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Introduction
As described by Denny and Helmuth (Denny and Helmuth, 2009),
integrating biomechanics and ecology represents a scaling up from
the biomechanics of individual organisms and their interaction with
their environment to the ecology of populations and communities.
A full population biology understanding requires extension of
biomechanics in two dimensions. In the ecological dimension,
scaling up from populations to interacting species provides a
community- and ecosystem-level understanding rooted in
mechanistic knowledge. In the temporal dimension, scaling up
from ecological to evolutionary time provides an evolutionary
understanding also rooted in mechanistic knowledge of organisms’
interactions with their environment.

This pursuit of understanding the interaction between patterns
across multiple scales is central to the field of ecology and
evolutionary biology and its application to management, and theory
and models play a key role in cross-scale extrapolation (Levin,
1992). Models serve a number of purposes in population biology
(and in general), with the goal of a model determining whether it
is constructed as a general, phenomenological or detailed
mechanistic model. Levins translates the range of possible model
structures into a trade-off between generality, realism and precision
(Levins, 1966). Here, the distinction between precision and realism
is akin to that between precision and accuracy: quantitatively exact

and consistent values versus closeness to the actual (real-world)
value. Within this trade-off, Levins suggests that one of the three
properties is typically sacrificed in favor of the other two, and the
two focal properties dictate the potential model contribution
(Levins, 1966). In particular, (1) focusing on realism and precision
at the expense of generality leads to the potential for testable
predictions for a specific situation, (2) focusing on generality and
realism at the expense of precision leads to the capacity for
qualitative predictions about different possible outcomes, and (3)
focusing on generality and precision at the expense of realism leads
to null-type models that allow exploration of how the incremental
addition of realism affects overall dynamics.

Much of the basic theory of population biology focuses on the
generality side of this trade-off, where the goal might be to
formalize a hypothesis about the factors driving a given outcome
in a mathematical framework to rigorously test and quantify the
underlying logical expectations (i.e. mathematics as ‘a way of
thinking clearly’) (May, 2004). In contrast, biomechanics,
including that integrated with ecology, is rooted in a bottom-up
approach focusing on detailed mechanisms (Denny and Helmuth,
2009) and therefore gravitates towards the realism side of this trade-
off. A number of modeling frameworks, described elsewhere in this
special issue of The Journal of Experimental Biology, follow the
biomechanics approach of scaling up from mechanistic
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Summary
This paper presents an overview of how mechanistic knowledge of organism–environment interactions, including biomechanical
interactions of heat, mass and momentum transfer, can be integrated into basic theoretical population biology through
mechanistic functional responses that quantitatively describe how organisms respond to their physical environment. Integrating
such functional responses into simple community and microevolutionary models allows scaling up of the organism-level
understanding from biomechanics both ecologically and temporally. For community models, Holling-type functional responses
for predator–prey interactions provide a classic example of the functional response affecting qualitative model dynamics, and
recent efforts are expanding analogous models to incorporate environmental influences such as temperature. For evolutionary
models, mechanistic functional responses dependent on the environment can serve as fitness functions in both quantitative
genetic and game theoretic frameworks, especially those concerning function-valued traits. I present a novel comparison of a
mechanistic fitness function based on thermal performance curves to a commonly used generic fitness function, which
quantitatively differ in their predictions for response to environmental change. A variety of examples illustrate how mechanistic
functional responses enhance model connections to biologically relevant traits and processes as well as environmental
conditions and therefore have the potential to link theoretical and empirical studies. Sensitivity analysis of such models can
provide biologically relevant insight into which parameters and processes are important to community and evolutionary
responses to environmental change such as climate change, which can inform conservation management aimed at protecting
response capacity. Overall, the distillation of detailed knowledge or organism–environment interactions into mechanistic
functional responses in simple population biology models provides a framework for integrating biomechanics and ecology that
allows both tractability and generality.

Key words: mechanistic models, species interactions, quantitative genetics, game theory, functional response, fitness function.
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physiological [e.g. dynamic energy budget models (Nisbet et al.,
2012)] or individual-level [e.g. scale-transition and complexity
theory (Benedetti-Cecchi et al., 2012; Van de Koppel et al., 2012)]
dynamics to patterns on ecological scales.

In addition to building up directly from the mechanistic
knowledge itself and therefore starting with realism, another
approach to integrating biomechanics or analogous mechanistic
knowledge with theoretical population biology is to start with more
general models from basic theory and incrementally add realism
based on the mechanistic understanding. Specifically, one approach
is to distill mechanistic understanding of organism–environment
interactions into a functional response that can fit into the
framework of more generic and tractable models of theoretical
population biology. Mechanistic functional responses, in particular
those that quantitatively describe how an organism or population
responds to an environmental variable, represent a key component
to the scaling-up process inherent to integrating biomechanics and
ecology (Denny and Benedetti-Cecchi, in review). This approach
takes advantage of the biological realism that stems from
biomechanics and allows integration of that mechanistic, detailed
understanding into a tractable framework where central dynamics
and drivers can more easily be discerned.

Here, I describe how mechanistic functional responses that
describe organism–environment interactions can be integrated into
basic community and evolutionary ecological models. While others
have proposed the use of mechanistic functional responses in
models of community and evolutionary ecology (typically treated
separately) [(e.g. Arnold, 1983; Schoener, 1986; Denny and
Benedetti-Cecchi, in review) see also additional citations
throughout this manuscript], the goal of this manuscript is to
provide an accessible outline of how to approach this task in both
subdisciplines. Therefore, this manuscript serves as an overview
rather than a comprehensive review. In addition, a specific focus
here is on incorporating mechanistic knowledge pertaining to how
organisms interact with their environment, which includes but is
not limited to the biomechanical interactions of heat, momentum
and mass transfer (Denny and Helmuth, 2009).

This functional response-based approach can apply to additional
modeling frameworks from basic theoretical population biology not
covered here such as non-evolutionary single-population dynamics,
including stage- or physiologically structured dynamics. Also,
scaling up in space receives only superficial attention here. The
focus here on community and evolutionary ecology is intended to
provide an illustration of the general approach centered on the
scaling up of biomechanics ecologically and temporally. In
addition, it complements the population models presented
elsewhere in this special issue, such as the structured population
models of Nisbet et al. and Madin and Connolly (Nisbet et al., 2012;
Madin and Connolly, 2012) as well as the models focused on
scaling up community dynamics in space discussed by Benedetti-
Cecchi et al. and Van de Koppel et al. (Benedetti-Cecchi et al.,
2012; Van de Koppel et al., 2012).

In order to start with the simplest possible models within
community and evolutionary ecology, below I describe the
potential integration of biomechanics into basic non-evolutionary
multi-species models and microevolutionary single-species models
through mechanistic functional responses, defined more
specifically in each context. For each I provide the general
frameworks and illustrative examples, from a classic example for
community ecology to a novel example for evolutionary ecology.
Throughout I highlight how this approach mechanistically adds an
environmental dimension to population dynamics to provide insight

into when mechanism matters to the qualitative or quantitative
outcome, connect models to biologically relevant, empirically
measurable parameters, and allow exploration of dynamical
responses to different environmental conditions. Finally, I outline
the potential for this understanding to inform conservation biology
through a mechanistic understanding of the central drivers of
ecological and evolutionary response to environmental change.

Community ecology
In this section, I first describe a classic, textbook example of how the
shape of the functional response affects the dynamics of interacting
species in a basic predator–prey model. Then I discuss ways that
mechanistic knowledge of organism–environment interactions can
factor into the functional forms of predator–prey models, with a
Boltzmann factor-based approach of incorporating temperature
effects on predator–prey dynamics as an example. Finally, I discuss
how this approach might apply more broadly to general models of
interacting species and highlight connections to the frameworks of
trait-mediated interactions and ecosystem engineering.

Classic functional response example in predator–prey interactions
Perhaps the most common use of the term ‘functional response’ in
ecology is in predator–prey models. The basic model structure of
this classic example follows a specialist predator and its prey,
whose densities are denoted P and H, respectively. Here, the
functional response is the per-predator rate of prey capture f(H) as
it depends on prey population density H. In addition to experiencing
predation at a total rate f(H)P, the prey have a constant population
growth rate r and experience density-dependent mortality with
carrying capacity K. The predators convert the predation into
reproduction with an efficiency factor of c and experience density-
independent mortality at a rate k. The overall dynamics are:

Holling (Holling, 1959) posited three possible functional
responses for the predation rate f(H). Type I predation, the simplest
possible representation, employs a linear rate:

f(H)  bH , (3)

(Fig. 1A), which can be considered the mass-action case where the
rate of prey capture increases in direct proportion to the prey density
(Berryman, 1992). Type II predation takes a slightly more
mechanistic approach by dividing the predation time into the
proportion of time spent searching S as compared to handling the
prey. If the rate of prey capture per unit search time is bH, then the
overall capture rate per unit time is bHS. In addition, if the handling
time per capture is , then the total time spent handling is bHS. For
time to be appropriately scaled (i.e. S represents a proportion of one
unit of time), then one unit of time is the sum of the search time S
and handling time bHS, or 1S+bHS. Rearranging this in terms of
the time spent searching S(1+bH)–1 and defining db, the overall
capture rate per unit time bHS is the type II functional response:

where predation saturates for high prey density (Fig. 1B).
Incorporating handling time is one of many possible mechanistic

dH

dt
= rH 1−

H

K

⎛
⎝⎜

⎞
⎠⎟

− f (H )P  ,  (1) 

dP

dt
= cf (H )P − kP  .  (2)

f (H ) =
bH

1+ dH
 ,  (4)
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approaches for a saturating functional response (Spalinger and
Hobbs, 1992). Finally, type III predation expands on this saturation
with a slower increase in predation at low prey densities, as might
occur with a limited number of hiding places, such that:

(Fig. 1C).
These three functional responses lead to qualitatively different

model outcomes. For type I, the system is always stable (predators
and prey haven damped oscillations towards a fixed point; Fig. 1D).
For type II, either unstable or stable dynamics is possible depending
on the parameter values, with stabilization at parameter values that
yield higher equilibrium prey densities (Fig. 1E). For type III, again
either unstable or stable dynamics is possible depending on
parameter values, but in this case stabilization occurs at parameter
values that yield lower or higher equilibrium prey densities with
unstable dynamics (e.g. limit cycles) occurring at intermediate prey
densities (Fig. 1E).

Adding mechanistic functional responses to predator–prey models
and Boltzmann factor example

While the example of the three Holling functional responses
demonstrates the potential importance of the function shape, the

f (H ) =
bH 2

1+ dH 2
  (5)

M. L. Baskett

type I–III functional responses are relatively phenomenological
(i.e. have a general functional form that resembles empirical
patterns, as opposed to the functional form being mechanistically
derived from first principles). Mechanistic knowledge can factor
into determining which predator–prey functional response might
apply among these three or the variety of other possibilities such
as those based on predator interference (e.g. Skalski and Gilliam,
2001), herbivore grazing dynamics (e.g. Spalinger and Hobbs,
1992) and ratio (P/H) dependence (e.g. Berryman, 1992). While the
saturating type II functional response is the most commonly used
in basic community models, data from predator–prey dynamics
more often have a better fit to functional responses that are based
on predator interference, where the functional response depends on
predator as well as prey density (Spalinger and Hobbs, 1992).

In addition, Holling-type functional responses are narrowly
concerned with the effects of prey density on the rate of prey
capture. Mechanistic consideration of organism–environment
interactions, including those relevant to biomechanics, requires
extension of this framework to incorporate a broader class of
mechanistic response functions in which the independent variable
can be any aspect of the environment (either biotic or abiotic). For
example, Vasseur and McCann incorporate temperature (a key
environmental characteristic) into a predator–prey model with
Holling type II (i.e. saturating) predation rate based on first
principles of thermodynamics (Vasseur and McCann, 2005).
According to a relationship first defined by Boltzmann, the rate of
any chemical reaction is governed by the ratio of its activation
energy, Ei, to the energy available from molecular collisions, T,
where  is Boltzmann’s constant and T is absolute temperature.
Specifically, the rate is proportional to e–Ei/(T); the higher the
temperature, the faster the rate. This mechanistically determined
proportionality is the basis for the Q10 effects traditionally
measured by physiologists.

The Boltzmann relationship provides a basis for Vasseur and
McCann (Vasseur and McCann, 2005) to scale the rates of prey
production r, predator biomass gain from ingestion (1–)J, and
predator respiration k:

r  frar(T0)mH
–0.25eEr(T–T0)/(TT0) , (6)

(1 – )J  fJaJ(T0)mP
–0.25eEJ(T–T0)/(TT0) , (7)

k  ak(T0)mP
–0.25eEk(T–T0)/(TT0) , (8)

where r and k factor into the prey and predator dynamics as in 
Eqns 1 and 2. Here ar, aJ and ak are the maximum sustainable rates
of each process (measured at representative body temperature T0),
and fr and fJ are the fractions of these rates realized in nature. mH

and mP are the masses of individual predators and prey,
respectively. Note that in each case, rate depends on mi

–0.25, a
scaling commonly found in nature (Schmidt-Nielsen, 1984) and
much debated in the physiological literature (Glazier, 2005).  is
the fraction of biomass lost during ingestion and digestion. With
these temperature-dependent rates defined, Vasseur and McCann
(Vasseur and McCann, 2005) frame the predator–prey functional
response f(H) in terms of the maximum prey ingestion rate J, the
predation half-saturation constant H0, and fe, the fraction of
captured prey biomass that the predator actually ingests:

In addition, the authors express the predator efficiency factor in
Eqn 2 as cfe(1–). While this formulation adds many new

f (H ) =
JH

fe (H + H0 )
 .  (9)
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Fig. 1. The three Holling functional responses describing predation (A–C,
illustrating Eqns 3–5) and the resulting possible outcomes for
predator–prey dynamics based on phase plane analysis (D–F) (Hastings,
1997). A and D, type I; B and E, type II; F and G, type III. D–F illustrate the
isoclines (dynamics in Eqns 1 and 2 set to zero, or no change in time), with
the prey isocline (1/H�dH/dt0) in red and the predator isocline
(1/P�dP/dt0) in blue. In E and F the dashed and solid blue lines indicate
different predator isoclines for the different possible outcomes depending
on the parameter values. Intersection points indicate equilibrium predator
and prey densities, and spiraling arrows indicate dynamics in the
neighborhood of those points. In addition, gray shaded areas indicate
regions of instability, and non-shaded areas indicate regions of stability for
the internal (predator and prey at non-zero values) equilibrium. Note that
the predator isocline depends only on prey density (i.e. dP/dt0 with P0
depends only on H in Eqn 2); therefore, this line (the blue lines in D–F)
defines the equilibrium prey density.
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parameters, including some that could be consolidated if symbolic
mathematical analysis were the only consideration, the mechanistic
basis allows for more straightforward biological interpretation of the
parameters and parameterization from empirical data. In addition, the
model structure maintains enough simplicity to remain tractable, in
particular allowing analytical expressions for the dynamical change
in each of the prey and predator with temperature (dH/dT and dP/dT).

Because the basic dynamical structure of the model remains the
same, no new dynamics emerge from the inclusion of this
temperature dependence, unlike the Holling-type functional
responses described above. Rather, it adds a new dimension to the
model by allowing exploration of how temperature will affect
which of the possible dynamical outcomes (stable node or cyclical
behavior as illustrated in Fig. 1E) occurs. The mechanistic basis of
this added dimension provides a concrete foundation for exploring
the interactive effects of temperature dependence in three different
aspects of the predator–prey dynamics (prey production, predator
ingestion and predator respiration), the complexity of which would
limit any phenomenological consideration. In particular, from their
analysis of the model, Vasseur and McCann find that increasing
temperatures destabilize predator–prey dynamics, lead to decreases
in prey biomass, and lead to greater changes in predator than prey
biomass (Vasseur and McCann, 2005).

Rall and colleagues employ a similar Boltzmann factor-based
approach of exploring the effect of temperature changes on the
predator–prey model in Eqns 1 and 2, but with a linear, type I Holling
functional response for the predation rate and temperature
dependence in the prey carrying capacity K as well as the prey growth
and the predator ingestion rates (Rall et al., 2010). Again, the overall
equilibrium dynamics remain the same (stable node as in Fig. 1D),
but the inclusion of complex temperature effects on multiple
processes allows exploration of this new dimension and reveals that
increasing temperature leads to decreasing equilibrium interaction
strength between the predator and prey. Both examples illustrate the
potential for the inclusion of mechanistic functional responses that
describe organism–environment interactions in relatively simple
dynamical models to elucidate how environmental change might
affect the dynamics of the interacting species. In addition, both
studies exemplify the potential for connection to empirical data given
mechanistically based, biologically relevant parameters: Rall and
colleagues parameterize their model based on terrestrial arthropod
experiments (Rall et al., 2010), and Vasseur and McCann provide a
variety of parameterizations based on vertebrate ectotherm and
marine invertebrate systems (Vasseur and McCann, 2005).

Community models more generally
Beyond predator–prey dynamics, a generic representation of two
interacting species N1 and N2 given per-capita growth rates F1 and
F2 is:

Species interactions imply that the per-capita growth rate for a
given species (Fi) will depend on the population density of the other
species (Nj); it is typically possible to break down the population
growth into the intraspecific term fi(Ni) and the interspecific
interaction term gi(Ni,Nj), where Fi(Ni,Nj)fi(Ni)+gj(Ni,Nj). The
simplest possible (Lotka–Volterra) formulation for the species
interaction functional response is linear with each species, i.e. the

dN1

dt
= N1F1(N1,N2 ) ,  (10)

dN2

dt
= N2F2 (N1,N2 ) .  (11)

interaction term is gi(Nj)aijNj, where the sign of the constant aij

for each species depends on whether the interaction is predation
(opposite signs for a12 and a21), competition (both negative) or
mutualism (both positive). The field of theoretical ecology has
continually added biological realism to this structure in order to
better understand community dynamics, including extension to 3–6
species to explore ‘community modules’ (e.g. trophic chains,
apparent competition, intraguild predation) (Holt, 1997). While
limiting the number of interacting species to a tractable set will
always limit realism, it can provide insight into a key, strongly
interacting subset of species or guilds (Holt, 1997).

As with the predator–prey case, a mechanistic understanding can
inform the functional form of both interspecific [gi(Ni,Nj)] and
intraspecific [fi(Ni)] dynamics. The general idea of building
mechanistic functional responses for interspecific interactions
overlaps with the framework of trait-mediated interactions, which
extends the typical consideration of population density-dependent
species interactions to also include the role of individual traits, and
the traits that influence species interactions can be morphological,
behavioral or life history (reviewed by Bolker et al., 2003). The
theory of trait-mediated interactions indicates the importance of the
shape of functional responses to population dynamics, but such
shapes are rarely measured to construct empirically driven models
(Bolker et al., 2003).

Mechanistic functional responses hold the potential to fill this
crucial knowledge gap to connect theory and data as well as extend
this theory to incorporate the interaction between organisms and their
environment. As mentioned above, mechanistic functional responses
that incorporate dependence on the abiotic environment add another
dimension to allow understanding of how environmental drivers
affect the dynamical outcome. For example, the Boltzmann factor
framework described in the context of predator–prey models above
(e.g. Vasseur and McCann, 2005) has the potential to provide a
general approach for incorporating temperature dependence into the
dynamics of interacting species. In addition, dispersal kernels as they
depend on abiotic conditions (e.g. wind or currents, discussed in more
detail in ‘Game theory and dispersal evolution example’ below)
represent a type of functional response based on organism–
environment interactions that can provide insight into the co-
existence of competing species (e.g. Berkley et al., 2010).

In addition to the abiotic environment, mechanistic functional
responses can depend on the biotic environment, in which case the
potential for novel dynamics is possible and indicates when
mechanism matters to the qualitative outcome. For example, in the
Rietkerk and van de Koppel plant resource model (Rietkerk and
van de Koppel, 1997), incorporating the response of resource
dynamics to plant density due to indirect environmental effects
changes the model outcome. Specifically, they (Rietkerk and van
de Koppel, 1997) model plant P and resource R density dynamics
using a chemostat-type model, where the resource input rate is
Rin(P), the resource uptake by plants is c(R), the resource loss
(outflow) rate is r(P) and the plant growth rate is g(R), such that:

If the resource outflow r(P) is a constant independent of plant
density P (Fig. 2A), as is typical in the basic model formulation,
the model has one possible stable state for a given set of parameters
(Fig. 2C). However, if the resource outflow r(P) monotonically

dR

dt
= Rin (P) − c(R)P − r(P)R  ,  (12)

dP

dt
= g(R)P  .  (13)
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declines with plant density P at a decreasing rate (Fig. 2B), a biotic
environmental response function supported from empirical data
that occurs due to plant density-dependent runoff and erosion, then
two alternative stable states are possible for some parameter values
(Fig. 2D). This possibility of alternative stable states leads to
hysteresis, where the path a system follows under environmental
change depends on the direction of the environmental change
(black arrows in Fig. 2D). Such dynamical outcomes have profound
implications for the management of a system (e.g. in the case of
plant resource dynamics, management of grazing or nutrient runoff)
due to the potential for a small change in the environment (e.g.
increased herbivory) to lead to a subsequent change in state (e.g.
plant collapse) that cannot be reversed with a reversion to the
original environmental condition.

More generally, consideration of dynamical resource
dependence on the biotic environment falls within the framework
of ecosystem engineering (Jones et al., 1994). In other words, the
functional form of the response of the abiotic environment to the
density of an ecosystem engineer can be considered a type of
environmental functional response. The theory of ecosystem
engineering indicates that explicit consideration of organism-
dependent resource dynamics, and therefore biotic environmental
functional responses for resources, is most important when the
organism–resource interaction dynamics occur on larger spatial and
temporal scales than the intra- and/or inter-specific dynamics
(Hastings et al., 2007). Models that incorporate this type of

M. L. Baskett

environmental functional response demonstrate the importance of
ecosystem engineering to ecological dynamics such as population
persistence, invasive species spread and spatial dynamics (reviewed
by Hastings et al., 2007).

Overall, different functions for intraspecific and interspecific
dynamics readily affect the outcome of community ecology
models, and a mechanistic approach to developing such functions
can both connect the parameters to biologically relevant and
measurable processes and provide an indication of the appropriate
functional response for a given system (Schoener, 1986). Focusing
on functional traits as they affect performance under different
environmental conditions has the potential to enhance the
quantitative and predictive content of community ecology theory
(McGill et al., 2006). Furthermore, the incorporation of a more
bottom-up, mechanistic approach in multispecies models is in line
with recent suggestions to build community ecology up from the
processes that drive community-level patterns (rather than the top-
down approach of starting with the patterns themselves), which
Roughgarden (Roughgarden, 2009) and Vellend (Vellend, 2010)
posit has a greater potential to lead to a general theory of
community ecology.

Evolutionary ecology
In the community models described above, mechanistic knowledge
about organisms’ interactions with their environment could factor
into an environment-dependent functional response for a variety of
dynamics, from intraspecific dynamics such as population growth
rate to interaction dynamics such as predation rate. For a single-
species model of evolutionary change, it is the mechanistic
functional response in terms of the environment-dependent
population growth rate (i.e. function that describes how the
population growth rate responds to the environment) that holds
particular relevance as it provides a metric of fitness. If this function
appropriately describes both population growth and fitness, then it
can serve to couple ecological and evolutionary dynamics.

Below, I describe two broad frameworks for integrating such a
mechanistic functional response into evolutionary dynamics:
quantitative genetics (with two modeling approaches described)
and game theory. This is not intended to be an exhaustive
accounting of all models relevant to these frameworks but rather
an example illustration of a handful of commonly used models. The
focus here is on the microevolutionary dynamics of changing gene
frequencies within a population rather than the macroevolutionary
processes of speciation and extinction because microevolution has
greater ecological relevance and is therefore more relevant to this
special issue. In addition, for simplicity, this section focuses on
single-species models; for an integrative review of both population
genetic and game theoretic frameworks in the context of co-
evolutionary questions of evolutionary ecology, see Abrams
(Abrams, 2001) and Day (Day, 2005).

In addition to describing the generic mathematical formulations
with an indication of which term can be an environment-dependent
functional response in all cases, for the first quantitative genetics
modeling approach I discuss existing theoretical constructs
(specifically, the phenotype–performance–fitness framework and
function-valued traits) that are particularly relevant to the integration
of biomechanics. For the second quantitative genetics modeling
approach I analyze an example based on the evolution of thermal
tolerance in a changing environment in order to illustrate the
mechanistic functional response approach. Finally, for the game
theory approach I use a discussion of dispersal, a topic often explored
in both game theory and biomechanics, to exemplify how a
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Fig. 2. Chemostat model that ignores (A, plant-independent outflow) or
accounts for (B, plant-dependent outflow) resource loss rate dependence
on plant density, and the resulting plant resource dynamics (C and D,
respectively). (C,D) The isoclines (dynamics in Eqns 12 and 13 set to zero,
or no change in time), with the resource isocline (dR/dt0) in red and the
plant isocline (dP/dt0) in blue. Filled circles indicate locally stable equilibria
and open circles indicate locally unstable equilibria, and the shaded region
in D indicates the region of resource density with alternative stable states.
Black arrows illustrate the outcome for an environment shifting between
points a (equilibrium resource density at the blue solid line) and b
(equilibrium resource density at the blue dashed line): given plant-
independent outflow, if the system starts at a, shifts to b, and returns to a,
the system state (resource and plant densities) will shift between the
indicated equilibria points, returning to the original state (C). However,
given plant-dependent outflow as illustrated in B, if the system starts at a
within the region with alternative stable states and the internal equilibrium
point (solid point with P>0 and R>0 in D) then shifts to b, the plant and
resource densities can pass beyond a threshold such that the system shifts
to the resource-only equilibrium point (solid point with P0 and R>0) and a
return to the conditions in a will not lead to a return to the original state.
[Adapted from Rietkerk and Van de Koppel (Rietkerk and Van de Koppel,
1997) fig. 1A, fig. 2B and fig. 3B.]
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biomechanics-based understanding might shift the focus of
evolutionary models and allow better integration of models with data.

Quantitative genetics
Population genetic models follow gene frequencies over time as
they depend on relative fitness, which encompasses both
survivorship and reproductive success. While the simplest possible
model construction of density-independent fitness leads to genetic
dynamics independent of population dynamics (i.e. gene frequency
dynamics do not depend on population size), the average
population fitness (relative frequency of each genotype multiplied
by its fitness, then summed over all possible genotypes) could be
considered a metric of the population growth rate, thus coupling
the population (ecological) dynamics to the genetic (evolutionary)
dynamics. In addition, consideration of density-dependent
influences on fitness inevitably leads to population size-dependent
genotype fitness and therefore necessitates fully coupled population
and genetic dynamics (Day, 2005).

A mechanistic understanding of organism–environment
interactions can underlie the quantification of fitness in population
genetic models. For example, a physiological understanding of
organism response to the physical environment and how that affects
investment in growth, maintenance and reproduction can allow
measurement of the fitness for the traits relevant to that process. This
measurement of fitness for different traits could directly provide the
parameters for a Mendelian (i.e. discrete phenotypes) model of
population genetics, such as a one-locus, two-allele model where
fitness is defined separately for each genotype as a distinct parameter.

However, traits relevant to mechanistic knowledge (including
biomechanics-based knowledge), such as morphological and
physiological traits, are typically quantitative genetic traits: they
can take on a continuum of values that depend on multiple
contributing genes as well as the environment. One approach to
modeling such traits is to follow the continuous probability density
function pz(z) of phenotype z [i.e. pz(z)dz describes the proportion
of the population with phenotypes between z and z+dz] and/or the
probability density py(y) of genotype y, where both the genotypes
and the phenotypes are continuous variables (the mathematical
description of the link between the two is described in more detail
below; the genetic probability density can also be considered the
‘breeding value’ distribution). Then the fitness function Wz(z) that
drives adaptive dynamics is also a continuous function that
describes how fitness depends on phenotype z; note that here and
throughout I use y and z subscripts to the probability density and
fitness functions to indicate whether they are functions of
genotypes or phenotypes, respectively. Often, fitness functions
have phenomenological functional forms for generality and
tractability (e.g. general representations of stabilizing, disruptive or
directional selection) (Lande and Arnold, 1983) or occasionally are
determined from fits to empirical data (e.g. Schluter, 1988), but
they can also be built up from mechanistic knowledge.

As a demonstration of where fitness functions integrate into
models of coupled population and genetic dynamics, including
example fitness functions to provide a more concrete illustration, I
use two different models: a discrete-time, diploid model with sexual
reproduction and a continuous-time, haploid model with asexual
reproduction. Both are built on the ‘infinitesimal alleles’
assumption that a large number of unlinked loci contribute
additively to the overall genotype y. Among the many possible
population genetic frameworks [see, for example, Denny and Dowd
in this issue for another quantitative genetic modeling framework
(Denny and Dowd, 2012)], the two described here hold appeal for

integrating biomechanics-based knowledge because they provide
flexibility for the definition of the fitness function.

Discrete-time sexual model, the phenotype performance–fitness
model, and function-valued traits

The discrete-time, diploid, sexual model follows the genotype
probability density pt(y) at each point in time t assuming non-
overlapping generations. The model dynamics consist of (1)
applying selection and (2) mating and inheritance of genotypes, in
either order. Selection occurs on the phenotype (z), but the genotype
(y) is what is inherited in the ‘transmission function’ that describes
the transmission of parental genotypes to the offspring.

Determining how selection affects the genotype distribution
requires multiplying the genotype probability density pt(y) by the
probability of having a particular phenotype given a particular
genotype q(z|y), then multiplying by the phenotype-dependent
fitness Wz(z) and integrating over all phenotypes. In other words,
the genotype-dependent fitness is Wy(y)�Wz(z)q(z|y)dz (assuming
one selection event per generation). For phenotypes randomly
distributed around the genotypes with environmental variance VE,
the phenotype–genotype probability function is the Gaussian
function q(z|y)exp[–(z–y)2/(2VE)]/�(2VE) (i.e. given each
genotype y, the probability density of phenotype z around that
genotype is normal with a mean y and variance VE). Applying
selection then requires multiplying the fitness by the genotype
probability density [Wy(y)pt(y)] and normalizing such that the
resulting distribution remains a probability density function. The
normalization factor, the fitness of each genotype multiplied by its
frequency integrated over all genotypes [�Wy(y)pt(y)dy], is also the
mean fitness of the population Wt.

Under random mating, the probability that two individuals
with genotypes y1 and y2 mate is their encounter probability as
described by the product of their frequencies in the population
pt(y1)pt(y2). For inheritance, assuming each offspring genotype is
the average of the genotypes it inherits from its parents, the
distribution of possible offspring genotypes has an expected
value of the parental genetic mean (y1+y2)/2 and a variance of
half of the parental genetic variance VG/2. The half factor comes
in because of the averaging:

for independently and identically distributed Y1 and Y2; note that
this half factor appears in the transmission function, not the final
offspring genetic distribution. Therefore, for inheritance under the
infinitesimal model, the parent–offspring genotype transmission
function is:

if random mutation is expected to increase the genetic variance in
each generation, then one approach to account for this is to add the
amount by which that happens VM to the variance of the
transmission function. The determination of the genetic variance
VG in this function is discussed in more detail below.

Combining mating and inheritance, the offspring genotype
probability density is the product of the mating probability of
parents y1 and y2 and the transmission function, integrating over all
mating pairs. With selection [to arrive at the post-selection
distribution pt*(y)] then mating [applied to the selected population

Var
Y1 + Y2

2

⎛
⎝⎜

⎞
⎠⎟

=
1

4
Var(Y1 + Y2 ) =

1

2
Var(Y ) ,  (14)

L( y | y1, y2 ) =
1

πVG

exp(−( y − ( y1 + y2 ) / 2)2 /VG ) ;  (15)
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to arrive at the next generation’s distribution pt+1(y)], the full
dynamics are:

(Slatkin, 1970; Turelli and Barton, 1994). Assuming fitness is
measured in terms of population growth and is density
independent, these genetic dynamics can be coupled with
population dynamics where the population size Nt changes
according to a per-generation, per-capita growth factor derived
from mean fitness Wt�Wy(y)pt(y)dy and any density dependence
F(Nt):

(Slatkin, 1980). In cases where density-dependent or other
demographic factors might affect the genetic as well as the
population dynamics, one approach to determining the coupled
population and genetic dynamics is to start with the dynamics of
the population density distribution nt(y), where nt(y)dy is the
number of individuals with genotypes between y and y+dy. Then
the genetic distribution dynamics can be derived from
pt(y)nt(y)/�nt(y)dy and the population dynamics from Nt�nt(y)dy.
Under the assumptions of weak selection, a Gaussian genetic
distribution {pt(y)exp[–(y–yt)2]/(2VG)]/�(2VE)}, and a constant
genetic variance (VG), Eqns 16 and 17 reduce to the dynamics of
the change in mean phenotype as the product of the genetic variance
and the selection gradient:

(Lande, 1976). This framework can be extended to multiple co-
evolving traits given the genetic variance–covariance matrix for
the suite of traits (Lande, 1979). However, evolutionary
ecologists might be interested in strong selection and evolving
genetic variance. If the assumption of a normal genetic
distribution still applies, one way to simplify Eqns 16 and 17 is
to follow the genetic and phenotypic means, variances and
covariances rather than the full distribution (e.g. Cavalli-Sforza
and Feldman, 1976). This requires a fitness function that allows
maintenance of the normal distribution, such as stabilizing
selection for the optimal trait  given fitness function width S as
an inverse measure of selection strength: Wz(z)exp[–(z–)2/2S].
Also, using the parental genetic variance VG,t directly in the
transmission function assumes no drift and no linkage (i.e. ignores
recombination), which can affect model predictions (see Feldman
and Cavalli-Sforza, 1981; Felsenstein, 1981). For alternative
approaches to accounting for genetic variance evolution that
employ the genetic variance at linkage equilibrium as the VG term
in the transmission function in Eqn 17, see Turelli and Barton
(Turelli and Barton, 1994). For a more mechanistic fitness
function that leads to departures from normality, Turelli and
Barton (Turelli and Barton, 1994) provide computational tools for
evaluating the full distribution dynamics in Eqns·16 and 17 (they
also find that a normal distribution can provide a good
approximation in a number of cases).

pt*( y) =
Wy ( y) pt ( y)

Wy ( y) pt ( y)d y∫
 ,  (16)

pt+1( y) =
1

πVG

pt*( y1) pt*( y2 )exp −
( y − ( y1 + y2 ) / 2)2

VG

⎛
⎝⎜

⎞
⎠⎟∫∫ dy1dy2 

 (17)

Nt+1 =Wt NtF (Nt )  (18)

zt+1 − zt =
VG

Wt

∂Wt
∂zt

  (19)

One approach to empirically measuring the selection gradient:

for structural, physiological or behavioral traits, as originally
detailed for directional selection by Arnold (Arnold, 1983) and
extended to different types of selection functions (Arnold, 2003),
is to break it down into two components: (1) the performance
function that translates phenotype to performance and can be
measured in the lab, and (2) the fitness function that translates
performance to fitness and can be measured in the field. This
phenotype–performance–fitness framework has provided a
quantitative framework for measuring adaptation and its
necessary components in the context of evolutionary physiology
(Feder et al., 2000; Garland and Carter, 1994). The use of this
performance-based approach in the context of multiple co-
evolving traits allows exploration of evolutionary trade-offs
between morphological, physiological and life history traits (e.g.
trade-offs between growth, reproduction and escape performance
in fish) (Ghalambor et al., 2003). Therefore, the
phenotype–performance–fitness framework can provide an
empirical basis to construct fitness functions and explore the
evolution of physiological or biomechanics-related traits (e.g.
those related to energetic investment and transfer). The advantage
of using empirically derived fitness functions is the addition of
biological realism (at the potential cost of analytic tractability) to
determine quantitative expectations for evolution.

Another approach to determining more realistic fitness
functions is to build up the functional form from a mechanistic
understanding. Many fitness-optimization models, including
those rooted in energy budgets and their constraints (Weiner,
1992), provide such a functional form. While these models
typically focus on determining the optimal trait, using such a
fitness function in the framework of Eqns 16–18 provides a
dynamical understanding of the trajectory of evolutionary
change, which will depend both on the selection strength
(determined by the shape of the fitness function) and population
traits such as genetic variance. The qualitative outcome of
evolution towards the selected trait at a rate dependent on
selection strength and heritable variation will not differ from
phenomenological fitness functions; however, a mechanistic
fitness function’s basis in empirically measurable, biologically
relevant parameters allows quantitative understanding of how
specific biological processes affect the evolutionary trajectory
and outcome.

In particular, the discrete time construct of Eqns 16–18 with
density-independent and frequency-independent selection can
employ a discrete time-based fitness metric such as the population
growth factor  or, if generation time is constant independent of
evolutionary change, the net reproductive value R0 [the expected
lifetime reproductive output per individual (Kozlowski, 1993;
Stearns, 1992)]. These metrics depend on the survivorship lx and
fecundity mx at each age x:  is the solution to the Euler equation:

and

1

Wt

∂Wt
∂zt

  (20),

1 = lxmxλ− x

x=0

X

∑  ,  (21)

R0 = lxmx
x=0

X

∑  ,  (22)
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– or, for continuous age structure:

and

given maximum age X (Kozlowski, 1993; Stearns, 1992). Then the
survivorship and fecundity functions can depend on physiological
trade-offs of energetic investment in growth, maintenance and
reproduction (Chown and Gaston, 1997; Perrin and Sibly, 1993;
Sibly and Calow, 1986; Stearns, 1992). Many existing fitness-
maximizing models take this construct to predict optimal life
history traits such as age or size at maturity, which then allows a
mechanistic understanding of the biological drivers of the optimal
trait (Kozlowski, 1992; Stearns, 1992). Integrating such fitness
functions into Eqns 16–18 would similarly allow a mechanistic
understanding of the biological drivers of the rate of evolutionary
change as well as the expected evolutionary outcome. Note that a
number of modeling studies integrate age-specific survivorship and
fecundity into quantitative genetic models to explore the joint
evolution of multiple co-evolving life history traits that trade off in
their effects on survivorship and fecundity (e.g. Charlesworth,
1990; Lande, 1982), while the approach suggested here focuses on
the evolution of a single trait as it depends on how it affects trade-
offs in energetic investment in processes related to survivorship and
fecundity [see also Coulson for a fully age-structured approach
(Coulson et al., 2010)].

For example, Roff (Roff, 1984) presents an optimization model,
applied to teleost fish, that separately considers survivorship and
growth costs to investment in reproduction, which depends on size.
The simplest possible case is that of semelparity: both growth and
survivorship cease after reproduction, thus the maximum age is the
age at maturity A. Fecundity depends on length-at-age Lx given
fecundity coefficient a according to mxaLx

3, and length depends on
age according to the von Bertalanffy saturating growth function
with asymptotic length L� and growth exponent k: LxL�(1–e–kx).
Given larval survivorship probability p and natural mortality rate
M, the survivorship for a given age is lxpe–Mx. Then two possible
fitness metrics are the lifetime reproductive output:

and the population growth factor:

Roff uses these equations and analogous ones for iteroparity to
describe how optimal age at maturity A (A that maximizes the
fitness metric) depends on the additional life history parameters
that describe fecundity, growth and survivorship (Roff, 1984), all
of which, except p, are readily available for many teleost fish
(note that, given the change in generation time with change in A,
 provides the more appropriate metric in this case). Similarly,
using these fitness metrics as functions of age at maturity A in the
framework of Eqns·16–18 (i.e. the phenotype zA) can describe
how the fecundity parameter a, growth parameters L� and k, and
survivorship parameters p and M affect dynamical evolutionary
outcomes such as the rate of evolutionary change and the effect
of mutation–selection balance. This simple, non-environmentally
driven example illustrates how a fitness function built up from
biological processes can allow insight into the dependence of

1 = l(x)m(x)λ− x dx
0

X

∫  ,  (23)

R0 = l(x)m(x)dx
0

X

∫  ,  (24)

R0 = e−MA paL∞
3 (1 − e−kA )3  ,  (25) 

λ = (e−MA paL∞
3 (1 − e−kA )3)

1

A  .  (26)

evolutionary change on biologically relevant, empirically
measurable parameters; a more biomechanical approach can
similarly build a fitness function up from principles of energetic
transfer between the processes relevant to growth, maintenance
and fecundity and incorporate organism–environment
interactions.

A mechanistic underpinning to the fitness function more readily
allows insight into the evolutionary response to different
environmental conditions (Arnold, 2003), especially novel
environmental conditions where direct empirical measurements of
selection or fitness are not available. For such an exploration, the
fitness function will depend on both the phenotype and the
environment. A natural extension of the phenotype–performance–
fitness framework mentioned above is to include the influence of
the biotic and abiotic environment (i.e. habitat) on phenotype and
performance (Garland and Losos, 1994). For example, Kingsolver
and Gomulkiewicz use thermal performance functions to explore
the effect of environmental variation on the evolution of
performance (Kingsolver and Gomulkiewicz, 2003). Their
framework, readily connected to experimental caterpillar data,
provides unique insight into whether selection acts on total growth,
integrated performance or growth rates in particular environments.
This approach is an example of following the evolution of
‘function-valued traits’, or traits that are a continuous function of
an organism’s status (e.g. age) or an environmental parameter (e.g.
temperature); for the latter, following the evolution of the function
is akin to following the evolution of phenotypic plasticity
(Kingsolver et al., 2001). Modeling the evolution of function-
valued traits can involve direct extension of the above-described
approach to quantitative genetics (Kingsolver et al., 2001). In
addition, new genetic and genomic tools to mechanistically explore
fitness and plasticity (see Whitehead, 2012) are increasing the
capacity to integrate this theory with data. An example of a model
that incorporates such organism–environment interactions is
provided in the next section on continuous-time asexual models.

Continuous-time asexual model and thermal tolerance example
For the analogous model of a clonal, asexual population in
continuous time, the genotype distribution p(y,t) is a continuous
function of both genotype y and time t. Given continuous time, the
phenotype (z)-dependent fitness rz(z) can be considered the growth
rate (in comparison to the interpreting fitness Wz(z) as a per-
generation growth factor to link genetic and demographic dynamics
in the discrete-time, diploid model above). As in the diploid model
above, considering the phenotype-dependent fitness rz(z) and the
probability of a phenotype z given a genotype y, q(z|y) {e.g.
q(z|y)exp[–(z–y)2/(2VE)]/�(2VE) given phenotypes normally
distributed around the genotypes with a random environmental
variance VE}, the genotype-dependent fitness is the product of these
integrated overall phenotypes ry(y)�rz(z)q(z|y)dz. In addition, as
above, the mean fitness is the product of the genotype-dependent
fitness and the genotype distribution integrated over all genotypes
r(t)�ry(y)p(y,t)dy. Given these definitions, the dynamics of the
genotype distribution p(y,t) depend on the difference between the
rate of growth for a given genotype ry(y) and the overall population
growth rate r(t)�ry(y)p(y,t)dy:

The above model has the intuitive interpretation that genotypes
with a fitness greater than the mean population fitness will increase
in frequency and genotypes with a fitness less than the mean will

dp( y,t)

dt
= p( y,t)(ry ( y) − r (t)) .  (27)
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decrease in frequency; see Crow and Kimura for a detailed
derivation (Crow and Kimura, 1970).

If fitness is defined as the asymptotic per-capita population
growth rate, these genetic dynamics can connect to population N(t)
dynamics according to:

given any density-dependent mortality F[N(t)], where F[N(t)] is
subtracted rather than multiplied here because of the potential for
r(t) to be negative in a maladapted population. Under particular
fitness functions that allow the maintenance of normality in the
genetic distribution [e.g. given optimal trait , growth at that trait
r, and fitness function width S, rz(z)r–(z–)2/2S], it is
straightforward to calculate the dynamics of the genetic mean
y�yp(y)dy and variance VG�(y–y)2p(y)dy (with the rate at which
random mutation increases genetic variance VM possibly added in)
from Eqn 27, thus simplifying the model analysis (Lynch et al.,
1991). However, a more mechanistic, empirically driven fitness
function might not readily lend itself to such a simplification.

One extension to this model, relevant to the goal of integrating
biomechanics and ecology to provide mechanistic predictions for
population responses to novel environments (Denny and Helmuth,
2009), is to allow the selection to change in time, i.e. the fitness
function becomes a function of time as well as phenotype rz(z,t).
For example, Lynch et al. (Lynch et al., 1991) investigate this
model with a changing optimal trait (t) in the fitness function 
(Fig. 3A):

to determine the amount of environmental change that a population
can keep up with [e.g. if the optimal trait is increasing linearly in
time, or (t)0+kt, determining the threshold rate of change k
beyond which mean population growth rate r(t) will eventually go
negative]. This framework has been extended in a number of ways,
such as accounting for sexual reproduction (Lynch and Lande,

dN (t)

dt
= r (t)N (t) − F (N (t)) ,  (28)

rz (z,t) = rθ −
(z − θ(t))2

2S
 ,  (29)

1993), finite population size (Lynch and Lande, 1993) and
phenotypic plasticity (Chevin et al., 2010).

Underlying these modeling efforts is often the more specific
question of the rate of climate change a population can keep up
with, in which case the changing environment typically can be
considered in terms of changing temperature. For example, Huey
and Kingsolver (Huey and Kingsolver, 1993) and Bonebrake and
Mastrandrea (Bonebrake and Mastrandrea, 2010) apply the more
generic models of Lynch and colleagues (Lynch and Lande, 1993;
Lynch and Gabriel, 1987) to the evolution of thermal tolerance.
These models retain symmetric fitness functions, such as the one
specified above, for tractability. In reality, thermal performance
curves tend to take a more asymmetrical form with a faster drop-
off in population growth at higher temperatures than the
temperature of peak performance, compared with lower
temperatures than the peak (Angilletta et al., 2003).

Employing a more realistic thermal performance curve as the
fitness function for dynamical explorations of adaptive responses
to climate change exemplifies the incorporation of a mechanistic
functional response that describes organism–environment
interactions. One possible mathematical description of such thermal
performance curves maintains  as the optimal trait (temperature
of peak performance) and S as the function width but adds a
temperature-dependent factor with constants a and b to scale
population growth by temperature (Fig. 3B):

[see, for example, Norberg’s work (Norberg, 2004) based on an
empirical motivation from phytoplankton thermal performance
curves; but see Gilchrist (Gilchrist, 1995) for an alternative
formulation of a thermal tolerance envelope-based fitness function
that includes maximum and minimum temperature tolerance].
While multiple aspects of this curve might be considered to be
under evolutionary pressure (Angilletta et al., 2002; Huey and
Kingsolver, 1993), the above formulation considers the temperature

rz (z,t) = 1−
(θ(t) − z)2

2S

⎛
⎝⎜

⎞
⎠⎟
aebθ(t )   (30)
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Fig. 3. Comparison of evolutionary change for a
haploid population in continuous time with a
traditional fitness function versus a physiologically
based fitness function. (A,B) The two types of
thermal response curves for an optimally adapted
individual at the endpoint of each simulation, where
different colors indicate simulations with different
rates of environmental change in all panels (the
black curve illustrates zero environmental change,
and therefore the starting point for all curves). The
physiologically based function (B, Eqn 30) is a
thermal tolerance envelope, which accounts for
increases in maximum population growth with
increasing temperature and a faster drop-off in
population growth with higher as compared with
lower temperatures; these components are not in a
more commonly used symmetric fitness function (A,
Eqn 29). (C,D) The mean genotype and population
size, respectively, over time with dashed lines
indicating simulation using the physiologically based
fitness function (Eqns 31–34) and solid lines
indicating simulations with the traditionally used
phenomenological fitness function. Parameter
values: a0.6, b0.06, mutation variance VM10–5,
environmental variance VE0.005, fitness function
width S5, carrying capacity K500, optimal
trait  020, and rate of environmental change k
ranges from 0 to 0.05 in steps of 0.0075.
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of peak performance as the evolving trait for illustration (Baskett
et al., 2009; Huey and Kingsolver, 1993) [but see Denny and Dowd,
this volume, for an alternative approach (Denny and Dowd, 2012)].
This curve can represent a variety of trade-offs (Angilletta et al.,
2003); for example, the peak can be considered the temperature for
which an organism is optimally adapted, with the faster drop-off at
higher temperatures due to thermal stress and the slower drop-off
at lower temperatures due to over-investment of resources in
thermal tolerance. The relatively phenomenological construct of
Eqn 30 illustrates the approach of distilling detail-oriented
mechanistic knowledge, in this case a physiological understanding
of temperature-dependent dynamics, into a simple function that
maintains model tractability but adds some elements of biological
realism. In other words, as described in the Introduction, this
approach adds incremental realism to the model (Eqns 27 and 28)
in order to maintain the generality and precision that are the goals
of basic population theory but also to provide insight into when
mechanism matters and quantify how. Specifically, in addition to
accounting for the asymmetry of the thermal performance curve,
Eqn 30 accounts for the potential for faster growth at higher
temperatures (as compared with a more traditional fitness function,
Eqn29, that does not include the aeb factor). These two aspects of
added realism have opposite effects on the potential for
evolutionary response to increasing temperatures (): the faster
drop-off at temperatures to the right of the peak will mean faster
declines in population growth for maladapted populations and
therefore greater extinction potential, while the increasing peak
population growth rates with increasing temperatures can increase
the rate at which evolution occurs.

To explore how the difference between the thermal
performance functional response (Eqn 30) and the traditional
fitness function (Eqn 29) affects evolutionary dynamics, I
compare the outcome of Eqns 27 and 28 with these two fitness
functions. Using the thermal performance function (Eqn 30) for
fitness in Eqns 27 and 28 leads to the dynamics for the genetic
moments (mean y and variance VG):

given mutation increases genetic variance by a constant rate VM.
The overall population growth rate over time is then:

[see Appendix A of Baskett et al. (Baskett et al., 2009) for a
derivation of Eqns 31–33]. Coupling these genetic dynamics with
population dynamics based on this growth rate, with a cap to the
population size at carrying capacity K, yields:

Here the modification from the traditional fitness function (Eqn29)
based on the physiological understanding of population responses
to changes in temperature is the factor aeb multiplied by the
population growth rate, which then reappears throughout the

d y

dt
=
VG (θ − y )

S
aebθ   (31),

dVG
dt

= VM −
VG

2

S
aebθ  ,  (32)

r (t) = 1−
VG +VE + ( y−θ)2

2S

⎛
⎝⎜

⎞
⎠⎟
aebθ   (33)

dN

dt
= 0 for N > K  and r (t) > 0 ,

dN

dt
= r (t)N  otherwise . 

 (34)

dynamics; see Lynch et al. (Lynch et al., 1991) for the equivalent
dynamics with the traditional fitness function.

As in the study by Lynch and colleagues (Lynch et al., 1991), I
investigate the capacity for a population to adapt to a linearly
changing environment, i.e. (t)0+kt for different rates of
environmental change k (Fig. 3). In the simulations that use the
thermal performance curves, the potential for faster population
growth rates with increasing temperatures does lead to faster
evolutionary change (Fig. 3C, comparing dashed lines with solid
lines of the same color). However, the faster decline in population
growth at higher temperatures leads to earlier and greater likelihood
of extinction rather than adaptation (Fig. 3D, again comparing
dashed lines to solid lines of the same color). This example
illustrates how a mechanistic fitness function can affect the
quantitative predictions for adaptation to environmental change in
ways that are difficult to predict.

Game theory and dispersal evolution example
Another approach to modeling phenotypic evolution is game
theory. Instead of following gene frequencies, game theory predicts
the evolutionary outcome based on whether strategies can invade
and be invaded by other strategies. This approach explicitly
accounts for frequency dependence, i.e. the potential for the fitness
of a given phenotype to depend on the phenotype distribution in
the population (accounting for frequency dependence in population
genetics models is feasible but would require extension of the types
of equations described above, much like accounting for density
dependence) (Day, 2005). Specifically, the fitness function (or pay-
off function) describes the per-capita population growth factor
(z,z) of a rare invader with phenotype z in a population with
resident phenotype z, where the population dynamics of the invader
are:

[or, in continuous time, dN/dtr(z,z)N, where the per-capita
population growth rate r and  are not equivalent; rln() in the
density-independent and frequency-independent case].

The classic evolutionarily stable strategy (ESS) (sensu
Maynard Smith and Price, 1973), or a strategy that cannot be
invaded by any other strategy, is z* such that (z,z*)≤(z*,z*)
for all z in this representation. Note that if  is independent of z
[i.e. no frequency dependence such that (z,z) (z)], this reduces
to a question of fitness optimization [z that maximizes (z)]. In
addition to the ability to withstand invasion, another dimension
important to predicting the evolutionary outcome is the ability to
invade when rare, here formalized as z* such that (z*,z)≥(z,z)
for all z [termed the neighborhood invader strategy, or NIS, when
considering nearby strategies (Apaloo, 1997)]. Plotting
successful versus unsuccessful invasion for the full set of all
pairwise combinations of invaders and residents in a ‘pairwise
invasibility plot’ indicates the predicted evolutionary outcome
[see Geritz et al. (Geritz et al., 1998) and Levin and Muller-
Landau (Levin and Muller-Landau, 2000) for a full classification
of evolutionary outcomes]. Expanding on this theory to
understand the process of evolutionary branching (often
interpreted as speciation) is central to the related framework of
adaptive dynamics (Day, 2005; Geritz et al., 1998).

As with the previous evolutionary frameworks, integrating
mechanistic knowledge (including, but not limited to,
biomechanics-relevant knowledge) of organisms’ interactions with
their environment into this framework would involve extending the
fitness function . In this case,  becomes a function of the

Nt+1 =λ(z, ẑ)Nt (35)
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environment as well as the invader and resident traits. As with
quantitative genetics, the theoretical framework for function-valued
traits, described for adaptive dynamics by Dieckmann et al.
(Dieckmann et al., 2006), provides a possible construct for
modeling such traits.

For an illustration of how incorporating mechanistic knowledge
of organism–environment interactions might provide different
insight from game theoretic models, consider the evolution of
dispersal. Models of the evolution of dispersal have a long history
in game theory (reviewed by Johnson and Gaines, 1990; Ronce,
2007). The evolving trait in such models typically concerns
whether or not dispersal occurs (e.g. proportion of offspring
dispersing), with any dispersal occurring in a generic way such as
all offspring having an equal likelihood of landing in any site
(global dispersal). Recent models have begun to incorporate the
evolution of dispersal kernels (functions that describe the
probability density of dispersing offspring in space) (e.g. Hovestadt
et al., 2001; Rousset and Gandon, 2002) and therefore allow
exploration of the evolution of dispersal distance or kernel shape.
In contrast, non-evolutionary models of dispersal have a long
history of incorporating mechanism, including the influence of the
physical environment, to determine the expected shape of the
dispersal kernels, especially for wind-dispersed seeds (reviewed by
Levin et al., 2003).

A similar development to seed dispersal models, both ecological
and evolutionary, has occurred in models of dispersal for marine
organisms with both planktonic and benthic stages. Models of the
evolution of dispersal for such marine organisms have typically
focused on the question of the evolution of feeding (planktotrophic)
and non-feeding (lecithotrophic) larvae given life history trade-offs,
often based on a fitness optimization approach (where the
planktonic stage might serve more as a migration to increase
feeding opportunities or decrease predation risk than a dispersal
event) (reviewed by Strathmann, 1985). More recent evolutionary
models connect the expected offspring size that results from such
trade-offs to the average dispersal distance of a dispersal kernel
based on phenomenological expectations of the energetic
requirements for development to metamorphosis (e.g. Baskett et al.,
2007). Most recently, non-evolutionary mechanistic models of the
dispersal kernel for marine spores as it depends on currents have
recently been built on biomechanics-based knowledge (Gaylord et
al., 2006; Gaylord et al., 2012).

The recent extension of evolutionary models to incorporate
dispersal kernels and the existence of mechanistic descriptions of
dispersal kernels as they connect to the physical environment (the
functional response of this example) for wind-dispersed seeds and
marine spores provides an opportunity to develop more mechanistic
evolutionary models. Incorporating the mechanistic dispersal
kernels into evolutionary models would shift the focus of such
models from the question of whether or not dispersal (or
planktotrophy) evolves to the evolution of a trait that drives
dispersal as it depends on the environment. Therefore, such models
would allow deeper insight into the evolution of the shape of the
dispersal kernel, which is key to a variety of ecological processes
from range expansion to community-level diversity (Levin et al.,
2003).

Furthermore, even for ecological or evolutionary questions
where the exact shape of the dispersal kernel does not have a major
impact [e.g. rules of thumb for marine reserve design (Lockwood
et al., 2002)], following the evolution of a biomechanics-based
dispersal kernel can provide insight into how the expected outcome
depends on local or changing environmental conditions [e.g.

M. L. Baskett

marine currents (Gaylord et al., 2006)]. The connection between
the physical environment and a biologically relevant trait creates
the potential to mechanistically consider constraints on dispersal
evolution as well. Finally, the focus on biologically relevant traits,
in the case of dispersal kernels likely a morphological trait in the
dispersal stage, might allow better connection of models to data
such as heritability estimates. For example, one crucial gap between
theory and data in the context of dispersal evolution is that
theoretical predictions and model-based hypotheses about the
amount of dispersal are difficult to test against empirical data
because dispersal itself is difficult to measure (Ronce, 2007);
theoretical predictions about dispersal-related traits under different
environmental conditions might provide more opportunities for
relevant empirical measurement and tests. This speculative
example suggests the general potential for more mechanistic
evolutionary models to provide ecological insight, allow greater
understanding of evolution under local or changing environmental
conditions, and better connect theory and data.

Conservation applications
Both ecological and evolutionary processes occur in the context of
human-driven global change (Palumbi, 2001; Vitousek et al.,
1997). One proposed strength of a more mechanistic approach to
ecological and evolutionary modeling, especially that related to
biomechanics, is the enhanced predictive power under novel
environmental conditions, such as physiological understanding
informing predicted responses to climate change (Denny and
Helmuth, 2009; Helmuth et al., 2005; Hoffmann and Sgro, 2011;
Hofmann and Todgham, 2010; Kearney et al., 2012; McGill et al.,
2006; Norberg, 2004). However, the types of models described
here, even with added realism from mechanistic functional
responses, remain at the general end of the modeling trade-off
described in the Introduction and therefore tend not to have the
level of both realism and precision necessary for predictions
(Levins, 1966). In addition, the key challenge for ecologists and
conservation biologists is not just predicting what will happen
under climate change, but informing local science-based
management decisions (e.g. reserve design, invasive species
control) under a changing climate (Dawson et al., 2011; Heller and
Zavaleta, 2009). Vulnerability estimated from predictive models
can provide a first step towards conservation management under a
changing climate (Rowland et al., 2011), but insight into relative
vulnerability and sensitivity to different processes can stem from
the more general models described here as well.

One possible component of local management under climate
change is to protect the capacity of natural systems to respond to
the global changes (Heller and Zavaleta, 2009). On the evolutionary
level, protecting response capacity means protecting the potential
for genetic adaptation as it depends on properties such as genetic
variance, population size and the level of gene flow (Hoffmann and
Sgro, 2011; Sgro et al., 2011) where genetic adaptation is one
aspect of the population-level response to climate change, along
with movement and acclimation (Parmesan, 2006). On the
community level, protecting the response capacity involves
protecting community-level resistance, resilience and robustness to
environmental change as it depends on properties and processes
such as diversity, modularity, redundancy and feedback loops
(Levin and Lubchenco, 2008). Sensitivity of basic models to
different assumptions and parameters can provide insight into
which processes and properties are most important to the overall
response and therefore inform this aspect of management under
climate change.
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Sensitivity analysis is an important tool for prioritizing
conservation management efforts [e.g. Crouse and colleagues
(Crouse et al., 1987) provide a quintessential example of this
approach]. For an example related to the question of
physiological response to climate change, we constructed a
model, rooted in the thermal tolerance fitness function described
above, of coral reef ecological and evolutionary response to the
future thermal stress expected with climate change (Baskett et
al., 2010). Sensitivity analysis of a variety of model constructs
and of all model parameters provided an integrative and
quantitative comparison of existing recommendations
(previously considered qualitatively and occasionally
contradictory) for local protection of coral reef resistance,
resilience and adaptive capacity in a changing climate.

Generally, incorporating mechanistic functional responses into
basic models allows greater connection of model parameters to
biologically relevant characteristics (Schoener, 1986), and
therefore increases the potential to connect model outcomes to an
empirical understanding of important traits or physiological
processes. Furthermore, mechanistic functional responses that
include interactions with the physical environment will also
indicate sensitivity to empirically relevant environmental
conditions. Such insights can provide a sense both of which patterns
or processes might best allow response capacity and of which local
stressors are more likely to interact synergistically with global
change, which can suggest prioritization in terms of which locations
and processes to protect and which local stressors to protect against.
This enhanced realism and biological relevance in the context of
basic models could help add much-needed specificity to general
recommendations, allowing them to strike the difficult-to-achieve
balance between broad applicability and concreteness for
recommendations for management under a changing climate
(Heller and Zavaleta, 2009).

Conclusions: a trait-based approach
In summary, mechanistic functional responses can readily fit into
existing frameworks for modeling species interactions and, in the
guise of fitness functions, evolutionary dynamics. Furthermore,
mechanistic functional responses that incorporate organisms’
interactions with their environment can extend these frameworks
to explore environmental influences, including multispecies or
adaptive responses to changing environments and the evolution of
phenotypic plasticity. For both community and evolutionary
models, this approach ties into existing theoretical frameworks such
as trait-mediated interactions (Bolker et al., 2003) and the evolution
of function-valued traits (Dieckmann et al., 2006; Kingsolver and
Gomulkiewicz, 2003).

These connections highlight how integrating mechanistic
functional responses into basic models represents a trait-based
approach, where physiological or morphological traits mediate
the organism–environment interaction. Therefore, a key model-
building decision will be the careful choice of what trait(s)
dictate the model system response to the environment (Chevin et
al., 2010; Naeem and Wright, 2003; Norberg, 2004). For
community models, such traits must be relevant to organism or
population performance (McGill et al., 2006; Naeem and Wright,
2003), and for evolutionary models, such traits must have a
heritable component as well as be ecologically relevant (Chevin
et al., 2010).

Overall, integrating mechanistic functional responses into
community and evolutionary models provides a mechanistic
underpinning that more readily connects these models to empirical

data and environmental conditions [at the cost of some generality
(Schoener, 1986)], thus advancing theoretical population biology.
In addition, using the aggregated functional responses allows a
tractable exploration that draws from existing tools and frameworks
in theoretical population biology, thus advancing efforts to
integrate biomechanics with ecology in terms of scaling up
biomechanics-based knowledge both ecologically and temporally.
This can complement more detail-oriented theoretical frameworks
that directly model the mechanisms by providing general insight
into when mechanism affects population dynamics. The examples
discussed here (the classic example of Holling functional
responses, recent efforts to incorporate temperature dependence
into predator–prey dynamics, the plant resource example of
ecosystem engineering, the phenotype–performance–fitness
framework, the use of the thermal tolerance envelope as a fitness
function in quantitative genetic models, and the potential for
integration of mechanistic dispersal kernels in game theoretic
frameworks of dispersal evolution) illustrate how mechanistic
functional responses can affect quantitative and qualitative
dynamics and allow a better connection of theory and data.
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