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Abstract
Purpose  Anti-PD-1 therapy provides clinical benefit in 40–50% of patients with relapsed and/or metastatic head and neck 
squamous cell carcinoma (RM-HNSCC). Selection of anti- PD-1 therapy is typically based on patient PD-L1 immunohis-
tochemistry (IHC) which has low specificity for predicting disease control. Therefore, there is a critical need for a clinical 
biomarker that will predict clinical benefit to anti-PD-1 treatment with high specificity.
Methods  Clinical treatment and outcomes data for 103 RM-HNSCC patients were paired with RNA-sequencing data from 
formalin-fixed patient samples. Using logistic regression methods, we developed a novel biomarker classifier based on 
expression patterns in the tumor immune microenvironment to predict disease control with monotherapy PD-1 inhibitors 
(pembrolizumab and nivolumab). The performance of the biomarker was internally validated using out-of-bag methods.
Results  The biomarker significantly predicted disease control (65% in predicted non-progressors vs. 17% in predicted 
progressors, p < 0.001) and was significantly correlated with overall survival (OS; p = 0.004). In addition, the biomarker 
outperformed PD-L1 IHC across numerous metrics including sensitivity (0.79 vs 0.64, respectively; p = 0.005) and specificity 
(0.70 vs 0.61, respectively; p = 0.009).
Conclusion  This novel assay uses tumor immune microenvironment expression data to predict disease control and OS with 
high sensitivity and specificity in patients with RM-HNSCC treated with anti-PD-1 monotherapy.

Keywords  HNSCC · Biomarker · Immune checkpoint inhibitors · PD-L1 · PD-1 · Pembrolizumab

Abbreviations
RM-HNSCC	� Recurrent/metastatic-head and neck squa-

mous cell carcinoma
IHC	� Immunohistochemistry
OS	� Overall survival
HNC	� Head and neck cancer
CDx	� Companion diagnostic
PPV	� Positive predictive value
NPV	� Negative predictive value
CPS	� Combined positive score

DCR	� Disease control rate
FFPE	� Formalin-fixed, paraffin-embedded
PREDAPT	� Predicting immunotherapy efficacy from 

analysis of pre-treatment tumor biopsies
CR	� Complete response
PR	� Partial response
SD	� Stable disease
PD	� Progressive disease
ORR	� Overall response rate
ICI	� Immune checkpoint inhibitor
ROC	� Receiver operating characteristic
AUC​	� Area under the curve
HR	� Hazard ratioExtended author information available on the last page of the article
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HPV	� Human papillomavirus
ECOG	� Eastern cooperative oncology group

Background

Head and Neck Cancer (HNC) is the seventh most com-
mon cancer worldwide with 890,000 new cases and 450,000 
deaths per year (Pulte and Brenner 2010; Chow 2020). 
Despite advances in diagnosis and treatment in the curative 
setting, recurrent or metastatic disease (or both) develops in 
more than 65% of patients with squamous cell cancer of the 
head and neck (HNSCC; Argiris et al. 2008).

Based on a 2008 clinical trial, the standard of care for 
recurrent and metastatic squamous cell carcinoma of the 
head and neck (RM-HNSCC) was platinum-based chem-
otherapy along with 5-fluorouracil and the EGFR inhibi-
tor cetuximab (EXTREME regimen; Vermorken et  al. 
2008; Sacco and Cohen 2015; Le et al. 2020). In 2016, the 
anti-PD-1 therapies pembrolizumab and nivolumab were 
approved for the treatment of platinum-pretreated RM-
HNSCC, providing meaningful improvement in the standard 
of care for a subset of patients (Larkins et al. 2017; Fer-
ris et al. 2016; Muro et al. 2016). In 2019, approval was 
extended to pembrolizumab as first-line treatment both as 
a monotherapy and in combination with platinum-based 
chemotherapy (combination therapy; Cohen et al. 2019a). 
Today, the standard of care for most patients is first line 
anti-PD-1 therapy for RM-HNSCC and second line anti-
PD-1 therapy for platinum-pretreated RM-HNSCC (Pfister 
et al. 2023). Unfortunately, only 13–25% of patients’ tumors 
respond to anti-PD-1 monotherapy and 36% of patients 
respond to combination therapy (Le et al. 2020). Identify-
ing those patients who will benefit from anti- PD-1 therapy 
has been an important goal, primarily utilizing the on-label 
companion diagnostic (CDx), a PD-L1 immunohistochem-
istry (IHC) assay.

PD-L1 IHC is a widely used biomarker for predicting 
clinical benefit in response to PD-1 inhibitors across many 
cancer types. Unfortunately, PD-L1 IHC testing in HNSCC, 
as in other cancer types, has relatively high sensitivity but 
poor specificity for predicting response and disease control 
(poor positive predictive value, PPV; Lu et al. 2019; Burtness 
et al. 2019; Brockstein and Vokes 2023). KEYNOTE-048 
investigated whether pembrolizumab, as a monotherapy or 
in combination with chemotherapy, improved overall sur-
vival (OS) compared with cetuximab plus chemotherapy in 
participants with previously untreated RM-HNSCC (Burt-
ness et al. 2019). In this study, PD- L1 IHC was used with 
combined positive score (CPS) thresholds of CPS ≥ 20 and 
CPS ≥ 1. Monotherapy anti-PD-1 patients with CPS ≥ 20 
had a 53% Disease Control Rate (DCR), and patients with 
CPS ≥ 1 had a 47% DCR, compared to a 44% DCR in the 

total patient population, regardless of CPS. Thus, PD-L1 
IHC had only a marginal benefit in predicting clinical benefit 
for pembrolizumab monotherapy.

Because current biomarkers like PD-L1 IHC have a low 
PPV, clinicians are increasingly using combination therapy 
as the default treatment (Le et al. 2020). In KEYNOTE-048, 
the combination chemotherapy plus pembrolizumab cohort 
had a DCR of 64%, higher than pembrolizumab monother-
apy regardless of PD-L1 status (Burtness et al. 2019). How-
ever, the risk of grade 3–5 adverse events is far higher with 
combination therapy or EXTREME when compared to mon-
otherapy (Cohen et al. 2019b; Burtness et al. 2019). There-
fore, to improve patient outcomes and better manage toxicity 
risks, it is important that a diagnostic accurately identify the 
subset of patients who will respond to monotherapy.

Because of the negative impact on patients and the 
increased healthcare burden, there is a strong need for more 
robust and effective methods of predicting disease control 
in response to PD-1 inhibitors. Building on our previous 
work (LaFranzo et  al. 2020; Schillebeeckx et  al. 2020, 
2022), we developed an RNA-sequencing-based classifier 
called OncoPrism®-HNSCC to predict disease control with 
increased sensitivity and specificity compared to PD-L1 IHC 
in patients with RM-HNSCC treated with anti-PD-1 mono-
therapy. OncoPrism-HNSCC requires as little as two 10 μm 
formalin-fixed, paraffin-embedded HNSCC tumor tissue sec-
tions and classifies patients according to their likelihood of 
progressing on anti-PD-1 monotherapy with high sensitivity 
and specificity.

Methods

Study design and participants

Patients were recruited from eleven study sites across the 
USA: Washington University in St. Louis (St. Louis, MO), 
University of California San Diego (San Diego, CA), Mul-
tiCare Institute for Research and Innovation (Tacoma, WA), 
Ochsner Lafayette General Medical Center (Lafayette, LA), 
Dayton Physicians Network (Dayton, OH), Intermountain 
Healthcare (Salt Lake City, UT), Brooke Army Medical 
Center (Fort Sam Houston, Texas), Baylor College of Medi-
cine (Houston, TX), Cancer Care Northwest (Spokane, WA), 
Mayo Clinic (Rochester, MN), and Northwest Oncology and 
Hematology (Hoffman Estates, IL).

Patients were enrolled in the retrospective, observational 
study following the inclusion and exclusion criteria outlined 
below. Eligible patients had recurrent or metastatic histolog-
ically or cytologically confirmed HNSCC and were treated 
with anti-PD-1 monotherapy as the first-line treatment for 
their recurrent or metastatic disease. Tissue analyzed in 
the study was from tumors biopsied prior to treatment and 
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was formalin-fixed and paraffin embedded using standard 
protocols. De-identified, FFPE pre-treatment tumor biopsy 
specimens were provided to Cofactor Genomics for Onco-
Prism-HNSCC and PD-L1 IHC analysis. The 10% of sam-
ples with the longest time between biopsy and treatment 
(> 22.4 months) were removed from the study. Following 
anti-PD-1 treatment, patients must have had clinician-
evaluated tumor response to immunotherapy using clinical 
assessment (RECIST, PERCIST, or other clinical criteria 
as appropriate in standard of care) to calculate disease con-
trol rate (DCR). Exclusion criteria included immunotherapy 
received in combination with any other therapy modality 
including radiation therapy, platinum-based chemotherapy, 
or taxane. Patients with insufficient tissue for analysis were 
also excluded from the study. Primary or metastatic tumor 
specimens were accepted, but metastatic tumors from bone 
or liver were not included.

The study protocol, “A Multicenter Cancer Biospecimen 
Collection Study” is registered as “NCT04510129—Predict-
ing Immunotherapy Efficacy From Analysis of Pre-treatment 
Tumor Biopsies (PREDAPT)” on clinicaltrials.gov. The 
study protocol was approved by institutional review boards 
at either the study (WCG IRB) or site level, as appropriate. 
All patients provided signed, informed consent to partici-
pate, or consent was waived for deceased patients according 
to study protocol. Independent data monitoring was con-
ducted by the study clinical research organization Curebase, 
Inc (San Francisco, CA).

RNA extraction

RNA was extracted using RNAstorm (Cell Data Sciences, 
Fremont, CA) according to the manufacturer’s instructions. 
RNA quantity was assessed by the High Sensitivity RNA 
Qubit assay (Thermo Fisher Scientific, Waltham, MA). A 
predefined yield of 40 ng FFPE RNA was used as the mini-
mum QC threshold. Quality of the RNA was assessed using 
a bioanalyzer (Agilent Technologies, Santa Clara, CA), 
and a DV200 of 20% or greater was used as the minimum 
threshold.

Library preparation and sequencing

Libraries were prepared using the QuantSeq 3’ mRNA-Seq 
Library Prep Kit FWD for Illumina (Lexogen, Inc., Green-
land, NH), following the manufacturer’s instructions with 
the protocol alterations noted as follows. RNA input into 
library preparation was 40 ng for all samples. UMI Second 
Strand Synthesis Module for QuantSeq FWD (Lexogen, 
Inc., Greenland, NH) replaced Second Strand Synthesis 
Mix 1 in the workflow. All samples were processed with an 
OncoPrism-HNSCC Positive Control, OncoPrism-HNSCC 
Negative Control, and a No Template Control. The Positive 

(high scoring) and Negative (low scoring) controls were 
RNA extracted from RM-HNSCC samples as described 
above. Final libraries were sequenced to a minimum depth 
of 10 million single-end 75 base pair reads on a NextSeq500 
(Illumina, San Diego, CA), following the manufacturer’s 
protocols.

Immunohistochemistry

PD-L1 staining was performed by Mosaic Labs (Lake 
Forest, CA) using the 22C3 pharmDx antibody (Agilent 
Technologies, Inc., Santa Clara, CA) or NeoGenomics 
Laboratories (Fort Myers, FL) using the PD-L1 22C3 FDA 
(KEYTRUDA®) for HNSCC Head and Neck stain. CPS 
assessment was performed by W.H.W. or by NeoGenomics. 
H&E staining was performed by NeoGenomics as part of 
the PD-L1 22C3 test or at Cofactor Genomics using xylene 
substitute Slide Brite (Newcomer Supply, Middleton, WI), 
as detailed by manufacturers. Samples were assessed for 
tumor purity by a board- certified pathologist (EJD), with 
a minimum 10% tumor cellularity required for inclusion.

Processing of RNA sequencing data

FASTQ files were preprocessed with trim_galore/cutadapt 
version 0.4.1 to remove adapter sequences as well as reads 
with PHRED quality scores < 20 and reads that were < 20 bp. 
The trimmed reads were aligned to the human genome 
GRCh38 with STAR version 2.5.2a using the two-pass 
method as previously described (Schillebeeckx et al. 2020). 
Read counts were generated using htseq-count version 0.9.1 
and annotation from Gencode version 22 (Schillebeeckx 
et al. 2020). Only samples with a minimum of 30% exonic 
alignment and at least 800,000 unique deduplicated counts 
were included in the study.

Feature selection and biomarker training

103 patients were used to train the OncoPrism-HNSCC bio-
marker. As described previously, forward feature selection 
was performed with a logistic regression on 62 immunomod-
ulatory features to generate candidate biomarkers (Fig. 1C 
and Table S1; Schillebeeckx et al. 2020, 2022). Log2 val-
ues between 10–3 and 102 for the regularization parameter 
C were considered.

Candidate biomarkers were considered for their analyti-
cal reproducibility (variance) and clinical performance (area 
under the curve, AUC), and the final model was chosen to 
balance the two. Briefly, nine replicates from 6 patients (54 
samples) were used to measure the variance of scores of 
candidate biomarkers. OncoPrism Scores for each replicate 
in the analytic variability dataset were generated and mean 
centered for each biological sample. A single measure of 
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variability for each candidate model, defined as 4 times the 
standard deviation of the mean centered OncoPrism Scores 
(4*std), was used to evaluate variance. The final model was 

chosen to maximize clinical performance (AUC ≥ 0.76) 
while minimizing analytical variability (4*std ≤ 20).

Training and cross validation was performed using 
observational FFPE samples from patients treated with 
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Fig. 1   RNA-seq data was used to build the biomarker. A A multidi-
mensional biomarker was trained using tumor specimen RNA-seq 
gene expression data and clinical response data from 103 HNSCC 
patients. Logistic regression and forward feature selection were used 
to integrate the data (“Predictive Immune Modeling”) and produce a 
multidimensional biomarker. B Patients were segregated by outcome 
and evaluated for progression free survival (PFS). CR, complete 

response; PR, partial response; SD, stable disease, PD, progressive 
disease. CR, PR, and SD together constitute “non-progressors”. PD 
patients are “progressors”. C Candidate feature relative abundance is 
shown for each patient sample. Features are gene expression data or 
gene signatures associated with specific immune cell types. Patient 
samples are sorted by outcome label (true outcome), then by Onco-
Prism Score and PD-L1 IHC prediction
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monotherapy pembrolizumab or nivolumab. The clinical 
cut-offs for the test system were established using the two 
endpoints identified for the clinical study: clinical outcome 
(CR, PR, SD, and PD, defined by RECIST criteria; Eisen-
hauer et al. 2009) and OS (median months survived from 
the start of therapy to death or last contact). CR, PR, and 
SD patients were considered “non-progressors” while PD 
patients were considered “progressors”.

Using a bootstrapping approach, scores were generated 
for each patient to evaluate biomarker performance and 
choose a threshold. Considering n unique patient samples, 
patients are chosen n times with replacement and used for 
training a model. Using this trained model, a score (“out-of-
bag score”) is generated for the remainder patients. This pro-
cess was done 1000 times, and the out-of-bag score of each 
patient was averaged to generate the final OncoPrism Score. 
This method minimizes bias and therefore best approximates 
future performance in an independent patient cohort.

OncoPrism scores and prediction

The OncoPrism-HNSCC biomarker generates an OncoPrism 
Score from 0 to 100 that correlates with disease control and 
OS of HNSCC patients treated with anti-PD-1 monotherapy 
treatment. Higher OncoPrism Scores represent higher confi-
dence by the model that the patient will be a non-progressor. 
The median score (46) was used to set the threshold between 
predicted progressor (scores less than the median) and pre-
dicted non-progressors (scores greater than the median).

Statistics

Statistical analysis was performed using R (R Core Team 
2021). Heatmap was made using the “ComplexHeatMap” 
and “circlize” packages (Gu et al. 2014, 2016). Survival 
figures and analysis were done using the “survminer” and 
“survival” packages, and significance was determined using 
log rank methods (Therneau and Grambsch 2000; Therneau 
2023). DCR across quartiles, biomarker predictions and 
other groups, overall response rate (ORR), sensitivity, and 
specificity were compared using Fisher’s exact test.

Results

Patient selection

Pre-treatment FFPE tumor samples were collected from the 
172 patients with RM-HNSCC enrolled under the inter-
nal review board-approved PREDAPT protocol. Thirty 
patients were removed from the study for pre-analytical 
reasons such as incomplete data or unacceptable tissue 
type. All remaining patients received at least one dose of 

anti-PD-1 monotherapy (following sample collection) and 
had documented anti-PD-1 outcome data. Following tumor 
cellularity estimation, RNA extraction, library preparation, 
and sequencing, 103 samples from 11 clinical sites met all 
inclusion/exclusion and quality control criteria (Table S2). 
Table  1 compares the patient population for this study 
(“OncoPrism”) with two other large ICI studies in RM-
HNSCC (Hanna et al. 2018; Burtness et al. 2019).

Biomarker development

These 103 samples served as the training set for the develop-
ment of the biomarker. RNA-seq data were analyzed with 
a proprietary analysis pipeline to integrate gene expression 
signatures associated with eight immune cell types (Schil-
lebeeckx et al. 2020) and five additional T cell states (Schil-
lebeeckx et al. 2022), as well as other immune related gene 
expression data in each sample (Fig. 1A). Patients were 
grouped according to disease control status as determined by 
clinical assessment at 8–10 weeks (Eisenhauer et al. 2009). 
Non-progressors were patients with complete response 
(CR), partial response (PR), or stable disease (SD). Progres-
sors were patients with progressive disease (PD). Median 
progression free survival (PFS) for CR, PR, SD, and PD 
was undetermined, 8.4, 6.8, and 1.8 months, respectively 
(Fig. 1B). The gene expression data and disease control label 
served as input to a machine-learning based approach we 
term Predictive Immune Modeling to generate a multidimen-
sional biomarker that predicts disease control for anti-PD-1 
monotherapy in RM-HNSCC. Sixty-two candidate feature 
genes were pre-selected (Fig. 1C and Table S1; Schille-
beeckx et al. 2020, 2022) to minimize the risk of over-fitting, 
and a forward-feature selection method was used to select 
the features in the final model (see methods).

Performance of biomarker

To minimize inaccuracies and biased performance associ-
ated with the more traditional approach of segregating a sin-
gle training and a single validation cohort in a patient pool of 
103 samples, bootstrapping cross validation was used to best 
estimate future performance (Efron 1979). By maximizing 
the size of the training set, we better capture the diversity of 
the patient population. Considering n unique patient sam-
ples, patients are chosen n times with replacement and used 
for training a model. Using this trained model, a score (“out-
of-bag score”) is generated for the remainder of patients. 
This process was done 1000 times, and the out-of-bag score 
of each patient was averaged to generate the final Onco-
Prism Score. The OncoPrism Score, a value from 0 to 100, 
indicates the likelihood of non-progression with anti-PD-1 
monotherapy treatment.
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A receiver operating characteristic (ROC) curve was gen-
erated to assess the performance of the biomarker across all 
thresholds (Fig. 2A, orange line). The area under the curve 
(AUC) was 0.76. An AUC of 1 represents perfect perfor-
mance while an AUC of 0.5 represents performance equal 

to random chance. In contrast, the traditional, single ana-
lyte on-label diagnostic, PD-L1 IHC, had an AUC of 0.65 
(n = 100; Fig. 2A, gray line). Next we looked at the correla-
tion between patient OncoPrism Score and disease control 
(Fig. 2B). The likelihood of non-progression increased as the 

Table 1   Patient data (n=103) Characteristic Burtness et al. Hanna et al. OncoPrism

Patient number n 301 126 103
Age (median) Age 62 57 67
Gender Male 83% 83% 81%

Female 17% 17% 18%
Smoking status Current or Former 79% 52% 72%

Never 21% 48% 19%
ECOG 0 to 1 100% 85% 60%

2 or greater 0% 15% 16%
unknown – – 24%

Primary tumor site Oral cavity 27% 22% 31%
Oropharynx 38% 44% 33%
Nasopharynx – 7% –
Larynx 25% 11% 15%
Cutaneous – 10% 4%
Hypopharynx 13% – 4%
Other/Unknown – 6% 14%

Staging at diagnosis Stage I, II – 13% 18%
Stage III, IV – 87% 71%
Unknown – – 11%

HPV status p16+ 21% 40% 27%
p16-/not tested 79% 60% 73%
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Fig. 2   Higher OncoPrism Scores are associated with disease con-
trol with anti-PD-1 therapy A ROC curve showing the performance 
of OncoPrism-HNSCC compared to PD-L1 IHC across all thresh-
olds. An out-of-bag (OOB) method was used to assess performance. 
OncoPrism-HNSCC (orange) has an area under the curve (AUC) of 
0.76, while PD-L1 IHC (grey) has an AUC of 0.65. The dashed line 
(red) is performance equivalent to chance. B Patients were ranked 
along the x-axis according to their OncoPrism Score (y-axis) and 

colored according to their actual clinical outcome (progressors = grey, 
non-progressors = orange) C Samples were ranked according to their 
OncoPrism Score and divided into quartiles for assessment. The dis-
ease control rate (DCR) for all patients is represented by the solid 
line. The blue bars represent the actual DCR for each quartile not a 
mean. Significant differences among quartiles were determined using 
Fisher’s Exact test (*p < 0.05, **p < 0.01, ***p < 0.001)
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OncoPrism Score increased. This correlation between Onco-
Prism Score and disease control demonstrates the power of 
the biomarker to predict disease control with anti-PD-1 
monotherapy in a continuous manner. To quantitate this rela-
tionship, we divided OncoPrism Scores into quartiles and 
measured the Disease Control Rate (DCR) in each quartile 
(Fig. 2C). The overall DCR for all quartiles was 41%. DCR 
was 12% in the lowest quartile (OncoPrism Scores 0–35), 
23% in the second quartile (OncoPrism Scores 36–46), 64% 
in the third quartile (OncoPrism Scores 47–62), and 65% in 
the highest quartile (OncoPrism Scores 63–100). Relative 
to the DCR for all patients, non-progressors were signifi-
cantly underrepresented in the first quartile and significantly 
enriched in the third and fourth quartiles (Fisher’s exact test, 
p < 0.01).

Development of the OncoPrism‑HNSCC test utilizing 
biomarker

RM-HNSCC patients are commonly treated with anti-PD-1 
plus platinum-based chemotherapy (combination therapy) 
by default (Le et al. 2020). We sought to develop a test to 
identify patients who will benefit from anti-PD-1 monother-
apy. The biomarker and OncoPrism Score described above 

provide the foundation for OncoPrism-HNSCC, a test to 
guide this treatment decision. Because the upper two quar-
tiles of patients had significantly higher DCR than the lower 
two quartiles (p < 0.01; Fig. 2C), we used the median score 
(46) as the threshold for predicting disease control. The first 
and second quartiles combined constituted predicted pro-
gressors, while the third and fourth quartiles combined rep-
resented predicted non-progressors. This median threshold 
balances the predictive power of the test with the size of the 
patient population for whom the test would improve out-
comes relative to existing biomarkers and standards of care.

Using this categorical labeling, the DCR for predicted 
non-progressors was 65%, significantly higher than the 
DCR of 17% for predicted progressors (Fisher’s exact test, 
p < 0.001; Fig. 3A). The relative risk of progression for 
predicted progressors relative to non-progressors was 2.34 
(p < 0.001). Although we designed the model to predict dis-
ease control, Overall Response Rate (ORR) was also sig-
nificantly higher in predicted non-progressors (41%) com-
pared to predicted progressors (13%; p = 0.002; Fig. S1). 
Importantly, predicted non-progressors also had signifi-
cantly longer overall survival (OS; median = 13.7 months) 
than predicted progressors (median = 7.9 months; Fig. 3B; 
p = 0.004).
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Fig. 3   OncoPrism-HNSCC predicts disease control and overall sur-
vival (OS) better than PD-L1 IHC. A DCR is significantly higher for 
OncoPrism-HNSCC predicted non- progressors than for OncoPrism-
HNSCC predicted progressors (p < 0.001). DCR for PD- L1 CPS ≥ 20 
(“non-progressor”) is significantly higher than CPS < 20 (“progres-
sor”; p = 0.02). Bars represent the actual DCRs not a mean. Sig-
nificant differences among quartiles were determined using Fisher’s 

Exact test. B OncoPrism-HNSCC predicted non-progressors have sig-
nificantly longer OS than predicted progressors (p = 0.004; n = 103). 
OS is measured from the time of first anti-PD-1 treatment. C PD-L1 
IHC CPS ≥ 20 patients (corresponding to a PD-L1 predicted non-pro-
gressor) do not have longer OS than CPS < 20 (p = 0.7; n = 100). OS 
is measured from the time of first anti-PD-1 treatment
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OncoPrism‑HNSCC is more predictive than PD‑L1 IHC

OncoPrism-HNSCC performed well compared to the exist-
ing anti-PD-1 CDx, PD-L1 IHC. PD-L1 IHC and quantita-
tion was performed on 100 samples and used to evaluate 
PD-L1 IHC performance. Pembrolizumab is approved as 
a first-line therapy for patients with a PD-L1 IHC com-
bined positive score greater than or equal to one (CPS ≥ 1). 
Samples with a PD-L1 IHC CPS ≥ 1 had lower DCR 
(44%) than OncoPrism-HNSCC predicted non-progressors 
(65%; p = 0.02; compare Table S3 to Fig. 3A). In practice, 
CPS ≥ 20 is a more common threshold than CPS > 1 for 
monotherapy treatment decisions (Pfister et al. 2023). Even 
with this higher PD-L1 threshold (CPS ≥ 20), the DCR for 
PD-L1 IHC increases only marginally to 51%, compared to 
27% for CPS < 20 (p = 0.02; Table S3).

Additionally, OncoPrism-HNSCC outperformed PD-L1 
CPS ≥ 20 across multiple metrics, including higher sen-
sitivity (0.79 vs 0.64, p = 0.005) and specificity (0.70 vs 
0.61, p = 0.009; Table 2). While the OncoPrism-HNSCC 
and PD-L1 predictions were concordant for most samples 
(73/100), for samples where the tests disagreed, PD-L1 IHC 
had more false positives (12) and false negatives (7) than 
OncoPrism-HNSCC (6 and 2, respectively; Table S4).

Unlike with OncoPrism-HNSCC, patients with PD-L1 
CPS ≥ 20 did not have longer OS (Fig. 3C). We used the 
Cox proportional hazards model to assess the relationships 
between OncoPrism-HNSCC prediction, PD-L1 IHC CPS 
category, and survival in the 100 samples with OncoPrism-
HNSCC, PD-L1, and survival data (Fig. 4). Relative to 
OncoPrism-HNSCC predicted progressors, predicted non-
progressors had a hazard ratio (HR) of 0.51 (p < 0.01), indi-
cating a significant positive association with survival. For 

PD-L1 IHC, relative to CPS < 20 the HR for CPS ≥ 20 was 
1.18 (p = 0.51), indicating no association with survival.

OncoPrism‑HNSCC performance is similar 
across RM‑HNSCC subtypes

Although the study was not powered to statistically evalu-
ate sub-groups, OncoPrism- HNSCC performance was 
qualitatively similar across clinical variables including pri-
mary tumor site and HPV status. While the overall DCR 
varied across primary tumor sites, in each site the predicted 
non-progressors had a higher DCR than predicted progres-
sors (Table S5). Likewise, while the DCR in HPV-positive 
(p16 +) patients was higher than in HPV-negative (p16-) 
patients, as expected (Weinberger et al. 2006; Singhi and 
Westra 2010; Cai et al. 2014; Pfister et al. 2023), Onco-
Prism-HNSCC performance was similar regardless of p16 
status (Table S6). Additionally, we used Cox proportional 
hazards model to explore clinical factors associated with OS 
(Fig. S2). OncoPrism-HNSCC predicted non-progressors 
were positively associated with survival. Eastern Coopera-
tive Oncology Group (ECOG) score of 2 and a positive or 
unknown p16 status were negatively associated with sur-
vival. PD-L1 status, overall stage, smoker status, and pri-
mary tumor site were not correlated with survival.

Discussion

OncoPrism-HNSCC predicts disease control and OS in 
response to anti-PD-1 monotherapy in a 103 patient dataset 
from 11 clinical sites using out-of-bag methods (Fig. 3A–B). 
In addition, although OncoPrism-HNSCC was trained to 
predict disease control, it also significantly predicts overall 
response (Fig. S1). While PD-L1 IHC was also moderately 
predictive of DCR, PD-L1 did not predict overall response 
or OS in our study population (Fig. 3A and C; Fig. S1). 
OncoPrism-HNSCC also had significantly higher sensitivity 
and specificity than PD-L1 IHC (Table 2).

Current biomarkers in RM-HNSCC are only moderately 
predictive, causing clinicians to treat more aggressively with 
combination therapy (anti-PD-1 therapy combined with 
platinum-chemotherapy) than would be required with better 
biomarkers (Chow 2020; Le et al. 2020). In KEYNOTE-048, 
patients with PD-L1 IHC CPS ≥ 20 had only moderately 
higher disease control with pembrolizumab monotherapy 
than all monotherapy patients regardless of PD-L1 status 
(DCR of 53% vs 44%, respectively; Burtness et al. 2019). 
Likewise in our study, the 51% DCR in monotherapy-treated 
patients with CPS ≥ 20 was only moderately better than the 
39% DCR in the total monotherapy-treated patient popu-
lation (Table S3). Using the FDA approved monotherapy 
threshold of CPS ≥ 1 reduced the predictive power of PD-L1 

Table 2   Performance metrics

FPR false positive rate, FNR false negative rate, PPV positive pre-
dictive value, NPV negative predictive value, LR+ positive likelihood 
ratio, LR– negative likelihood ratio, DOR diagnostic odds ratio
a Ratio of OncoPrism to PD-L1

OncoPrism PD-L1 Ratioa

Accuracy 0.74 0.62 1.19
Sensitivity 0.79 0.64 1.23
Specificity 0.7 0.61 1.16
Prevalence 0.41 0.39 1.05
FPR 0.3 0.39 0.75
FNR 0.21 0.36 0.6
PPV 0.65 0.51 1.27
NPV 0.83 0.73 1.14
LR+ 2.66 1.63 1.63
LR− 0.3 0.59 0.51
DOR 8.76 2.75 3.18
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IHC even more. Importantly, in KEYNOTE-048, the 64% 
DCR in all combination therapy patients was higher than 
the DCR to anti-PD-1 monotherapy even in patients with 
CPS ≥ 20 (DCR = 53%). Because the DCR for combina-
tion-treated patients (regardless of PD-L1 status) is higher 
than monotherapy-treated patients even with high PD-L1, 
many clinicians default to the more aggressive combina-
tion therapy. However, treatment with chemotherapy—with 
or without anti-PD-1—causes significant patient quality 
of life issues, increased serious adverse events, and higher 
healthcare costs (Ferris et al. 2016; Harrington et al. 2017; 
Brockstein and Vokes 2023).

With any biomarker used to make patient treatment deci-
sions, it is important to avoid withholding an effective treat-
ment from patients who would benefit. OncoPrism-HNSCC 
has a higher sensitivity than PD-L1 IHC (0.79 vs. 0.64, 
p = 0.005; Table 2), corresponding to a lower number of 
false negatives wherein the test incorrectly predicts progres-
sion. In this study PD-L1 IHC had 14 false negatives com-
pared to just 9 for OncoPrism-HNSCC (Table S4). Seven 
of these false negatives were common to both tests, with 
just two false negatives unique to OncoPrism-HNSCC. In 

addition, seven patients who are PD-L1 IHC false negatives 
were correctly predicted as non-progressors by OncoPrism-
HNSCC. While there remain individual patients who would 
not receive the optimal therapy with OncoPrism-HNSCC, 
there are fewer such patients when following the OncoPrism-
HNSCC prediction compared to the existing PD-L1 IHC 
prediction. Future work will focus on further reducing false 
negatives.

OncoPrism-HNSCC predicts with high specificity 
patients who will have disease control in response to mono-
therapy, potentially enabling clinicians to avoid overtreat-
ment in a subset of patients. In our dataset, monotherapy-
treated OncoPrism-HNSCC-predicted non-progressors had 
a DCR of 65% compared to just 51% for CPS ≥ 20 (Fig. 3A). 
Future studies should compare monotherapy and combina-
tion therapy outcomes among predicted progressors and 
non-progressors. In contrast to OncoPrism-HNSCC predic-
tions, PD-L1 expression was only moderately correlated 
with monotherapy DCR in our study (Fig. 3A and Table S3), 
and not at all correlated with OS (Fig. 3C). Further, the data 
from this study indicate that relative to CPS ≥ 20, Onco-
Prism-HNSCC provides superior sensitivity (0.79 vs 0.64, 

Fig. 4   Cox proportional hazards 
model of overall survival 
(OS). Patients with complete 
OncoPrism-HNSCC and PD-L1 
data were included (n = 100). 
OncoPrism-HNSCC predicted 
non-progressors have a Hazard 
Ratio of 0.51 relative to pre-
dicted progressors (p = 0.008). 
There is no significant differ-
ence in OS between PD-L1 < 20 
and PD-L1 ≥ 20
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p = 0.005) and specificity (0.70 vs 0.61, p = 0.009) in mon-
otherapy patients relative to PD-L1 IHC (Table 2). While 
these results are limited by the lack of an independent vali-
dation set, additional studies are ongoing to validate these 
results in additional independent cohorts of patients.

Conclusions

OncoPrism-HNSCC is a novel multidimensional RNA-seq 
biomarker-based clinical test that predicts DCR, ORR, and 
OS in monotherapy anti-PD-1-treated RM-HNSCC patients. 
OncoPrism-HNSCC fills a clinical need in the treatment of 
HNSCC by identifying with high sensitivity and specificity 
patients who may benefit from monotherapy. This ability to 
better predict patient disease control to anti-PD-1 monother-
apy provides an opportunity to give patients the most effec-
tive treatment option and avoid unnecessary chemotherapy.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00432-​023-​05205-z.
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