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ORIGINAL RESEARCH

Soluble Epoxide Hydrolase Derived Linoleic 
Acid Oxylipins, Small Vessel Disease 
Markers, and Neurodegeneration in Stroke
Di Yu , MSc; Nuanyi Liang , PhD; Julia Zebarth , MSc; Qing Shen , PhD; Miracle Ozzoude, BSc; 
Maged Goubran , PhD; Jennifer S. Rabin , PhD; Joel Ramirez , PhD; Christopher J. M. Scott , MSc; 
Fuqiang Gao, MD; Robert Bartha, PhD; Sean Symons, MD; Seyyed Mohammad Hassan Haddad , PhD; 
Courtney Berezuk, PhD; Brian Tan , MSc; Donna Kwan, PhD; Robert A. Hegele , MD; Allison A. Dilliott, PhD; 
Nuwan D. Nanayakkara , PhD; Malcolm A. Binns , PhD; Derek Beaton, PhD; Stephen R. Arnott , PhD; 
Jane M. Lawrence-Dewar , PhD; Ayman Hassan, MD; Dar Dowlatshahi , MD, PhD; Jennifer Mandzia , MD, PhD; 
Demetrios Sahlas, MD; Leanne Casaubon , MD, MSc; Gustavo Saposnik , MD, MSc; Yurika Otoki , PhD; 
Krista L. Lanctôt , PhD; Mario Masellis, MD, PhD; Sandra E. Black , MD; Richard H. Swartz, MD, PhD; 
Ameer Y. Taha , PhD; Walter Swardfager , PhD;  The ONDRI Investigators*

BACKGROUND: Cerebral small vessel disease is associated with higher ratios of soluble-epoxide hydrolase derived linoleic acid 
diols (12,13-dihydroxyoctadecenoic acid [DiHOME] and 9,10-DiHOME) to their parent epoxides (12(13)-epoxyoctadecenoic 
acid [EpOME] and 9(10)-EpOME); however, the relationship has not yet been examined in stroke.

METHODS AND RESULTS: Participants with mild to moderate small vessel stroke or large vessel stroke were selected based on 
clinical and imaging criteria. Metabolites were quantified by ultra-high-performance liquid chromatography–mass spectrometry. 
Volumes of stroke, lacunes, white matter hyperintensities, magnetic resonance imaging visible perivascular spaces, and free 
water diffusion were quantified from structural and diffusion magnetic resonance imaging (3 Tesla). Adjusted linear regression 
models were used for analysis. Compared with participants with large vessel stroke (n=30), participants with small vessel stroke 
(n=50) had a higher 12,13-DiHOME/12(13)-EpOME ratio (β=0.251, P=0.023). The 12,13-DiHOME/12(13)-EpOME ratio was asso-
ciated with more lacunes (β=0.266, P=0.028) but not with large vessel stroke volumes. Ratios of 12,13-DiHOME/12(13)-EpOME 
and 9,10-DiHOME/9(10)-EpOME were associated with greater volumes of white matter hyperintensities (β=0.364, P<0.001; 
β=0.362, P<0.001) and white matter MRI-visible perivascular spaces (β=0.302, P=0.011; β=0.314, P=0.006). In small ves-
sel stroke, the 12,13-DiHOME/12(13)-EpOME ratio was associated with higher white matter free water diffusion (β=0.439, 
P=0.016), which was specific to the temporal lobe in exploratory regional analyses. The 9,10-DiHOME/9(10)-EpOME ratio was 
associated with temporal lobe atrophy (β=−0.277, P=0.031).

CONCLUSIONS: Linoleic acid markers of cytochrome P450/soluble-epoxide hydrolase activity were associated with small versus 
large vessel stroke, with small vessel disease markers consistent with blood brain barrier and neurovascular-glial disrup-
tion, and temporal lobe atrophy. The findings may indicate a novel modifiable risk factor for small vessel disease and related 
neurodegeneration.
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Ischemic stroke is heterogeneous, involving divergent 
contributing causes, risk factors, and underlying etio-
pathologies. Two common ischemic stroke subtypes 

involve small vessel occlusion and large-artery stenosis 
producing symptoms.1 Small vessel stroke (SVS) is de-
fined by subcortical infarcts (lacunes), with other markers 
of cerebral small vessel disease including white matter 
hyperintensities (WMH), microbleeds, and enlarged 
magnetic resonance imaging (MRI)-visible perivascular 
spaces (PVS)2; however, these features are also found 
commonly in people who present clinically with large 
vessel stroke (LVS). These pathological overlaps and het-
erogeneities complicate efforts to identify biomarkers in 
peripheral blood among clinical stroke cases that reveal 
specific biological pathways related to SVS.

Recently, patients with transient ischemic attack 
were found to have a metabolic signature in polyun-
saturated fatty acid metabolism; specifically, higher 
metabolism of cytochrome P450 (CYP450) derived ep-
oxides of linoleic acid (LA) into their diols was observed 

compared to controls.3 This was shown by an ele-
vated ratio of the 12,13-dihydroxyoctadecenoic acid 
(DiHOME) (diol) to the 12(13)-epoxyoctadecenoic acid 
(EpOME) (epoxide) in peripheral blood, which also cor-
related with WMH volume. Metabolism of fatty acid ep-
oxides into their respective diols is catalyzed by soluble 
epoxide hydrolase (sEH), an enzyme found elevated in 
the small vessels of people with vascular dementia.4 
The association between LA diol/epoxide ratios and 
more WMH was confirmed subsequently in a nonde-
mented hypertensive cohort.5 In the transient ischemic 
attack study, patients with MRI evidence of large vessel 
disease were excluded, leaving the associations be-
tween WMH- and sEH-related LA diol/epoxide ratios 
still to be explored in clinical stroke populations and 
for it to be determined how diol/epoxide ratios would 
compare between stroke patients with SVS versus LVS 
etiologies.

The current study examines the association be-
tween the LA diol/epoxide ratios and cerebral small 
vessel disease  in a clinical stroke population. We fo-
cused on the ratios of these LA diols/epoxides as bio-
markers of soluble epoxide hydrolase activity because 
the LA epoxides and diols were previously found to 
be more abundant than those of other long-chain fatty 
acids, and they were detectable in 100% of partici-
pants.3 We hypothesized that the LA diol/epoxide ra-
tios would be higher in patients with SVS compared 
with patients with LVS and that the ratios would be as-
sociated with higher WMH volumes. We also hypoth-
esized that the LA diol/epoxide ratios would correlate 
with more enlarged MRI-visible PVS and increased 
free water diffusion (FW) and gray matter atrophy (as 
the marker of neurodegeneration), which we explored 
to better characterize the relationship between LA ox-
ylipins and small vessel disease (SVD).

METHODS
Study Participants
Requests to access the data set from qualified re-
searchers trained in human subject confidentiality pro-
tocols may be submitted to Ontario Neurodegenerative 
Disease Research Initiative (ONDRI) at http://ondri.ca.

The study cohort is selected from the cerebro-
vascular disease cohort of a multicenter, longitudinal 
observational study – ONDRI. The cohort was se-
lected based on the Trial of Org 10172 in Acute Stroke 
Treatment (TOAST) criteria,1 in which the participants 
must either have stroke attributable to large-artery ath-
erosclerosis (clinical and brain imaging findings of ei-
ther significant [>50%] stenosis or occlusion of a major 
brain artery or branch cortical artery, presumably be-
cause of atherosclerosis), or strokes attributable to 
subcortical lacunar infarcts with lacunar syndromes 

CLINICAL PERSPECTIVE

What Is New?
•	 In clinical stroke, linoleic acid markers of cy-

tochrome P450/soluble-epoxide hydrolase ac-
tivity in peripheral blood were higher in people 
with small vessel versus large vessel etiology.

•	 On imaging, these blood markers were asso-
ciated with the extent of cerebral small vessel 
disease (volumes of white matter hyperintensi-
ties and perivascular spaces), markers of blood 
brain barrier disruption (white matter free water), 
and temporal lobe atrophy.

What Are the Clinical Implications?
•	 This lipid pathway represents a novel modifi-

able risk factor and may offer new potential to 
track and treat small vessel stroke and related 
neurodegeneration.

Nonstandard Abbreviations and Acronyms

CYP450	 cytochrome P450
FW	 free water diffusion
LVS	 large vessel stroke
LA	 linoleic acid
PVS	 MRI-visible perivascular space
ONDRI	 Ontario Neurodegenerative Initiative
SVS	 small vessel stroke/lacunar stroke
sEH	 soluble epoxide hydrolase
WMH	 white matter hyperintensity

http://ondri.ca
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presented. TOAST subtypes were determined by neu-
rologists based on their clinical syndromes and MRI 
features. Detailed inclusion and exclusion criteria for 
the ONDRI participants with cerebrovascular dis-
ease have previously been reported.6 Briefly, partici-
pants aged between 55 and 85 years, with a Montreal 
Cognitive Assessment score ≥18, a history of mild to 
moderate stroke (≥3 months before study enrollment) 
but no history of baseline prestroke dementia, and 
sufficient proficiency in speaking and understanding 
English were recruited from various health centers 
across Ontario, Canada. Participants were excluded 
if they had severe cognitive impairment, aphasia, ev-
idence of a nonvascular cause of symptoms, inability 
to write or severe functional disability, severe claus-
trophobia, or other contraindications to MRI scanning 
procedures or other assessments.7 Participants with 
large cortical strokes (>1/3 middle cerebral artery) were 
excluded.7 Ethics approval was obtained from all par-
ticipating institutions and performed in accordance 
with the Declaration of Helsinki. All participants pro-
vided informed consent, and subsequently underwent 
clinical evaluation, MRI, and other assessments as part 
of the full ONDRI protocol.

Oxylipin Extraction and Quantification
The 4 LA oxylipins in the free (unesterified) pool 
were extracted through solid phase extraction then 
quantified through ultra-high-performance liquid 
chromatography–mass spectrometry/mass spectrom-
etry, as described previously.3,8 See Data S1 for de-
tailed steps.

Neuroimaging
MRI was performed at 3.0 Tesla across 10 different 
MRI centers in Ontario using either Siemen scanners, 
General Electric scanners, or Philips scanners. T1-
weighted, proton density/T2-weighted, fluid attenuated 
inversion recovery, diffusion tensor imaging (DTI) data 
were collected for quantifying the SVD markers and 
FW. MRI protocols were consistent with the Canadian 
Dementia Imaging Protocol9 and were in compliance 
with the National Institute of Neurological Disorders and 
Stroke–Canadian Stroke Network Vascular Cognitive 
Impairment Harmonization Standards.10

All MRIs were initially evaluated by a neuroradiologist 
(S.S.) and processed using the previously published 
ONDRI neuroimaging pipeline.11 Briefly, T1 images 
were used to initially quantify regional volumes of gray 
matter, white matter, ventricular, and sulcal cerebro-
spinal fluid. SVD markers (WMH, lacunes, PVS) were 
extracted from coregistered T1-weighted, and PD/T2-
weighted images in compliance with the Standards for 
Reporting Vascular Changes on Neuroimaging.2 WMHs 
were further divided in periventricular and deep, and 

lacunar infarcts were regionally delineated as subcorti-
cal or periventricular using a 3-dimensional connectiv-
ity approach. Cortico-subcortical stroke lesions were 
identified and verified by an expert research radiologist 
(F.G.) on T1-weighted and FLAIR images and manually 
traced under their supervision. Brain atrophy was as-
sessed using the brain parenchymal fraction, defined 
as the ratio of brain parenchymal volume to total intra-
cranial/regional volume, where smaller values indicate 
greater atrophy.12 The final volumetric data were further 
subjected to a comprehensive quality control analysis 
pipeline using multivariate outlier detection algorithms 
for identification of anomalous observations.13

DTI data were corrected for field distortions and 
eddy current-induced distortions, as well as motion ar-
tifacts using FMRIB Software Library. Tensor fitting was 
conducted using a weighted-least squares approach, 
generating standard DTI scalar maps including frac-
tional aniostropy (FA) and mean diffusivity (MD) maps 
(in the native T1-weighted image space). To perform 
FW mapping, the eddy current and motion-corrected 
diffusion MRI data were fitted to a 2-compartment dif-
fusion model in each voxel, separating the FW from the 
non-FW tissue compartment.14 An FW map represents 
the fractional volume (ranging from 0 to 1) of freely dif-
fusing extracellular water with a fixed isotropic diffusiv-
ity of 3×10−3 mm2/s (the diffusion coefficient of water at 
body temperature). The FW-corrected FA represents 
the FA signal following removal of the FW signal and is 
expected to be more specific to axonal changes than 
FA alone.15 All diffusion maps were checked visually for 
quality assurance, and scans with excessive motion or 
artifacts were excluded. Subsequently, the mean FA, 
MD, FW, and FW-adjusted FA were extracted in the 
normal appearing white matter. The FreeSurfer pipe-
line16,17 was used to extract regional diffusion metrics 
for exploratory analyses, through structural segmenta-
tion of the T1-weighted scan.

Statistical Analysis
Differences in demographics, comorbidities, and imag-
ing markers between the group with LVS and SVS were 
compared using Student t or Chi-square tests (with the 
SVS group as group 1). Cohen d (continuous variables) 
or Cramer V (categorical variables) were presented 
as indicators of the size of the difference between the 
groups. A Cohen d of 0.2 is considered as a small effect 
size. Oxylipin species were compared between groups 
through independent sample t-tests. Diol/epoxide ra-
tios were calculated and used as surrogate markers of 
sEH activity for hypothesis testing. Linear regression 
models were used to examine the association between 
the stroke subtypes and diol/epoxide ratios (depend-
ent variable; FDR corrected for 2 comparisons at a rate 
of 10%), as well as the relationships between the diol/
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epoxide ratios and SVD imaging markers, with age, 
sex, hyperlipidemia, fasting glucose, waist circumfer-
ence, and use of polyunsaturated fatty acid supplement 
controlled. Covariates were chosen if they were known 
to affect the outcomes a priori, or if they differed sig-
nificantly between the subgroups. In addition, regional 
markers were explored post hoc. All analyses were per-
formed using SPSS (version 24).

RESULTS
Participant Characteristics
Based on the TOAST classification criteria, 80 pa-
tients with SVS (n=50) or LVS (n=30) were included in 
the study. The 2 groups were similar in demographic 
characteristics and concomitant medications (Table 1). 
Compared with the SVS group, participants with LVS 
had a higher rate of hyperlipidemia. On MRI, partici-
pants with SVS had smaller stroke lesion volumes but 
larger small vessel disease volumes, including WMH 
volume (deep and periventricular), and greater volumes 
of periventricular infarcts (Table 2).

Serum Oxylipin Concentrations
The concentration and detectability of 4 LA oxylipins 
derived from the CYPP450-sEH pathway are sum-
marized in Table  3. All 4 species had a detectability 
of 100%, and 2 ratios (12,13-DiHOME/12(13)-EpOME, 
9,10-DiHOME/9(10)-EpOME) were generated for hy-
pothesis testing.

Associations Between Diol/Epoxide 
Ratios and Stroke Etiology
In a linear regression model controlling for potential con-
founding variables known to affect the outcome or that 
differed between the groups, SVS was associated with 
higher 12,13-DiHOME/12(13)-EpOME ratio (β=0.251, 
95% CI [0.466–0.035], P=0.023; Figure  1A). Post hoc 
analyses controlling for additional covariates, including 
hypertension (β=0.250, 95% CI [0.466–0.034], P=0.024), 
systolic blood pressure (β=0.254, 95% CI [0.471–0.036], 
P=0.023), and APOE  4 presence (β=0.250, 95% CI 
[0.467–0.033], P=0.025), did not alter the association 
between SVS and higher 12,13-DiHOME/12(13)-EpOME 
ratio. The ratio of 9,10-DiHOME/9(10)-EpOME was not 
significant in this sample (β=0.138, 95% CI [−0.089 to 
0.365], P=0.230, Figure 1B).

In linear models, the ratio of 12,13-DiHOME/12(13)-  
EpOME was associated with greater lacunar infarct vol-
umes in the deep (ie, superficial) white matter (β=0.266, 
95% CI [0.029–0.503], P=0.028) but not in the periven-
tricular white matter (β=0.144, 95% CI [−0.068 to 0.357], 
P=0.180). These associations were not significant for 
the ratio of 9,10-DiHOME/9(10)-EpOME (deep lacunes: 

β=0.163, 95% CI [−0.072 to 0.398], P=0.172; periventricu-
lar lacunes: β=0.162, 95% CI [−0.043 to 0.368], P=0.120).

The oxylipin ratios were not associated with large  
vessel stroke lesion volumes (12,13-DiHOME/12(13)-  
EpOME ratio β=0.371, 95% CI [−0.299 to 0.212], 
P=0.112; 9,10-DiHOME/9(10)-EpOME ratio: β=0.088, 
95% CI [−0.373 to 0.120], P=0.721).

Associations Between LA Diol/Epoxide 
Ratios and Small Vessel Disease Markers
In adjusted linear regression models, the ratios of 
12,13-DiHOME/12(13)-EpOME and 9,10-DiHOME/9(10)-  
EpOME were associated with WMH volumes 
(Figure  2A and 2C: 12,13: β=0.364, 95% CI [0.183–
0.545], P<0.001; 9,10: β=0.362, 95% CI [0.188–0.538],  
P<0.001). In post hoc exploratory analyses, the association  
between both ratios and deep WMH (Figure  S1A: 
12,13-DiHOME/12(13)-EpOME ratio: β=0.367, 95% CI  
[0.151–0.583], P=0.001; Figure S1B: 9,10-DiHOME/9(10)-  
EpOME ratio: β=0.252, 95% CI [0.033–0.470], P=0.025) 
or periventricular WMH (Figure  S1C: 12,13-DiHOME/  
12(13)-EpOME ratio: β=0.341, 95% CI [0.158–0.523], 
P<0.001; Figure S1D: 9,10-DiHOME/9(10)-EpOME ratio: 
β=0.354, 95% CI [0.179–0.529], P<0.001) stayed sig-
nificant. When split into subgroups, the relationship be-
tween WMH and both ratios were consistent between 
SVS (Figure 2B and 2D: 12,13-DiHOME/12(13)-EpOME 
ratio: β=0.315, 95% CI [0.087–0.544], P=0.008; 
9,10-DiHOME/9(10)-EpOME ratio: β=0.417, 95% CI  
[0.196–0.574], P<0.001) and LVS subgroups (Figure  2  
Band 2D: 12,13-DiHOME/12(13)-EpOME ratio: β=0.314,  
95% CI [−0.039 to 0.667], P=0.079; 9,10-DiHOME/9(10)-  
EpOME ratio: β=0.176, 95% CI [−0.216 to 0.578], 
P=0.355), although the associations did not reach sig-
nificance in the LVS group.

Both LA ratios were associated with more PVS in 
the white matter (Figure  3A:12,13-DiHOME/12(13)-
EpOME ratio: β=0.302, 95% CI [0.071–0.532], P=0.011;  
Figure 3C 9,10-DiHOME/9(10)-EpOME ratio: β=0.314,  
95% CI [0.092–0.537], P=0.006) but not in the basal  
ganglia (12,13-DiHOME/12(13)-EpOME ratio: β=0.153,  
95% CI [−0.070 to 0.376], P=0.176; 9,10-DiHOME/  
9(10)-EpOME ratio: β=0.106, P=0.570). Considering LVS 
and SVS subgroups, white matter PVS were associated 
with the 9,10-DiHOME/9(10)-EpOME ratio (Figure 3B: 
β=0.350, 95% CI [0.083–0.617], P=0.011) but not with 
the 12,13-DiHOME/12(13)-EpOME ratio (Figure  3D: 
β=0.255, 95% CI [−0.056 to 0.566], P=0.105), in the 
SVS group.

Associations Between LA Diol/Epoxide 
Ratios and White Matter FW
Diffusion MRI was performed on 75 of the participants 
(46 SVS and 29 LVS). The 12,13-DiHOME/12(13)-EpOME 
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ratio was associated with higher white matter FW 
(β=0.273, 95% CI [0.031–0.515], P=0.028). This re-
sult was found in the SVS group (Figure 4A: β=0.439, 
95% CI [0.088–0.790], P=0.016) but not in the 
LVS group (Figure  4A: β=0.046, 95% CI [−0.391 to 
0.484], P=0.829). A similar trend was found between 
9,10-DiHOME/9(10)-EpOME ratio and white matter FW 
in the whole group (β=0.222, 95% CI [−0.013 to 0.457], 
P=0.063), and the association was significant in the 
SVS group (Figure 4B: β=0.371, 95% CI [0.067–0.675], 

P=0.018) but not the LVS group (Figure 4B: β=−0.107, 
95% CI [−0.586 to 0.371], P=0.646).

In an exploratory regional analysis, the ratios were 
found to be associated with FW in temporal lobe re-
gions (including the fusiform, the entorhinal cortex, the 
inferior temporal lobe, and the middle temporal lobe) 
but not the other regions (Table  S1). Comparing the 
groups, associations were found in the SVS group but 
not in the LVS group (Table S2), and additional regions 
were also involved in the SVS group (middle frontal, 

Table 1.  Participants Characteristics

Large vessel stroke 
(n=30)

Small vessel stroke 
(n=50) t or χ2 P value

Cohen d/
Cramer V

Demographics

Age, y 67.4±6.3 70.3±7.7 1.74 0.086 0.4

Sex (% women) 23% 34% 1.02 0.313 0.1

MoCA 25.8±2.7 25.4±3.1 −0.66 0.509 −0.2

Education, y 14.3±2.9 14.7±3.0 0.53 0.598 0.1

Race 0.05 0.824 0.03

White 80% 82%

Asian 13% 8%

Black 7% 10%

Vascular comorbidities

Hypertension 77% 80% 0.12 0.724 0.04

Diabetes 13% 32% 3.48 0.062 0.2

Hyperlipidemia 93% 74% 4.60 0.032* 0.2

Smoking 4.39 0.112 0.2

Yes 13% 8%

Quit 57% 38%

No 30% 54%

Fasting glucose 5.7±0.8 6.1 ± 1.5 1.45 0.152 0.3

HbA1c 5.8±0.7 6.1 ± 0.9 1.52 0.134 0.4

Waist circumference 0.9±0.1 0.9 ± 0.1 −1.22 0.226 −0.03

HDL 1.3±0.3 1.4 ± 0.4 1.35 0.182 0.3

LDL 1.8±0.5 1.9 ± 0.8 0.47 0.639 0.1

Triglycerides 1.3±0.8 1.2 ± 0.7 −0.64 0.521 −0.1

Medications

Antihypertensives 87% 86% 0.00 0.933 0.01

ACE inhibitors 47% 58% 0.97 0.325 0.1

ARBs 17% 30% 1.78 0.182 0.2

Antidiabetics 13% 30% 2.88 0.090 0.2

Metformin 13% 26% 1.80 0.180 0.2

DPP4 inhibitors 10% 14% 0.27 0.600 0.06

Antihyperlipidemic 90% 80% 1.38 0.240 0.1

Statins 90% 86% 0.27 0.600 0.06

Cholesterol 7% 8% 0.05 0.826 0.03

Uptake blockers

Fish oil supplements 7% 10% 0.26 0.609 0.06

ACE indicates angiotensin-converting enzyme; DPP-4, dipeptidyl peptidase 4; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density 
lipoprotein; MoCA, Montreal Cognitive Assessment.

*Reference group large vessel stroke.
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superior parietal, lateral occipital, caudal anterior cin-
gulate; Table S2).

Associations Between LA Diol/Epoxide 
Ratios and Atrophy

Consistent with the free water findings, in the 
SVS subgroup, the 9,10-DiHOME/9(10)-EpOME ratio  
was associated with smaller brain parenchymal 
fraction (greater atrophy) in the temporal lobe spe-
cifically (Figure  5B: β=−0.277, 95% CI [−0.527 to 
−0.027], P=0.031). A similar trend was also seen with 
the 12,13-DiHOME/12(13)-EpOME ratio (Figure  5A: 
β=−0.262, 95% CI [−0.545 to 0.021], P=0.069, which) 
did not reach statistical significance. Similar relation-
ships were not seen with other regional or global brain 
parenchymal fraction (Table S3).

DISCUSSION
The present findings report an association between 
sEH related diol/epoxide ratios and cerebral small 
vessel injury  in a clinical symptomatic stroke sam-
ple. People with stroke of small vessel etiology had 
a higher 12,13-DiHOME/12(13)-EpOME ratio than 
patients with large vessel stroke, and people with a 
higher 12,13-DiHOME/12(13)-EpOME ratio had higher 
volumes of lacunar infarcts in the deep white matter. 
These results add to the previous finding that patients 
with transient ischemic attack had higher LA oxylipin 
ratios compared with healthy elderly controls, regard-
less of a relatively small effect size, suggesting that 
sEH is involved in stroke clinically consistent with a la-
cunar etiology.3 The results may have implications for 
the development of differential treatment and preven-
tion strategies for different stroke subtypes.

The 12,13-DiHOME/12(13)-EpOME ratio here was 
associated with the volume of WMH of presumed vas-
cular origin, independent of demographics (age and 
sex), presence of APOE4 and vascular risk factors 
(hyperlipidemia, fasting glucose, waist circumference, 
hypertension). The standardized coefficient was sub-
stantial, which makes the relationship more likely to be 
clinically relevant. WMH are heterogeneous in origin 
and can involve venous collagenosis, arteriolosclero-
sis, demyelination, activation of glial cells, and damage 
to the ependymal lining of the ventricles.18-20 A role of 
sEH in these processes is not known; however, sEH 
immunoreactivity is detected intensely in specialized 
ependymal cells of the choroid plexus and in the oli-
godendrocytes and surrounding neuropil of the white 
matter in humans.21 Immunoreactivity is also detected, 
in the endothelial cells of small vessels, in the pial and 
meningeal arteries (endothelial cells) and arterioles 
(smooth muscle cells), and in neurons, oligodendro-
cytes, and some astrocytes throughout the brain,4,21 
suggesting the need for further investigation of a pos-
sible role in SVD.

Although the observed associations do not imply 
causation, several mechanisms relating CYP450-sEH 
pathway to small vessel pathology have been demon-
strated. Increased sEH expression has been observed 
in rat models of cerebral ischemia, and sEH inhibition 
has been found to preserve white matter integrity after 
hypoperfusion.22 sEH-derived diols disrupt tight junc-
tions and kill pericytes in the small vessels of the ret-
ina,23 and in a diabetes mouse model, a sEH inhibitor 
prevented blood brain barrier disruption.24 For these 
reasons, we hypothesized that higher diol/epoxide 
ratios would be correlated with greater white matter 
free water diffusion, which is thought to indicate, at 
least in part, vasogenic edema secondary to blood 

Table 2.  Imaging Features

Large vessel stroke 
(n=30)

Small vessel stroke 
(n=50) t P value Cohen d

Cortical stroke volume, cc 10.57±16.07 0.94±4.21 −5.84 <0.001* −0.9

WMH, cc 2.10 0.005*

Deep WMH, cc 0.70±0.99 1.08±1.03 2.78 0.007* 0.5

Periventricular WMH, cc 5.88±8.30 12.17±15.49 2.75 0.007* 0.4

Lacunes, cc

Deep lacune, cc 0.03±0.04 0.06±0.10 2.52 0.132 0.4

Periventricular lacune, cc 0.14±0.30 0.51±1.02 2.35 0.022* 0.4

Perivascular spaces, cc

White matter perivascular spaces, cc 0.04±0.07 0.05±0.07 1.40 0.165 0.2

Basal ganglia perivascular spaces, cc 0.02±0.05 0.03±0.04 1.29 0.200 0.2

White matter free water (factional volume) 0.20±0.03 0.21±0.03 1.94 0.057 0.5

Brain parenchymal fraction (atrophy) 0.77±0.05 0.77±0.04 −0.24 0.808 −0.05

WMH indicates white matter hyperintensities.
*Significant at P<0.05.
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brain barrier disruption in SVD.25,26 This novel asso-
ciation was found, specifically in people with SVS. In 
a postmortem study of people with vascular cognitive 
impairment, the endothelial cells of the small vessels 
showed enhanced sEH immunoreactivity, specifically 
in small vessels proximal to cortical microinfarcts,4 
suggesting a specific role in small vessel disease. The 
lack of association between oxylipins and FW in LVS 
could be attributed to less involvement of small vessel 
injury in people who have predominantly large vessel 
occlusion. Nonetheless, people with LVS had some, 
albeit smaller, volumes of WMH and PVS, and effect 
sizes between oxylipin ratios and PVS and WMH were 
consistent between SVS and LVS groups. It should be 
considered that SVD markers are predictive of recur-
rent LVS,27 suggesting that biological processes related 

to SVD may be clinically relevant, if indirectly, across 
stroke subtypes; the 12,13-DiHOME/12(13)-EpOME 
ratio showed a small-medium effect size for stroke 
lesion volume, but it was not significant, possibly be-
cause of small sample size, which should be investi-
gated in larger studies.

Enlarged perivascular spaces are thought to indicate 
SVD, and more specifically dysfunction of glymphatic or 
perivascular interstitial fluid drainage systems.2 PVS en-
largement has been seen in pericyte-deficient mice with 
blood brain barrier dysfunction and in patients with ge-
netic predisposition to WMH.28 This is the first report to 
suggest a relationship between CYP450/sEH oxylipins 
and MRI-visible PVS. The finding may be consistent with 
the previous observation of sEH staining in perivascu-
lar adventitial cells of the surface pial arterioles,21 which 

Table 3.  Concentrations of the 4 Quantified P450/sEH-Derived Oxylipins (nM)

Oxylipins Abbreviation

Small vessel, 
stroke; median 
(IQR, nm) or %

Large vessel 
stroke; median 
(IQR, nm) or % t P value Cohen d

9(10)-Epoxyoctadecamonoenoic acid 9(10)-EpOME 2.78 (2.25) 2.82 (1.85) 0.333 0.740 −0.002

9,10-Dihydroxyoctadecamonoenoic acid 9,10-DiHOME 1.34 (1.29) 1.00 (1.88) 1.853 0.068 0.2

9,10-DiHOME/9(10)-EpOME ratio 0.54 (0.79) 0.47 (0.59) 1.546 0.126 0.3

12(13)-Epoxyoctadecamonoenoic acid 12(13)-EpOME 5.63 (3.53) 6.22 (5.68) −1.154 0.252 −0.4

12,13-Dihydroxyoctadecamonoenoic acid 12,13-DiHOME 4.80 (4.40) 4.45 (5.66) 1.388 0.169 0.1

12,13-DiHOME/12(13)-EpOME ratio 0.90 (0.85) 0.62 (0.84) 2.276 0.013* 0.4

DiHOME indicates dihydroxyoctadecenoic acid; EpOME, epoxyoctadecenoic acid; IQR, interquartile range; and sEH, soluble epoxide hydrolase.
*Significance was determined based on P<0.025, as 2 ratios were generated for hypothesis testing.

Figure 1.  Differences in the ratios of 12,13-DiHOME/12(13)-EpOME (A, adjusted F1,79=5.39, P=0.023) and 9,10-DiHOME/9(10)-
EpOME (B, adjusted F1,79=1.46, P=0.230) between patients with large vessel stroke (red) and small vessel stroke (blue).
DiHOME indicates dihydroxyoctadecenoic acid; and EpOME, epoxyoctadecenoic acid.



J Am Heart Assoc. 2023;12:e026901. DOI: 10.1161/JAHA.122.026901� 8

Yu et al� Soluble Epoxide Hydrolase and SVD in Stroke

may participate in glymphatic periarterial cerebrospinal 
fluid influx.29 The present correlative evidence suggests 
involvement of sEH in neurovascular-glial unit dysfunc-
tion, and a need to determine whether manipulating this 
pathway might be beneficial.

Currently, therapeutic strategies under exploration 
to manipulate this pathway include sEH inhibitors to 

prolong beneficial activities of the epoxides and reduce 
the formation of cytotoxic diols,30 or fatty acid epoxide 
mimetics.31,32 In people with smoking and overweight, 
sEH inhibition was found to enhance peripheral vasodi-
latory function,33 suggesting successful vascular target 
engagement in at-risk people and a need to investigate 
the effects of sEH inhibitors on cerebral circulation.

Figure 2.  Associations between white matter hyperintensity volumes and the ratios of 12,13-DiHOME/12(13)-EpOME (A, 
β=0.364, 95% CI [0.183 to 0.545], P<0.001. B, β=0.314, 95% CI [−0.039 to 0.667], P=0.079) or the ratios of 9,10-DiHOME/9(10)-
EpOME (C, β=0.362, 95% CI [0.188–0.538], P<0.001. D, β=0.176, 95% CI [−0.216 to 0.578], P=0.355) across the entire group 
(A and C) and within the small vessel stroke (blue) and large vessel stroke (red) subgroups (B and D). DiHOME indicates 
dihydroxyoctadecenoic acid; and EpOME, epoxyoctadecenoic acid.
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Limitations and Future Directions
Concentrations of 12,13 species, but not of the 9,10 
species, were similar to those observed previously 
in patients with transient ischemic attack and con-
trols.3 In contrast to the previous study, blood samples 
here were obtained fasting, which can affect these 

oxylipins,34 and in mice, 9(10)-EpOME was more sen-
sitive to diet compared with 12(13)-EpOME35; although 
correlations between the diol/epoxide ratios and SVD 
were generally robust, these implications for clinical 
biomarker development require further study. The lin-
oleic acid diol/epoxide ratio might be interpreted as a 

Figure 3.  Association between white matter perivascular space and ratios of 12,13-DiHOME/12(13)-EpOME (A, β=0.302, 95% 
CI [0.071 to 0.532], P=0.011, B, β=0.350, 95% CI [0.083 to 0.617], P=0.011) or ratios of 9,10-DiHOME/9(10)-EpOME (C, β=0.314, 
95% CI [0.092–0.537], P=0.006, D, β=0.255, 95% CI [−0.056 to 0.566], P=0.105) across the entire group (A and C) and within 
the small vessel stroke (blue) and large vessel stroke (red) subgroups (B and D). DiHOME indicates dihydroxyoctadecenoic 
acid; and EpOME, epoxyoctadecenoic acid.
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marker of soluble epoxide hydrolase activity. The pre-
sent data do not indicate a causative adverse effect of 
linoleic acid diols or decreased linoleic acid epoxides 

specifically; the blood concentrations of these species 
overlap in those with small and large vessel stroke, as 
well as previously studied healthy controls.3 Although 

Figure 4.  Associations between ratios of 12,13-DiHOME/12(13)-EpOME (A, small vessel stroke: β=0.439, 95% CI [0.088–
0.790], P=0.016) or ratios of 9,10-DiHOME/9(10)-EpOME (B, small vessel stroke: β=0.371, 95% CI [0.067–0.675], P=0.018) 
and white matter free water fraction within the small vessel stroke (blue) and large vessel stroke (red) subgroups. DiHOME 
indicates dihydroxyoctadecenoic acid; and EpOME, epoxyoctadecenoic acid.

Figure 5.  Associations between ratios of 12,13-DiHOME/12(13)-EpOME (A, small vessel stroke: β=−0.262, 95% CI [−0.545 to 
0.021], P=0.069) or ratios of 9,10-DiHOME/9(10)-EpOME (B, small vessel stroke: β=−0.277, 95% CI [−0.527 to −0.027], P=0.031) 
and temporal lobe brain parenchymal fraction within the small vessel stroke (blue) and large vessel stroke (red) subgroups. 
DiHOME indicates dihydroxyoctadecenoic acid; and EpOME, epoxyoctadecenoic acid.



J Am Heart Assoc. 2023;12:e026901. DOI: 10.1161/JAHA.122.026901� 11

Yu et al� Soluble Epoxide Hydrolase and SVD in Stroke

all main findings survived FDR correction, regional 
analyses post hoc were not corrected as they were ex-
ploratory, indicating a need for replication and further 
investigation. The diol/epoxide ratios showed particu-
lar correlations with free water diffusion in the temporal 
lobe, including the fusiform gyrus, entorhinal cortex, 
and throughout inferior and middle temporal regions. 
This potential regional differentiation was supported by 
another specific association identified between tempo-
ral lobe atrophy and the 9,10-DiHOME/9(10)-EpOME 
ratio, further suggesting that sEH markers were related 
to neurodegeneration in people with SVD,25,36 sug-
gesting the need for further studies to investigate as-
sociations with clinical features over time. The reason 
for these region-specific correlations is unclear; how-
ever, the temporal lobe is susceptible to small vessel 
damage and to pathological tau in preclinical37,38 and 
early Alzheimer disease (AD).39 In animal AD models, 
sEH gene deletion40 or an sEH inhibitor41 slowed AD 
progression; therefore, comparisons between ox-
ylipins and AD biomarkers would be useful. Another 
regional difference was an association between PVS 
in the white matter but not in the basal ganglia, which 
might be attributable to the greater abundance of sEH 
in white matter or to anatomical differences between 
arterioles supplying blood to these regions. The arteri-
oles supplying the basal ganglia tend to be larger, and 
PVS volumes there may reflect spaces around those 
larger vessels, which may be regulated differently than 
the pial arteries and deep penetrating arterioles that 
punctuate the neocortex.42 Further studies would be 
needed to confirm these regional differences and to 
investigate mechanisms of vascular regulation and 
neurodegeneration and correlations with clinical pro-
gression. To establish better generalizability, further 
studies might also include a broader range of clinical 
stroke characteristics, including aphasia,  which  was 
excluded here.

CONCLUSIONS
The ratios of sEH derived LA diol to epoxide in the 
peripheral blood were different between patients with 
large versus small vessel stroke, and they were as-
sociated with the extent of cerebral small vessel dis-
ease markers (WMH and PVS) in patients with stroke. 
In small vessel stroke, the ratios were related to white 
matter free water diffusivity and to neurodegeneration 
having a potential proclivity for the temporal lobe. In 
the context of clinical stroke, these results suggest the 
involvement in the CYP450/sEH pathway in small ves-
sel injury. The results suggest the need to explore sEH 
and related oxylipins as a potential target to treat small 
vessel disease.
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SUPPLEMENTAL MATERIAL



Oxylipin quantification 

Briefly, 200μL ice-thawed serum were mixed with 10 μL surrogate standard (containing 2 μM 

each of d-11-11(12)EpETrE, d11-14,15-DiHETrE, d4-6-keto-PGF1a, d4-9HODE, d4-LTB4, d4-

PGE2, d4-TXB2, d6-20-HETE and d8-5-HETE) and 610 μL extraction buffer  

(480 μL of 250 μM EDTA in water, 1 μL 10 % acetic acid in water and 120 μL of methanol 

containing 0.002% dibutylhydroxytoluene) before the extraction of the oxylipins. After vortexing 

and centrifuging the prepared samples for 15 min at 15,000 rpm, 0°C , the supernatant was 

loaded onto a tC18 Sep-Pak column (100 mg; Waters, Milford, MA, USA), which had been 

preconditioned with one column volume of methanol and two column volumes of 20% methanol. 

The column was then washed with 1.5 mL of 20% methanol followed by 1.5 mL of hexane. 

Oxylipins were then eluted using 2mL methanol. The eluted oxylipins were dried under nitrogen, 

reconstituted in 100 μL of methanol, and filtered.  

The 4 LA oxylipins were analysed using an Agilent 1290 Infinity UHPLC system (Agilent 

Corporation, Palo Alto, CA, USA) connected to a 6460 Triple Quad tandem mass spectrometer 

(Agilent Corporation, Palo Alto, CA, USA) with an electrospray ionization source (Jet Stream 

technology). An Eclipse Plus C18, 2.1 × 150 mm, 1.8 µm column (Agilent Corporation, Palo 

Alto, CA, USA) with an Acquity 0.2 µm in-line filter (Walters, Milford, MA, USA) was used to 

separate the oxylipins. With the autosampler temperature maintained at 4 °C and the column at 

45 °C, gradient elution was performed using pre-made solvent A (0.1% acetic acid (AcOH) in 

ultrapure water) and solvent B (acetonitrile/MeOH/AcOH (85/15/0.1%)) under an alternated 

flow rate:  

• Solvent B was increased from 35 to 40% from 0 to 3 min, to 48% from 3 to 4 min, to

60% from 4 to 10 min, to 70% from 10 to 20 min, to 85% from 20 to 24 min, and to 99%

from 24.5 to 24.6 min. Solvent B was then held at 99% for 4 min, decreased to 35% from

26 to 26.1 min, and held at 35% for 1.9 min.

• The flow rate started at 0.3 mL/min. It was decreased to 0.25 mL/min after 3 min, held at

0.25 mL/min for 21.6 min, increased to 0.35 mL/min at 24.6 min, and finally decreased

to 0.3 mL/min at 27.3 min.

The instrument was operated in negative electrospray ionization mode throughout the analysis. 

After the LC-MS/MS, peaks were extracted and quantified using MassHunter Workstation - 

Data S1.
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Quantitative Analysis software (Agilent Technologies, Palo Alto, CA, USA). Extraction losses 

were corrected using the surrogate standards while adjusting for the response factor using the 

external standard calibration curve. 



Table S1. Associations between LA diol/epoxide ratio and regional free water 

Regional Free Water Ratios 

r (pearson 

coefficient) p value 

Entorhinal 
12,13-ratio 0.225 0.053 

9,10-ratio 0.236 0.041* 

Fusiform 
12,13-ratio 0.195 0.094 

9,10-ratio 0.29 0.012* 

Inferior temporal 
12,13-ratio 0.243 0.036* 

9,10-ratio 0.299 0.009* 

Middle temporal 
12,13-ratio 0.16 0.169 

9,10-ratio 0.299 0.009* 

Hippocampus 12,13-ratio -0.016 0.893 

Hippocampus 9,10-ratio 0.054 0.643 

Superior temporal 
12,13-ratio 0.046 0.695 

9,10-ratio 0.093 0.428 

Caudal-middle-frontal 
12,13-ratio 0.058 0.618 

9,10-ratio 0.083 0.482 

Medial-orbito-frontal 
12,13-ratio 0.14 0.231 

9,10-ratio 0.127 0.276 

Rostral-middle-frontal 
12,13-ratio 0.03 0.797 

9,10-ratio 0.046 0.694 

Superior frontal 
12,13-ratio 0.022 0.849 

9,10-ratio 0.054 0.645 

Superior parietal 
12,13-ratio 0.057 0.625 

9,10-ratio 0.034 0.77 

inferior parietal 
12,13-ratio 0.121 0.302 

9,10-ratio 0.145 0.214 

Lateral occipital 
12,13-ratio 0.184 0.113 

9,10-ratio 0.198 0.089 

Thalamus Proper 
12,13-ratio 0.174 0.135 

9,10-ratio 0.216 0.063 

Amygdala 
12,13-ratio 0.154 0.188 

9,10-ratio 0.198 0.088 

Caudal-anterior-

cingulate 

12,13-ratio 0.063 0.591 

9,10-ratio 0.053 0.654 

Cuneus 
12,13-ratio 0.088 0.451 

9,10-ratio 0.022 0.849 

Frontal pole 
12,13-ratio 0.019 0.868 

9,10-ratio 0.076 0.518 

Insula 
12,13-ratio 0.073 0.535 

9,10-ratio 0.131 0.264 



Table S2. Associations between regional free water and the LA ratios in the LVS and SVS 

subgroups  

Regional Free 

Water Fraction 
Ratios 

LVS SVS 

r (pearson 

coefficient) 
p value 

r (pearson 

coefficient) 
p value 

Entorhinal 
12,13-ratio 0.242 0.206 0.187 0.212 

9,10-ratio 0.289 0.129 0.184 0.221 

Fusiform 
12,13-ratio -0.005 0.980 0.263 0.077 

9,10-ratio 0.053 0.786 0.381* 0.009 

Inferior 

temporal 

12,13-ratio 0.086 0.658 0.301* 0.042 

9,10-ratio 0.093 0.632 0.375* 0.010 

Middle temporal 
12,13-ratio -0.060 0.758 0.285 0.054 

9,10-ratio 0.058 0.764 0.438* 0.002 

Superior 

temporal 

12,13-ratio -0.198 0.302 0.215 0.150 

9,10-ratio -0.139 0.472 0.248 0.097 

Hippocampus 
12,13-ratio -0.213 0.268 0.055 0.718 

9,10-ratio -0.154 0.424 0.146 0.332 

Caudal-middle-

frontal 

12,13-ratio -0.256 0.181 0.355* 0.016 

9,10-ratio -0.060 0.756 0.201 0.180 

Rostral-middle-

frontal 

12,13-ratio -0.246 0.198 0.316* 0.033 

9,10-ratio -0.156 0.419 0.224 0.134 

Medial-orbito-

frontal 

12,13-ratio -0.059 0.763 0.248 0.096 

9,10-ratio -0.012 0.949 0.189 0.209 

Lateral-orbito-

fronta 

12,13-ratio -0.260 0.174 0.291* 0.050 

9,10-ratio -0.094 0.627 0.288 0.052 

Superior frontal 
12,13-ratio -0.292 0.124 0.288 0.052 

9,10-ratio -0.150 0.438 0.199 0.184 

Superior parietal 
12,13-ratio -0.155 0.421 0.293* 0.048 

9,10-ratio -0.141 0.465 0.196 0.191 

Inferior parietal 
12,13-ratio -0.001 0.996 0.245 0.101 

9,10-ratio -0.018 0.924 0.281 0.058 

Lateral occipital 
12,13-ratio 0.042 0.831 0.292* 0.049 

9,10-ratio 0.091 0.637 0.263 0.078 

Thalamus 

Proper 

12,13-ratio 0.145 0.454 0.114 0.451 

9,10-ratio 0.097 0.617 0.239 0.110 

Amygdala 
12,13-ratio 0.083 0.669 0.140 0.355 

9,10-ratio 0.066 0.733 0.232 0.121 

Caudal anterior 

cingulate 

12,13-ratio -0.295 0.120 0.324* 0.028 

9,10-ratio -0.107 0.580 0.134 0.376 

Cuneus 
12,13-ratio 0.024 0.902 0.188 0.212 

9,10-ratio -0.051 0.794 0.100 0.509 

Frontal pole 12,13-ratio -0.079 0.682 0.107 0.480 



9,10-ratio -0.016 0.933 0.146 0.333 

Insula 
12,13-ratio -0.232 0.226 0.266 0.073 

9,10-ratio -0.097 0.616 0.257 0.084 

Table S3. Associations between regional atrophy and the ratios in the LVS and SVS 

subgroups  

Regions Ratios 
LVS SVS 

r (pearson 

coefficient) 
p value 

r (pearson 

coefficient) 
p value 

Whole 

brain BPF 

12,13-ratio -0.056 0.767 -0.196 0.172 

9,10-ratio -0.074 0.696 -0.157 0.276 

Frontal 

BPF 

12,13-ratio 0.017 0.930 -0.124 0.390 

9,10-ratio 0.031 0.871 -0.021 0.882 

Parietal 

BPF 

12,13-ratio -0.203 0.281 -0.185 0.197 

9,10-ratio -0.184 0.330 -0.138 0.338 

Temporal 

BPF 

12,13-ratio 0.051 0.788 -0.255 0.074 

9,10-ratio -0.028 0.882 -.309* 0.029 



A. 

C. D. 

B.

Figure S1. Associations between 12,13-ratio and volumes of deep white matter hyperintensity (A) or 
periventricular volume (C). Associations between 9,10-ratio and volumes of deep white matter 
hyperintensity (B) or periventricular volume (D).
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