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The GA4GH Phenopacket schema defines a 
computable representation of clinical data
To the Editor — Despite great strides made 
in the development and wide acceptance 
of standards for exchanging structured 
information about genomic variants, 
progress in standards for computational 
phenotype analysis for translational 
genomics has lagged behind. Phenotypic 
features (signs, symptoms, laboratory and 
imaging findings, results of physiological 
tests, etc.) are of high clinical importance, 
yet exchanging them in conjunction with 
genomic variation information is often 
overlooked or even neglected. In the clinical 
domain, substantial work has been dedicated 
to the development of computational 
phenotypes1. Traditionally, these approaches 
have largely relied on rule-based methods 
and large sources of clinical data to identify 
cohorts of patients with or without a 
specific disease2–5. However, they were not 
developed to enable deep phenotyping of 
abnormalities, to facilitate computational 
analysis of interpatient phenotypic similarity 
or to support computational decision 
support. To address this, the Global Alliance 
for Genomics and Health6 (GA4GH) has 
developed the Phenopacket schema, which 
supports the exchange of computable 
longitudinal case-level phenotypic 
information for diagnosis of, and research 
on, all types of disease, including Mendelian 
and complex genetic diseases, cancers 
and infectious diseases. A Phenopacket 
characterizes an individual person or 
biosample, linking that individual to detailed 
phenotypic descriptions, genetic information, 
diagnoses and treatments (Fig. 1).  
The Phenopacket software is available at 
https://github.com/phenopackets/.

The ‘PhenotypicFeature’ is the central 
element of the Phenopacket schema. A 
‘PhenotypicFeature’ can be used to describe 
any phenotypic characteristic, including 
signs and symptoms, laboratory findings, 
histopathology findings, and imaging and 

electrophysiological results, along with 
modifier and qualifier concepts. Each 
phenotypic feature is described using an 
ontology term. Although the Phenopacket 
schema does not mandate which ontology 
to use, it provides recommendations, such 
as the Human Phenotype Ontology7 (HPO) 
for rare diseases and the National Cancer 
Institute Thesaurus (NCIT) for transmission 
of information about a cancer specimen 
(for example, pathological staging or more 
detailed information about histology or 
tumor markers)8. Within the schema,  
it is possible to indicate whether an 
abnormality was excluded during the 
diagnostic process (for example, whether 
a morphological cardiac defect was 
excluded by echocardiography) or to use 
other optional HPO terms to denote the 
severity, frequency (for example, number of 
occurrences of seizures per week), laterality 
(for example, unilateral) or other pattern 
of a phenotypic feature in the patient 
being described. Finally, the onset (and, 
if applicable, the resolution) of specific 
features can be indicated.

Other key elements of the schema are 
‘Measurement’, which is used to capture 
quantitative (i.e., numerical), ordinal (for 
example, absent/present) or categorical 
measurements; ‘Biosample’, a description 
of biological material obtained from the 
individual represented in the Phenopacket 
and used for phenotypic, genotypic or other 
-omics analysis; and ‘MedicalAction’, which 
includes a hierarchical representation of 
medical actions, including medications, 
procedures and other actions taken for 
clinical management. The ‘Treatment’ 
element is a subelement of ‘MedicalAction’ 
and represents the administration of a 
pharmaceutical agent, broadly defined 
as prescription and over-the-counter 
medicines, vaccines and other therapeutic 
agents, such as monoclonal antibodies  

or chimeric antigen receptor (CAR)- 
T-cell therapy.

The ‘Interpretation’ element specifies 
interpretations of genomic findings. 
This element leverages complementary 
resources developed by the GA4GH 
Genomic Knowledge Standards Work 
Stream: the Variation Representation 
Specification (VRS) and VRS Added Tools 
for Interoperable Loquacious Exchange 
(VRSATILE)6. Further information 
on this and other elements is available 
in the online documentation (https://
phenopacket-schema.readthedocs.io/).

The Phenopacket schema was designed to 
support several use cases. Phenotype-driven 
rare-disease genomic diagnostic software 
has previously used bespoke formats to 
represent phenotypic data (generally in the 
form of a list of HPO terms) and pedigree 
information. Phenopacket provides a 
standard input format for these tools 
that will simplify computational analysis 
pipelines, and the additional clinical 
information will enable analysis pipelines 
and algorithms to leverage other data, such 
as age of onset and excluded abnormalities. 
A number of databases have adopted the 
standard to represent the clinical data of 
individuals in the context of rare-disease 
genomics (European Genome-phenome 
Archive), registries (European Joint 
Programme on Rare Diseases and Western 
Australian Register of Developmental 
Anomalies), biosamples (EMBL-EBI 
BioSamples database) and biobanks (the 
Japanese Agency for Medical Research and 
Development Tohoku Medical Megabank 
project and National Center Biobank 
Network). In addition, Phenopackets 
can be used to store a computational 
representation of a case report, and 
we envision that authors could submit 
representations of patients as phenopackets 
to accompany published case reports 

http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-022-01357-4&domain=pdf
https://doi.org/10.1038/s41592-022-01454-x
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and descriptions of genotype–phenotype 
correlations. In addition to these use cases, 
the Phenopacket schema is designed to 
interact with electronic health record 
(EHR) data. A longstanding challenge 
has been that computational phenotype 
analysis is poorly connected with EHRs 
and also that EHRs are not standardized 
across countries or even across institutions 
in a given country. To enable precision 
medicine, standards and tools are needed 
to improve machine-readable phenotypic 
characterization of patients beyond current 
standard EHR billing and clinical encounter 
data capture. To address this, we have 
created a Fast Healthcare Interoperability 
Resources (FHIR) implementation guide 
for representing a phenopacket within EHR 
systems (Supplementary Table 1).

Requirements and specifications for 
the standard were established through a 
community effort under the auspices of 
the GA4GH; Version 1.0 of the GA4GH 
standard was released in 2019 to elicit 
feedback from the community. Version 2.0, 
which is described here, was developed on 
the basis of this feedback and expanded the 
data model to include a better representation 
of temporality, medical actions and 

quantitative measures. The Phenopacket 
schema (version 2.0) was formally reviewed 
and approved as a GA4GH standard6 in 
2021. It is designed to be interoperable 
with other relevant standards, including 
the traditional PED (pedigree) file format 
as well as the GA4GH pedigree standard, 
the GA4GH Beacon9 and the GA4GH 
Variation Representation Specification. 
The GA4GH has committed to coordinate 
its activities and future roadmaps with 
those of other standards development 
organizations, including the International 
Organization for Standardization (ISO) 
Technical Subcommittee for Genomics 
Informatics (ISO/TC215/SC1) and HL7 
Clinical Genomics. Consequently, an FHIR 
implementation guide for Phenopacket 
interoperability has been developed, and 
the Phenopacket schema is at the approval 
stage of the ISO certification process 
(Supplementary Table 2).

The variant call format (VCF) standard 
for storing genotyping data allowed a wide 
range of research groups to write software 
for analyzing such data10. The GA4GH 
Phenopacket schema aspires to be similarly 
transformative in the landscape of genome 
analysis using phenotype data. The multiple 

providers of phenotypic data include patients 
and clinicians and convey data via a variety 
of mechanisms, including clinical notes 
and electronic health records, interfaces 
such as FHIR, app-based entry and mobile 
devices. The Phenopacket schema acts as 
a common model that can capture data 
from many sources with a unified software 
representation and, in its turn, can be used 
by multiple receivers of the phenotypic 
information, including journals, databases, 
registries and clinical laboratories. We 
anticipate that the Phenopacket schema will 
encourage the development of a collection 
of software for the analysis of genomic data 
in the context of clinical information that 
will accelerate innovation and discovery. 
Genomic data will become ever more 
important in translational research and 
clinical care in the coming years and decades. 
The Phenopacket schema represents a 
standard for capturing clinical data and 
integrating it with genomic data that will 
help to obtain the maximal utility of this data 
for understanding disease and developing 
precision medicine approaches to therapy. ❐

Julius O. B. Jacobsen   1 ✉,  
Michael Baudis2,3, Gareth S. Baynam   4,5,6,  
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Fig. 1 | Phenopacket schema overview. The GA4GH Phenopacket schema consists of several optional elements, each containing information about a certain 
topic, such as phenotype, variant or pedigree. An element can contain other elements, which allows a hierarchical representation of data. For instance, 
Phenopacket contains elements of type Individual, PhenotypicFeature, Biosample and so on. Individual elements can therefore be regarded as building blocks 
that are combined to create larger structures. Colors represent the major themes of elements within the schema. ACMG, American College of Medical 
Genetics; HTS, high-throughput screening; VCF, variant call format.
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