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ABSTRACT OF THE THESIS

Visual Concept for Foreground and 

Background Objects Using Deep Lab

 by

Seyed Ali Mousavi

Master of Science in Statistics 

University of California, Los Angeles, 2018

 Professor Ying Nian Wu, Chair 

We are interested in studying the application of computer vision and visual clusters on 

creating both foreground and background objects. This is motivated by the observation 

that deep neural networks learn context as part of the objects. Therefore, by having a 

dictionary of parts for both foreground and background objects we can capture objects 

in occluded settings and separate the foreground from the background. Our work makes

further contribution by having one network for both foreground and background objects 

rather than having multiple networks for multiple set of objects. We have demonstrated 

that a combination of the right network architecture and clustering algorithm can create 

visual concepts that can be used for both foreground and background objects.
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Chapter 1

Introduction

The landscape of computer vision and image classification has evolved over the past 

few years, mainly because of the contribution of the Deep Neural Networks(DNN) and 

Graphical Programming Units(GPU)[5]. In addition, many large datasets has been 

released over the past few years including PASCAL, MS-COCO, and ImageNet. The 

combination of large dataset and heavy computations power have gain improvements 

from the traditional approaches such as HOG and Bag of words.

One of the benefits of DNNs is its significant increase in accuracy, precision and recall. 

The biggest downfall of this approach is our lack of understanding of what the 

algorithms learn and what each neuron or sets of neurons learn and get activated by. 

As a result, most researches how been done on macro scale, changing the architecture 

of DNNs, and many trial and errors approach. Moreover, most of the research on the 

field is focus on objects of interest and foreground regions. On the other hand, useful 

information can be contained by learning parts of objects and the background objects in 

images. This becomes particular an issue in terms of handling occlusion and 

understanding contexts. [9] demonstrated that background images and visual context 

can help with image recognition. 
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Some approaches have been done by training deep neural networks either purely on 

parts or background images. Although the results are promising, this methods requires 

separate network training, and have not been combined with foreground object trained 

networks in any useful matters.

Moreover, understanding and having a dictionary of parts could be useful for many 

applications. A combination of series of parts can be use to train the objects for context 

free detection. Dictionary of parts can further enable us to improve detection in highly 

occluded images.

We have approached these problems by training one network for both foreground and 

background objects. Then analyzing the activation of different layers of DNNs that have 

been trained and clustering them into similar patterns, then creating a new metric to 

score and use as feedback. By doing so we have achieved the highest accuracy in the 

Pascal Context Dataset and able to have a deeper understanding of what each neuron 

studies.

First we will train network on set of foreground and background objects. Then we will 

take the pre-train network and feed it labeled parts of objects. At each layer, particularly 

at layer 4, we will save the sets of neurons, and their corresponding weights, that have 

been activated by the image. Thirdly we cluster the neurons, fourthly we combine these 

clusters into a dictionary that can be chosen to predict an image, lastly we developed a 

metric to effectively measure the accuracy of our prediction.

Our approach has few advantages, firstly it does not require us to train a new set of 

DNN for each set of objects. Moreover, this algorithm can accurately predict the object, 
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even when part, rather than the  whole object is feeded to it. Furthermore, by adding 

more trained objects and context, we improved the detection ability of the network.

The remainder of this paper is organized as follows. Chapter 2 briefly introduces related

work. Chapter 3 gives a brief introduction to Deep Neural Network, Chapter 4 and 

Chapter 5 discusses our training and results. Chapter 6 discusses clustering, Chapter 7 

discusses the different dictionary of objects and chapter 8 summarize this paper and 

propose future work in Chapter 5.
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Chapter 2

Related Work  

There has been some studies on Mid-level patches and visual concept. [7] used CNN 

features to discover mid-level patterns that were used for object classification. [12] and 

[19] used mid-level neuron activation for object part detection, however their focus was 

on a single neuron. Activations from intermediate layers of the CNN to find object parts, 

which they then used for fine-grained object classification. But they assumed that a 

single filter from an intermediate layer can detect parts. [1] Tried doing object 

classification using multiple filters for object classification, however their work used SVM

training, which differs than out unsupervised method.  

The closest work was done by Wang[14][15][16][17][18]. Wang  proposed a new 

approach to finding partial object representations while dealing with DNN internal states.

These new representations, dubbed as “visual concepts”, are extracted through using 

clustering technique. The DNN was specifically trained on 6 sets of Pascal objects. For 

each object the authors used K++, k-mean  algorithm to cluster the neurons. This 

process provided the authors with a dictionary containing all detected visual concepts 

per each layer of DNN. 

An important finding by the authors, was their ability to prove the connection between 

the visual concepts and the characteristically separate parts of the objects (represented 

4



by the patches of the original image), with a high enough degree of correspondence 

between the two.  

Wang  showed that visualization and clustering of similar items are effective. However 

their study was limited to rigid objects of PASCAL 3D+ objects, and used part-label for 

classification. Our study is different because it uses non-rigid objects, background 

objects and Deep Lab Architecture[3]. [17] use a voting method to detect parts, our 

study differs from theirs mostly by using non-rigid and background objects, and using a 

different unsupervised metric for the clustering algorithm
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Chapter 3

Deep Neural Networks

Deep Learning takes in raw input image data and outputs a value for either the entire 

image or each pixel of the image representing the object it represents. Between the 

input layer and the final layers, there are multiple hidden layers. These hidden layers try

to extract larger information from previous layers, in other words each layer tries to learn

something about the image from previous layer. The way it does that is by giving 

features from previous input different weights. It assigns the weights by a mechanism 

called backpropagation, which carries information forward and backward between input 

and output layer, which ensures the right weights are assigned in hidden layer. To truly 

understand this it will be helpful to examine backpropagation in detail.

3.1 Backpropagation

Backward propagation of errors (Backpropagation) is a set of rules (algorithm) for 

guided learning of neural networks using a gradient descent [10]. The procedure 

computes the gradient of the functional error, keeping in focus the neural systems’ 

weights. In other words, it calculates the effect of each neuron on the error function. It 

does so by the computation of gradient moving in reverse through the framework, with 

the slope of the last layer of weights being processed first and vice versa.
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 Backpropagation is a broad process, and it can be separated into four primary 

equations: 

δj
L=

∂C
∂a

σ'(zj
l)                                                                  Equation 1

 δj
L =((wl+1)TδL+1⊙σ'(zj

l)     Equation 2

∂C
∂b

=δ     Equation 3

        
∂C
∂w

=ak
l-1δj

l          Equation 4

 Represents the error in the output layer, and j is the output neuron. The first term on the

right hand side, δj
L, measures how much the cost function is affected by the jth output 

and the second term σ'(zj
l)  measures how fast the activation function is changing.

The second equation calculates the error in one term due to the error in previous term. 

The W represents the weight matrix between the two layers, and the is the δL+1 error in 

the next level. Hadamard product moves the error backward through the activation 

function giving us the error δL.

The third equation calculates the rate of change of the cost with respect to any bias in 

the network.

The fourth equation on the other hand calculates the rate of change of the cost function 

in terms of each neuron. One nice feature of that is that if the activation is small the 

learning rate is small and vice versa. This is because the study focuses on neurons that 

have the most effect, or in other words can have the biggest change in magnitude. 

Another side effect is that the network will become sparse as the neurons with value of 

zero stop learning.
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Using the 3rd and 4th equation we can now update the weight of each neuron by 

multiplying their weights by the gradient descents calculated.

To summarize, during a training phase the Neural Networks, input data are pass 

forward from the input layer to the hidden layers and ultimately to the output layer. Then

the output error is computed, then by using backpropagation we update  weight of each 

neuron, and propagate the data through the network again and repeat. This workflow is 

usually repeated for thousands of times.
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Chapter 4

Training Network

In order to fully train on all dataset we need to train our networks on background and 

foreground images using the ground truth. We used the PASCAL-CONTEXT[9] dataset 

images on 33 objects, 20 foreground and 13 background.  After training, we take the 

prediction results from predefined interested layer and finally cluster them.

4.1 Dataset and Preparation 

The PASCAL-CONTEXT dataset contains  pixel-wise labeling for the 10,103 trainval 

images of the PASCAL VOC 2010 detection challenge. Figure 1 shows objects in actual

image and the pixel-wise labeling in the second image. There are 540 different classes 

in the dataset, which can be further divided into three types: (i) objects, (ii) stuff and (iii) 

hybrids. The objects are defined as things with structured and well defined shape, this 

class includes the original PASCAL 20 objects. While stuff represents objects that do 

not have a well-defined shape such as sky, water. The hybrid are the type of the object 

that have boundaries but no predefined shape, an example would be road. 

From the 540 categories we choose 33 categories that Mottaghi [  9  ] showed we have 

enough data to be able to do optimal studies on them. The remaining 507 objects are 

classified as “others”. In addition PASCAL 20 objects (foreground), we picked the 
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following 13 objects: building, ceiling, floor, grass, ground, keyboard, mountain, road, 

sky, track, tree, water, wall, which comprised the background/context data.

The pascal dataset comes with labeled training and val test. We use the training set in 

order to train the data and the Val set for the evaluation.

Figure 1 The images on top are the actual provided images in the Pascal dataset, on the bottom is the pixel wise 

labeling/ As you can see the dataset  not only labeled the foreground objects, but the background objects such as 

road, grass and trees as well. Reference for images to Mottaghi
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4.2 Network Architecture:

We used Deep-Lab, rather than the more popular VGG[11], as our network 

architecture. The reason being is that, we were able to achieve higher prediction power 

using Deep Lab-architecture than any other architecture. Secondly, VGG focuses on big

features and bounding boxes, while Deep-Lab is focused on learning more detailed 

features, as its a pixel by pixel predictor, and as a result can capture textural details 

better than VGG can. This is important because many of the background objects, such 

as water and grass contain texture, where foreground objects like humans and cars do 

not.

4.3 Deep-Lab Architecture:

Introduced by Chen[3], the architecture has different layers, the first two layers are a 

convolution of 3x3 kernel, followed by RELU, followed by convolution of 3x3, followed 

by RELU, and max pooling of stride 2. The next two layers are almost identical to the 

first two layers, except that the 2nd RELU is followed by convolution of 3x3 and another 

RELU before a max pooling of stride 2. The 5th layer is identical to the 4th layer except 

that the convolution layers include a hole algorithm of size 2. The 6th and 7th  layer is a 

fully connected layer, with hole kernel of 4, followed by RELU and a dropout ratio of size

0.5. The last layer is a convolution layer to the 34 objects/background output followed 

by a softmax layer.

We use the CAFFE library [6] for the training. We set the learning rate is set 0.001, then

every 2,000 iterations reduce it by 0.1. The momentum and the weight decay are set to 
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0.9 and 0.0005 respectively. Finally a total of 6,000 iterations are done for the 

calculations.

In order to improve the performance of the Deep Lab algorithm, we used a series of 

Data Transformation. Following similar approaches to [3][5][8] cropping and 

normalization are performed. Each input image will have a pixel 36 as its small size, as 

later section show, this will ensure our images at least have a pixel ratio of 336. 

Secondly, we calculate the mean pixel value for all pixel over the entire PASCAL-

CONTEXT dataset and subtract that from every image, to normalize the values.

4.4 Deep-lab vs VGG

Deep-lab architecture is based on VGG-16’s with few differences: 

1. The fully-connected layers are turned into convolutional ones. 

2. Subsampling after the last two max-pooling layers are replaced by introducing 

zeros in convolutional filters in layers ‘hole algorithm’  

3. The layers are sparsely subsampled using input strides of 2 or 4 pixels.

VGG nets are known to provide too much invariance, a good thing for training networks 

for object classification, yet decreasing the performance for object segmentation due to 

the downsampling problem. In order to solve the problem, Deep Lab applies the “hole 

algorithm” (also known as “atrous algorithm”).
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Input (224 X 224 X 4)
Layer 1
Conv 3x3x64
RELU
Conv 3x3X64
RELU
Max Pooling 2

Layer 2
Conv 3x3X128
RELU
Conv 3x3X128
RELU
Max Pooling 2

Layer 3
Conv 3x3X256
RELU
Conv 3x3X256
RELU
Conv 3x3X256
RELU
Max Pooling 2

Layer 4
Conv 3x3X512
RELU
Conv 3x3X512
RELU
Conv 3x3X512
RELU
Max Pooling 2

Layer 5
Conv-Hole(2)3x3X512 
RELU
Conv-Hole(2) 3x3X512 Hole(2)
RELU
Conv-Hole(2) 3x3X512
RELU
Max Pooling 2

Layer 6
FC-Hole-4096
RELU
Dropout

Layer 7
FC-Hole-4096
RELU
Dropout

Layer 8
FC-34
Soft-max
Figure 2 demonstrated the architecture of deep lab
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4.4.1. ‘Hole Algorithm’

Hole algorithm was originally created for making the computations of undecimated 

discrete wavelet transform much more efficient. 

The algorithm is the following:

y[i] = ∑
k=1

K

x [ i+r · k ]w [k ]      Equation 5

Where X is the signal w[k] is the weight of the neuron and r is the sampling rate. Fully 

convolutional network is a special case with sampling rate of 1. The r in the equation 

allows us to introduce 0 or ‘hole’ in the kernel. 

4.4.2. Effect of ‘Hole Algorithm’

The improvement occurs because traditional max pooling would select the weight of 

one of the two pixels, following that up by upsampling to a previous layer, only the value

of 1 out 4 pixels would be selected. However, by using atrous method and introducing 

zeros and sampling from each filter, the networks will keep each node and resolution by

introducing zero. Furthermore, the convolution layer with input values of 0, will have the 

same complexity as a smaller kernel, as the multiplication by 0 go to 0.
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Figure 3 top shows traditional convolution, below shows atrous convolution with rate =2. In the bottom, we see atrous

convolution. In the top images the newly formed image from the kernel has a smaller resolution, while on the bottom 

the resolution is the same (same amount of green and orange boxes), yet the computation stays the same because 

the extra nodes have the value of 0. Reference for images to Chen

In other words in traditional VGG in order to reduce the calculation complexity, first we 

would apply max pooling(effectively selecting 1 out of 4 nodes), then do a fully 

connected convolution, then upsample to assign each pixel a value. With atrous, 

instead of max pooling, we introduce zeros and keep the same resolution by increasing 

the kernel size. But because the complexity of multiplying by 0 is 0, the complexity of 

the convolution is the same as the VGG, but this team each pixel contributes to the 

output instead of 1 out of 4 pixels after max pooling. Yielding to a more accurate result.

Atrous method also allows us to artificially increase the field of view. For example the 

size of this network's receptive field in Deep Lab , through the use of spatial 

subsampling and introducing zeros, allows it to reach 128x128 and 308x308 receptive 

field sizes. This method the network optimize for localization of content while scanning a

larger field of view.
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To summarize atrous allows for three things to happen:

1. Keep the same resolution

2. Keep the same complexity

3. Increase field of view if needed.
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Chapter 5

Pascal Context Dataset Results

5.1 Training and Results

We used the already predefined Train and Val images given by Pascal-Context to divide

the dataset into training and val set. Instead of training Deep Lab on the original 20 

objects, we modified the last layer to content 33 objects: the original 20 objects plus the 

13 background objects.  

We test the performance of Deep Lab on PASCAL-CONTEXT dataset by feeding it the 

valuation set, giving us a pixel by pixel prediction. Then we do a pixel by pixel 

comparison between the output and provided labeling for the training set. We Followed 

that by running an IOU calculation. We were able to reach an IOU score of 39.981%, 

while the CRF Berkley, FCN-8 group reached a score of 35.1%[8], and CRF-RNN had a 

score of 39.28% Zheng[20]. At the time of the study this was the highest score to be 

achieved. Table 1 shows the scores of all 59 objects, for compared to running it on 20 

objects.

As Table 1 shows adding context to the data improves the IOU accuracy of the original 

data. On Pascal 2010 imageset, the accuracy of the original 20 objects improves from 

57.17% to 57.92%. This is mainly to the networks ability to differentiate between similar 
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looking objects and different objects that gives it context. This highlights the importance 

of understanding and training on context data. 

 
Pascal
content

Pascal
original

Differenc
e

Backgroun
d 25.86% 86.55% N/A

Aero plane 64.38% 62.94% -1
Bicycle 57.33% 57.45% 0

Bird 67.06% 67.24% 0
Boat 47.83% 44.72% -3
Bottle 52.70% 52.93% 0
Bus 72.43% 72.73% 0
Car 64.38% 63.27% -1
Cat 73.97% 75.47% 1

Chair 27.81% 25.18% -2
Cow 63.64% 58.02% -5

Dining
table 34.51% 29.20% -5
Dog 69.67% 70.73% 1

Horse 62.97% 60.33% -2
Motorbike 66.99% 62.03% -4

Person 74.77% 75.73% 0
Potterplant 46.61% 43.14% -3

Sheep 67.19% 68.19% 1
Sofa 39.78% 37.83% -1
Train 67.01% 65.40% -1
TV

monitor 52.25% 50.99% -1
Bag 0.04% N/A N/A
Bed 2.12% N/A N/A

Bench 0.00% N/A N/A
Book 21.00% N/A N/A

Building 44.77% N/A N/A
Cabinet 21.20% N/A N/A
Ceiling 37.01% N/A N/A
Cloth 3.45% N/A N/A

Computer 3.40% N/A N/A
Cup 14.43% N/A N/A
Door 5.73% N/A N/A

Fence 25.05% N/A N/A
Floor 45.94% N/A N/A

Flower 16.16% N/A N/A
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Food 44.95% N/A N/A
Grass 73.20% N/A N/A

Ground 45.33% N/A N/A
Keyboard 40.37% N/A N/A

Light 7.56% N/A N/A
Mountain 42.22% N/A N/A

Mouse 0.00% N/A N/A
Curtain 28.45% N/A N/A
Platform 30.84% N/A N/A

Sign 23.34% N/A N/A
Plate 24.40% N/A N/A
Road 42.74% N/A N/A
Rock 27.76% N/A N/A

Shelves 13.03% N/A N/A
Sidewalk 9.04% N/A N/A

Sky 88.15% N/A N/A
Snow 49.49% N/A N/A

Bedclothe
s 26.63% N/A N/A

Track 46.18% N/A N/A
Tree 66.76% N/A N/A
Truck 5.33% N/A N/A
Wall 50.15% N/A N/A

Water 75.68% N/A N/A
Window 24.82% N/A N/A
Wood 8.23% N/A N/A

    
IOU 38.98% 58.58%  

Table 1 Shows the IOU score of the 59 objects Pasca dataset. The first column is the object, the second 
column is the Pascal-context IOu score, the third column is the Original Pascal 20 objects, the 4th column
shows the difference between the original 20 objects. As you could see most object had a worst 
performance without the context.
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Chapter 6 

Clustering:

We cluster the activation neurons of an image corresponding to different parts of an 

object at a given layer the network. Given the sparsity of the data we use the K-median 

algorithm to cluster the data, from this we will create a dictionary of parts that we will 

use in Chapter 7.

6.1 Image Selection:

For training we use the training set of pascal context dataset. Each image is contained 

of multiple objects, and some objects appear more than once in an image. For example,

in Figure 1 multiple humans and motorcycles are shown. Given that we have the pixel 

by pixel labeling and index labeling of each object, we can create a bounding box 

around each object. Therefore for each image we do the following:

1. Take the minimum and maximum position of each object instance, in both the 

width and height axis. When the labeling has a discontinuity we treat that as 2 

separate objects. 

2. Create a bounding box, around each instance.

3. Re-size each bounding box to Deep-lab input size of 224 pixels. This is done by 

making the shortest side 224, using average extrapolation of neighboring pixels
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4. Then subtract the deep lab average pixel color for each pixel of the newly formed

image, and normalize it.

5. Then feed the image forward to the network.

Figure 4 demonstrates the patch level detail that the neuron studies, the left column is at layer 

2, the center column is layer 3, and third column layer 4. Top images 3.1 a, shows the output for

cow, while 3.1b shows the output for a. As you can see layer 2 is good for capturing texture, but 

not large enough to predict parts, layer 3 allows us to detect parts, and layer 4 allows us to 

detect object as well.
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6.2 Layer Feed Network:

For each renown image we feed it into the trained Deep-Lab network and pass it 

forward through the network. We then forward into the the 4th layer and store the value 

at each neuron.

The reason that we use the 4th layer is due to the corresponding image sizes in that 

layer are detailed enough to capture the textures and large enough to be visible to 

human eyes. Figure 4 shows the difference between the different layers.

The way the mapping works in the 4th of the layer in Deep-Lab Architecture is similar to 

VGG-16, for the first 4 Layers. Mainly, as Wang shows, given image has   x ∈ RW×H×3, 

which yields to a response mapping of f`l ∈ RWl×Hl×Nl where the l corresponds to the layer 

of the deep-network, and N to the number of neurons in the layer. 

Then from the image we randomly sample and select 100 points. We randomize to by 

having the computer select 100 different points in grid format, creating a patch of P i,j ∈R N

. We take the neuron reaction for this 100 point and store them. Then we calculated the 

padding and stride effect on an image, and using reverse upsampling we find the 

bounding box of the portion of the image corresponding to that neuron.

Figure 5 The image on the left(4.2a) corresponds to a cluster formed on faces of cows, while the

cluster on the right(4.2b) captures neurons corresponding to the nose of the cow.
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6.3 Clustering:

Given that the neuron corresponds to a small portion of the image, many times multiple 

sets of neurons correspond to the same part of an image. For example, as Figure 4 

shows, for cow it we can have multiple sets of neurons corresponding to the image of 

the face of cows from different angles. Therefore, we need to construct a way for 

grouping the neurons together in an unsupervised fashion. The traditional k-means 

algorithm is usually used for this types of tasks.

6.4 K-means:

The k-Means clustering problem in 1D is defined as follows. Given X = {x1, ..., xn} ⊂ R 

and k, find centroids M = {µ1, ..., µk} ⊂ R minimizing the cost 

   ∑
x a X

min µ∈ M (x - µ)2          Equation 6

This is a NP-Hard problem forcing people to use heuristics approaches, and even then 

it’s not an easy task.  [4]. 

For default we use the Lloyd’s algorithm: iterative local search heuristic that has a 

running time of O(tkn) where t is the number of rounds of the local search procedure. To

further improve that we combined it with  kmeans++ as proposed by Arthur, that can 

speed up and optimize Lloyd's method.

 In theory, if Lloyd’s algorithm is run to convergence to a local minimum, t could be 

exponential and there is no guarantee on how well the solution found approximates the 

optimal solution [4]. Lloyd’s algorithm is often combined with the effective seeding 

technique for selecting initial centroids due to [2] that gives an expected O(lg k) 
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approximation ratio for the initial clustering, which can then improved further by Lloyd’s 

algorithm. 

6.5 K-Median:

Is similar to the K-mean algorithm. The only difference is that instead of using Euclidean

distance, it will use the Manhattan distance.The K-Medians problems is also NP-hard 

and the best polynomial time approximation algorithms has an approximation factor of 

2.633 [4].

6.6 Advantage of using K-Media Over K-mean:

The activation of neurons in layer 4 has a sparsity of 68.9% on average, while k-means 

calculates the average of each neurons, and out of thousand of images one non-zero 

corresponds for a neurons will lead to a non-sparse value on the aggregate level, as a 

results on average 99% of the data are non-sparse. 

K-medians on the other hand keeps the sparsity level as long as more than half of the 

neurons do not get activates. Hence the responding results will have a sparsity level of 

37%. Consequently we saw an improvement of 7% in accuracy on the subset of 

interested background objects. 

6.7 Number of Clusters:

The numbers of clusters for each object differed significantly, in order to choose the 

optimal number of clusters, for each object we plotted the elbow plot, the method 

introduced by Thordnike[13]  .
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However, this number of clusters was still not optimal, as both outliers and “others” 

would form their own clusters. In order to remove them in an automatic form, we 

removed images belonging to a cluster based on three conditions:

1. If the cluster size was smaller than 50 patches, as it means that the cluster is 

usually cluster of outliers.

2. If the distance to other clusters was larger than twice than the median of 

distances between clusters; as it implies the clusters are an obsolete objects.

3. If the variance is more than twice the average variance within clusters, remove 

them, this indicates that the cluster is not tight and does not represent a part of 

an object.
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Chapter 7

Evaluation

For each object a dictionary of parts is comprised of the different clusters created 

through the K-median step. A dictionary of dictionaries is created when all these 

clusters, from different clusters are combined together into one cluster.

When a new formed bounding box from the validation set are given to Deep-Lab, the 

values at the layer of interest are extracted. Then the Manhattan distance is used on the

corresponding set of activated neurons and all the clusters to locate the nearest cluster. 

That nearest cluster is what our algorithm believes is the true cluster that the object 

belongs to and marks it as our prediction.

7.1 Prediction step:

For each object a dictionary of parts is comprised of the different clusters created 

through the k-median step. A dictionary of dictionaries is created when all these clusters

are combined together into one cluster.

When a new formed bounding box from the val images is given to Deep-Lab and feed 

forwarded to the interested layer, we can take activate neuron of that layer. Then we 

can use the Manhattan distance on the corresponding set of activated neurons and all 

the clusters to locate the nearest cluster. That nearest cluster is what our algorithm 

believes is the true cluster that the object belongs to and marks it as our prediction.
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7.2 Splitting the data

The pascal dataset is already divided between train and valuation set, we will only use the train 

set to create our dictionary of dictionaries while we will use the valuation set to predict the 

accuracy of our algorithm.

7.3 The Challenge with IOU:

The images that are feed forward through network are created through a bounding box, followed

by random sampling, which leads to a smaller bounding boxes. This small bounding box could 

compromise from multiple objects as shown in Figure 6, a patch could contain both a horse and 

a grass. However, our algorithm is limited to predicting one cluster that belongs to one object. 

Thus our algorithm could only predict one object, even though many objects could be present in 

the bounding box. Therefore, the IOU is not ideal for this problem because:

1. The accuracy and precision will be deflated as the true answer could be a combination 

of objects, but the system is forced to predict one, and thus getting a penalty for the 

wrong answer. For example, if we have a bounding box of horse, if the object predicts 

grass, even though half the image is grass, it will get penalized for not predicting horse.

2. We will penalized the system for correctly predicting the more sophisticated foreground 

object than the background. As demonstrated in Figure 6

Figure 6 are a set of images that show an image of a horse and a background, even though the leg is the object that 

stands out the most, the grass occupies more pixels than the horse
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7.4 Our Metric:

Given the difficulty of the task we created a new metric. We will reward our prediction 1 

point if any of the following criteria is made and 0 points if it does not:

1. If over 67% of the bounding box is from a foreground object and the foreground 

object is predicted

2. If over 67% of the bounding box is from a background object and either i) the 

background object is chosen or 2) the most occurring foreground object is 

chosen

3. If no image composes of 67% then if the most occurring foreground object or one

of the top 2 occurring background object is met a point is given.

The advantage of our metric is that it allows for multiple correct answer when there are 

multiple possible answers, and it allows for only one truth value when one truth value 

arises. Compare to IOU, where it only allowed for one prediction when multiple possible 

answers relies. However, this method allows for false positive as well.-

Using our metric we can see an average F1 score of  22.1%. Ideally we will have a 

dataset that has both the whole objects and its parts labeled. then we can check the 

accuracy by seeing which part is predicted, which will give us a more accurate metric to 

evaluate the prediction.
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Figure 7 Top are the car patches created by Wang, they focus on larger parts of objects. Bottom are the car patches 

created by our method, the patches focuses on texture and granular details, such as lines being parallel. 
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7.5 Results and Discussion:

Our results and contribution is both quantitative and qualitative.

Qualitative:

Above in Figure 7 we have showed the clusters for car created by our method and 

compared to Visual Cluster work of Wang. As you can see the results are slightly 

different. The clusters produced by Wang were tight around the larger patterns in the 

image, while the results of our work focused more on the texture of the object and the 

background. This is precisely because of the underlying architecture of the network, 

discussed in Chapter 4 Wang used VGG-16 and we used the Deep-Lab architecture. 

The VGG architecture was trained on Imagenet Challenge, which is focused on object 

detection and focuses on larger patterns. While Deep-Lab was trained on pascal and 

was more focused on pixel-by-pixel training. Consequently, our clusters have a higher 

granularity in their learning, and a stronger ability to learn background objects at the 

cost of visualization not looking as close as the VGG architecture.

Our second difference is by the amount of clusters. The deep-lab architecture focuses 

on more granular texture, most background objects have similar type of texture 

therefore, the more clusters we have we noticed less meaningful the additional clusters 

became. Consequently ,the amount of clusters needed to capture the generalize shape 

of clusters were smaller.  For example , cars had 200 clusters before puning and 147 

after punning in Wang’s[17] work, while in our architecture they had 15. The advantage 

of that is that the search space of the prediction algorithm is smaller than the visual 

cluster of wang, which by default increases accuracy.
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Quantitative:

Results of the different objects are summarized in Table 2. Given that this is a multi 

class unsupervised network and we can only have 1 prediction, when multiple objects 

exists the accuracy will be low. We looked at the F1 score of our metric and a score of 

22.1% was observed.

For most of the objects the precision score was lower than the recall decision. One 

reason, is that using our metric the algorithm has to decide between one of the highest 

confidence interval. It already has eliminated many of its choices. The deductive 

algorithm has limited the search space.

Furthermore this accuracy was achieved because using our approach each object has 

about a quarter of amount of clusters representing it. These reduces the search space 

and thus increases the probability of guessing correctly.
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Table 2 shows the F1 scores using our metric as an evaluation. We can see that the accuracy is lower than supervised learning, but

higher than coin-flip. Also, notice that bigger objects tend to do better.
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CHAPTER 8 

Conclusions and Future Work 

In this paper, we extended deeplab segmentation work from the original 20 objects to 

33 objects, and by doing so it enabled us to present an unsupervised method of 

creating visual clusters and dictionary of parts from supervised networks. Even though 

such ideas have been explored in the past we contributed and improved the results in 

four main ways: we extended from a small set of objects to 33 objects and doing so 

achieved the highest accuracy on the pascal context dataset, secondly we improved the

clustering by using k-median instead of k-means, thirdly our cluster captures more 

texture and granular details than Wang's work and finally we introducing a new 

correction metric.

Our method has two shortcomings one is due to data and another due to the nature of 

clustering. The first is that we do not have a rich dataset with both objects and parts 

labeled, currently our algorithm gets a free pass if it predicts the right object but the 

wrong cluster. By having parts labeled we can instead measure if the correct part has 

been labelled. Secondly, we only allow for one prediction in future,  we should change 

the prediction method to allow a belief of strength for each cluster, and if the score is 

above a certain value for it to be among the correct answers.
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