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Abstract

A family of scaling corrections aimed to improve the chi-square approxi-
mation of goodness-of-�t test statistics in small samples, large models, and
nonnormal data was proposed in Satorra and Bentler (1994). For structural
equations models, Satorra-Bentler's (SB) scaling corrections are available in
standard computer software. Often, however, the interest is not on the overall
�t of a model, but on a test of the restrictions that a null model sayM0 im-
plies on a less restricted oneM1. If T0 and T1 denote the goodness-of-�t test
statistics associated toM0 andM1, respectively, then typically the di�eren-
ce Td = T0� T1 is used as a chi-square test statistic with degrees of freedom
equal to the di�erence on the number of independent parameters estimated
under the modelsM0 and M1. As in the case of the goodness-of-�t test, it
is of interest to scale the statistic Td in order to improve its chi-square appro-
ximation in realistic, i.e., nonasymptotic and nonnormal, applications. In a
recent paper, Satorra (1999) shows that the di�erence between two Satorra-
Bentler scaled test statistics for overall model �t does not yield the correct
SB scaled di�erence test statistic. Satorra developed an expression that per-
mits scaling the di�erence test statistic, but his formula has some practical
limitations, since it requires heavy computations that are not available in
standard computer software. The purpose of the present paper is to provide
an easy way to compute the scaled di�erence chi-square statistic from the
scaled goodness-of-�t test statistics of modelsM0 and M1. A Monte Carlo
study is provided to illustrate the performance of the competing statistics.

Keywords: Moment-structures, goodness-of-�t test, chi-square di�erence test
statistic, chi-square distribution, non-normality
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1 Introduction

Moment structure analysis is widely used in behavioural, social and economic
studies to analyse structural relations between variables, some of which may
be latent (i.e., unobservable); see, e.g., Bollen (1989), Bentler and Dudgeon
(1996), Yuan and Bentler (1997), and references therein. Commercial com-
puter programs to carry out such analysis, for a general class of structural
equation models, are available (e.g., LISREL of J�oreskog and S�orbom, 1994;
EQS of Bentler, 1995). In multi-sample analysis, data from several samples
are combined into one analysis, making it possible, among other features, to
test for across-group invariance of speci�c model parameters. Statistics that
are central in moment structure analysis are the overall goodness-of-�t test
of the model and tests of restrictions on parameters.

Asymptotic distribution-free (ADF) methods which do not require dis-
tributional assumptions on the observable variables have been developed
(Browne, 1984). The ADF methods, however, involve fourth-order sample
moments, thus they may lack robustness to small and medium-sized samples.
In the case of non-normal data, an alternative to the ADF approach is to use
a normal-theory estimation method in conjunction with asymptotic robust
standard errors and test statistics (see Satorra, 1992). Asymptotic robust
test statistics, however, may still lack robustness to small and medium-sized
samples. As an alternative to asymptotically robust test statistics, Sator-
ra and Bentler (1994; Satorra and Bentler, 1988a,b) developed a family of
corrected normal-theory test statistics which are easy to implement in prac-
tice, and which have been shown to outperform the asymptotic robust test
statistics in small and medium-sized samples (e.g., Chou, Bentler and Sa-
torra, 1991; Hu, Bentler and Kano, 1992; Curran, West and Finch, 1996).
Bentler and Yuan (1999) provide a recent comparison of alternative test met-
hods for small samples. Extension of Satorra-Bentler (SB)'s corrections to
goodness-of-�t test statistics in the case of the analysis of augmented mo-
ment structures, multi-samples and categorical data, have been discussed
respectively by Satorra (1992) and Muth�en (1993).

Although SB corrections have been available for some time, formal deri-
vations of SB corrections to the case of nested model comparisons have not
been available. The obvious and generally accepted approach of computing
separate SB-corrected test statistics for each of two nested models, and then
computing the di�erence between them (e.g., Byrne and Campbell, 1999),
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turns out to be an incorrect way to obtain a scaled SB di�erence test statis-
tic. The di�erence could be even be negative, which is an improper value for
a chi-square variate. In a recent paper, Satorra (1999) gives speci�c formulae
for extension of SB corrections to score (Lagrange multiplier), di�erence and
Wald test statistics. He showed that the di�erence between two SB-scaled
test statistics does not necessarily correspond to the scaled chi-square di�e-
rence test statistic. The purpose of the present paper is to provide a simple
expression that allows a researcher to correctly compute the SB di�erence
test statistic when the SB-scaled chi-square goodness of �t tests for the cor-
responding two nested models are available. The formula is simple to use and
provides an alternative scaled test for evaluating a speci�c set of restrictions.

The paper is structured as follows. In Section 2 we describe goodness-of-
�t tests in weighted least squares analysis, and the corresponding SB scaling
corrections. In Section 3 we describe the proposed procedure for computing
the SB scaled di�erence test statistic. Section 4 concludes with an illustrati-
on.

2 Goodness-of-�t tests

Let � and s be p-dimensional vectors of population and sample moments
respectively, where s tends in probability to � as sample size n! +1. Letp
ns be asymptotically normally distributed with a �nite asymptotic variance

matrix � (p�p). Consider the modelM0 : � = �(�) for the moment vector �,
where �(:) is a twice-continuously di�erentiable vector-valued function of �,
a q-dimensional parameter vector. Consider a WLS estimator �̂ of � de�ned
as the minimizer of

FV (�) := (s� �)0V̂ (s� �)

over the parameter space, where V̂ (p � p ), converges in probability to
V , a positive de�nite matrix. A typical test statistic used for testing the
goodness-of �t-of the model M0 is T0 := nFV (s; �̂), where �̂ := �(�̂). It is
widely known that, when the modelM0 holds and V satis�es the asymptotic
optimality (AO) condition of V = ��1, then T0 is asymptotically chi-square
distributed with degrees of freedom (df) r0 = p�q. In practice, however, AO
may not hold, and concern on the quality of the chi-square approximation do
arise. For general types of distributions, i.e., when AO does not necessarily
hold, T0 is asymptotically distributed as a mixture of chi-square distributions
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of 1 degree of freedom (df) (see Satorra and Bentler, 1986); that is

T0
L

!
rX

j=1

�j�
2

j
; (1)

as n ! 1, where the �2
j
are independent chi-square variables of 1 df, and

the �j are the non-null eigenvalues of the matrix U0�, with

U0 := V � V�(�0V�)�1�0V

and � := (@=@�0)�(�). When AO holds, then of course the �j's are equal to
1 and the asymptotic exact chi-square distribution applies. In the context of
structural models and for general types of distributions, Satorra and Bentler
(1994; Satorra and Bentler, 1988a,b) proposed replacing T by the scaled
statistic

T = T=ĉ; (2)

where ĉ denotes a consistent estimator of

c :=
1

r
trU0� =

1

r
tr fV �g �

1

r
tr
n
(�0V�)�1�0V �V�

o
: (3)

Note that the SB scaled test statistic has the same mean as the corresponding
�2
r
variate. The SB scaled goodness-of-�t test has been shown to outperform

alternative test statistics in a variety of models and non-normal distributions
(e.g., Chou, Bentler and Satorra, 1991; Hu, Bentler and Kano, 1992; Curran,
West and Finch, 1996). Of course, when asymptotic optimality holds, this
statistic will have the same asymptotic distribution as the unscaled statistic
T0. Note that a consistent estimator �̂ of � under general distribution con-
ditions is required to compute the scaling factor ĉ. In structural equation
models, a consistent estimator of � is readily available from the raw data
(e.g., Satorra and Bentler, 1994). A goodness-of-�t statistic which can be
used given any estimation method, is given by

T ? = n(s� �̂)0f�̂�1 � �̂�1�̂(�̂0�̂�1�̂)�1�̂0�̂�1g(s� �̂); (4)

When �̂ is the (distribution-free) consistent estimator of � in (16) below,
then T ? will be called the asymptotic robust goodness-of-�t test statistic,
since it is an asymptotic chi-square statistic regardless of the distribution
of observable variables. In the context of single-sample covariance structure
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analysis, this statistic was �rst introduced by Browne (1984). Its performance
was studied by Yuan and Bentler (1998), who found that very large samples
are required to obtain acceptable performance in models with intermediate
to large degrees of freedom.

3 Testing a set of restrictions

Consider now the case of testing a speci�c set of restrictions on the model.
Consider a re-parameterezation of M0 as � = �?(�) with a(�) = a0, where
� is a (q + m)-dimensional vector of parameters, a0 is an m � 1 vector of
constants, and �?(:) and a(:) are twice-continuously di�erentiable vector-
valued functions of � 2 �1, a compact subset of Rq+m. Our interest now
is in the test of the null hypothesis H0 : a(�) = a0 against the alternative
H1 : a(�) 6= a0. De�ne the Jacobian matrices

� (p� (q +m)) := (@=@�0)�?(�) and A (m� (q +m)) := (@=@�0)a(�);

which we assume to be regular at the value of � associated with �0, say �0,
with A of full row rank. Let P ((q + m) � (q + m)) := �0V� and denote
byM1 the less restricted model � = �?(�). The goodness-of-�t test statistic
associated with M1 is thus T1 = nF (s; ~�), where ~� is the �tted moment
vector in model M1, now with associated degrees of freedom r1 = r0 � m

and scaling factor c1 given by

c1 :=
1

r1
trU1� =

1

r1
tr fV �g �

1

r1
tr
n
P�1�0V �V �

o
(5)

where
U1 := V � V �P�1�0V:

When both modelsM0 and M1 are �tted, then we can test the restrictions
a(�) = a0 using the di�erence test statistic Td = T0�T1, where under the null
hypothesis, it is intended that Td have a chi-square distributed with degrees
of freedom m = r0 � r1.

In order to improve the chi-square approximation in the case of large
values of m and moderate or small sample sizes, we are interested in the SB
scaled di�erence test statistic, say �Td. Extending his earlier work (Satorra,
1989), Satorra (1999) recently provided formulae for computing such scaled

5



statistics for the di�erence, Score and Wald test statistics. From Satorra's
formulae it becomes aparent that the SB scaled di�erence test statistic does
not coincide with the di�erence between the two SB scaled goodness-of-�t
test statistics that arise when �tting the two nested models; that is, in general
�Td 6= �T0 � �T1, where by �T0 and �T1 we denote the SB scaled goodness-of-�t
test statistics arising when �tting the models M0 and M1 respectively. In
Satorra (1999), the SB scaled di�erence test statistic is de�ned as �Td = Td=ĉd
where ĉd is a consistent estimator of

cd :=
1

m
trUd� (6)

with
Ud = V�P�1A0(AP�1A0)�1AP�1�0V: (7)

A practical problem with this expression for the scaled di�erence test
statistic is it requires computations that are outside the standard output
of current structural equation modeling programs. Furthermore, di�erence
tests are usually hand computed from di�erent modeling runs. Here we will
show how to combine the scaling corrections c0 and c1 associated to the two
�tted modelsM0 and M1 in order to compute the scaling correction cd for
the di�erence test statistic. It turns out that the computations are extremely
simply and can be carried out using a hand calculator.

First we show that Ud = U0 � U1. Note that the model M0 implies a
speci�c function � = �(�), that by the implicit function theorem is continuous
di�erentiable. Consider thus the matrixH = @�(�)=@�0. Clearly, it holds that
� = �H and AH = 0 (recall that A is a matrix m� (q +m) ), that is, the
matrix A and H are orthogonal complements. We have

U0 � U1 = V �(�0V �)�1�0V � V�H(H 0�0V�H)�1H 0�0V

= V�
n
P�1 �H(H 0PH)�1H 0

o
�0V

since
P�1 �H(H 0PH)�1H 0 = P�1A0(AP�1A0)�1AP�1;

as A and H are orthogonal complements (see Rao, 1973, p. 77). We thus
have the basic result that

Ud = U0 � U1:
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Now, since r0c0 � r1c1 = tr (U0 � U1)� = trUd� = mcd; we obtain cd =
(r0c0�r1c1)=m: This means that consistent estimation of cd is available from
consistent estimates of the scaling corrections c1 and c1 associated with the
null and alternative model respectively.

Thus the proposed practical procedure is as follows. When �tting models
M0 and M1, we obtain the unscaled and scaled goodness-of-�t tests, that
is T0 and �T0 when �tting M0, and T1 and �T1 when �tting M1. Let r0 and
r1 be the associated degrees of freedom of the goodness-of-�t test statistics.
Then we compute the scaling corrections ĉ0 = T0= �T0 and ĉ1 = T1= �T1, and
the usual chi-square di�erence Td = T0 � T1. The SB scaled di�erence test
can thus be computed as �Td = T=ĉd; where

ĉd = (r0ĉ0 � r1ĉ1)=m:

When the two scaling corrections are equal, i.e. when c0 = c1 = c then
cd = c and thus �Td = �T0� �T1. This is the case, for example, when c0 = c1 = 1,
i.e., when both goodness-of-�t tests are asymptotically chi-square statistics.
In general, however, c0 6= c1 and then the di�erence between two SB scaled
goodness of �t test statistics does not yield the SB scaled di�erence test
statistic.

Note that the above procedure applies to a general modeling setting. The
vector of parameters � to be modeled may contain various types of moments:
means, product-moments, frequencies (proportions), and so forth. Thus, the
procedure applies to a variety of techniques, such as factor analysis, simulta-
neous equations for continuous variables, log-linear multinomial parametric
models, etc.. It can easily be seen that the procedure applies also in the
case where the matrix � is singular, and when the data is composed of va-
rious samples, as in multi-sample analysis. The results apply also to other
estimation methods, e.g., pseudo ML estimation.

It is important to recognize that a competitor to the statistic �Td will be
the di�erence between the robust goodness-of-�t test statistics associated
with the modelsM0 andM1; that is, an asymptotic chi-square test statistic
for H0 is just T ?

d
:= T ?

0
� T ?

1
, where T ?

0
and T ?

1
are the goodness-of-�t test

statistics associated to the models M0 and M1 respectively. In the next
section, we will illustrate using Monte Carlo simulation the small sample size
performance of the competing test statistics for the above mentioned null
hypothesis H0.
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4 Illustration

In this section we ilustrate in a simple model context of a regression with
errors in variables the performance in �nite samples of three test statistics.
We consider a regression equation

y?
gi
= �xgi + vgi; i = 1; : : : ; ng; (8)

where for case i in group g (g = 1; 2), y?
gi
and xgi are the values of the response

and explanatory variables, respectively, vgi is the value of the disturbance
term, and � is the regression coe�cient. The model assumes that xgi is
unobservable, but there are two observable variables x?

1gi
and x?

2gi
related to

xgi by the following measurement-error equations

x?
1gi

= xgi + u1gi; x?
2gi

= xgi + u2gi; (9)

where u1gi and u2gi are mutually independent and also independent of vgi
and xgi. It is assumed that the observations are independent and identically
distributed within each group. Equations (8) and (9) with the associated
assumptions yield an identi�ed model (see Fuller (1987) for a comprehensive
overview of measurement-error models in regression analysis). Inference is
usually carried out in this type of model under the assumption that the
observable variables are normally distributed. Write the model of (8) and
(9) as

zgi = ��gi; i = 1; 2; : : : ; n; (10)

where

zgi :=

0
B@

y?
gi

x?
1gi

x?
2gi

1
CA ; �gi :=

0
BBB@

xgi
vgi
u1gi
u2gi

1
CCCA

and

� :=

0
B@

� 1 0 0
1 0 1 0
1 0 0 1

1
CA : (11)

De�ne

� := E�gi�
0

gi
=

0
BBB@

�xx 0 0 0
0 �vv 0 0
0 0 �uu 0
0 0 0 �uu

1
CCCA ; (12)
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and the parameter vector � := (�vv; �xx; �uu; �)0. Under this set-up, we obtain
the moment structure

� := ���0 = �(�); (13)

where �(:), �(:) and �(:) are (twice-continuously di�erentiable) matrix-
valued functions of �, as deduced from (11), (12) and (13). Note that the
model restricts the variances of u1 and u2 by equality. This is a setting of
two-sample data, where the population and sample vectors � and s are de-
�ned as s = (�0

1
; �0

2
)0 and s = (s0

1
; s0

2
)0, where �0

g
= vecSg and s0

g
= vecSg,

with

Sg :=
1

ng

ngX
i=1

zgiz
0

gi
:

Here \vec" denotes the column-wise vectorisation operator (see Magnus and
Neudecker, 1999, for full details on this operator). We consider the estimation
of the model using weighted least squares under the assumption of normality.
That is, the matrix V (see above) has the form

V̂ := block diag(
n1

n
V̂1;

n2

n
V̂2) (14)

and V̂g = 1

2
(Sg�1 
 Sg

�1), g = 1; 2. Clearly, when there is independence
across samples, the asymptotic variance matrix of

p
ns is of the form

� = block diag(
n

n1
�1;

n

n2
�2); (15)

where �g is the asymptotic variance of
p
ngsg, g = 1; 2. We further assume

that the matrices Sg and �g are positive de�nite, and that ng=n ! fg > 0,
as n ! +1 (g = 1; 2); in this case, a distribution-free consistent estimator
of � is

�̂ := block diag(
n

n1
�̂1;

n

n2
�̂2); (16)

where

�̂g :=
1

ng � 1

ngX
i=1

(dgi � sg)(dgi � sg)
0; (17)

with dgi := vec zgiz
0

gi
.

The Monte Carlo study generates two-sample data from the above mo-
del. Two models are �tted. Model M0 has the parameters restricted across
groups, and model M1 has parameters that are unrestricted across groups.
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For each of the estimated models, we compute the goodness-of-�t test sta-
tistics T0 and T1, the SB scaled statistics �T0 and �T1, and the robust test
statistics T ?

0
and T ?

1
. To test the hypothesis of parameter invariance across-

samples, we consider the competing statistics Td = T0 � T1, T ?

d
= T ?

0
� T ?

1
,

d �T = �T0 � �T1 and �nally, the proposed statistic �Td. Note that only T ?

d
is

asymptotically an exact chi-square statistic. Our conjecture is that for non-
normal data, small samples and/or models with large degrees of freedom, the
statistic �Td will perform the best.

We obtained replications of the above statistics for various combinations
of sample sizes, ranging from a small sample size to an intermediately large
sample size. Results are reported in Table 1 and also in Figure 1, where the
empirical p-values of the various statistics are �tted against the theoretical
ones corresponding to a uniform distribution. In all the replications we used
�0 = (1; 1; :3; 2)0. The distributions of v and x were independent conveniently
scaled zero mean and unit variance chi-squared of 1 df (i.e., a highly non-
normal distribution); the distribution of u1 and u2 were set to be normal,
mutually independent, and independent of v and x. The normal-theory GLS
estimation method described in Section 2 was used. The restricted model im-
posed across-group invariance of model parameters. In each replication, we
computed the statistics mentioned above, corresponding to the null hypot-
hesis of invariance of cross-sample model parameters. Clearly, in our Monte
Carlo set-up, the null hypothesis holds true, with the null distribution of the
statistics being chi-square with m = 4 degrees of freedom. Note that in our
Monte Carlo set-up, severe non-normality of random constituents of the mo-
del requires the use of robust and/or corrected versions of the di�erence test
statistic. We note that the normal-theory chi-square goodness-of-�t T1 of the
unrestricted model (i.e., the model that does not restrict parameters across
groups) is an asymptotic chi-square statistic despite non-normality of the
data (this follows from the asymptotic robustness theory for multi-samples;
cf., Satorra, 1992). In contrast, the normal-theory chi-square goodness of �t
T0 of the restricted model (i.e., the model that imposes parameter invariance
across-samples) is not necessarily an asymptotic chi-square statistic (since
variances of non-normal constituents of the model are restricted by equality
across-groups; cf., Satorra, 1992).

As shown in Table 1, in our speci�c model context, in the smaller sample,
the SB scaled statistic, �Td, seems to outperform the alternative robust test
statistic T ?

d
. As expected from theory, in the case of the large sample, T ?

d
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Table 1: Monte Carlo results:
empirical signi�cance levels of test statistics

nominal signi�cance levels: 1% 5% 10% 20%
n1 = 100 and n2 = 120

�Td 2.7 8.5 13.7 23.1
T ?

d
3.6 10.6 19.3 32.0

Td 24.8 39.5 50.1 62.1
d �T 76.8 77.5 78.2 78.9

n1 = 800 and n2 = 900

�Td 1.2 7.0 11.4 19.9
T ?

d
.5 4.3 11.0 21.7

Td 29.8 43.1 52.5 62.8
d �T 67.5 68.4 69.1 70

outperforms the alternative test statistics. Especially interesting is that the
statistic d �T = �T0� �T1 performs very badly indeed. That is, doing the presu-
mably natural thing, simply computing the di�erence between two SB scaled
chi-square statistics, yields a very poorly performing test when evaluated by
the chi-square distribution.
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