge to x?. In other
words, the HNN trajectory always stays within the set {x ∈ Rp : f(x) ≤ f(x(t = 0))}. That
is why we will propose in the next section to choose the initial point x(t = 0) by running a
gradient ascent as a first step.

Figure 5.3: Normalized phase portrait of f defined in equation (5.4) with comparison between
gradient flow and HNNs with pwl activation and temperatures β1 = 10, β2 = 1
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5.3 Hopfield methods

In this section we develop numerical methods based on HNNs and its corresponding ODE
(5.2). We recover all the properties of HNNs while tackling some possible issues and limitations
highlighted in the previous section.

Explicit discretization scheme

The explicit discretization of HNNs (5.2) reads{
xk+1
H = xkH − γk∇f(xk)

xk = φ(xkH)
(5.6)

with initialization x0
H ∈ (0, 1)p and discretization step size γk. We refer to equation (5.6) as

the Hopfield method. We call Hopfield methods, the methods that generalize or build on (5.6).

In the following we will denote the positive diagonal matrix Ψk := diag(φ′(xkH)) � 0.

Hopfield descent

We can directly extend the Hopfield method (5.6) by considering a more general direction d
instead of −∇f(x), {

xk+1
H = xkH + γkdk

xk = φ(xkH)
(5.7)

with initialization x0
H ∈ (0, 1)p. We call this method Hopfield descent, which can be used to

tackle the issue of hypersurface crossing mentioned in Section (5.2). In order to guarantee the
existence of a step-size γk such that f(φ(xk + γkdk)) ≤ f(xk) we define the Hopfield descent
condition that constrains the direction d with respect to the gradient,

∇f(xk)>Ψkdk < 0 (5.8)

In other words we require the descent direction dk to make an acute angle (at most 90◦)
with the scaled descent −Ψk∇f(xk). In practice we will adopt a descent angle constraint
parametrized by θ ∈ [0, π

2
) such that

n
[
Ψk∇f(xk)

]>
dk ≤ − cos(θ)

with ‖dk‖ = 1. Or equivalently,

∇f(xk)>Ψkdk ≤ − cos(θ)‖Ψk∇f(xk)‖‖dk‖ (5.9)

The Hopfield descent offers the possibility to choose various descent direction d across
iterations: we will present one way of making a judicious choice, given the combinatorial
problems structure at hand, for a descent dk in Section 5.3.
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Descent violation

We also consider numerical methods that allow the condition f(xk+1) ≤ f(xk) to be violated.
This can be done in order to favor xki ∈ {0, 1} for i ∈ Ib. For instance, we set ε > 0 such that
if ψ(xk)i < ε (which implies that xki is close to {0, 1}), we set xk+1

i = P{0,1}(xki ) and xH,i =∞.
By doing so, we stop the evolution of the state component xi. Although not discussed in the
chapter, stochastic directions can also be used in order to avoid local minima and reduce
dependence on the initial condition. Such methods often lead to the descent condition being
violated. As mentioned earlier, stochastic versions of HNNs are referred to as Boltzmann
machines. Hopfield methods that use these techniques are studied in [68].

Initialization

In order to reduce the dependence on the initial condition where the state trajectory is
trapped in the set {x ∈ Rp : f(x) ≤ f(x0)}, we propose to initially run gradient ascent
starting with x0 = 1/2. That is, x0 ← x0 + γ∇f(x0) while x0 ∈ [ε, 1 − ε]p, where ε is a
hyperparameter. This creates a larger invariant set for Hopfield descent to evolve within.
Alternatively we run the scaled gradient ascent x0 ← x0 + γb�∇f(x0) where b ∈ Rp such
that bi = 0 if i ∈ Ib and bi = 1 otherwise. This keeps xi = 1/2 for i ∈ Ib, and as a consequence
does not bias convergence towards 0 or 1.

Connections with Projected gradient descent and mirror descent

Projected gradient method reads{
xk+1
H = xk − γk∇f(xk)

xk = φ(xkH)
(5.10)

where φ is the piecewise linear (pwl) activation with β = 1. Contrary to Hopfield method, here
the hidden state xH is used as a temporary variable. That is, xH does not have dynamics of its
own. The proof of convergence for projected gradient descent relies on the non-expansiveness
(i.e. 1-Lipschitz property) of convex projections [20]. Contrary to Hopfield methods, it is
therefore not possible to choose βi >> 1 to approximate the binary projection P{0,1} and
achieve provable convergence. Projected gradient descent (5.10) is equivalent to the proximal
method

xk+1 = argmin
x∈[0,1]p

∇f(xk)>(x− xk) +
1

2γk
‖x− xk‖2

Mirror descent consists in replacing the proximal term 1/2‖x − xk‖2 with the Bregman
divergence DΦ(x, xk). As defined in [20], the Bregman divergence of a function Φ (assumed
strictly convex and differentiable) is given by

DΦ(u, v) = Φ(u)−
(
Φ(v) +∇Φ(v)>(u− v)

)
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The Bregman divergence is non-negative and convex in the first argument (not always w.r.t
the second argument) and in general lacks symmetry. Locally, Bregman divergence is a
quadratic measure

DΦ(u, u+ ε) = 1/2ε>∇2Φ(u)ε+O(ε), ε ∈ Rp

If we take Φ(u) = 1/2‖u‖2, then DΦ is the euclidean distance. In that sense, projected gradient
is a particular case of mirror descent. The first order optimal condition for unconstrained
mirror descent is

∇f(xk) +
1

γk
(∇Φ(xk+1)−∇Φ(xk)) = 0 ⇐⇒

{
xk+1
H = xkH − γk∇f(xk)

xkH = ∇Φ(xk)

Taking φ−1 = ∇Φ directly yields the Hopfield method (5.6). As in Section 5.2, the equivalence
between Hopfield method and mirror descent requires a bijective activation. For the tanh
activation, we have that Φ(x) ∝x x log(x) + (1− x) log(1− x), the Bit entropy. This leads to
a natural interpretation of the Hopfield method: x represents a probability of the solution
being 1 or 0. As shown in [172], mirror descent will converge to the optimal solution of
problem (Prel-unc) for Φ σΦ-strongly convex (i.e. ∇2Φ � σΦI for twice differentiable Φ), if
the step-size is chosen to be less than σΦ/L with a worst case rate of convergence O(1/k).
As presented in our convergence analysis, we will not specifically require the activation to
be bijective or the step size to be such that γk ≤ σΦ/L: which leaves space to converge to
points out of (Prel-unc).

Convergence of Hopfield methods

In this section we prove convergence for the Hopfield methods (5.6, 5.7). We start by showing
that given a small enough step-size, the objective decreases at each iteration (this is the
numerical equivalent of Theorem 5.2.1). We then prove a convergence rate when f is convex.

Theorem 5.3.1. The Hopfield descent method (5.7) with a smooth activation function yields
f(xk+1) ≤ f(xk), for the explicit step-size condition γk ≤ Γf,φ(xk, xkH , d

k), where the function
Γf,φ is defined in equation (5.17) .

From the proof of this theorem, choosing γk = Γf,φ(xk, xkH , d
k) we have

∆f(x)k ≤ 1

2
γk∇f(xk)>Ψkdk (5.11)

This leads to the following statement,

Corollary 5.3.1.1. There exist f † such that f(xk)→ f †. Moreover, if xk converges to the
set X † defined in (5.3), then f(xk) also converges.
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As in Section 5.2, by direct analysis of the Hopfield method we have that the set of
equilibria is X †.
If we choose dk = −∇f(xk), then we get the step size

γk = Γf,φ(xk, xkH) =
‖∇f(xk)‖2

Ψk

L‖β �∇f(xk)‖2 + ‖β̃1/3 �∇f(xk)‖3
3

If φ is the identity, then β = 1, β̃ = 0, Ψk = I then we get γk = 1/L, which is the classical
steepest descent step size for smooth unconstrained optimization [20]. In that sense, Hopfield
method is a generalization of the gradient descent algorithm. We also remark that this step
size is not constant: It can go to ∞ as ∇f → 0 as the term ‖∇f‖3

3 dominates; or it can go to
zero as x→ {0, 1}p. In that respect, Hopfield method is different from the constant step-size
of mirror descent presented in Section 5.3. For bijective activations, although there is an
equivalence with mirror descent, we argue that is not designed to guarantee convergence to
the optimum of (Prel-unc) when the objective is convex. Importantly, this added flexibility
(choice of descent direction) of Hopfield methods in discrete time offers the possibility of
converging to sub-optimal points of (Prel-unc) that can be optimal points for the original
MINLP problem (Punc).

Although we already have convergence, We would like to estimate the worst case scenario
for convergence speed. It is not possible to do so without some additional assumptions on f .
In Theorem 5.3.2 we derive a convergence rate under the condition that f is convex.

Theorem 5.3.2. If the objective f is convex, then the Hopfield method (5.7) with (i) smooth
activation function φ, (ii) verified Hopfield descent condition (5.8), and (iii) the component-
wise condition

ψ(x) ≥ β �min(|x|, |1− x|), ∀x ∈ [0, 1]p

yields a worst-case convergence speed that is sub-linear and f(xk) − f † = O( 1
kr

) for all
r ∈ (0, 1).

From this theorem, we show that the rate of convergence is similar to that of (projected)
gradient descent as shown in [116] for the same hypothesis on f . In that regard, the Hopfield
method is a relatively efficient algorithm.

As it is the case for classic gradient descent, the step-size (5.17) from Hopfield methods
requires an estimate of the objective function’s smoothness value L. In some applications we
either do not have access to L, or we only have a conservative estimate of L which might
slow down convergence. To tackle that issue, we propose a variant of the Armijo rule [20]
that is tailored to our methods. Namely, let γ > 0 be a default step-size, at a given iteration
k, we iterate j ← j + 1 until γk = 2−jγ is such that

∆f(x)k ≤ σγk∇f(xk)>Ψkdk

where σ ∈ (0, 1/2] is a fixed hyperparameter, usually chosen to be in [10−5, 10−1] for classic
nonlinear methods [20]. From equation (5.11), the Armijo rule is well-posed (i.e. j is finite)
for σ ≤ 1/2.
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Choice of descent direction

In this section, we discuss how we choose the descent direction dk for the Hopfield descent
method in (5.7). At iteration k, let us define{

gk = −n[Ψk∇f(xk)]

hk = −n[∇f(xk)]

and bk ∈ Rp a vector that points towards the closest point in the feasible set X (defined in
(5.1)) for binary indices i ∈ Ib given xk. For instance, for i ∈ Ib, we can take bki = −1 if
|xki | < |xki − 1| and bki = 1 otherwise and for i ∈ Ip. Alternatively to avoid a high dependence
on the initial state x0, we can choose bki = φi(x

k
i − 1

2
), for i ∈ Ib. In both cases, we then

proceed to normalize vector b, b← n[b].
Our objective is now to find a direction dk that is as close as possible to bk and that

respects the Hopfield descent constraint (5.8). To do so we formulate a convex optimization
problem: we minimize the Euclidean distance between the binary direction bk and the scaled
steepest descent hk using a trade-off criterion. Dropping the iteration k superscript for clarity,
the corresponding optimization problem reads

min
d∈Rp

ζ‖d− b‖2 + (1− ζ)‖d− h‖2

s. to: g>d ≥ cos(θ), ‖d‖ ≤ 1
(5.12)

where ζ ∈ [0, 1] is the trade-off hyper-parameter. The optimization problem (5.12) is convex
and can be solved analytically. Let us denote w = ζb+ (1− ζ)h. Slater’s condition holds, and
thus strong duality holds, implying that the problem (5.12) is equivalent to its dual problem

min
y≥0

(
max
‖d‖≤1

d>(w + yg)
)
− y cos(θ) (5.13)

Using the fact that the convex conjugate of the Euclidean norm is the Euclidean norm itself
gives us

max
‖d‖≤1

d>(w + yg) = ‖w + yg‖

Then, using the first order condition for the convex problem (5.13), and solving a quadratic
equation, we get the following formula for the dual variable y

y = max
{

0,−g>w + cot θ
√
‖w‖2 − (g>w)2

}
where cot denotes the cotangent, we then get the optimal direction

d = n[w + yg]

Hence, we have that d = w if the Hopfield descent condition is satisfied for w as y = 0. This
idea for finding a direction dk is similar to the Frank-Wolfe algorithm [116, 52] and is only
pertinent as long as there exists i ∈ Ib such that xki is not in {0, 1}. When xki ∈ {0, 1} we
can simply take the direction to be the opposite of the gradient.
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5.4 Dual Hopfield methods

So far we have only dealt with combinatorial problems without linear constraints. In this
section, we want will focus on methods for constrained MINLP (P). In the literature for
Hopfield methods for constrained optimization [78, 162, 55], the linear equality constraint
are relaxed and included as a penalty term. This is referred to as pure penalty approach. It
consists in solving

min
x∈X

f(x) +
ρ

2
‖Aeqx− beq‖2 (5.14)

where ρ > 0 is a hyperparameter tuned by the practitioner. The main drawback of this
method is the inexistence of a finite ρ such that problems (P) and (5.14) yield equivalent
solutions, even in the strictly convex case with binary relaxation, as shown in [20] (Section
3.1.1), the parameter ρ has to be taken to +∞. To achieve a given precision on constraint
violation, ρ has to be taken large, which creates numerical instability and generally slows down
convergence [116, 20]. In order to tune ρ, trial and error approaches such as the sequential
unconstrained maximization technique [109] have been proposed. Different penalty approaches
have been used for Hopfield methods: in [167] the authors propose one hyperparameter per
scalar linear equality, in [3] the penalty is scaled by a matrix, via a technique called the
subspace approach, which only works for linear equality constraints. All in all these methods
never entirely solve the aforementioned issue. Our approach to modeling linear constraints
consists in using augmented Lagrangian methods.

Lagrangian duality

For clarity and without loss of generality we can combine the linear equality and inequality
constraints in a single linear inequality constraint that we still write Ax ≤ b. The augmented
Lagrangian for problem (P) then reads,

Lρ(x, µ) = f(x) + µ>(Ax− b) +
ρ

2
‖(Ax− b)+‖2

where (.)+ = max(0, .) is the projection on the positive orthant. We have by assumption on
f that x→ L(x, µ) is smooth, because the penalty ρ

2
‖(Ax− b)+‖2 is differentiable w.r.t. x

with gradient ρA>(Ax− b)+, which is Lipschitz continuous with Lipschitz constant bounded
by ρ‖A‖2

2. The dual function q is concave (by construction) and is given by the optimization
problem

q(µ) = min
x∈X
Lρ(x, µ) (Dµ)

The dual problem is then the following optimization problem

max
µ≥0

q(µ)

Finding the optimal set, or a point µ in this set is challenging, notably because it requires
solving the MINLP problem (Dµ) for many dual variables µ: for instance the dual (subgradient)
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ascent algorithm reads
µk+1 =

(
µk + γk∇xLρ(x(µ), µ)

)
+

(5.15)

where γk is a step-size and x(µ) an optimal solution to (Dµ). In this algorithm we leveraged
the fact that the augmented Lagrangian is differentiable w.r.t. x and that from Danskin’s
theorem [20] (proposition B.22) we have ∇xLρ(x(µ), µ) ∈ ∂q(µ).
The dual problem (Dµ) is of the same type as problem (Punc): it is an unconstrained MINLP
with smooth objective. Instead of computing x(µ) exactly we can run a Hopfield method, as
presented in section 5.3, to obtain an approximate solution x†(µ). We then replace x(µ) by
x†(µ) in the dual ascent update (5.15). In the next section, we also propose another method
for finding the dual variable µ when the objective f is convex or when its bi-conjugate can
be obtained.

Lagrangian duality and convexified problem

The convex relaxation for (P) is

min
x∈[0,1]p

f ??(x) +
ρ

2
‖(Ax− b)+‖2

s. to: Ax ≤ b
(Pconv)

where f ?? is the bi-conjugate of f . It is know that the bi-conjugate is also the convex
envelope of f [20]. A quadratic penalty term is added here, nevertheless as the problem is
convex, all problems are equivalent for any ρ ≥ 0. Remark that if the objective is already
convex then f = f ??. In cases for which f ?? can be obtained analytically, or approximated
tractably, we propose, alternatively to the previous section, to compute the optimal dual
variable by solving the convex problem (Pconv). We support this method via the following
theorem.

Theorem 5.4.1. Problem (P) and its convexified counterpart (Pconv) with ρ = 0 share the
same dual function. And have therefore the same set of optimal dual variables.

Based on this theorem we propose to compute an optimal dual variable µ by solving
(Pconv) either with a given solver or via the method of multipliers [20]. We can then proceed
by running an Hopfield method to solve (Dµ) with an optimal µ as a last step.

5.5 Numerical experiments

LogSumExp objective

We start by illustrating our method on the following optimization problem

min
x∈X

log(1>m exp(Ax+ b))
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where A ∈ Rm×p was drawn randomly with distribution Unif[−5/2,+5/2]m×p and b was
drawn from Unif[−5,+5]m. We also chose ub = +10 and lb = −10, each component xi was
constrained be binary randomly using a Bernoulli distribution with probability 1/2. Note
that the objective function is convex and smooth (the gradient of LogSumExp being the
softmax, which is 1-Lipschitz [54]). We compare three methods: (a) Hopfield descent using
the technique described in section 5.3 with ζ = 0.9 and θ = π/2− 0.1, (b) Hopfield method
(5.6) with βi = 102 for i ∈ Ib and βi = 1 otherwise, (c) projected gradient descent (5.10). We
run K = 104 iterations for each method. In order to compare the final result of these three
methods, we project the final candidate solution xK onto X and evaluate the corresponding
objective value (dashed lines in the figure) .We illustrate in figure 5.4 the convergence curve
of f(xk) with respect to the iteration k. We can see, as expected, that the convergence is
slower for method (a) as it does not use the steepest descent −∇f(x) and for K = 104,
f(xK(c)) < f(xK(b)) < f(xK(a)). Nevertheless, (a) converges to a point in X whereas the two other
methods don’t, which results in a better candidate solution than the two other methods, it
turns out that f(PX (xK(c))) > f(PX (xK(b))) > f(PX (xK(a))). In the end, the Hopfield method (b)
also outperforms projected gradient descent. We want to stress out, that there exist instances
for which projected gradient descent outperforms Hopfield, nevertheless the main point of
this example is to illustrate that Hopfield method is better at finding candidate solution close
to the feasible set X . In the next section, we do compare Hopfield methods to other methods
more thoroughly.

Figure 5.4: f(xk) = LogSumExp(Axk + b) across iterations, dashed lines are the value of
the objective after projection on X for k = 104 and for each method: (a) Hopfield (binary
direction), (b) Hopfield (gradient direction), (c) projected gradient descent
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Application to economic load dispatch

In this example, we illustrate Dual Hopfield. Let us consider an electricity systems with m
generators. At an initial time t = 0, a generator i ∈ [n] status is either ’on’ or ’off’. We
gather in a vector s0 ∈ Rm these initial status, with s0,i = 1 if ’on’ and s0,i = 0 otherwise.
We also denote y0,i ≥ 0 the initial power output of the generators at initial time. The agent
responsible for the economic dispatch (called the ISO) has to make a decision for t = 1 on
whether a given generator should be turned ’on’ or ’off’ as well as its power output in order
to satisfy a power demand D ≥ 0. This decision is made based on the following cost function

f(x = [z, y]) = p>y +
1

2
y>Σy +

C1

2
‖y − y0‖2 +

C2

2
‖z − z0‖2

where p ∈ Rm
+ is the vector of production marginal prices, Σ � 0 is here to represent the

uncertainty on prices (this is often referred to as Markowitz portfolio optimization). The
two quadratic terms represent the cost from having to change the power output and status
of the generator. The set mixed-binary set X is here defined as X = {x = [z, y] | z ∈
{0, 1}m and y ∈ [0, 1]m}. Moreover the ISO needs to satisfy the two following constraints,
1>my = D (supply equals demand) and the fact that a generator that is off cannot produce
electricity which can be formulated as z>y = D. This equality constraint is not linear,
nevertheless we will show that the Hopfield dual ascent method presented in section 5.4 still
allows to find good candidate solutions. We define the augmented Lagrangian as,

Lρ(z, y, λ1, λ2) = f(z, y) + λ1(1>my −D) + λ2(z>y −D) +
ρ

2
(1>my −D)2 +

ρ

2
(z>y −D)2

We initialize the dual variables λ1 = λ2 = 0 and then proceed by running an Hopfield method
(5.6) with sin activation and activation parameter β = [10.1m; 1m]. We then do a dual update

λ1 = λ1 + γD(1>my −D), λ2 = λ2 + γD(z>y −D)

where λD is the dual step size. We then repeat these steps until convergence. For comparison
we solve the convex quadratic problem

min
y

p>y +
1

2
y>Σy +

C1

2
‖y − y0‖2

1>my = D

0 ≤ y ≤ 1

and then simply round y with precision ε and define z = 1(y ≥ ε) where ε is a precision
parameter (we choose ε = 10−3). By construction the candidate solution obtained from this
method x = [z, y] ∈ X . We draw the parameters {p,Σ, C1, C2.D} randomly and solve 100
instance of it with the Hopfield and convex method for m = 20 generators. We evaluate
the ’supply equals demand’ constraint violation with the criterion log10(|y>z −D|) and the
binary constrain violation with the criterion z � (1− z)/m. From the simulations we have
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that the binary constraint violation obtained with Hopfield is low: on average 7.4× 10−4, the
distribution of which is highly concentrated around this value as it can be seen in figure 5.5.
The dual method allows to satisfy the constraint with a mean precision of 10−2.5 which is
close to the working precision we use for the convex solution ε = 10−3. In order to understand
what these precision values represent, relatively the average the demand is E[D] = 5.07 with
a standard deviation σ(D) = 1.63. As it can be seen in figure 5.5, the Hopfield method
outperforms the convex method in terms of cost, with an average of 2.48 for Hopfield versus
7.1 for the convex method.

Figure 5.5: Violin plot – i.e. empirical probability density d(w) on the x-axis w.r.t. w on the
y-axis, where w is a criterion value – for (a) supply equals demand constraint violation, (b)
the final cost, and (c) the binary constraint violation. The dashed lines represent the average
and the quartile of the distribution.

5.6 Limitations

In this section, we remind the reader of the limitations associated with the methods that
have been developed throughout this chapter.

First, we want to stress out the fact that Hopfield methods are heuristics, and that for this
reason there is no guarantee of convergence to a solution to the original problem, let alone a
feasible solution. That is why we called candidate solution the result of running Hopfield
methods. The activation maps we propose do favor convergence to binary solutions, but
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activations other than the projection on the binary set itself cannot guarantee convergence
to such a set.

At the end of section 5.2 we already pointed out some limitations of HNNs, one of which
was the sensitivity to the initial state that we attributed in part to the fact that HNNs
are scaled version of gradient flow and cannot cross hypersurfaces where the components of
the gradient is zero. With the descent method proposed later, we tackled part of this issue
by allowing to cross such hypersurfaces. Nevertheless the problem of sensitivity to initial
condition still holds.

In practice, Hopfield methods perform well. Nevertheless many parameters still need to
be tuned given a problem at hand: for instance the allowable angle in the descent method,
the choice of activation, or the choice of the dual update step size. Remark that even in the
convex case, the choice of dual step size is challenging. Hence, for Hopfield methods, much
like when learning with Neural Networks, the choice of step-size requires careful tuning.

All in all, the methods developed in this chapters should be seen as potential tools that
can be used by a practitioner given on a combinatorial problem with constraints. The use of
such methods require refined tuning of parameters such as the choice of activation functions
and step sizes.

5.7 Proofs

Proof of Theorem 5.4.1

Problem (P) can be equivalently reformulated as the following optimization problem

min
x∈X ,y∈Rp

f(x)

s. to: Ay ≤ b, x = y

The corresponding dual problem is

max
µ≥0,λ

(
min
x∈Rp

(f̃(x) + λ>x) + · · ·

min
y∈Rp

(µ>F̃ (y)− λ>y)
)

Let us assume that at least one constraint is active at optimum, then we can assume
µ 6= 0 without loss of generality. Because X is a compact set, the conjugate functions of f̃
and µ>F̃ are defined on Rp. We have

min
x∈Rp

(f̃(x) + λ>x) = −f̃ ?(−λ)

min
y∈Rp

(µ>F̃ (y)− λ>y) = −(µ>F̃ )?(λ)
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Hence the dual problem reads

max
µ≥0,λ

−f̃ ?(−λ)− (µ>F̃ )?(λ)

which is equivalent to
max

µ≥0,λ1,λ2
−f̃ ?(λ1)− (µ>F̃ )?(λ2)

s.to: λ1 + λ2 = 0

The dual of this last problem is

min
x∈Rp

max
µ≥0

(
max
λ1

(
λ>1 x− f̃ ?(λ1)

)
+

max
λ2

(
λ>2 x− (µ>F̃ )?(λ2)

))
which can be rewritten

min
x∈Rp

(
f̃ ??(x) + max

µ≥0
(µ>F̃ )??

)
Using the properties of the conjugate

(µ>F̃ )?? = µ>F̃ ??

We also have f ?? = f̃ ??|Co(X) and F ?? = F̃ ??|Co(X) where Co denotes the convex hull. We

have that Co(X) = [0, 1]p. Then using the fact that f ?? = f̂ , all things considered, we get
that the dual of the dual is the convexified problem (Pconv). This result also holds if all the
constraints are inactive as

F̂ (x) ≤ F (x), ∀x ∈ X̂

Proof of Theorem 5.2.1

equation (5.2) can be equivalently reformulated as{
ẋH = −∇f(x)

ẋ = −φ′(xH)�∇f(x)

with xH(t = 0) ∈ (0, 1)p and x(t = 0) = φ(xH(t = 0)). Using this equivalent formulation, if
φ IS smooth, Picard-Lindelöf theorem ([136], Ch.3) applies, and therefore this dynamical
system is well-posed. Proving unicity of solution for non differentiable can be done using
extension of Picard-Lindelöf [136]. Moreover we have the Lie derivative

d

dt
f(x) = −

(
xH � φ′(xH)

)>
xH = −x>Hdiag(φ′(xH))xH

as diag(φ′(xH)) ≥ 0, we have d
dt
f(x) ≤ 0 which ends the proof.
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Descent lemma and inequalities

Lemma 5.7.1. (Descent lemma) Given h an L-smooth real-valued function,

∀u, v h(u)− h(v) ≤ (u− v)>∇h(v) +
L

2
‖u− v‖2

The proof of this lemma can be found in [20] (proposition A.24).

Lemma 5.7.2. (Framing lemma) Let h : R→ R a real L-smooth function, then

h′(v)(u− v)− L

2
(u− v)2 ≤ h(u)− h(v) ≤ h′(v)(u− v) +

L

2
(u− v)2

Proof. Let m(t) := h(tu+ (1− t)v), then

h(u)− h(v) = m(1)−m(0)

=

∫ 1

0

m′(t)dt

=

∫ 1

0

(u− v)h′(tu+ (1− t)v)dt

= h′(v)(u− v) +

∫ 1

0

(u− v)[h′(tu+ (1− t)v)− h′(v)]dt

Let us denote q(t) := tu+(1−t)v from L-smoothness of h, we have |h′(q(t))−h′(v)| ≤ Lt|u−v|
which implies

−Lt(u− v)2 ≤ (u− v)[h′(q(t))− h′(v)] ≤ Lt(u− v)2

and therefore

−L
2

(u− v)2 ≤
∫ 1

0

(u− v)[h′(q(t))− h′(v)]dt ≤ L

2
(u− v)2

this concludes the proof.

Proof of Theorem 5.3.1

Recall the following notation: given some sequence {uk}k, we denote ∆h(u)k = h(uk+1)−h(uk).
Using the descent Lemma 5.7.1, we have

∆f(x)k ≤ ∆xk>∇f(xk)︸ ︷︷ ︸
Part I

+
L

2
||∆xk||2︸ ︷︷ ︸
Part II

We start by producing upper-bounds for Part I and II of this inequality.
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Part I: using equation (5.7),

∆xk>∇f(xk) = Σi∈Ip∆φi(xH,i)
k∇f(xk)i (5.16)

Now, we want to leverage the monotonicity and β̃ gradient Lipschitz continuity of the
activation function to upper-bound ∆φi(xH,i)

k∇f(xk)i. For conciseness, let us drop the index
i for now. Using lemma 5.7.2 we get

φ′(xkH)∆xkH −
β̃

2
(∆xkH)2 ≤ ∆φ(xH)k ≤ φ′(xkH)∆xkH +

β̃

2
(∆xkH)2

Two cases arise

• case 1: ∇f(xk) ≥ 0, using equation (5.7) and the previous inequality

∆φ(xH)k∇f(xk) ≤ γkdkψk∇f(xk) +
β̃

2
(γkdk)2∇f(xk)

• case 2: ∇f(xk) < 0, again, using equation (5.7) and the previous inequality

∆φ(xH)k∇f(xk) ≤ γkψkdk∇f(xk)− β̃

2
(γkdk)2∇f(xk)

In conclusion, in both cases, using the index i once again, we have

∆φ(xH,i)
k∇f(xk)i ≤ γkψki d

k
i∇f(xk)i +

β̃i
2

(γkdki )
2|∇f(xk)i|

Going back to the full sum, using equation (5.16) leads to the inequality

∆xk>∇f(xk) ≤ γk∇f(xk)>Ψkdk +
1

2
(γk)2dk>diag

(
β̃ � |∇f(xk)|

)
dk

Part II of the inequality: using β-smoothness of the activation

||∆xk||2 = ||∆φ(xH)k||2 ≤ ‖β �∆xkH‖2 = (γk)2||β � dk||2 = (γk)2dk>diag(β2)dk

where .2 is seen as an component-wise operation on β.
Synthesis of Part I and II: gathering inequalities from Part I and II gives

∇f(x)k ≤ ck1γ
k + ck2(γk)2

where ck1 = ∇f(xk)>Ψkdk and ck2 = 1
2
dk>diag

(
β̃ � |∇f(xk)|+ Lβ2

)
dk

we directly have ck2 ≥ 0 and from the Hopfield descent condition (5.8), ck1 < 0, this is the
motivation for this condition in the first place. This guarantees the existence of αk such that
f(xk+1) ≤ f(xk) at every iteration. The optimal step size is

γk = − ck1
2ck2

=
−∇f(xk)>Ψkdk

dk>diag
(
β̃ � |∇f(xk)|+ Lβ2

)
dk

:= Γf,φ(xk, xkH , d
k) (5.17)
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Proof of Corollary 5.3.1.1

Every bounded and monotonically nonincreasing sequence converge, therefore from Theorem
5.3.1 we have the existence of f † ∈ R such that f(xk)→ f †, and therefore ∆f(x)k → 0. Let
us take, γk = Γf,φ(xk, xkH , d

k). By smoothness of f , there exist c > 0 such that ∀x ∈ [0, 1]p,

dk>diag
(
β̃ � |∇f(xk)|+ Lβ2

)
dk ≤ c‖dk‖2

Indeed, let c̃ ∈ R such that c̃1p ≥ |∇f(x)|, ∀x ∈ [0, 1]p, then define c = β̃c̃+ L‖β‖2.
From that we have,

γk ≥ −∇f(xk)>Ψkdk

c‖dk‖2

Injecting that inequality in (5.11) and using Hopfield descent condition (5.9) we get

∆f(x)k ≤ − 1

2c‖dk‖2

(
∇f(xk)>Ψkdk

)2

≤ −cos2(θ)

2c
‖Ψk∇f(xk)‖2

(5.18)

Using this last inequality, we have that ∆f(x)k converges to 0 when ‖Ψk∇f(xk)‖ converges
to 0 (which is equivalent to, xk converges to X †). This proves the second part of the corollary.

Proof of Theorem 5.3.2

The convexity of the objective f gives the following inequality for all x ∈ X

f(xk)− f(x) ≤ ∇f(xk)>(xk − x)

≤ ‖∇f(xk)� (xk − x)‖1

(5.19)

Let us define X̃ † = X † ∪ {x| f(x) = f †}, and let x̃k = argminx∈X̃ †‖x− xk‖.
This leads to,

min
x∈X̃ †

f(xk)− f(x) = f(xk)− f †

and therefore using this with inequality (5.19)

f(xk)− f † ≤ min
x∈X̃ †
‖∇f(xk)� (xk − x)‖1

≤ ‖∇f(xk)� (xk − x̃k)‖1

(5.20)

As xk converges to the set X̃ † there exists an integer K such that for all k ≥ K and for all
i ∈ Ip,

min(|xki |, |1− xki |) ≥ |xki − x̃ki |



CHAPTER 5. HOPFIELD METHODS FOR COMBINATORIAL OPTIMIZATION 76

From now on, let us assume k > K. Denoting δfk = f(xk)− f †,

bk = min(|xk|, |1− xk|) ∈ Rp

and Bk = diag(bk), we can rewrite inequality (5.20) as δfk ≤ ‖Bk∇f(xk)‖1, and using the
equivalence between ||.||1 and ||.||

δfk ≤ √p‖Bk∇f(xk)‖ (5.21)

We will be using this inequality later in the proof. From equation(5.18) we directly get,

δfk+1 ≤ δfk − cos2(θ)

2c
‖Ψk∇f(xk)‖2

Using the component-wise condition give in the statement

ψk ≥ β �min(|xk|, |1− xk|) = β � bk ≥ βbk

with β = mini∈Ip βi, from this we get

δfk+1 ≤ δfk −
β2 cos2(θ)

2c
‖Bk∇f(xk)‖2

Injecting inequality equation(5.21) we get,

δfk+1 ≤ δfk −
β2 cos2(θ)

2cp
(δfk)2 (5.22)

We know show that this inequality implies convergence of the sequence {δfk} at a rate o( 1
kr

),

with 0 < r < 1. Let us define ζ =
β2 cos2(θ)

2cp
and let us take the inverse of the inequality (5.22),

1

δfk+1
≥ 1

δfk
1

1− ζδfk

≥ 1

δfk

(
1 + ζδfk

)
=

1

δfk
+ ζ

Leveraging the telescopic sum over k (starting from index K) this inequality leads to

1

δfk
≥ 1

δfk
+ ζ(k −K)

inverting this inequality and multiplying both sides by kr gives

krδfk ≤ kr

1
δfk

+ ζ(k −K)

The right hand side of this inequality is equivalent to 1
ζ
kr−1 when k → +∞, which converges

to 0 for r < 1. As a consequence, krδfk → 0. More precisely, we have that δfk = O( 1
ζk

),

hence, to reach a precision ε such that δfk ≤ ε we need a number of iterations O(1
ε
).
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Chapter 6

Implicit Optimization: Models and
Methods

Let us start by defining what we mean when we use the word implicit in the two next
chapters. As an example, we previously introduced the Hopfield Neural Network for a map f
the following way {

ẋH(t) = −∇f(x(t))

x(t) = φ(xH(t))

We discretized this ODE in time with an explicit scheme and introduced the first versions of
Hopfield methods. The original ODE is implicit: there is no analytical solution that can be
derived to get the maps {x(·), xH(·)}. Generally speaking, this is the case for most solutions to
PDEs and ODEs. Most of the time, we form approximate solutions using (explicit or implicit)
stable numerical schemes. Depending on the implicit problem at hand there are different
ways of finding approximate numerical solutions. In this chapter we will focus on implicit
variables that are vectors (not maps) and that can be approximated with simple methods
such as Picard iterations. We will consider these implicit variables to be constraints of
optimization problems. We call these new class of optimization models, implicit optimization,
which includes deep learning, nonlinear control, and mixed-integer programming as special
cases. Implicit optimization provides a unified perspective on these different fields, leading to
new algorithms and surprising connections. Among others, we will propose a new heuristic
to tackle combinatorial problems different from Hopfield Methods. When it comes to solving
these type of problems, we propose two type of algorithms: (i) implicit gradient descent and
(ii) the Fenchel alternative direction method of multipliers. We will illustrate our theory and
methods with a study case in energy systems and numerical experiments on feedforward
neural networks and combinatorial optimization problems.
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6.1 Introduction

Problem Formulation

We define an implicit optimization problem to be one of the form

min
x∈X ,u∈U

f(x, u)

x = φ(x, u)
(P)

where the objective function f is convex, and X and U are convex subsets of Rn and Rq

respectively. The map φ : Rn×Rq → Rn, assumed to be continuous and differentiable almost
everywhere, is referred to as the implicit map, while the equation x = φ(x, u) is called the
implicit equation. We use the terminology implicit because the optimization variable x is
defined implicitly – meaning there is no analytical formula for it – as a solution to the implicit
equation. We call x the implicit state and u the control input. We will consider two possible
assumptions for the implicit map φ: the contractive mapping and the Fenchel conditions,
presented in Section 6.2.

Related work

Implicit operators in convex optimization methods are ubiquituous: they arise in proximal
gradient [153], the alternative direction method of multipliers (ADMM) [27] conjugate
gradients and mirror descents [20], to cite some examples.

In this chapter we consider the following questions: What are the well-known problems
that can be cast in that framework? How can they be generalized? And finally, what are
some methods that would allow to tackle these type of problems?

We are not the first to consider optimization variables that satisfy a form of implicit
constraints. Ordinary differential equations (ODEs) or partial differential equations (PDEs)
define the state trajectories in an implicit way. Therefore optimization over ODEs and PDEs
[92] is a form of implicit optimization.

Complementarity problems can also be seen as a form of implicit optimization [39]. These
type of problems typically arise when an optimization problem has an optimization variable
x that is constrained to be the solution to an optimization problem itself. This is a modeling
approach that is often considered in energy market applications [53]. Implict equations arise
in deep learning as well. In [47] the authors have proposed a new framework where the hidden
sates are defined in an implicit manner. In the same area, recent works have also considered
implicit constraints. For example, [84, 14] show how to use an implicit framework for the
task of sequence modeling. In [35] the authors use implicit constraints to solve and construct
a general class of models known as neural ordinary differential equations. Finally, in [10]
the authors tackle the fundamental problem of selection bias in machine learning with the
so-called invariant risk minimization that also uses implicit constraints.
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Contribution and chapter outline

In this chapter we provide a unified perspective on implicit optimization models. We focus
on two possible assumptions for the implicit map: the contraction condition and the Fenchel
condition. We show that these two conditions allow one to encompass a multitude of
optimization problems across different fields. We also propose novel algorithms based on
these formulations, as well as extension of these models.

In Section 6.2 we present the two aforementioned possible conditions on the implicit map
and exhibit some of their mathematical properties. In particular, we show that the Fenchel
condition is satisfied, up to an approximation, under some mild conditions.

In Section 6.3 we give examples of known optimization problems that can be cast as
implicit optimization models and explore the structure of their corresponding implicit maps.

In Section 6.4 we provide some generic methods for solving implicit optimization models
and in Section 6.5 we put these methods in practice.

In this preliminary work, our focus is on theoretical and algorithmic underpinnings, and
not on empirical validation. In particular, we do not aim at empirically proving the superiority
of our methods with state-of-the-art methods for Deep Learning, MINLP, or nonlinear control
with large, real-world problems and datasets. Section 6.5 provides a few examples supporting
the theory put forth in this chapter.

6.2 Precursors and mathematical background

In this section, we present the mathematical background for implicit optimization. We start
with the contractive mapping conditions and then explore some of its implications. We then
present the Fenchel condition and introduce the Fenchel divergence that generalized euclidean
L2 penalties. We then show that the Fenchel condition can always be satisfied with some
approximations.

Contractive mapping condition

We say that the implicit map φ is an r-contraction, r ∈ [0, 1), if for all u ∈ U ,

‖φ(x1, u)− φ(x2, u))‖ ≤ r‖x1 − x2‖, ∀x1, x2 ∈ Rn

If φ is an r-contraction, as a direct consequence of the Banach fixed-point theorem [63],
given u ∈ U , x is uniquely defined by the implicit equation. In other words, under the
r-contraction assumption, x is a function of u. In that case we will consider x ∈ Rn and
disregard X , since x is fixed given u. Given u, we can compute x(u) using Picard iterations

xk+1(u) = φ(xk(u), u)

starting with any x0(u) ∈ Rn. Picard iterations converge linearly to x(u) and,

‖xk(u)− x(u)‖ ≤ rk‖x(u)− x0(u)‖
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as shown in [20], proposition A.26. The following theorem allows us to understand the
continuity properties of the map u→ x(u).

Theorem 6.2.1. If the implicit map φ is p times continuously differentiable then so is the
map u→ x(u) and

∇ux(u) = (I −∇xφ(x, u))−1∇uφ(x, u)

Proof. This theorem can be seen as a direct corollary of the implicit function theorem as
stated in Proposition A.25 [20] and we only need to prove the non-singularity of I−∇xφ(x, u).
As the map φ is a r-contraction we have that ‖∇xφ(x, u)‖op ≤ r which proves that none of
its eigenvalues are of modulus 1, which proves non-singularity of I −∇xφ(x, u). �

Fenchel condition

We start with the following definition of a convex potential gradient.

Definition 6.2.1. We say that a vector map v : Dv → Rp with a convex domain Dv ⊂ Rp

is a convex potential gradient if there exists a convex and differentiable real-valued function
V : Dv → R such that ∇V (x) = v(x). V is referred to as the potential of v. We denote in
short v ∈ CPG or say that v is a CPG.

We say that the implicit map φ satisfies the Fenchel condition if there exists a matrix A,
a bilinear map ζ : X × U → Rn and a map ψ ∈ CPG such that

φ(x, u) = Aψ(ζ(x, u)) (6.1)

As a special case, we say that φ satisfies the direct Fenchel condition if A = I. This
condition is not the only one that allows the construction of tractable algorithms, as shown
in Section 6.3 with the example of MINLP. The reason why such a choice is made for this
condition will be made clearer in section 6.4 and once the Fenchel divergence is introduced.

Convex potential gradients

We give examples of CPG functions and introduce the Fenchel divergence.

Real maps: All real continuous maps have an integral function, therefore φ is CPG if
and only if φ is non-decreasing and the domain of definition of φ is connected. For instance,
x→ log(x) defined on (0,+∞), x→ (x)+ (ReLU function), x→ (1/2)x2

+ and x→ tanh(x)
defined on R are CPGs.

Multivariate maps: If φ is linear with φ(x) = Ax+ b and a convex domain of definition
X , then φ is a CPG if and only if A � 0. In that case a corresponding convex potential is
given by

Φ(x) = (1/2)x>Ax+ b>x
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If φ is the softmax function, often used in machine learning as a smooth approximation of
the argmax,

φ(x) =
exp(x)(

1> exp(x)
)

where the exponential is applied elementwise, then φ is a CPG with convex potential Φ(x) =
log(1> exp(x)), which is the LogSumExp, a smooth approximation of the max function.

If φ(x) = x/‖x‖2 (the Euclidean normalization), with domain of definition R+\{0}n, then
the convex potential is given by Φ(x) = ‖x‖2.

We finish this section by considering the implicit map φ(x, u) = x+∇xg(x, u) with g convex
in x, we directly have that φ satisfies the direct Fenchel condition as Φ(x, u) = g(x, u) + (1/
2)‖x‖2 is (strongly) convex in x and ∇xΦ(x, u) = φ(x, u). Note that the implicit equation
here is equivalent to

x ∈ argminx∈Rng(x, u)

Therefore all argmin of convex functions of x satisfy the Fenchel condition. This type of
implicit equation is used for the purpose of performing invariant risk minimization in [10]
and in deep learning in [11]. This property shows the generality of the Fenchel condition. We
will show in Section 6.2 that all implicit equations actually satisfy the Fenchel condition to
an approximation under mild conditions.

Fenchel divergence

Given v ∈ CPG defined on the convex set X , with a convex potential V . Recall the definition
of the Fenchel conjugate of V ,

V ?(y) = max
x∈X

x>y − V (x)

Let X ? be the domain of definition of V ? (a convex subset of Rn by construction, and we can
show that X ? is the image of X through v). For x ∈ X and y ∈ X ?, we define the Fenchel
Divergence as,

Fv(y, x) = V ?(y) + V (x)− x>y

Theorem 6.2.2. The Fenchel Divergence is bi-convex, positive, and equal to zero for a pair
(x, y) if and only if y = v(x).

Proof. The Fenchel conjugate of a function is always convex as the point-wise maximum of
linear functions. Given x = x0, −x>0 y is linear in y hence Fv(x0, y) is convex in y. We can
show the same by fixing y = y0.
The Fenchel divergence is positive by construction as

Fv(y, z) =
(

max
x̃∈X

x̃>y − V (x̃)
)
−
(
x>y − V (x)

)
≥ 0

This inequality is also known as the Fenchel-Young inequality. Finally, take the gradient of
V ? with respect to y in its definition, set to zero, and this directly gives y = v(x). �
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The main appeal of Fenchel divergence is the ability to associate a penalty function to
the constraint y = v(x) that uses the specific structure of the nonlinear constraint. Notably,
this allows one to associate a bi-convex penalty function. This is not the case for the L2
penalty, ‖y − v(x)‖2

2 which is in general not bi-convex. If v(x) = x (the identity), then a
convex potential is V (x) = (1/2)‖x‖2

2 and V ∗(y) = V (y). Hence the Fenchel divergence is
FId(x, y) = (1/2)‖x− y‖2, which is the classic L2 penalty. In that sense, Fenchel divergence
is a generalization of the L2 penalty, like Bregman divergence is a generalization of the L2
penalty as used in mirror descent.

Fenchel and contraction conditions

Fenchel conditions do not impose unicity of x with respect to the input u. That is, for each
input, there might exist a set of solutions X (u) := {x ∈ X |x = φ(x, u)} with strictly more
than one element. Generally X (u) is not convex nor connected. Note that a map φ can satisfy
both the contractive and Fenchel condition. For instance, suppose φ is written as in equation
(6.1) with Lψ-Lipschitz continuous ψ. If ‖A‖op‖B‖op ≤ r/Lψ, then ψ is an r-contraction. In
the following section, we discuss how the Fenchel assumption is general in the sense that we
can approximate any implicit map ψ and corresponding implicit states to a precision ε.

Universal approximation theorem

We start by stating a result from [30, 40].

Theorem 6.2.3. Consider the implicit map φ : Rn × Rm → Rn. Let us assume X and U to
be compact subsets of Rn and Rq respectively. Let ψ : R→ R be a continuous non-constant
function. Given a precision ε, there exists an integer N(ε), matrices A ∈ Rn×N(ε) B ∈ RN(ε)×n

C ∈ RN(ε)×q and vector d ∈ RN(ε) such that,

‖φ(x, u)− φ̂(x, u)‖ ≤ ε, ∀x ∈ X and u ∈ U (6.2)

where
φ̂(x, u) = Aψ(Bx+ Cu+ d) (6.3)

and ψ is an elementwise nonlinear activation. Moreover, if φ is continuously differentiable
then we can find ε such that the above property holds as well as

‖∇φ(x, u)−∇φ̂(x, u)‖ ≤ ε (6.4)

In this theorem, the model φ̂ corresponds to a one layer neural network with activation ψ.
As we can choose ψ to be the ReLU or tanh functions (for instance), we can approximate
any implicit map φ defined on a compact set by a map satisfying a special case of the
Fenchel condition (6.1) where ζ(x, u) is simply linear. We still have to show that the use of
approximation φ̂ also allows us to approximate the corresponding implicit states.
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Approximation under the contraction condition

The approximate implicit equation is given by

x̂ = φ̂(x̂, u)

In the case where φ is a r-contraction and is continuously differentiable, using this theorem,
we can find φ̂ such that it is a (r+ ε)-contraction (provided we choose 0 < ε ≤ 1− r). Hence,
for every u ∈ U , we can guarantee a unique solution x̂(u).

Theorem 6.2.4. Let 0 < ε < 1− r, let φ be a r-contraction defined on a compact set, and
let φ̂ be an approximation of φ as in equation (6.3) verifying (6.2), (6.4). Given u ∈ U , let
x be the solution to the implicit equation and x̂ be the solution to the approximate implicit
equation x̂ = φ̂(x̂, u). Then,

‖x− x̂‖ ≤ ε

1− r

Proof. We can write φ̂(x̂, u) = φ(x̂, u) + ε̂, with ‖ε̂‖ ≤ ε. Hence,

‖x− x̂‖ = ‖φ(x, u)− φ(x̂, u)− ε̂‖
≤ ‖φ(x, u)− φ(x̂, u)‖+ ε

≤ r‖x− x̂‖+ ε

therefore ‖x− x̂‖ ≤ ε
1−r �

Approximation in the general case

In the case where φ is not a r-contraction and x is not uniquely determined by the input
control u, then we can state a similar result provided that a condition on the Jacobian of φ
holds.

Theorem 6.2.5. Consider the implicit map φ defined on a compact set such that ∀x ∈ X
and u ∈ U , the Jacobian matrix ∇xφ(x, u) has none of its eigenvalues equal to one. Given u,
let X (u) be a non-empty set of implicit equation solutions assumed to lie in the interior of X .
Then the approximate set of implicit equation solutions X̂ (u) = {x ∈ X |x = φ̂(x, u)} is also
non-empty and the Hausdorff distance between the two sets is O(ε).

The proof of this theorem is provided in the appendix.
To summarize, from the universal approximation theorem and Theorems 6.2.4 and 6.2.5,

we can always consider the implicit map φ to satisfy the Fenchel condition (6.1) to an
approximation parameterized by ε.
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6.3 Applications

In this section we give a non-exhaustive list of classic optimization problems that can be
formulated as implicit optimization (P) and show what conditions the corresponding implicit
maps satisfy.

Mixed integer programming

Let us start by focusing on the binary constraint x ∈ {0, 1}. Interestingly, this is equivalent
to x = x2. Generally speaking if we constrain x ∈ [K], K an integer, this is equivalent
to
∏K

i=0(x − i) = 0. Therefore, we can cast any mixed integer problem in the implicit

optimization form with no control input u by taking φ(x) = x+
∏K

i=0(x− i). Let us focus on
the combinatorial case x ∈ {0, 1}. We also have that x ∈ {0, 1} if and only if x = φ(x) = x2

+.
With that formulation φ is CPG and φ satisfies the direct Fenchel condition, as shown in
Section 6.2.

An alternative reformulation of x ∈ {0, 1} is

x ∈ [0, 1] and ∃z ∈ [0, 1] | x = xz and z = xz

which given z or x leads to linear equations (that satisfy the Fenchel condition). We can
generalize this to higher dimensions with x ∈ {0, 1}n if

x ∈ [0, 1]n and ∃z ∈ [0, 1]n | x = x� z and z = x� z

We will take advantage of this symmetry and structure in an example in Section 6.5.

Deep Learning

Let us start by considering a fully-connected neural network with L layers that can be written
as the sequence

xl = σl(Wlxl−1 + wl) (6.5)

with l ∈ [L] and where σl : Rnl → Rnl is the activation function (assumed to be Lipschitz
continuous), xl ∈ Rnl denotes the l-th hidden state, Wl ∈ Rnl×nl−1 and wl ∈ Rnl respectively
denote the weight and bias for the layer. We use the compact notation u to refer to the weights
and bias and x to refer to the states. The input to the network is denoted v = x0 ∈ Rn0 . The
output and prediction of the network is v = xL+1. Let N denote the number of datapoints
tuple {v(i), y(i)} with i ∈ [N ]. The learning objective reads

min
x,u

f(x, u) :=
N∑
i=1

`(y(i), xL+1(i)) +R(u)

s.to : xl(i) = σl(Wlxl−1(i) + wl),

∀i ∈ [N ] and l ∈ [L+ 1]
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where ` is a convex loss in the second argument, R is a convex weight regularization term,
typically R(u) = ρ

∑L+1
l=1

{
‖Wl‖F + ‖bl‖2

}
(known as L2 regularization), where ρ > 0 is a

hyperparameter.
We can reformulate the feedforward equations (6.5) as an implicit constraint by noting

that it is equivalent to
x = σ(Wx+ w + ṽ)

with x ∈ Rn, n =
∑L+1

l=0 nl and x = [xL+1; · · · , x0], W ∈ Rn×n strictly upper-triangular with,

W =



0 WL+1 0

. . . . . .

0 W1

0 0


and w ∈ Rn with w = [bL+1; · · · , b1; 0] and ṽ = [0; · · · ; v] ∈ Rn. Finally the activation φ is
defined by block, σ = [σL+1; · · · ;σ1; Id]. All in all, we are able to write the learning problem
for feedforward neural networks as an implicit problem with implicit equation

x = φ(x, u) = σ(Wx+ w + ṽ)

with u = (W,w) and ṽ a constant. Let us highlight the fact that there is an implicit equation
and an implicit state defined for each datapoint with a shared controlled input u. It is
straightforward to show that the implicit equation verifies the contractive mapping condition.
For x1, x2 ∈ Rn,

‖φ(x1, u)− φ(x2, u)‖2 ≤ Lσ‖W‖op‖x1 − x2‖
where Lσ denotes the Lipschitz constant for σ. Since W is strictly upper triangular, ‖W‖op = 0.
Hence, φ is a 0-contraction. This result is not surprising since the feedforward neural equation
(6.5) is explicit. This actually leads to a natural extension of classical neural networks – what
if we do not impose an upper triangular structure on W? This extension is called implicit
deep learning and is presented in the next chapter. Namely, the implicit model reads

x = σ(Wxx+Wvv)

with prediction ŷ(v) = Ŵxx+ Ŵvv. with σ ∈ CPG. For notation clarity we omitted the bias
terms. Going back to the implicit optimization framework, here the implicit state is x and
the control input is u = [ŵx, Ŵu,Wx,Wu]. The implicit model satisfies the direct Fenchel
condition as σ is CPG and Wxx is a bilinear map in (x,Wx). Since we want the prediction
rule to be unique with respect to v, we impose ‖Wx‖op < 1/Lσ which, generally speaking, is
not a tractable constraint to impose on Wx. Instead we can choose a tighter convex constraint
‖Wx‖∞ < 1/Lσ, which is equivalent to n L1 ball constraints of radius 1/Lσ. With that choice
we still guarantee the implicit map to be contractive as shown in [47].
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Since the matrices Wx and Wu are allowed to be dense, the implicit deep learning model
has more representational capability than classic feedforward neural networks. In [47], the
authors show that implicit deep learning actually contains as a special case most known deep
learning architectures, e.g. convolution neural networks and recurrent neural networks. In
Section 6.4 we will derive an implicit gradient method for contractive implicit maps. In the
case of Deep Learning this can be seen as an extension of backpropagation to broader deep
learning models.

Nonlinear control

Consider a non-autonomous system given by: dx
dt

(t) = g(x(t), u(t)) with x(0) = x0, and g
continuously Lipschitz with respect to x (which ensures existence and uniqueness of the
trajectory x(t) from Picard–Lindelöf theorem [136]). Note that, although not directly similar
to the implicit equation in (P), an ODE is also an implicit equation in x.

The goal in optimal control is to minimize the objective
∫ T

0
c(t, x(t), u(t))dt (where c

represents a cost function and T a time horizon) while ensuring x(t) ∈ X and u(t) ∈ U .
The problem is discretized in time with step-size ∆t. We then denote x = [x(1); · · · ;x(T )],
u = [u(1); · · · ;u(T )] and the objective is given by,

f(x, u) =
T∑
t=1

ct
(
x(t), u(t)

)
with ct(x, u) = c(t, x, u)∆t. There are many ways to discretize the ODE models. A classical
method is the forward Euler method,

x(t+ 1) = x(t) + g
(
x(t), u(t)

)
∆t (6.6)

This discretization is explicit, and similar to feedforward neural networks, we can rewrite this
system in implicit equation form

x = φ(x, u) = Dx+ g(Dx, u)∆t

with D as the strictly upper triangular matrix

D =



0 I 0

. . .

I

0 0


Similar to the feedforward neural network, φ as defined above is 0-contractive, because (6.6)
is explicit.
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Consider the backward Euler method. Although it is used less in practice, the method is
an unconditionally stable numerical schemes and is defined in an implicit manner,

x(t) = x(t− 1) + g(x(t), u(t))∆t

Note that x(t) is uniquely defined for ∆t < 1
Lg

. The corresponding implicit equation reads

x = φ(x, u) = Dx+ g(x, u)∆t

and φ is a Lg∆t-contraction. Consequently, backward Euler method is well-suited for implicit
optimization methods.

6.4 Methods

This section introduces two classes of numerical methods to solve implicit optimization
programs. In Section 6.5 we will use these methods and their variations to exploit the
structure of the implicit optimization problem (P) and implicit map φ.

Implicit gradient

As shown in Section 6.2, x is a function of u. Therefore we can reformulate (P) without x,

min
u∈U

F (u)

with F (u) = f(x(u), u). We can now use classic methods for nonlinear constrained optimiza-
tion. From Theorem 6.2.1, since x(u) is differentiable w.r.t. u, then F (u) and its gradient is
given by,

∇uF (u) = ∇uf(x, u)|x=x(u) +∇xf(x, u))|x=x(u)∇ux(u)

A direct method to solve (P) is to apply projected gradient descent,

uk+1 = ProjU

(
uk − αk∇uF (uk)

)
We refer to the reader to the first chapter [20] for judicious choices of step-size. The worst
case rate of convergence to a local minimum is then O(1/k) if F has Lipschitz gradient.

Fenchel alternative direction method of multipliers

Let us assume φ satisfies the Fenchel condition. Then, the implicit equation is equivalent to,

x = Az and z = ψ(ζ(x, u)), with z ∈ Rn

Using the Fenchel Divergence and Thm 6.2.2, this is equivalent to,

x = Az and Fψ(z, ζ(x, u)) = 0
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Let us formulate the Fenchel augmented Lagrangian,

Lρ(x, u, z, λ) = f(x, u)+λ>(x− Az) +
ρ1

2
‖x− Az‖2...

...+ ρ2Fψ(z, ζ(x, u))

where ρ1, ρ2 > 0 are hyperparameters. Given a dual variable λ, the Fenchel augmented
Lagrangian is 3-block multi-convex in (x, u, z). This naturally leads to a method very similar
to the alternative direction method of multipliers (ADMM) that we call Fenchel-ADMM,
given by the following iterations:
Primal updates:

xk+1 ∈ argminx∈XLρ(x, uk, zk, λk)
uk+1 ∈ argminu∈ULρ(xk+1, u, zk, λk)

zk+1 ∈ argminz∈RnLρ(xk+1, uk+1, z, λk)

Dual update:

λk+1 = λk + ρ1(xk+1 − Azk+1)

Even if the implicit map satisfies the direct Fenchel condition, then introducing an ex-
tra variable z may still be necessary, depending on the structure of Fψ(x, ζ(x, u)) or
f(x, u) + ρ2Fψ(x, ζ(x, u)). Given u, generally speaking, these functions might not be convex
in x, which might make the primal updates non-convex programs and therefore potentially
not tractable. Nevertheless, in the case of using Fenchel-ADMM for feedforward neural
networks, we will show that we can exploit the problem structure without introducing an
additional variable z. If no variable z is introduced, then there is no need for a dual variable
λ and there is no dual step. In that case, the algorithm consists in the above primal updates
only. We call this type of algorithm Fenchel block coordinate descent (Fenchel BCD). From
[168], if the objective f is smooth, then we have a guarantee that Fenchel BCD will converge
to a Nash equilibrium with a worst case rate of convergence O(1/k).

There are many alternatives to the algorithms presented above. For instance, instead of
doing full-block primal updates, we can take some gradient or proximal steps. Instead of
taking ρ1 as a dual step-size we can choose another step-size rule. We will use such variations
in the numerical examples.

6.5 Numerical experiments

In all the following experiments we use Matlab R2019a on a single 2.2 GHz processor.

Mixed integer programming

Let us consider the following combinatorial quadratic program,

min
x∈{0,1}n

f(x) =
1

2
x>Qx+ q>x
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with Q � 0. We reformulate this problem equivalently, using the ideas presented in Section
6.3,

min
x∈[0,1]n,z∈[0,1]n

f(x) + f(z)

x = x� z
z = x� z

The corresponding augmented Lagrangian is

Lρ(x,z, λ1, λ2) = f(x) + f(z) + ...

λ>1 (x− x� z) + λ>2 (z − x� z) +
ρ

2
‖x− z‖2

where ρ > 0. We added the constraint x = z in the penalty for robustness. Note this
formulation is symmetric in x and z. We use an algorithm similar to ADMM that reads,

xk+1 = argminx∈[0,1]nf(x) + (x− zk � x)>λk1 − ...

(zk � x)>λk2 +
ρ

2
‖x− zk‖2

zk+1 = argminz∈[0,1]nf(z) + (z − xk+1 � z)>λk2 − ...

(xk+1 � z)>λk1 +
ρ

2
‖z − xk+1‖2

λk+1
1 = λk1 + αk(xk+1 − xk+1 � zk+1)

λk+1
2 = λk2 + αk(zk+1 − xk+1 � zk+1)

where αk is a dual step-size. In the following simulations we will choose a constant step-size
αk = 0.2. We can interpret this algorithm as a symmetric back and forth optimization
between x and z until a consensus is reached.

As a baseline comparison, we use the CPLEX optimizer cplexmiqp [145] as a reference.
We start by displaying an example with n = 40 and random choices for matrix Q and
vector q. It took over 7 minutes for CPLEX to find a solution. We run 100 dual steps and
use the Matlab built-in quadprog function[154] to do the x and z updates above. Since
x and z play symmetric roles, we choose to validate results with one of the optimization
variables: x. All in all, it took approximately 1 second for our algorithm to run. In terms of
objective function value, we obtain a relative difference of 0.4% between the two methods.
Let us define the distance to {0, 1} to be d{0,1}(x) = 1

n

∑n
i=1 min{|xi|, |xi − 1|}. We get 0 for

CPLEX and 10−4 with our method. In this particular instance, at least, our method is a good
heuristic for finding an approximate solution to this combinatorial problem. For a better
comparison we draw 500 random matrices Q and vector q and solve it using our method and
CPLEX. We choose n = 20 because CPLEX takes too long too converge (the complexity
being exponential in n), although our method seems to perform better for larger n. The
following table summarizes the results.
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Table 6.1: Comparison of CPLEX and Implicit Optimization

CPLEX Implicit Optimization

Ê[f(x)] −4.82 −4.7

σ̂[f(x)] 1.94 1.96

Ê[d{0,1}n(x)] 10−15 1.9× 10−6

σ̂[d{0,1}n(x)] 10−14 2.2× 10−5

Our method yields solutions that are close to binary, and almost produces the same
objective value, on average, relative to an exact solver like CPLEX. This method can be seen
as a heuristic method for solving mixed integer nonlinear programs, such as Hopfield neural
networks [69, 152] or semi-definite relaxation [121].

Feedforward Neural Networks

Let us consider a two-layer 10 × 20 × 15 × 5 fully-connected neural network with ReLu
activation (as presented in Section 6.3). Here the input is v = x0 ∈ R10 and the output is
y = x3 ∈ R5. We create a synthetic dataset with N = 200 datapoints by randomly drawing
the ”true” weights of the network (considering no bias terms) and applying the feedforward
rule to random inputs. The goal of a learning algorithm is to approximate this ”true” network
on the training dataset via regression. As previously mentioned, back-propagation algorithms
are stochastic versions of the implicit gradient method presented in Section 6.4. As shown in
Section 6.3, a feedforward neural network also satisfies the direct Fenchel condition. Using
this fact, we develop a Fenchel ADMM algorithm tailored for this type of problem. Let us
use the compact matrix notation, Y = [y(1), · · · , y(N)], and Xl = [xl(1), · · · , xl(N)]. We can
write the learning problem as,

min
W1,W2,W3,X1,X2

1

2N
‖Y −W3X2‖2

F + ρFσ(X2,W2X1)

...+ ρ2Fσ(X1,W1X0)

The Fenchel divergence term for l ∈ {1, 2} is given by,

Fσ(Xl,WlXl−1) =

1

2N

(
‖Xl‖2

F + ‖(WlXl−1)+‖2
F − 2 trace(X>l WlXl−1)

)
The way we formulate this problem corresponds to unfolding the neural network in the sense
that we consider that the hidden states are also optimization variables. Here the choice of
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{ρ, ρ2} can be interpreted as a form of backward penalization. We take ρ to be typically
small, here ρ = 10−2.

Contrary to Section 6.4 we do not introduce an extra variable z to ensure 3-block multi-
convexity. We can see that the objective of the learning problem is already 3-block multiconvex
in (W3,W2,W1), X2 and X1. Here we use the Fenchel BCD presented in Section 6.4 where
we only make a single gradient step for each block iteration. We run 5000 iterations and
illustrate the resulting RMSE across iterations in Fig. 6.1. We get a final RMSE of 5.1 which
is very close to what can be obtained by using the Deep Learning toolbox on Matlab with
the ADAM algorithm.

Figure 6.1: RMSE across iterations

Solving overstay of plug-in electric vehicle charging with
behavioral modeling

In recent years, the PEV market has been expanding at a faster pace than its supporting
infrastructure. Given the infrastructure in place, there is room to improve charging service
accessibility via operation. Moreover, we mentioned the challenges facing renewable integration
in chapter 2: similarly, PEVs charging schedules can be optimized at a station to alleviate
the duck curve. Nevertheless, in this section will not consider the electricity markets but
the time-of-use tariffs (TOUs). We consider that the charging station can also serve as a
parking spot. Upon arrival, drivers input the desired parking duration and are asked to make
a choice: (i)leave, (i) allow a flexible charging schedule, or (iii) charge as fast as possible. If a
driver chooses that last option, he will incur an overstay fee for the time the PEV stays idle
(i.e. after his vehicle is fully charged - irrespective of the parking duration). The driver that
chooses the flexible option will only get charged for overstay after its parking time limit has
been reached. Finally, each driver have a third option, choose not to charge and not use the
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parking spot (this might be the case if the price is too high). We will define an opportunity
cost associated to that choice.

In order to model how a driver makes a decision, we use a discrete choice model [141]: we
associate to the two alternatives a utility function of the form

Vi(x) = β>i x+ vi, i ∈ {1, 2, 3}

Where x ∈ R3 is a variable that consists in three tariffs: x1 is the charging tariff for
charging with flexibility (i.e. price per kWh), x2 is the the charging tariff for charging as fast
as possible and x3 is the overstay penalty (i.e. price to be paid per hour for overstaying).
The parameter βi is a vector that is fitted with behavioral observations, and vi is a constant
utility associated with a given choice, regardless of tariffs. Based on the multinomial logit
model, the probability pi of choosing i ∈ {1, 2, 3} is given by

pi := φ(Bx+ v)i =
[ eBx+c

1>eBx+v

]
i

Where φ is the softmax function already introduced earlier in the chapter. Here B is the
matrix of stack vector parameters [β>1 ; β>2 ; β>3 ], similarly v = [v1; v2; v3]. The objective we
consider is to minimize the overall cost associated with operation of the charging station
given by

f(x) =
∑

i∈{1,2,3}

pihi(x) = φ(Bx+ v)>h(x)

We now define the cost associated to each choice i ∈ {1, 2, 3}.
First, we define h1 to be the cost associated to flexibility and given by

h1(x) = min
u∈U

h1(x, u) := λ
T x3

x3

+ u>(c− x1) +
ρ

2
‖u‖2

where T is the average duration of overstay without any overstay penalty x3 and x3 is a
baseline overstay tariff, λ is a regularization parameter (homogeneous to a cost per unit of
time). The variable u corresponds to the charging decision variables (its components are the
charging power in kW, and component indices represent time). We denote by c the time
of use cost (i.e. the price per unit of power that has to be paid to the utility grid for a
given time period). The set U is convex and includes the dynamics and objective associated
with charging PEVs, much like in chapters 2, 3, 4. The reader will have noted that the cost
function h1 is an optimization problem: it corresponds to the optimal operation of the station
given the charging tariff x1 (that is constant with respect to time contrary).

Second, we define h1 to be the cost associated to the choice of charging as fast as possible

h2(x) = λ
T x3

x3

+

Tf∑
t=1

(ct − x2)u
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where Tf is the time needed to charge fully given the initial state of charge, and u is the
maximum charging power that can be provided.

Third, we define h3 to be the cost associated to a driver choosing not to charge, it
corresponds to a lost opportunity cost given by

h3(x) =

Tf∑
t=1

ctu

All in all, the optimization problem for managing the station has the form

min
x
φ(Bx+ v)>h(x)

Which is not a convex problem. Let us It can be reformulated in an implicit form by including
u as an optimization variable

min
x,u

φ(Bx+ v)>h(x, u)

u = argmin
u′∈U

(c− x1)>u′ +
ρ

2
‖u‖2

Remark that as mentioned earlier the argmin satisfies the Fenchel condition. Nevertheless
we remark that because of the structure of h and the fact that φ(·) > 0 we can rewrite this
problem as

min
x,u∈U

φ(Bx+ v)>h(x, u)

Which can be rewritten as
min

w,x,u∈U
w>h(x, u)

w = φ(Bx+ v)

Where we an explicit constraint that satisfies the Fenchel condition. We can leverage the
techniques developed in the previous section to derive an algorithm based on the Fenchel
alternative direction method of multipliers. The Fenchel divergence associated with the the
soft-max φ(·) is given by

Fφ(x, y) = lse(x) + lse?(y)− x>y, x ∈ Rn, with y ≥ 0 and 1>y = 1

where lse(·) is the log-sum-exp, lse(x) = log(1> exp(x)), the Fenchel conjugate of which is
given by

lse?(y) =

{
y> log(y) if y ≥ 0 and 1>y = 1

∞ otherwise

The algorithm we use reads

xk+1 = argmin
x

h(x, uk)>wk + ρFφ(wk, Bx+ v)

uk+1 = argmin
u∈U

h(xk+1, u)>wk

wk+1 = argmin
w

h(xk+1, uk+1)>w + ρFφ(w,Bxk+1 + v)
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Remark that each update correspond to a convex optimization problem because the function
h is bi-convex in (x, u). In the following we succinctly provide some simulation results, we
do not go into details as to the choice of tuning parameters and the data used, we refer the
reader to [171] for a more in depth understanding. In this case study, we consider data from
the charging facilities of Cal Poly campus, which is a workplace charging station for staff and
students. This data is used to build a statistical model for arrivals and energy needs. We
simulate for 50 days the operation of this facility with a controller using the algorithm we
described earlier. As it can be seen in figure 6.2, over this time period, with our method, we
decrease by more than 37% the mean overstay duration, we increase by 10% the profit made
from the station and we increase the number of vehicles that have been charged (service
provided) by 27%.

Figure 6.2: Monte Carlo simulation results with a total of 50 days of operations.

Conclusion

We have presented a new class of (non-convex) optimization models called implicit optimization
that includes a wide variety of optimizations models. We provided various examples for
applications: ranging from nonlinear control to deep learning, and we have shown how these
models can be unified into the implicit optimization framework. We believe that implicit
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optimization models could include many more optimization models than the ones that have
been discussed in this chapter.

6.6 Appendix

Proof of Theorem 6.2.5

Proof. Let us define the (asymmetric) distance between the set X (u) and X̂ (u),

d
(
X (u); X̂ (u)

)
= max

x∈X (u)
min
x̂∈X̂ (u)

‖x− x̂‖

The Hausdorff distance between the two sets is defined as,

dH(X (u), X̂ (u)) = max
{
d
(
X (u); X̂ (u)

)
, d
(
X (u); X̂ (u)

)}
For all x ∈ X , we write φ̂(x, u) = φ(x, u) + ε(x), with ε(x) ≤ ε. We assume the map ε(·)

is ε−Lipschitz: ‖∇ε(x)‖ ≤ ε (as guaranteed by the universal approximation theorem). Let x
be an element of X (u) and let neighborhood N = B(x, η) ⊂ X be a ball with radius η > 0
centered at x. Let (x+ δ) ∈ N , we have

φ̂(x+ δ, u) = φ(x+ δ, u) + ε(x+ δ)

From the mean value theorem, there exists x′ ∈ [x, x+ δ] (and therefore x′ ∈ N by convexity)
such that,

φ(x+ δ, u) = φ(x, u) +∇xφ(x′, u)δ

Using this equation, and the previous one, and the fact that x = φ(x, u) gives

φ̂(x+ δ, u) = x+∇xφ(x′, u)δ + ε(x+ δ)

We would like to show that there exists a δ such that x+ δ = φ̂(x+ δ, u). By hypothesis, as
I −∇xφ(x′, u) is non-singular, this is equivalent to

δ = (I −∇xφ(x′, u))−1ε(x+ δ) (6.7)

Let us define
Λ = max

x′∈N
‖(I −∇xφ(x′, u))−1‖

which is well defined by compactness of N . Then the function of δ in the right hand side
of (6.7) is Λε− Lipschitz. If we take ε < 1/Λ, then this function of δ is a contraction and
there exists a unique δ satisfying (6.7). By synthesis δ < Λε and we can choose ε such that
Λε < η. If we choose x̂ = x+ δ, x̂ is in X̂ (u) and at a distance bonded by ε times a constant.
A similar symmetric argument allows us to show that if we take x̂ ∈ X̂ (u) we can find a
similarly x ∈ X (u) such that ‖x̂− x‖ = O(ε). Since φ is assumed to be defined on a compact
set, then we directly have that the Hausdorff distance is O(ε) �
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Chapter 7

Implicit Deep Learning

Implicit deep learning is a special case of implicit optimization. In this chapter, we will study
in more detail how we can generalize the recursive rules of feed forward neural networks.
As described in the previous chapter, the prediction rules are based on the solution of a
fixed-point equation involving a single vector of hidden features, which is implicitly defined.
We will see that this framework greatly simplifies the notation of deep learning. We then
derive sufficient conditions ensuring well-posedness of the rule, as well as results pertaining
to composition of implicit models. Finally, we derive a stochastic projected gradient method
using implicit differentiation to train our models which we benchmark against traditional
feedforward networks.

7.1 Introduction

Implicit prediction rules

In this chapter, we introduce Implicit Deep Learning (IDL), an extension of deep learning
models. In traditional deep networks, data points are sequentially transformed through
different nonlinear layers of a network. In IDL models, the prediction rule is based on solving
a fixed-point, “equilibrium” equation in some single hidden state vector, specifically:

x = φ(Ax+Bu)

ŷ = Cx+Du

(equilibrium equation)

(prediction rule)

where x ∈ Rn is a vector of “hidden” features, φ : Rn → Rn is an activation (a nonlinear
vector map), u ∈ Rp is the input data point, ŷ ∈ Rq is the prediction (or output) and the
matrices A,B,C,D are the model parameters. For notational simplicity, the equilibrium
equation and prediction rule do not contain any bias terms; we can easily account for these by
considering the vector [u; 1] ∈ Rp+1 instead of u, thereby increasing the column dimension of
matrices B and D by one. Remark that these notation are different from that of the previous
chapter in order to match more closely the notation that is used in Deep Learning.
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In the IDL setting, both ŷ and x are (implicit) functions of the input vector u, although
our notation does not reflect this dependence. We can think of x as a state corresponding to
n hidden features extracted from the input based on the equilibrium equation. In general the
equilibrium equation may have multiple or no closed-form solution; we discuss the important
issue of well-posedness, as well as the problem of solving this equation in Section 7.3.

Perhaps surprisingly, as shown in Section 7.4, the IDL framework includes most current
neural network architectures as special cases. IDL models have much more capacity for a given
network size (total number of hidden features), as measured by the number of parameters for
a given dimension n of the hidden sate.

Contributions and chapter outline

The IDL framework opens up the possibility of novel architectures and prediction rules for
deep learning, bypassing any notion of network or layers, as is classically understood. The
notational simplicity of IDL models allows one to consider rigorous approaches to challenging
problems in deep learning, ranging from robustness analysis, model sparsity and compression,
interpretability, and feature selection. Since the IDL framework allows for cycles in the
network, we may compose IDL models, for example via feedback connections, which is not
permitted under the current paradigm of deep networks.

Reserving to a future publication [8] a full exposition of the potential benefits of IDL, in
this chapter we focus on the following contributions:

• Well-posedness, composition and continuity (Section 7.3): We establish rigorous and
numerically tractable sufficient conditions for the equilibrium equation to be well-posed
and solved. Such conditions are then imposed as constraints in the training problem,
guaranteeing the well-posedness of a learned prediction rule. We also discuss the
composition of implicit models, via cascade or feedback connections for example, in a
way that preserves well-posedness; the section ends with a result on the continuity and
differentiability of the prediction with respect to the input.

• Implicit models of neural networks (Section 7.4): Building on the composition rules of
Section 7.3, we provide details on how to represent a wide variety of neural networks
as implicit models (including fully connected feed forward networks, convolutional
networks, residual networks and recurrent neural networks).

• Training problem: formulations and algorithms (Section 7.5): We develop a stochastic
projected gradient method for the training problem, leveraging the implicit differentia-
tion technique, and relying on our well-posedness sufficient conditions.

In this preliminary work, our focus is on theoretical and algorithmic underpinnings, and not
on empirical validation. In particular, we do not aim at empirically proving the superiority
of IDL models over current state-of-the-art deep learning models on large, real-world data
sets. Section 7.6 provides a few experiments supporting the theory put forth in this chapter.
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7.2 Related Work

In implicit deep learning

Recent works have considered versions of implicit models, and demonstrated their potential
in deep learning. The pioneering works by Kazi, Kolter and their collaborators [84, 14, 90]
demonstrate the success of an entirely implicit framework for the specific task of sequence
modeling (Kazi et al. refer to their models as implicitly-defined neural networks while Kolter
et al. refer to their models as Deep Equilibrium Models). [35] use implicit methods to solve
and construct a general class of models known as neural ordinary differential equations,
while [13] uses implicit models to construct a differentiable physics engine that enables
gradient-based learning and high sample efficiency. Several chapters explore the concept
of integrating implicit layers with modern deep learning methods, in a variety of ways.
For example, [163] show promise in integrating logical structures into deep learning by
incorporating a semidefinite programming (SDP) layer into a network in order to solve a
(relaxed) MAXSAT problem. In [6], the authors propose to include a model predictive
control as a differentiable policy class for deep reinforcement learning, both of which can
be interpreted as implicit architectures. In [5] the authors introduced implicit layers where
the activation is the solution of some quadratic programming problem; in [44], the authors
incorporate stochastic optimization formulation for end-to-end learning task, in which the
model is trained by differentiating the solution of a stochastic programming problem.

In lifted models

In implicit learning, there is usually no way to express the state variable in closed-form,
which makes the task of computing gradients with respect to (w.r.t.) model parameters
challenging. Thus, a natural idea in implicit learning is to keep the state vector as a variable
in the training problem, resulting in a higher-dimensional (or, “lifted”) expression of the
training problem. The idea of lifting the dimension of the training problem in (non-implicit)
deep learning by introducing “state” variables has been studied in a variety of works; a
non-extensive list includes [148], [11], [66], [170], [173], [31] and [98]. Lifted models are
trained using block coordinate descent methods, Alternating Direction Method of Multipliers
(ADMM) or iterative, non-gradient based methods. In this work, we introduce a novel aspect
of lifted models, namely the possibility of defining a prediction rule implicitly.

Notation

7.3 Well-Posedness, Composition, Continuity

Assumptions on the activation map

We restrict our attention to activation maps φ that satisfy the following two conditions:
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1. block-wise: The map φ acts in a block-wise fashion, that is, there exist a partition of n,
n = n1 + . . .+ nL, such that for every vector partitioned into the corresponding blocks:
z = (z1, . . . , zL) with zl ∈ Rnl , l ∈ [L], we have φ(z) = (φ1(z1), . . . , φL(zL)) for some
activations φl : Rnl → Rnl , l ∈ [L].

2. Non-expansive: For every l ∈ [L], the maps φl are Lipschitz-continuous with constants
γl ≤ 1 with respect to some lpl-norm, for some integer pl ≥ 1:

∀ u, v ∈ Rnl : ‖φl(u)− φl(v)‖pl ≤ γl‖u− v‖pl .

Our framework can be extended to the case when the Lipschitz constants γl, l ∈ [L], are larger
than 1; we imposed non-expansiveness as opposed to the more general Lipschitz continuity
for notational simplicity only. In the sequel, we omit the dependence on the underlying
activation structure information (i.e. the integers nl, pl, l ∈ [L] and Lipschitz constant γl).

Our assumptions encompass most popular activation maps, including ReLU or leaky-
ReLU, tanh, sigmoid, each applied componentwise, so that the block-wise assumption holds,
with nl = 1, l ∈ [L]. Our model also allows for maps that do not operate componentwise,
such as the softmax function, which is indeed non-expansive [54].

Well-posedness

As mentioned in the introduction the IDL model can be ill-posed because the equilibrium
equation may have none or multiple solutions. For example, consider the scalar cases
x = φ(ax+ 1), with a, x scalars: for φ = tanh(·), and a ≥ 3, there are always three solutions;
for φ = max(0, .), for a ≥ 1 there is no solution. This observation leads us to the following
definition.

Definition 7.3.1 (Well-posedness). Matrix A ∈ Rn×n is said to be well-posed for a given
activation map φ (in short, A ∈WP(φ)) if, for every b ∈ Rn, the equilibrium equation in x:

x = φ(Ax+ b) (7.1)

has a unique solution.

For example any strictly upper- (or, lower-) triangular matrices are in WP(φ), no matter
what the map φ is. The hidden state x can then be easily obtained via backward (or, forward)
substitution. Such triangular matrices arise when modeling Feed Forward Neural Networks
(FFNN) with IDL, as seen in Section 7.4.

Tractable sufficient conditions for well-posedness

Our goal now is to derive a numerically tractable (sufficient) condition for well-posedness,
and to pave the way for making the learning of IDL parameters tractable as well.
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Theorem 7.3.1 (Perron-Frobenius condition for well-posedness). Given an activation φ that
satisfies the conditions of Section 7.3, we have A ∈WP(φ) if the Perron-Frobenius eigenvalue
of |A| satisfies λpf(|A|) < 1. In such a case, for any b ∈ Rn, the solution to the equilibrium
equation (7.1) can be numerically computed via a fixed-point iteration, initializing with x = 0
and iterating until convergence:

x← φ(Ax+ b). (7.2)

The theorem is a rather direct consequence of the global contraction mapping theorem [136].
We provide a complete proof in the Supplementary Materials (SM), §7.7. As shown in the
proof, the fixed-point iteration (7.2) has linear convergence, and each iteration is a matrix-
vector product, the complexity of which is comparable to that of a forward pass through a
neural network of similar size (total number of hidden features).

The condition λpf (|A|) < 1 is not convex in A, and maybe difficult to impose in a training
problem. The stricter condition ‖A‖∞ < 1 is convex and the corresponding projection
problem is amenable to efficient algorithms [45, 8]. The following theorem shows that for
positively homogeneous activation maps, for which φ(λx) = λφ(x) for every x and λ ≥ 0, the
two constraints λpf(|A|) < 1 and ‖A‖∞ < 1 are generically equivalent in the sense that the
latter can be used in training problems without loss of generality.

Theorem 7.3.2 (Rescaling IDL models). Assume that φ satisfies the conditions of Section 7.3
and is positively homogeneous. Consider an IDL model with parameters (A,B,C,D) that
satisfies the sufficient condition for well-posedness of Theorem 7.3.1, λpf(|A|) ≤ r, where
r ∈ [0, 1). If the latter is simple, there exists an equivalent IDL model, with the same output
y for any given input u, having the same activation φ and parameters (A′, B′, C ′, D′) such
that ‖A′‖∞ < 1.

Proof. As seen in [18], the PF eigenvalue of |A| can be represented as

λpf (|A|) = inf
S
‖SAS−1‖∞ : S = diag(s), s > 0

When the eigenvalue is simple, the optimal scaling vector s is positive: s > 0, and the new
model matrices are obtained by diagonal scaling, A′ B′

C ′ D′

 =

 SAS−1 SB

CS−1 D

 ,

where S = diag(s), with s > 0 a Perron-Frobenius eigenvector of |A|.

Examples of positively homogeneous activations are the ReLU and leaky ReLU. The
technique used in the proof of Theorem 7.3.2 allows us to rescale implicit models, such as
the ones derived from deep neural networks (see Section 7.4), so that the norm condition
‖A‖∞ < 1 is satisfied.
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Composition of implicit models

Composition refers to various connections between implicit models, such as cascade, parallel
and feedback connections. We first examine cascade connections.

Theorem 7.3.3 (Well-posedness of block-triangular matrices). Assume that the activation
map φ acts componentwise on the upper block-triangular matrix

A :=

A11 A12

0 A22


then A ∈WP(φ) if and only if the diagonal blocks A11 ∈WP(φ1) and A22 ∈WP(φ2).

Proof. See SM §7.7.

A similar result holds with lower block-triangular matrices. Now consider two IDL models
with matrix parameters (Ai, Bi, Ci, Di) and activations φi, i = 1, 2. The corresponding
cascaded model reads 

ŷ2 = C2x2 +D2u2

u2 = ŷ1 = C1x1 +D1u1,

xi = φi(Aixi +Biui), i = 1, 2.

As shown in [8], the cascaded system is an IDL, for appropriate matrices A,B,C,D, with
A block-triangular (details are left to the reader) and a block-wise activation φ((z1, z2)) =
(φ1(z1), φ2(z2)). Thanks to Theorem 7.3.3, the cascaded system is well-posed if and only if
each subsystem is.

To illustrate the result: it is common to have an activation at the output level, for example
with a classification task using a softmax at the last layer, resulting in the model

x = φ(Ax+Bu), ŷ = φ̃(Cx+Du),

with φ̃ the output activation function. We can represent this as an IDL model, by introducing
a new state variable; we obtain a cascaded IDL, which is well-posed if and only if A ∈WP(φ).

Similar composition results hold if we use two (or more) well-posed IDL models in parallel
and define the output as either the sum of the outputs ŷ = ŷ1 + ŷ2, the concatenation
ŷ = (ŷ1, ŷ2) or affine transformation of it. Furthermore, IDL models are closed under
multiplicative and feedback connections, as shown in SM, §7.7. Note that if we connect two
neural networks in a feedback fashion, the resulting system is not an ordinary network, but
an implicit one.
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Continuity and differentiability properties

As shown in Section 7.4, IDL models include as a special case FFNNs. As proved by [104],
such models with bounded width are universal approximators (that is, they can approximate
any continuous function of Rp); thus, similar properties hold for IDL models. In the case
of neural networks, as the rules are explicit, it is easy to show that the continuity property
(Cd-continuity, with d ≥ 0) of the activations leads to the (Cd) continuity of the output w.r.t.
the input. We show that this is also true for IDL models.

Theorem 7.3.4. Consider an IDL model that satisfies the sufficient well-posedness condition
λpf(|A|) < 1. Then the prediction rule u→ ŷ(u) is Cd if the activation φ is Cd. The result
also holds if the continuity properties are satisfied a.e.

Proof. The proof of this theorem is given in SM, §7.7 and relies on the implicit function
theorem [19] (proposition A.25).

From the above theorem we have that IDL model with ReLU acivation is continuous and
differentiable a.e. w.r.t. u. If φ = tanh than the IDL model is C∞.

7.4 Implicit models of deep neural networks

A large number of deep neural networks can be modeled as IDL models. Our goal here is to
show how to build a well-posed IDL model for a given neural network, with activation maps
that satisfy the conditions in Section 7.3. Thanks to the composition rules of Section 7.3, it
suffices to model individual layers, since a neural network is nothing more than a cascade of
such layers. The block structure (condition 1 in Section 7.3) then emerges naturally as the
result of such layer-wise composition. We will show that the corresponding IDL models have
strictly (block) upper triangular matrix A, which automatically implies that these models
are well-posed, as the equilibrium equation can be simply solved via backwards substitution
which corresponds to a simple forward pass through a neural network. Such models also
naturally satisfy the PF condition for well-posedness as all the eigenvalues of |A| are zero,
since A is then strictly upper-triangular.

Fully connected FFNNs

Consider the following FFNN with L > 1 fully connected layers, with a rule of the form
ŷ = WLxL, where xl+1 = φl(Wlxl), l ∈ [L], and x0 = u the input data point. We can express
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this model as an IDL with x = (xL, . . . , x1), and

 A B

C D

 =



0 WL−1 . . . 0 0

0
. . .

...
...

. . . W1 0

0 W0

WL 0 . . . 0 0


,

and with an appropriately defined block-wise activation function φ = (φL, · · · , φ1). As
already mentioned, due to the strictly upper triangular structure of A, the system satisfies
the Perron-Frobenius sufficient condition for well-posedness of Theorem 7.3.1: since |A| is
strictly upper-triangular, its Perron-Frobenius eigenvalue is actually zero.

Figure 7.1: Sparsity pattern of the A matrix of a ResNet20 model [73] converted into the IDL
framework. The IDL-converted model achieves a test set accuracy of 92.7% on CIFAR-10
and includes shortcut and batch normalization.
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Convolutional layers and pooling

A single convolutional layer can be represented as a linear operation v → Tv where v is
an input vector, and T is a matrix representation of the convolution operator, having a
Toeplitz-like structure [138]. Hence, we immediately have a way of representing a convolution
layer using strictly upper triangular matrices (as in the previous Section 7.4) with Toeplitz
block matrices. A convolution layer is often combined with a max-pooling operation. The
latter forms a down-sampling operation and has a Lipschitz constant of 1 [158]. Average
pooling can also be represented in the IDL framework, since it is a linear operation.

Residual nets

A residual block consists in the following operation,

z = φ2(v +W2φ1(W1v)).

The above is a special case of an IDL model: defining the block-wise map φ((v1 , v2)) =
(φ1(v1), φ2(v2)), we represent the above asz̃

z

 = φ


 0 0

W2 0


z̃
z

+

W1

I

 v

 ,

where z̃ is a new “state” vector. Figure 7.1 displays matrix A for an implicit model equivalent
to a 20-layer residual network. Convolutional layers appear as matrix blocks with Toeplitz
structure; residual units correspond to the straight lines on top of the blocks. The network only
uses the element-wise ReLU activation, except for the last layer, which outputs probability
distributions via a softmax.

Recurrent units

Recurrent neural nets (RNNs) can be represented in an unrolled form [83]. In a RNN block,
the input is a sequence of vectors {u1, · · · , uT}, where for every t ∈ [T ], ut ∈ Rp. At each
time step, the network takes in a input ut and the previous hidden state xt−1 to produce the
next hidden state xt; the hidden state xt defines the memory of the network. Precisely, a
RNN model reads

xt = φx(Wxxt−1 +Wuut)

yt = φy(Wyxt)
, t ∈ [T ] (7.3)

Eqn. (7.3) can be expressed as an IDL model with x = (xT , . . . , x0), u = (uT , . . . , u1),
and weight matrices
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0 Wx · · · 0 0 Wu · · · 0 0

0 0 Wx
...

... 0 Wu
...

...

. . . . . . 0
. . . . . . 0

0 Wx 0 Wu

Wy 0 · · · 0 0 0 · · · · · · 0


Here, A is strictly upper block triangular (the IDL model is therefore well-posed) and has

a special structure with the same block diagonal Wx (idem for B).

Multiplicative units: LSTM, attention mechanisms and variants

Some networks use multiplicative units: for instance, the basic building block of Long Short-
Term Memory (LSTM) or gated recurrent units (GRUs) involve the following activation

φ(v1, v2) := φ1(v1)φ2(v2),

where v1, v2 ∈ R, and φ1, φ2 are bounded activations (for example tanh). The resulting
function is Lipschitz-continuous: let ci, γi denote the bounds and Lipschitz constants for φi,
i = 1, 2 respectively. Then, the map φ is γ-Lipschitz, where γ := c1c2γ1γ2; the condition
λpf(|A|) < 1/γ guarantees that the corresponding IDL model is well-posed. Similarly,
attention models use component-wise vector multiplication, involving a softmax operation,
as in

φ(v1, v2) = φ1(v1)� SoftMax(v2),

where φ1 is a bounded activation. The activation φ has a Lipshitz constant w.r.t. the l1-norm
given by γ = c1γ1 + 1, with c1 the bound on φ1 and γ1 its Lipschitz constant. Again, we can
use the condition λpf (|A|) < 1/γ to guarantee that the IDL model is well-posed.

7.5 Training Implicit Models

In a training context, we are given an input data matrix U = [u1, . . . , um] ∈ Rp×m and
response matrix Y = [y1, . . . , ym] ∈ Rq×m, and seek to fit an IDL model, with the well-
posedness condition A ∈WP(φ). Exploiting the result given in Theorem 7.3.2, we replace
the well-posedness constraint by ‖A‖∞ ≤ r, where r ∈ [0, 1) is given. We write the training
problem compactly as

min
A,B,C,D

L(Y,CX +DU) + P(A,B,C,D)

s.t. X = φ(AX +BU), ‖A‖∞ ≤ r.
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Here, X = [x1, . . . , xm] ∈ Rn×m contains all the hidden feature vectors for every data point; L
is a summable loss function, assumed to be convex and differentiable in its second argument,
and P is a convex penalty function, which can be used to enforce a given structure (such as,
A strictly upper block triangular, or Toeplitz) on the parameters, and/or encourage their
sparsity (using for instance l1-norm penalties). We give some examples of loss functions and
penalty functions in SM, §7.7.

We show that the objective is differentiable w.r.t. the parameters of the IDL model. By
chain rule, this will be the case if the prediction ŷ is differentiable w.r.t. (A,B,C,D). From
the IDL model, we directly have that ŷ is C∞ w.r.t. (C,D) (linear function). Similarly to
theorem 7.3.4 we have,

Theorem 7.5.1. Consider an IDL model that satisfies the sufficient well-posedness condition
λpf(|A|) < 1, then the prediction rule A,B → ŷ(A,B) is Cd if the activation φ is Cd. The
result also holds if the continuity properties of the activation are satisfied a.e.

A proof is given in SM, §7.7. With that in mind, we can solve (7.5) using (stochastic)
projected gradient descent. We provide a direct way of computing these gradients in SM,
§7.7. As an example, the gradient w.r.t. matrix A with one data point (u, y), is given by

∇AL(y, ŷ) =
(
C(I − D̃A)−1D̃

)>
∇ŷL(y, ŷ) x>,

where D̃ = diag(∇φ(Ax + Bu)). Note that for (A,B,C,D) with the same structure as in
Section 7.4 we recover the same gradient as backprop.

Due to the norm constraint, the gradient method requires a projection at each step. This
step corresponds to a sub-problem of the form

min
A
‖A− A0‖F : ‖A‖∞ ≤ r, (7.4)

with n×n matrix A0 given. The above problem is decomposable across rows (that is, features),
and can be very efficiently solved using (vectorized) bisection, as detailed in SM, §7.7. All in
all, the method we propose to learn the parameters of an IDL model is a stochastic projected
gradient descent method (SPGD).

7.6 Numerical experiments

In this section, we provide preliminary results regarding the performance of IDL models using
SPGD as presented in Section 7.5. We compare IDL models with FFNNs and show that the
former has the potential of achieving better performance. To simplify the experiments, we
apply no regularization to both IDL models and FFNNs.
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Learning nonlinear functions via regression

We aim at learning a real function f with values u → f(u) = 5 cos(πu) exp(−1
2
|u|). We

take the inputs at random with m = 200 and a hidden state of size n = 75. We consider
the well-posedness condition ‖A‖∞ ≤ 1/2. We update by block (A,B) and then (C,D).
As shown in Figures 7.2 and 7.3, we are able to learn this function using our method. We
compare to a FFNN trained using ADAM with three layers and similar hidden state size.
We find that the IDL model slightly outperforms the FFNN on this task. More experimental
design details and results are provided in SM, §7.7.

Figure 7.2: Implicit prediction y(u) comparison with f(u)

MNIST dataset

For experiments on the MNIST dataset, we use an IDL model with n = 100 trained using
SPGD (‖A‖∞ ≤ 0.95) and compare it to a three-layer FFNN (784-60-40-10) which has a
similar hidden state size. In both cases, we use ReLU activations and softmax for the output.
We train both models using cross entropy loss. The results for this experiment are given in
Figure 7.4. We show that the IDL model slightly outperforms the FFNN.

German Traffic Sign Recognition dataset

The traffic sign classification benchmark (GTSRB) consists in 32× 32 input datapoints, each
input is associated to 43 possible traffic sign classes. We use an IDL model with n = 400
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Figure 7.3: RMSE across stochastic projected gradient iterations for the (A,B) block updates

trained using SPGD (‖A‖∞ ≤ 0.95) and compare it to a three-layer FFNN (1024-300-100-43).
In both cases, we use ReLU activations and softmax for the output. We train both models
using cross entropy loss. The results for this experiment are given in Figure 7.5. Again, IDL
model slightly outperforms the FFNN.

Conclusion

In this chapter we present a new type of deep learning model that is more general and includes
popular deep learning models as special cases. Implicit models are notationally simple. They
allow rigorous approaches to challenging problems in deep learning, ranging from robustness
analysis, sparsity and interpretability, and feature selection. Here, we focus on the important
well-posedness and composition issues, and derive a stochastic gradient algorithm for training.

Implicit models rely on a representation of the prediction rule where the linear operations
are clearly separated from the (parameter-free) nonlinear ones, leading to a much simplified
notation, as well as a higher capacity. Composition rules permit architectures that are not
allowed under current deep learning paradigm, as the latter does not allow for cycles in the
network. In particular, it is now possible to consider dynamical systems with neural networks
as feedback controllers.

As a final note, consider Figure 7.6, which illustrates the striking similarity with two
important models in systems and control theory: linear time-invariant systems [9] correspond
to replacing activation map φ in IDL with an integration operator, while models for uncertain
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Figure 7.4: Performance comparison on MNIST. Average best accuracy, implicit: 0.976,
neural network: 0.972. The curves are generated from 5 different runs with the lines marked
as mean and region marked as the standard deviation over the runs. Experimental details
can be found in SM, §7.7

systems in robust control [46] involve (uncertain) norm bounded operators. Exploiting these
connections is left for future work.

7.7 Proofs and additional notes

Additional notes on well-posedness

Proof of theorem 7.3.1

Let b ∈ Rn. We first prove the existence of a solution ξ ∈ Rn to the equation ξ = φ(Aξ + b).
Consider the Picard iteration (7.2). We have for every t ≥ 1:
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Figure 7.5: Performance comparison on GTSRB. Average best accuracy, implicit: 0.874,
neural network: 0.859. The curves are generated from 5 different runs with the lines marked
as mean and region marked as the standard deviation over the runs. Experimental details
can be found in SM, §7.7.

|x(t+ 1)− x(t)| = |φ(Ax(t) + b)− φ(Ax(t− 1) + b)|
≤ |A||x(t)− x(t− 1)|,

which implies that for every t, h ≥ 0:

|x(t+ τ)− x(t)| ≤
t+τ∑
k=t

|A|k|x(1)− x(0)|

≤ |A|t
τ∑
k=0

|A|k|x(1)− x(0)|

≤ |A|tw,
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Figure 7.6: Some cousins of implicit models: LTI systems (bottom left) and uncertain systems
(bottom right).

where

w :=
+∞∑
k=0

|A|k|x(1)− x(0)| = (I − |A|)−1|x(1)− x(0)|.

Here we exploited the fact that, due to λpf(|A|) < 1, I − |A| is invertible, and the series
above converges. Since limt→0 |A|t = 0, we obtain that x(t) is a Cauchy sequence, hence it
has a limit point, x∞. By continuity of φ we further obtain that x∞ = φ(Ax∞ + b), which
establishes the existence of a solution.

To prove unicity, consider x1, x2 ∈ Rn
+ two solutions to the equation. Using the hypotheses

in the theorem, we have, for any k ≥ 1:

|x1 − x2| ≤ |A||x1 − x2| ≤ |A|k|x1 − x2|.

The fact that |A|k → 0 as k → +∞ then establishes unicity.

Proof of theorem 7.3.3

Express the equation x = φ(Ax+ b) as

x1 = φ(A11x1 + A12x2 + b1), x2 = φ(A22x2 + b2),

where b = (b1, b2), x = (x1, x2), with bi ∈ Rni , xi ∈ Rni , i = 1, 2. Here, since φ acts
componentwise, we use the same notation φ in the two equations.

Now assume that A11 and A22 are well-posed w.r.t. φ. Since A22 is well-posed for φ, the
second equation has a unique solution x∗2; plugging x2 = x∗2 into the second equation, and
using the well-posedness of A11, we see that the first equation has a unique solution in x1,
hence A is well-posed.
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To prove the converse direction, assume that A is well-posed. The second equation above
must have a unique solution x∗2, irrespective to the choice of b2, hence A22 must be well-posed.
To prove that A11 must be well-posed too, set b2 = 0, b1 arbitrary, leading to the system

x1 = φ(A11x1 + A12x2 + b1), x2 = φ(A22x2).

Since A22 is well-posed for φ, there is a unique solution x∗2 to the second equation; the first
equation then reads x1 = φ(A11x1 + b1 + A12x

∗
2). It must have a unique solution for any b1,

hence A11 is well-posed.

Composition of implicit models

Implicit models can be easily composed via matrix algebra. Sometimes, the connection
preserves well-posedness. We now discuss the cases when there are multiplicative connections
and feedback connections.

Multiplicative connections are in general are not Lipschitz-continuous, unless the inputs
are bounded. Precisely, consider two activation maps φi that are Lipschitz-continuous with
constant γi and are bounded, with |φi(v)| ≤ ci for every v, i = 1, 2; then, the multiplicative
map

(u1, u2) ∈ R2 → ŷ(u) = φ1(u1)φ2(u2)

is Lipschitz-continuous w.r.t. the l1-norm, with constant γ := c1γ1 + c2γ2.

Figure 7.7: Feedback connection of two implicit models.

Finally, feedback connections are also possible. Consider two well-posed implicit systems:

yi = Cixi +Diui, xi = φi(Aixi +Bui), i = 1, 2.

Now let us connect them in a feedback connection: the combined system is described by the
IDL model, where u1 = u+ y2, u2 = y1 = y.
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Then, the feedback system is also an IDL model, with appropriate matrices (A,B,C,D),
and activation map acting block-wise: φ(z1, z2) = (φ1(z1), φ2(z2)) and state (x1, x2). In the
simplified case when D1 = D2 = 0, the feedback connection has the model matrix

 A B

C D

 =


A1 B1C2 B1

B2C1 A2 0

C1 0 0

 .

Note that the connection is not necessarily well-posed.

Continuity and differentiability of implicit deep learning

Proof of Theorem 7.3.4

Let us define the function F (u, x) = x− φ(Ax+Bu). We immediately have F is continuous
and that if the activation φ is Cd then F is also Cd. This is the case for properties true a.e.
Given ũ ∈ Rp, let x̃ be the unique solution to the equilibrium equation (as A ∈WP(φ)). We
have F (ũ, x̃) = 0. Let us assume that F is differentiable w.r.t. x at x̃ (this holds a.e.), we
have the Jacobian matrix

∇xF (ũ, x̃) = I − A>diag(∇φ(Ax̃+Bũ))

Using the fact that by non-expansiveness |∇φ(Ax̃+Bũ)| ≤ 1 and λpf (|A|) < 1 we have
that ∇xF (ũ, x̃) is non-singular at (ũ, x̃). Then, using the implicit function theorem [19]
(A.25), there exists open sets Sx̃ ⊂ Rn and Sũ ⊂ Rp containing x̃ and ũ, respectively, and a
continuous function ψ : Sũ → Sx̃ such that x = ψ(u) and F (u, x) = 0 ⇐⇒ x = φ(Ax+Bu)
for all x ∈ Sx̃ and u ∈ Sũ. Furthermore, if φ is Cd then ψ is Cd. As our analysis is local, we
have that u → x(u) is Cd a.e. if ψ is Cd a.e. We finish the proof by simply observing that
ŷ(u) = Cx(u) +Du, hence ŷ inherits the continuity properties of x(u).

Proof of Theorem 7.5.1

The proof for this Theorem is similar to the proof of 7.3.4, let us define F (A, x) = x−φ(Ax+c),
with c = Bu a constant, it then suffices to replace u by A in the previous proof. From
the implicit function theorem we can also get a gradient of x as a function of A. We have
∇AF (A, x) = −∇φ(Ax+Bu)xT . Hence,

∇Ax(A) = ∇φ(Ax+ c)x>
(
I − A>diag(∇φ(Ax+ c))

)−1

which allows to get the same result as the one derived in SM §7.7.
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Training Problem of Implicit Model

Examples of loss functions For regression tasks, we may use the squared Euclidean loss:
for Y, Ŷ ∈ Rq×m,

L(Y, Ŷ ) :=
1

2
‖Y − Ŷ ‖2

F .

For multi-class classification, a popular loss is a combination of negative cross-entropy with
the soft-max: for two q-vectors y, ŷ, with y ≥ 0, y>1 = 1, we define

L(y, ŷ) = −y> log

(
eŷ∑q
i=1 e

ŷi

)
= log(

q∑
i=1

eŷi)− y>ŷ.

We can extend the definition to matrices, by summing the contribution to all columns, each
corresponding to a data point: for Y, Z ∈ Rq×m,

L(Y, Ŷ ) =
m∑
j=1

log

(
q∑
i=1

eŶij

)
−

m∑
j=1

q∑
i=1

YijŶij

= log(1> exp(Ŷ ))1−TrY >Ŷ ,

where both the log and the exponential functions apply component-wise.

Examples of penalty functions Via an appropriate definition of P, we can make sure
that the model matrix A is well-posed w.r.t. φ, either imposing an upper triangular structure
for A, or via n l∞-norm constraint ‖A‖∞ < 1, or a Perron-Frobenius eigenvalue constraint.
Note that in the case of the CONE maps such as the ReLU, due to scale invariance seen
in theorem 7.3.2, we can always replace a Perron-Frobenius eigenvalue constraint with a
l∞-norm constraint.

Beyond well-posedness, the penalty can be used to encourage desired properties of the
model. For robustness, the convex penalty (7.6) can be used, provided we also enforce
‖A‖∞ < 1. It follows from the fact that

∀ u, u0 : ‖ŷ(u)− ŷ(u0)‖∞ ≤ κ‖u− u0‖∞,

where

κ :=
‖B‖∞ · ‖C‖∞

1− ‖A‖∞
+ ‖D‖∞. (7.5)

And thus we can arrive at a bound for (7.5).

κ ≤ P (A,B,C,D) :=
1

2

‖B‖2
∞ + ‖C‖2

∞
1− ‖A‖∞

+ ‖D‖∞. (7.6)
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Gradient Descent Equations

In this section, we explain how one can compute gradients w.r.t. M through an equilibrium
equation. In the sequel, we consider mini-batches of size 1 (that is, X = x ∈ Rn and
U = u ∈ Rp), in order to simplify the notation. For convenience, we use ŷ = Cx + Du,
z = Ax+Bu. We also assume that the map φ is differentiable.

We wish to calculate

∇ML =

∇AL ∇BL

∇CL ∇DL


The difficult part of the above calculation is ∇AL and ∇BL due to the presence of the implicit
equality constraint. We deal with this via implicit differentiation.

Calculating ∇AL We have that

∂L
∂Ajk

=
∂L
∂z
· ∂Ax+Bu

∂Ajk

=
∂L
∂z
· ∂
∑

mAlmxm
∂Ajk

=
∂L
∂z
ejxk

=
[
∇zL x>

]
jk

∇AL = ∇zL x>

We calculate ∇zL via implicit differentiation:

∇zL =

(
∂L
∂x
· ∂x
∂z

)>
,

∂L
∂x

=
∂L
∂ŷ
· ∂Cx+Du

∂x
,

∂x

∂z
=
∂φ(z)

∂z
+
∂φ(Ax+Bu)

∂x
· ∂x
∂z

∂x

∂z
= (I − D̃A)−1D̃, (7.7)

where D̃ = ∇zφ(z) is a diagonal matrix. A question that naturally arises is the existence of
an inverse for matrix (I − D̃A). For component-wise non expansive maps φ, we have that
I � D̃, and considering th PF well-posedness condition we directly get λpf(|D̃A|) ≤ 1. We
also have ‖D̃A‖∞ ≤ ‖A‖∞ and ‖D̃A‖1 ≤ ‖A‖1, therefore for other well-posedness condition
this inverse also exists. Note that ∂L

∂ŷ
(and hence ∇ŷL) is the gradient of the loss function

and thus can be easily computed.
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Calculating ∇BL From above it follows that

∂L
∂Bjk

=
∂L
∂z
· ∂Ax+Bu

∂Bjk

=
[
∇zL u>

]
jk

∇BL = ∇zL u>,

where ∇zL is given in equation (7.7).

Calculating ∇CL Similar to above, it follows that

∂L
∂Cjk

=
∂L
∂ŷ
· ∂Cx+Du

∂Cjk

=
[
∇ŷL x>

]
jk

∇CL = ∇ŷL x>.

Calculating ∇DL Similar to above, it follows that

∂L
∂Djk

=
∂L
∂ŷ
· ∂Cx+Du

∂Djk

=
[
∇ŷL u>

]
jk

∇DL = ∇ŷL u>.

Calculating ∇uL Additionally, implicit differentiation enables differentiation through the
implicit model by obtaining the gradient w.r.t. input u.

∂L
∂uj

=
∂L
∂z
· ∂Ax+Bu

∂uj
+
∂L
∂ŷ
· ∂Cx+Du

∂uj

=
∂L
∂z
·Bej +

∂L
∂ŷ
·Dej

=
[
B>∇zL+D>∇ŷL

]
j

∇uL = B>∇zL+D>∇ŷL,

where ∇zL is given in equation (7.7).

Projection on l∞ Matrix Norm Ball

We address problem (7.4), which we write as

p∗ := min
A

1

2
‖A− A0‖2

F :
∑
j∈[n]

|Aij| ≤ κ, i ∈ [n].
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where A0 ∈ Rn×n is given. The problem is decomposable across the rows of the matrices
involved, leading to n sub-problems of the form

min
a

1

2
‖a− a0

i ‖2
2 : ‖a‖1 ≤ κ,

which a0
i ∈ Rn the i-th row of A0.

The problem cannot be solved in closed form, but a bisection method can be applied to
the dual:

p∗ = max
λ≥0
−κλ+

∑
i∈[n]

si(λ),

where, for λ ≥ 0 given:

si(λ) := min
ξ

1

2
(ξ − a0

i )
2 + λ|ξ|, i ∈ [n].

A subgradient of the objective is

gi(λ) := −κ+
∑
i∈[n]

max(|a0
i | − λ, 0), i ∈ [n].

Observe that p∗ ≥ 0, hence at optimum:

0 ≤ λ ≤ 1

κ

∑
i∈[n]

s(λ, a0
i ) ≤ λmax :=

1

2κ
‖a0

i ‖2
2.

The bisection can be initialized with the interval λ ∈ [0, λmax].
Returning to the original problem (7.4), we see that all the iterations can be expressed

in a “vectorized” form, where updates for the different rows of A are done in parallel. The
dual variables corresponding to each row are collected in a vector λ ∈ Rn. We initialize the
bisection with a vector interval [λl, λu], with λl = 0, λui = 1

2
‖a0

i ‖2
2/κ, i ∈ [n]. We update the

current vector interval as follows:

1. Set λ = (λl + λu)/2.

2. Form a vector g(λ) containing the sub-gradients corresponding to each row, evaluated
at λi, i ∈ [n]:

g(λ) = −κ1 + (|A0| − λ1>)>+1.

3. For every i ∈ [n], reset λui = λi if gi(λ) > 0, λli = λi if gi(λ) ≤ 0.
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Numerical experiments

Learning nonlinear function via regression

We take m = 200 and draw the inputs ui, i ∈ [m] uniformly at random between −5 and 5.
We add random noise to the output, y(u) = f(u) + w with w taken uniformly at random
between −1 and 1, hence the standard deviation for y(u) is 1/

√
3 ' 0.57. As a loss function

we use the squared euclidean loss presented in Section 7.7. We take n = 75 and we learn
the implicit model by doing only two block updates: first, we update (A,B) using stochastic
projected gradient descent. The RMSE across iterations is shown in Figure ??. After this
first update we achieve a RMSE of 1.77. We then update (C,D), this step only consists in a
linear regression problem. After this update we achieve a RMSE of 0.56. For comparison we
also train a neural network with 3 hidden layers of width n/3 = 25 using ADAM (run until
convergence), with mini-batches and a tuned learning rate. We run ADAM until convergence.
We get an RMSE= 0.65 that is slightly above that of the implicit model.

MNIST

The MNIST dataset consists in input data points that are 28× 28 images (8bit gray scale for
each pixel) of hand written digits from 0 to 9. Each image is reshaped into a 784-dimensional
vector and rescaled to values between 0 and 1 before training. There are 50000 training data
points and 10000 testing data points. The goal is to classify correctly the digit of the labelled
input image. For training, we employ SPGD for the IDL model and ADAM with learning
rate of 5e-3 for both models (tuned through grid search from 1e-1 to 1e-4 that offer best test
performance) and trained over cross entropy loss. And the performance is examined through
the accuracy and loss on the test data set over the training process. In both cases we use a
batchsize of 100.

GTSRB dataset

In the GTSRB dataset, the input data points are 32× 32 images with rgb channels of traffic
signs corresponding to 43 classes. Each image is turned into gray scale before being reshaped
into a 1024 dimensional vector and then re-scaled to be between 0 and 1. There are 34,799
training data points and 12,630 testing data points. The goal is to correctly classify the
traffic signs. For training, we employ SPGD for the IDL model and ADAM with learning rate
of 5e-3 for FFNN and 1e-3 for the IDL model (tuned through grid search from 1e-1 to 1e-4
that offer best test performance) and trained over cross entropy loss. And the performance is
examined through the accuracy and loss on the test data set over the training process.
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Chapter 8

Brief directions for future works

This thesis was organized into three parts. In the first part we focused on optimization
models and method for participation of DERs in electricity markets; in the second part we
studied Hopfield methods as a heuristic to solve combinatorial problems; and in the third
part we developed a general framework for implicit optimization and implicit deep learning.

In part I, all the models we used were convex. We already mentioned that some control
variables are in fact discrete variables (and therefore non-convex) when we introduced Hopfield
methods. More generally speaking, there are many variables in energy applications that
should be considered as discrete variables: for instance in the smart home realm, the control of
PEV charge, pool pumps and refrigerators. Note that we also studied in part II an economic
load dispatch problem where one of the decision variable corresponded to turning on or off a
power plant. An area for future work, would be to use the Hopfield methods we presented
(or the Fenchel ADMM approach of part III) to coordinate DERs with discrete states.

Discrete variables are a source of non-convexity, but there are many other ways to improve
the model used for DERs: among others, nonlinearities. For instance, a nonlinear model
for the charge of Li-ion batteries could be considered. For such nonlinearities, it would be
of interest to use the universal approximation approach (i.e. model the nonlinearity as a
feedforward neural network with one layer) and the Fenchel divergence penalty. Remark that
we already did something similar in the example we had on PEV parking overstay in part III.
We believe the methods we presented could more generally be used for energy systems models
with nonlinearities (in the dynamic or the objective) to create algorithms that perform better
than some of the methods in use currently (e.g. sequential quadratic programming).

Similarly, in the first chapter we considered a Markowitz portfolio objective, which is
quadratic and convex. Remark, that if the aggregator participation in the electricity market is
high, the DER coordinator will have an impact on the prices themselves. Therefore the DER
coordinator could take this phenomenon into account by modeling price prediction not only
as a function of time (or weather conditions) but also as a function of its own supply/demand
in the market - which would make the objective non-convex in most cases. Research in that
area would involve finding a way to represent and learn this mapping (maybe an implicit
model?) as well as variations to the algorithms we proposed (maybe Fenchel ADMM?).
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Without considering prices to be endogenous (i.e. dependent on the aggregator market
participation), we believe another area of research would consist in improving the risk model
for the market prices. For instance, the practical performance of different risk measures
(potentially non-convex measures) than that of Markowitz portfolios could be examined.
Remark that changing the risk measure would in turn change the behavior of the algorithms
- such as the convergence rates - we presented. Eventually new algorithms for distributing
the computation burden to prosumers would be required.

In part II, we developed algorithms and theory for combinatorial optimization problems.
We believe that future work could consist in applying these methods to DER integration
problems as mentioned above, as well as more general problems such as Hybrid systems
control. We showed some promising first results for these methods, but their behavior and
performance on more practical problems and datasets still need to be assessed, particularly
given the limitations we pointed out at the end of part II. Some of these limitations could
also be lifted: for instance we mentioned that Hopfield methods could be sensitive to initial
conditions. Hence, finding a good starting point method given the geometry and behavior
of Hopfield methods could further improve the quality of the candidate solution. We also
mentioned that another limitation we faced was the dual algorithm (i.e. the dual variable
update) that we use to handle inequality constraints and the choice of step size. We do not
believe we have found a robust way to guarantee convergence or guarantee in practice the
quality of the candidate solution. For the moment, this method needs to be careful tuning
given an application or a combinatorial optimization problem. Therefore, crafting better
(e.g. requiring less hyperparameter tuning) dual algorithms for Hopfield methods could be a
valuable research endeavour.

Similarly to Hopfield methods, we believe that future research in implicit optimization
could consist at first in applying these implicit methods on more practical problems and
datasets. We also understand that the applications we found (combinatorial optimization,
nonlinear control and deep learning) are probably not the only ones, and that the algorithms
we developed are just one way for solving such problems. All of this offers a large space
for new discoveries using implicit optimization. Moreover, in the last chapter we saw that
implicit optimization included implicit deep learning as a special case, and that most deep
learning architectures were themselves special cases of implicit architectures. From that, we
hope to convey the richness the implicit optimization framework has to offer, and hope that
even more research avenues in that area will be explored.
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[103] László Lovász. “On the Shannon capacity of a graph”. In: IEEE Transactions on
Information theory 25.1 (1979), pp. 1–7.

[104] Zhou Lu et al. “The expressive power of neural networks: A view from the width”. In:
arXiv preprint arXiv:1709.02540 (2017).

[105] Juan M Lujano-Rojas et al. “Optimum residential load management strategy for
real time pricing (RTP) demand response programs”. In: Energy policy 45 (2012),
pp. 671–679.

[106] Maps and Data - Annual Vehicle Miles Traveled in the United States. url: https:
//afdc.energy.gov/data/10315.

[107] Johan Mathe et al. “PVNet: A LRCN architecture for spatio-temporal photovoltaic
PowerForecasting from numerical weather prediction”. In: arXiv preprint arXiv:1902.01453
(2019).

[108] Rahul Mazumder and Trevor Hastie. “The graphical lasso: New insights and alterna-
tives”. In: Electronic journal of statistics 6 (2012), p. 2125.

[109] Garth P McCormick. “The projective SUMT method for convex programming”. In:
Mathematics of operations research 14.2 (1989), pp. 203–223.

[110] MM Monteiro, JE Leal, and FMP Raupp. “A four-type decision-variable MINLP
model for a supply chain network design”. In: Mathematical Problems in Engineering
2010 (2010).

[111] Scott J Moura, Nalin A Chaturvedi, and Miroslav Krstić. “Adaptive partial differ-
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