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ABSTRACT OF THE THESIS

Content-Based Music Recommendation with the LFM-1b Dataset and

Sample-Level Deep Convolutional Neural Networks

by

Devin Platt

Master of Science in Computer Science

University of California San Diego, 2017

Professor Gert Lanckriet, Chair

Content-based music classification systems attempt to predict musical attributes of

songs directly from their audio content. Commonly, the ground truth labels are explicitly

identified traits such as the genre of a piece of music. Ground truth annotations can

also be derived implicitly from user listening patterns, leading to content-based music

recommendation systems.

We improve upon previous work in content-based music recommendation in two ways.

One, we match the Million Song Dataset (MSD) to the recent LFM-1b dataset, which is

ix



much larger than the standard Taste Profile Subset. Two, we train our model using deep

convolutional architectures to predict latent factors directly from the audio of the music,

instead of the standard practice of training on an intermediate time-frequency representa-

tion. We also evaluate the effectiveness of using latent factor prediction as a source task

for tag prediction via transfer learning.
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Chapter 1

Introduction

Recommendation forms an important component of today’s music streaming platforms.

Collaborative filtering techniques are commonly used for recommending music, but suffer

from the cold-start problem —if no one has listened to a song yet, the system won’t know

how it should recommend that song. [Die16]

Previous work has shown that content-based methods, using the audio of each song,

can provide sensible recommendations [vdODS13]. These methods are in fact incorporated

into the algorithms for recommendation in at least one commercial streaming platform,

Spotify, where they supplement the main collaborative filtering approach [Die14] [Joh15].

Public research in content-based music information retrieval faces some challenges due

to copyright restrictions on musical recordings. This is compounded by the fact that

machine learning approaches typically benefit from having very large datasets.

The Million Song Dataset [BMEWL11] (from now on referred to as MSD) offers a

1
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solution to some of this challenge. It includes identifying information like the artist and

track name for one million popular music songs, and additional metadata with partial

coverage with the dataset. While the audio of this dataset cannot be made available online

to the whole world (due to copyright), ~30-60 second audio excerpts can be downloaded

from 7digital using API access they provide for researchers.1

It has been argued that the MSD is actually still too small for some content-based

music information retrieval tasks, and that the lack of a larger dataset is stifling further

research [Die16]. However, content-based music recommendation and tagging tasks cannot

even make use of the majority MSD, because there is only partial metadata coverage. Only

half of tracks have tags from the LastFM Tag Subset and only about 250k tracks have any

of the top 50 tags most frequently used in research experiments. Only about 380k tracks

are included in the Taste Profile Subset of user listening events.

Recently the Department of Computational Perception at Johannes Kepler University

has released LFM-1b, a massive dataset of more than one billion song listening events on

LastFM [Sch16]. To the best of our knowledge, no work has yet been done using both this

dataset and the MSD.

In this work, we match LFM-1b with 70 percent of the MSD, and demonstrate that

information from this dataset provides better training signal than the Taste Profile Subset.

Our matching is published online 2.

1In my experience, the 7digital ids provided in the MSD no longer corresponded to the same tracks when
querying 7digital. Thus, the only way to obtain the audio of this dataset is to contact a researcher who
has done research with the dataset and ask them to share the data (this is much faster than 1 million API
calls anyways).

2https://github.com/devinplatt/lfm-1b-msd-matching

https://github.com/devinplatt/lfm-1b-msd-matching
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We train our models using a variation of the recent architecture of Lee et al. [LPKN17],

and publish the code used for our experiments online 3.

We also evaluate the effectiveness of using latent factor prediction as a source task for

tag prediction via transfer learning.

3https://github.com/devinplatt/ms-thesis

https://github.com/devinplatt/ms-thesis


Chapter 2

Background

Content based music recommendation falls at the intersection of recommendation and

computer audition algorithms which try to extract information from audio. In the context

of music, these tasks fall under the broader field of Music Information Retrieval (MIR).

There are many audio-based music information retrieval tasks. For example, the Music

Information Retrieval Evaluation eXchange (MIREX) lists some following tasks

• Audio classification (into different genres or moods)

• Audio Beat Tracking

• Audio Chord Estimation

• Audio Tempo Estimation

• Drum Transcription

• Real-time Audio to Score Alignment (a.k.a Score Following)

4
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• . . . and many more 1

In this work, we focus on tasks which attempt to predict global information about a

track from its audio. Whereas tasks like transcription or chord estimation care about when

a particular event happens in a song, in our tasks we only care about accurately predicting

attributes that apply to the song as a whole.

In this section we discuss the problems of audio-based music classification and recom-

mendation separately, then review work that deals with the merger of the two.

2.1 Audio-based Music Classification

2.1.1 Labels

Tagging a musical track presents a host of challenges. It is a multi-label classification

task, so the typical methods of single label tasks must be adjusted. As noted in [Die16]

the following challenges must be confronted:

• A large number of tags.

• Weak labels: often times, some positive labels are missing in the datasets. (This

is especially critical at test time, since we cannot assume that a model is wrong to

predict a tag the does not appear in the ground truth labels.)

• Label redundancy: some labels can be highly correlated.

1see http://www.music-ir.org/mirex/wiki/MIREX_HOME

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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• Label sparsity: most labels apply to only a small subset of the data.

The best solution to these challenges is more data. The hope with more data is that

we can overcome any noise caused by deficiencies in the labeling.

2.1.2 Features

Audio, in its raw form, is stored on a computer as a series of integers representing a

sound wave. Using Pulse Code Modulation (PCM), a continuous waveform is discretized in

its time dimension according to its sample rate and is discretized in its amplitude according

to its bit depth (See Figure 2.1). For example, a sequence of 16000 32-bit integers could

represent one second of audio at a sample rate of 16kHz and a bit depth of 32.

Due to the Nyquist frequency theorem, a sampling rate of 2f is required to observe any

frequency f in a signal. A human ear can hear frequencies between about 20Hz-20kHz. In

CD quality audio, at sampling rate of 44.1kHz (twice the highest perceivable frequency) is

used to cover the entire human perceivable frequency spectrum.

However, humans also perceive frequencies on a roughly logarithmic scale. Although

there are roughly 10 octaves within 20Hz-20kHz, the first 9 of those exist in the 20Hz-10kHz

range. Frequencies at the very upper end of human hearing tend not to be perceived as very

pleasant or musical, and with aging the human hearing range is typically reduced, especially

for frequencies in the upper range. Thus, when training computer models of audio, lower

sample rates like 16000 or 22050 Hz are often used because they reduce dimensionality

without discarding too much frequency information.
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(a)

(b)

Figure 2.1: Example of an audio waveform and corresponding log-amplitude mel-

spectrogram. The audio is sampled at a rate of 22050 Hz (this waveform has had its

amplitude values stored as floating point values scaled to a range of [-1, 1]). This spectro-

gram uses 160 mel bins and half-overlapping windows of length 512 Hz.
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Traditionally, mid-level features are extracted before sending the input to a classifier.

Most commonly, audio is converted into a 2-dimensional time-frequency representation,

such as a spectrogram (see Figure 2.1). Using the short-time Fourier transform (STFT), the

intensities of different frequencies in short windows of audio can be computed. The values

at these windows are concatenated together to form the spectrogram, showing changes in

frequency intensities over time [Die16].

Typical window-lengths are about 20 ms, or 1/50th of a second. Frequencies are ag-

gregated into mean-valued bins (the popular Librosa 2 library defaults to 128 bins). These

bins can follow a linear scale, but are often scaled according to the Mel scale, which ac-

counts for the human logarithmic perception of pitch. The intensities of the spectrogram

values may also be logarithmically scaled, to match human perception of loudness (known

as the decibel scale).

Upsides of using mid-level features include:

• Your model can be shallower, and thus may train faster.

• You may be able to do more with less data, since your model only needs to learn

higher level abstractions.

Downsides of using mid-level features include:

• Extra hyperparameter tuning. (Ie. how many mel bins do I use? What hop length

do I use? etc.)

2https://github.com/librosa/librosa

https://github.com/librosa/librosa
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• Code glue required to combine feature extraction and your model.

• Lower-level features are not learned directly in the service of the target task, so they

might not perform quite as well.

With modern hardware and deep learning algorithms, it is possible to train models

directly on raw audio. Recent work has shown that these models can perform comparably

well or even better than models of similar complexity trained on mid-level features [DS14]

[LPKN17].

2.1.3 Model Architectures

Convolutional neural networks are favored for reducing model complexity via shared

weights and for providing temporal invariance. Audio can be processed with 1-dimensional

convolutions, while for mel spectrogram input both 1-dimensional and 2-dimensional con-

volutions are possible.

In this paper we use the architecture of Lee et al. [LPKN17], who have obtained the

best results to date on the typical benchmarks for music classification (Magnatagatune and

the Million Song Dataset).

Lee et al. showed that it is beneficial to train fairly deep networks (up to 9 layers).

Training deep convolutional models is made feasible by modern techniques. The rectified

linear unit (ReLU) activation aids against the vanishing gradient problem common in deep

networks. The batch normalization layer speeds up training by minimizing aspects of

internal covariate shift, where layers struggle to handle changes in the output distributions
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Figure 2.2: Diagram from Lee et al.

of their preceding layers.

The STFT spectrogram transformation is invariant to phase (time shift of periodic

waveforms). To match the performance of spectrogram-based models, models of raw audio

need to learn some method of phase invariance. Crucially, by operating at the sample-level

(using an initial convolution of just a few audio samples), the architecture of Lee et al.

becomes phase-invariant.

Due to the multi-label nature of the audio classification task, sigmoid activations are

typically preferred to softmax at the output of a neural network.

2.1.4 Transfer Learning

Transfer learning provides an alternative to mid-level feature extraction. Practically

speaking, it contains the same tradeoffs as using engineered features: we can train smaller

models and with less data, but we need to have an extra feature extraction step. However,

with transfer learning we can extract higher-level features than mid-level representations

like the log-amplitude mel spectrogram, and there is the potential that models trained on
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these features could perform better.

Features derived from models trained to predict tags from the LastFM subset of the

Million Song Dataset were shown to be beneficial to tag prediction tasks on smaller datasets,

such as Magnatagatune [vdODS14]. This work also showed that activations taken from

intermediate layers of MLPs sometimes did better than those at the label-level as input

to classifiers in a new task. Later work by Choi et al. shows that for deeper networks

concatenating the activations from multiple layers can improve the performance [CFSC17].

2.2 Recommendation

Recommendation systems often rely on a collaborative filtering approach, where algo-

rithms attempt to extract user preferences and item relations from user behavior. For

example, users on an online retail website may provide ratings of products they have pur-

chased. This explicit feedback can be used to drive future product recommendations for

the users.

One popular collaborative filtering algorithm is matrix factorization. A matrix is

formed with users as the rows and items as the columns. Cells contain a value reflect-

ing a given user’s history with a given item, like the rating they may have given a product

(see Figure 2.3).

For industrial applications, these matrices are usually quite large, with possibly millions

of rows and columns. Matrix factorization is a form of dimensionality reduction that

3https://commons.wikimedia.org/wiki/File:Collaborative_filtering.gif

https://commons.wikimedia.org/wiki/File:Collaborative_filtering.gif
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Figure 2.3: An example user-item matrix, indicating explicit user ratings of retail products.

(Image from Wikimedia3)
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Figure 2.4: Example of matrix factorization with 2 latent factors. (Image from Wikimedia4)

attempts to approximate this large matrix as the product of two smaller matrices (See

Figure 2.4).

The common number of inner dimensions of these two matrices is a hyperparameter of

the algorithm. This is known as the number of latent factors of the model, because each

dimension is expected to explain some broad trait of the data (eg. long historical fiction

novels, men’s formal wear, rock music) that could describe a user preference or an item

itself.

Rows for one of the matrices represent users, and columns for the other represent items.

By computing the dot product of the latent factor vectors for any user-item pair, we create

a score that can be used to rank user-item compatibility. (Alternative variations to the

dot-product, such as the asymmetric cosine similarity, have also been proposed for the

music recommendation task [Aio13].)

To calculate the matrix factorization approximation, stochastic gradient descent with

the Alternating Least Squares method is often used because it is fast and easily paralleliz-

able. Alternating Least Squares is an iterative method which modifies just one of the two

4https://commons.wikimedia.org/wiki/File:NMF.png

https://commons.wikimedia.org/wiki/File:NMF.png


14

matrices at each iteration [KBV09].

The data available to build music recommendation systems are typically implicit feed-

back. In an online music streaming service, users provide their preferences implicitly ac-

cording to their listening history. For the matrix factorization approach, the cells of the

matrix will contain the number of times the given user has played the given song (sometimes

this is simplified to a 1/0 representation of played/not played).

Specialized methods of matrix factorization exist for implicit feedback datasets. For

explicit feedback datasets, unknown values are treated as missing, and optimization pro-

cedures make use of regularization to prevent overfitting. With implicit feedback datasets,

unknown values can be dealt with by introducing a notion of confidence to predictions of

user preferences [HKV08].

2.3 Audio-based Music Recommendation

It is widely accepted that collaborative filtering outperforms a purely content-based

approach to recommendation [Sla11]. However, content-based methods can provide support

in cases where collaborative filtering methods fail, such as when little listening data is

available for a song.

Our work largely derives from van Den Oord et al. [vdODS13]. Using the Taste Profile

Subset of the Million Song Dataset, they applied weighted matrix factorization to learn

latent factors for users and songs, using the algorithm optimized for implicit feedback

datasets of Hu et al. [HKV08]
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The factors trained on the Taste Profile Subset had meaningful signal. A linear regres-

sion model van Den Oord et al. trained on the latent factors could predict LastFM song

tags fairly well.

They then trained models to predict the latent factors from audio-based input (using

mel spectral features), showing that CNN models on mel features worked much better than

simpler models trained on an audio bag-of-words representation.

Our work builds on the work of van Den Oord et al. by using a substantially larger

dataset, and training substantially larger models.



Chapter 3

Dataset

The main contribution of this thesis is the matching of two datasets: the Million Song

Dataset [BMEWL11] and the LastFM-1b dataset [Sch16]. In this chapter we compare

LFM-1b and the Taste Profile Subset, demonstrating the vast increase in data that LFM-

1b provides. We also describe our method for matching MSD with LFM-1b in detail.

The Million Song Dataset (MSD) includes 30-60 second audio excerpts for one million

tracks of popular music. It has previously been matched to music tags from LastFM and

user listening events from an anonymous music streaming service, the Taste Profile Subset.

The LFM-1b dataset contains over one billion music listening events for over 120 thou-

sand users of Last.fm. Each listening event includes an artist and track name, though the

dataset is somewhat noisy in this respect: several instances of what is basically the same

track may occur because of slight differences in the name.

Regardless, in terms of number of user interactions, this dataset is roughly 20 times

16
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Table 3.1: Comparison of LFM-1b and the Taste Profile Subset.

Dataset Number of Users Number of Songs Number of Interactions
LFM-1b 120 thousand 30 million

(not unique)
1 billion

Taste Profile Subset 1 million 380 thousand
(mostly unique)

48 million

Figure 3.1: Dataset links. Tracks in the MSD and LFM-1b are matched by case-insensitive

artist and track names. This matching is not perfectly one-to-one, but is close. LFM-1b

tracks are tied to user listening data. MSD tracks are tied to audio (we were able to obtain

audio samples for 99 percent of the tracks), and a subset are tied to tags from LastFM.

as large as the Taste Profile Subset (see Table 3.1), and can be matched to a much larger

percentage of the tracks in the MSD.

To match LFM-1b to MSD, we used a simple matching strategy: case insensitive match-

ing of the artist and track title (see Figure 3.1). No fuzzy matching algorithms like the

Levenshtein distance were used. Using this naive approach, we matched tracks in LFM-1b

to nearly 690k tracks in MSD, nearly twice as much as the 380k in the Taste Profile Sub-

set. (Note that we match to about 630k songs, but 690k tracks because the Million Songs

Dataset distinguishes between a song and a track. A song can be associated with multiple

tracks.)
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Even with this approach there are a few corner cases like artists with many “untitled”

tracks, but this constitutes a very small fraction of the tracks.

It is possible to match more tracks, with more complicated approaches. Case-insensitive

matching of artists with tracks in LFM-1b to tracks in MSD yields a 95 percent matching

rate (For 95 percent of the tracks in MSD, there are at least some tracks in LFM-1b with

the same artist). At the artist level, fuzzy string matching can be used. In this context,

even if errors are made, they might not be too traumatic for collaborative filtering models,

since tracks by the same artist are likely to be listened to by the same users.

Using case-insensitive matching of artist, with fuzzy title matching (set to conservative

parameters by spot-checking), we matched about a third of this remaining 25 percent of

tracks, or 8 percent of the entire dataset (on top of the 70 percent previously matched).

However, we did not include these matched tracks for the rest of our experiments, because

the improvement using the naive approach was already quite good and for our purposes

the 8 percent additional tracks did not justify the additional complexity of the match-

ing method. The rest of this paper uses just those matched using case-insensitive exact

matching of artist and track.



Chapter 4

Architecture

In [vdODS13], the authors train a convolutional neural network on mel spectral fea-

tures to predict latent factors (mel spectral features are a time-frequency representation of

audio computed by running Fourier transforms on audio and using a logarithmic scaling

of frequency and perhaps amplitude). Although the paper does not include many details,

co-author Sander Dieleman mentions in a blog post that the paper used 2 convolutional

layers followed by two fully connected layers [Die14].

In this paper, we use the best model from Lee et al. [LPKN17]. Known as a 39 model,

it consists of 9 one-dimensional convolutional layers with length 3 kernels and length 3 max

pooling. The input samples are reduced by a factor of 3 at each layer, down to a length of

1. An initial strided convolutional layer reduces the input to the appropriate size to allow

for this reduction to exactly 1 sample in the last convolutional layer (in this case, we have

a “sample-level” model: the input is 310 = 59049 raw audio samples, so the initial kernels

19
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are also just 3 samples long).

Since their model is used for tagging, they append a dense output layer with an output

for each tag and sigmoid activation, optimizing for binary cross entropy loss. In our case

we replace this with linear activation and train using mean squared error loss (as used in

[vdODS13]), with an output dimension for each latent factor. In our experiments we found

it necessary to bound the output of our model, so we l2 normalized the output (matching

the l2 normalization we applied to our target data).

Lee et al. trained on 59049 length segments of 29.1 second examples sampled at a

22050 Hz sample rate. We trained on 59049 length segments of 20 second examples at a

16000 Hz 1 sample rate, mainly to save disk space.

Our work verifies the efficacy of the 39 model, and shows that it can be trained to

perform a regression task if the output is bounded with an l2 normalization layer.

1Note that generally 16000 Hz is the lowest rate we would want to sample at because sampling at lower
rates reduces the perceivable frequencies.



Chapter 5

Latent Factor Models

The Taste Profile Subset and LFM-1b both contain listening events: a tally of any time

a user listened to a song. This kind of information is known as implicit feedback, because

the users never explicitly indicated their musical preferences.

In this chapter we train latent factor models using these listening event data. We

compare the quality of latent factors produced by LFM-1b versus the Taste Profile Subset,

demonstrating quantitatively the superior quality of LFM-1b. We also analyze the effects

of tuning different hyperparameters of our latent factor model. We summarize our results

in a conclusion at the end of the chapter.

5.1 Methods

Van Den Oord et al. [vdODS13] use the modified weighted matrix factorization (WMF)

technique of He et al. [HKV08], which is designed for implicit feedback datasets. In our
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experiments we produce latent factors using this same algorithm with an implementation

by one of the co-authors of Van Den Oord et al. 1

We vary the inputs to our WMF model: our dataset (LFM-1b vs. Taste Profile Subset),

the number tracks to train on, whether to merge similar tracks, the number of WMF factors,

and the number of WMF iterations. Doing a full grid search would be extremely costly, so

we vary one input at a time.

To compare the quality of latent factors, we set up a proxy task. We train a simple

logistic regression classifier to predict LastFM tags 2 in the MSD using the latent factors as

input. As is standard in previous literature, we used the top 50 tags, which include labels

such as ‘rock’, ‘pop’, ‘Hip-Hop’, ‘metal’, ‘electronic’, ‘female vocalists’, ‘dance’, and ‘80s’.

For the logistic regression experiments, we use the train, validation, test split released

by Keunwoo Choi 3. Train, validation, and test sets are filtered to tracks found in the

intersection of LFM-1b and the MSD LastFM tag subset. The validation and test sets

are further filtered to tracks in the Taste Profile Subset. We trained each model for a

maximum of 20 epochs, with an early stopping criterion of no improvement in validation

loss between any two epochs.

1https://github.com/benanne/wmf
2Note that although they come from the same source (music recommendation website LastFM), the

LastFM tag subset of the MSD is a separate dataset from LFM-1b.
3https://github.com/keunwoochoi/MSD_split_for_tagging

https://github.com/benanne/wmf
https://github.com/keunwoochoi/MSD_split_for_tagging
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Table 5.1: Dataset for Implicit Feedback. Hyperparameters: 40 latent factors, 40 iterations.

AUC refers to the performance of a logistic regression classifier to predict musical tags from

latent factors (using the AUC ROC metric).

Dataset Tracks used for
training WMF
model

Number
of tracks
WMF model
trained on

AUC

Taste Profile Subset Taste Profile Subset 380k .788
LFM-1b LFM-1b /

MSD matched
tracks

660k .8835

5.2 Dataset for Implicit Feedback

First, we verified that the latent factors produced from LFM-1b contain more super-

visory signal than the Taste Profile subset (see Table 5.1). We obtained latent factors by

training WMF models on the Taste Profile subset, and on LFM-1b (using user play counts

every track that intersects with MSD).

We trained two separate logistic regression models on these factors, filtering training

data to just tracks in Taste Profile Subset so that both logistic regression models use the

same tracks (but not features) as training data.

Using LFM-1b, we see a 10-point improvement in AUC.

5.3 Number of tracks to train WMF model on

The LFM-1b dataset has information for 30 million tracks, too many to practically

compute WMF on. However, most of the plays occur for the most popular tracks. We

tried training a WMF model on the matched LFM-1b/MSD tracks plus all additional tracks

in the top 2 million tracks (there was an overlap of ∼300k tracks).
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Table 5.2: Number of tracks to train WMF model on. Hyperparameters: 40 latent factors,

40 iterations.

Dataset Tracks used for
training WMF
model

Number
of tracks
WMF model
trained on

AUC

LFM-1b LFM-MSD matched tracks 660k .8838
LFM-1b LFM-MSD

matched tracks +
2 million most
popular tracks

2.3M .8766

Surprisingly, it appears that adding these tracks degrades performance for this task

(see Table 5.2). Though we had hoped that adding more tracks outside of the MSD would

have produced a more robust model, it’s possible that using more tracks simply added too

much noise to the data and causes it to underfit.

5.4 Merging Tracks with Same Artist, Track Name

A small percentage of tracks in LFM-1b actually have the same artist and track name

when we normalize by case. It appears that merging these tracks (by summing playcounts

and consolidating these equivalent tracks into one column) provides a small improvement

in our proxy task (MSD tag prediction. See Table 5.3).

Note that this also solves the issue of linking a MSD track to a single latent factor.

Unfortunately, we tested this method late in our experimentation, so this method was

not incorporated into our final latent factors used in later experiments for latent factor

prediction from audio. In those experiments, we matched MSD tracks to an arbitrary

latent factor of the set of possible matching LFM-1b tracks.
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Table 5.3: Merging Tracks with Same Artist, Track Name. Hyperparameters: 40 latent

factors, 40 iterations.

Dataset Tracks used for
training WMF
model

Number
of tracks
WMF model
trained on

AUC

LFM-1b LFM-MSD matched tracks +
2 million most popular tracks

2.3M .8766

LFM-1b LFM-MSD matched tracks +
2 million most popular tracks,
merging tracks with same
artist and track name

2.3M - small amount .8821

Table 5.4: Number of Latent Factors. Dataset: LFM-MSD matched tracks + 2 million

most popular tracks. Hyperparameters: 40 iterations.

Number of Factors AUC Run Time
40 .8766 Not Recorded
50 .8812 170 minutes
80 .8918 267 minutes

5.5 Number of Latent Factors

We tested various values for the number of latent factors. We found that more factors

generally improves performance, at the cost of longer runtime of the WMF algorithm. The

WMF algorithm runtime scaled roughly linearly with the number of factors (see Table 5.4).

5.6 Number of Iterations

We also tested multiple values for the number of iterations of the WMF algorithm.

Naturally, runtime scales linearly with the number of iterations (see table 5.5).

Table 5.5: Number of Iterations. Dataset: LFM-MSD matched tracks + 2 million most

popular tracks. Hyperparameters: 80 factors.

Number of Iterations AUC
40 .8918
80 .8934
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5.7 Conclusions from Latent Factor Experiments

In this Chapter we demonstrated the superior supervisory signal provided by the data

in LFM-1b versus the Taste Profile Subset. While part of the improvement could be due

to the larger number of tracks available, we’ve demonstrated that there is a limit to how

much more tracks really help the WMF model. We believe that much of benefit comes

from the fact that LFM-1b has many more listening events than the Taste Profile Subset,

and many more per user.

LFM-1b contains duplicate tracks with distinct identifiers, and we showed that merging

instances of the same track led to modest performance gains. We also demonstrated modest

gains in performance when increasing the number of factors or iterations, but overall showed

that using at least 40 factors and 40 iterations is adequate.

In the next chapter we train models that predict latent factors from the audio of a

track. In that chapter, we use our best performing latent factors, those trained on the

largest subset of LFM-1b (MSD matched tracks plus the top 2 million tracks in LFM-1b),

with 80 factors and 80 iterations. 4

Pre-computed factors similar to those in our experiments can be found on Github5.

4In hindsight, we probably should have trained a final model using the best parameters from each of our
experiments: just the LFM-1b matched tracks, with 80 factors and 80 iterations.

5https://github.com/devinplatt/ms-thesis

https://github.com/devinplatt/ms-thesis


Chapter 6

Latent Factor Predictions

In this chapter we describe our procedure for training a deep convolutional neural

network to predict latent factors from audio. We then evaluate our model quantitatively

in two ways. First, we evaluate it’s effectiveness at the recommendation task. Second we

evaluate the quality of its output as a signal for the tag prediction task. Finally, we observe

track recommendations produced using the model’s output to get better idea of what the

model is learning.

6.1 Methods

We use the TensorFlow framework for our experiments. TensorFlow offers many useful

features including implementations of state-of-the-art neural network algorithms, the Ten-

sorBoard visualization dashboard, and asynchronous multi-threaded queueing mechanisms

for data I/O.
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That last feature is especially important. In total, the MP3 files for the Million Song

Dataset take several hundred gigabytes of disk space, far too large to fit in main memory

of a regular workstation. Furthermore, small individual MP3 files are not ideal for fast

reads.

We took the audio for matched tracks in MSD and our latent factors and compiled

them into sharded TFRecord files. This amounted to about 700 shards with 1000 tracks

each. To save disk space, we downsampled audio to 16000 Hz and stored 20 seconds of

audio per track. Each shard took approximately 1.2 gigabytes.

We used separate shards for training, validation, and test data. We furthermore used

separate shards for tracks also containing LFM tags, which we split into training, validation,

and test sets following a split used in previous literature 1. Our split can be found on

Github2.

We adapted our code from an open source implementation of the work of Lee et al.

[LPKN17] for Magnatagatune3. Our implementation is available on GitHub2. Our main

change is the final layer of the network, which predicts latent factors instead of tags and

optimizes for MSE instead of cross entropy loss. Since the network now performs a regres-

sion, we l2 normalized the output of the network to avoid issues of overactivation (NAN

errors). We also modified the code to allow the enqueueing of multiple records at once

asynchronously while the GPU trained the model. This decreased training time by an

order of magnitude; training was not practically very achievable without efficient queuing.

1https://github.com/keunwoochoi/MSD_split_for_tagging
2https://github.com/devinplatt/ms-thesis
3https://github.com/tae-jun/sample-cnn

https://github.com/keunwoochoi/MSD_split_for_tagging
https://github.com/devinplatt/ms-thesis
https://github.com/tae-jun/sample-cnn
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When training our model we used random 59049 sample (3.7 seconds at 16kHz) crops

from each 20 second audio sample. At evaluation time we took predictions for the first 5

adjacent 59049 sample windows (18.5 seconds total) and averaged them.

Our optimization procedure follows the similar methods of Lee et al.: optimize with

SGD and momentum. Their methods began with an initial learning rate of 0.01, then

reduced the learning rate by a factor of 5 when validation loss no longer improves, doing

this a total of 4 times down to a final learning rate of 0.000016. They used a batch size of

50.

We used a smaller batch size of 32, because our 8GB GPU could not handle larger batch

sizes. We started with a higher learning rate (0.5) because it sped up training. Although

we ran for multiple stages like Lee et al., we saw only a small decrease in validation error,

at the cost of training for twice as long. In our evaluation, we choose the best model from

the initial learning rate stage.

Training for the initial learning rate stage took 3 days on an Nvidia 1070 GTX GPU.

Each epoch took approximately 2 hours.
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6.2 Results

6.2.1 Quantitative Evaluation

Recommendation

We evaluate our model’s prediction ability by using the predictions for music recom-

mendation, following the methods of [vdODS13]. For each of the 120k users in LFM-1b,

we rank a test set of 74k tracks. Following the Million Song Dataset Kaggle challenge4,

we consider a recommendation “correct” if the user listened to a track. Our objective is to

rank all tracks the user listened to as high as possible.

We report (Table 6.1) both AUC (AUCROC) and mean average precision cut off at 500

recommendations (mAP@500), which was the metric used in the Kaggle challenge. AUC

and AP@500 are averaged across the 74k users.

Unlike the Kaggle challenge, we trained our latent factor models using all users and

tracks (including test tracks), since the proximate task here is latent factor prediction, not

recommendation. Thus, recommendations from the ground truth latent factors form an

upper bound on what we expect to achieve from predicting the latent factors.

For each user, we create a user factor vector by multiplying their row of the listening

events matrix with a matrix of predicted song factors, and then normalizing the resulting

vector. We do this using only listening events and predicted song factors for songs in the

training set. The user factor vector is effectively a weighted average of the factors of the

4https://www.kaggle.com/c/msdchallenge

https://www.kaggle.com/c/msdchallenge
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Table 6.1: Recommendation Results

Model mAP @ 500 AUC
Random .000004 .5
Sample-level Raw Audio 0.001 .62
Upper Bound .04 .96

training songs that user listened to.

We then multiply the user factor vector with each test song factor vector (also nor-

malized) to get that song’s score for that user. These scores (between 0 and 1, with 1

indicating a top recommendation) are used to rank track recommendations for the user.

From these scores we calculated per-user AUC using the scikit-learn Python package. We

calculated each user’s average precision using the formula:

ap@n =
∑500

k=1 P (k)/min(m, 500)

where m is the number of test tracks that the user listened to, and P (k) is the precision

at k: the number of tracks from positions 1 to k in the ranking that the user listened to.

Tag prediction

We previously showed a performance of .89 AUC in predicting MSD tags from latent

factors. This is very close to the .90 AUC reached in Lee et al. [LPKN17] predicting tags

from audio using a deep CNN.

Since the number of tracks with user listening events is so much greater than the number

of tracks with tags, we wondered if features from the latent factor prediction model could

perform comparatively well at the tag prediction task. Can latent factors be used as a

source task for transfer learning?
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Table 6.2: Tag Results

Model AUC
CNN trained to predict tags from audio 0.9055 (as reported in Lee et al.)
Logistic regression on latent factors 0.8934
Logistic regression on predicted latent factors 0.8477

The results (Table 6.2) show that although predicted latent factors do not outcompete

training to predict tags directly from audio (even with twice as much data), they do perform

quite well.

6.2.2 Qualitative Evaluation of Model

To gain a better understanding of what the model is learning, we observe track rec-

ommendations produced using its output, and compare it to recommendations produced

using the ground truth latent factor vectors (tables are included at the end of this section).

We ranked tracks in the training set because it offered a larger pool of tracks to pick from.

Although this does not test the model’s ability to generalize, it still gives us a peek at how

it is working.

We can see that the model identifies some acoustic similarities. Sometimes it is good at

recommending music in the same genre (such as with rap). Other times though, it ventures

wildly out of genre, like when it recommends a song by The Rivieras for a Duke Ellington

track (possibly because both employ brass instruments and drums).

The similarity scores are much closer for the predicted vectors than the ground truth

vectors. Of course, the model is directly optimized to predict latent factor values, not

song-similarities.
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Table 6.3: Track rankings for Nuthin’ But A “G” Thang by Dr. Dre, using ground truth

vectors.

Score Track Artist
1.000 Nuthin’ But A “G” Thang Dr. Dre
0.925 Xxplosive Dr. Dre
0.920 The Watcher Dr. Dre
0.896 So Many Tears 2Pac
0.890 Big Poppa The Notorious B.I.G.
0.887 Bang Bang Dr. Dre
0.867 Let’s Get High Dr. Dre
0.867 Eazy-Duz-It Eazy-E
0.866 Protect Ya Neck Wu-Tang Clan
0.863 Old School 2Pac

Table 6.4: Track rankings for Nuthin’ But A “G” Thang by Dr. Dre, using predicted

vectors.

Score Track Artist
1.000 Nuthin’ But A “G” Thang Dr. Dre
0.999 Break North Ultramagnetic Mcs
0.999 Bounce Diamond D
0.999 Underground G’s 5th Ward Boyz
0.999 What You Want MC Breed
0.999 M.P.E. Public Enemy
0.998 T.R.’z (tunnel Vision Album Version) Tunnel Rats
0.998 Form Of Intellect Gang Starr
0.998 Hustlers And Killers Nas
0.998 Gold Nice & Smooth

Table 6.5: Track rankings for Tootie For Cootie by Duke Ellington, using ground truth

vectors.

Score Track Artist
1.000 Tootie For Cootie Duke Ellington
0.756 Street Of Dreams Sarah Vaughan
0.720 Just One More Chance Dinah Washington
0.716 That’s Love Art Pepper
0.714 St. Louis Blues Ella Fitzgerald
0.708 Call The Police Nat King Cole
0.704 Smoke Gets In Your Eyes Nat King Cole
0.703 Harbor Lights Dinah Washington
0.703 Red Bank Boogie Count Basie
0.701 Cherokee Dee Dee Bridgewater
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Table 6.6: Track rankings for Tootie For Cootie by Duke Ellington, using predicted vectors.

Score Track Artist
1.000 Tootie For Cootie Duke Ellington
0.999 ’s Wonderful Ray Conniff
0.998 True Love Is Hard To Find The Rivieras
0.998 Goggles Dick Clark
0.998 Love Is Just Around The Corner Paul Anka
0.998 I Told You So Jimmy Jones
0.998 Rhythm ’n’ Blues The Mcguire Sisters
0.998 Hey You Conway Twitty
0.998 Can I Go Home Bo Diddley
0.998 Easy To Remember The Rivieras

Table 6.7: Track rankings for Polly by Nirvana, using ground truth vectors.

Score Track Artist
1.000 Polly Nirvana
0.993 Territorial Pissings Nirvana
0.933 Killing In The Name Rage Against The Machine
0.923 Today The Smashing Pumpkins
0.895 Guerrilla Radio Rage Against The Machine
0.885 Iron Man Black Sabbath
0.873 Sleep Now In The Fire Rage Against The Machine
0.871 With Or Without You U2
0.868 Dumb Nirvana
0.846 Wouldn’t It Be Nice The Beach Boys

Table 6.8: Track rankings for Polly by Nirvana, using predicted vectors.

Score Track Artist
1.000 Polly Nirvana
0.990 If That’s Alright Uncle Tupelo
0.989 Adiabatic Prolapse
0.988 Take It Or Leave It The Strokes
0.987 You’re Not Alone Home Grown
0.987 Undercovers On Rival Schools
0.987 Baby I’m Just A Fool Spiritualized
0.986 Monday Fairmont
0.986 Alegato Meridional Grupo De Expertos Solynieve
0.986 Modern Way Kaiser Chiefs



Chapter 7

Conclusions

In this work we merged the LFM-1b dataset with the Million Song Dataset, achieving

70 percent coverage. We showed that the LFM-1b dataset provides substantially better

supervisory signal than the Taste Profile Subset.

Using this dataset, a shallow model trained on ground truth latent factors was compa-

rably effective at predicting tags to a deep model trained to predict tags from audio. The

implications for this result are that in commercial music tagging systems with access to

high quality user listening data, shallow factor-to-tag models could replace or supplement

audio-to-tag models when user listening data is available for a track. This result was not

as apparent with the Taste Profile Subset data.

We also demonstrated that the sample-level architecture of Lee et al. is effective for

the latent factor prediction task. We found it necessary to bound our output with an l2

normalization layer. Dieleman indicates that he was successful both using and not using l2
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normalization on the output when training shallower mel spectrum-based models [Die14].

We speculate that bounding the output may be necessary when training regressions on

very deep models with linear and ReLu-type activations.

We showed that when the number and quality of user listening events is high, latent

factor prediction can be used as source task for music tag prediction via transfer learning.

Although still not as performant as a model trained to predict tags directly from audio,

such a model could be effective when labels are in short supply, or could be used as

supplementary input to an ensemble model.

Future work could include experimenting with the amount of available ground truth

tags to see when latent factor prediction become beneficial as a source task for tag predic-

tion. We would also like to try ensemble models trained to predict tags using both audio

and latent factor input.
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