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Dimensionless numbers are very useful in characterizing mechanical behavior because their magnitude
can often be interpreted as the relative importance of competing forces that will influence mechanical
behavior in different ways. One dimensionless number, the Womersley number (o), is sometimes used
to describe the unsteady nature of fluid flow in response to an unsteady pressure gradient; i.¢., whether
the resulting fluid flow is quasi-steady or not. Fluids surround organisms which themselves contain fluid
compartments; the behaviors exhibited by these biologically-important fluids (e.g. air, water, or blood)
are physiologically significant because they will determine to a large extent the rates of mass and heat
exchange and the force production between an organism and its environment or between different parts
of an organism.

In the biological literature, the use of the Womersley number is usually confined to a single geometry:
the case of flow inside a circular cylinder. We summarize the evidence for a broader role of the
Womersley number in characterizing unsteady flow than indicated by this geometrical restriction. For
the specific category of internal flow, we show that the exact analytical solution for unsteady flow
between two parallel walls predicts the same pattern of fluid behavior identified earlier for flow inside
cylinders; i.e., a dichotomy in fluid behavior for values of Wo < 1 and Wo > 1. When Wo < 1, the flow
is predicted to faithfully track the oscillating pressure gradient, and the velocity profiles exhibit a
parabolic shape such that the fluid oscillating with the greatest amplitude is farthest from the walls
(“quasi-steady” behavior). When Wo > 1, the velocity profiles are no longer parabolic, and the flow
is phase-shifted in time relative to the oscillating pressure gradient. The amplitude of the oscillating fluid

may either increase or decrease as Wo > 1, as described in the text.

Introduction

Organisms live surrounded by fluids: air and water. In
addition, organisms are filled with fluid compart-
ments, such as circulatory systems or gastrovascular
cavities (e.g. Vogel, 1992). The fluid flow adjacent to
the external and internal body parts of organisms
affects a great many important physiological func-
tions, such as the rate of mass exchange between a
body part and the surrounding fluid (e.g. oxygen
uptake, nitrogenous waste release, or chemical signal
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interception), heat exchange, or the production of
forces in locomotion (Denny, 1993; Vogel, 1994a).
This fluid flow is frequently unsteady from the
frame of reference of the body part; this can occur
either because the flow is unsteady when it reaches a
body part, or because the body parts themselves
undergo oscillatory movements (Daniel, 1984; Vogel,
1994a).

Even a qualitative description of physiological
function is greatly complicated by the consideration
of unsteady influences, and therefore a common
question is, when can the unsteady nature of the flow
be safely ignored? Of course, the significance of

© 1998 Academic Press Limited



64 C. LOUDON AND A. TORDESILLAS

unsteady flow goes beyond the potential inconve-
nience to the physiologist; unsteady flow may have
unexpected or non-intuitive influences on function.
The most dramatic illustration of this is probably the
discovery of novel unsteady ways of generating lift by
insect wings (Weis-Fogh, 1973; Ellington, 1984).
Simple methods to evaluate aspects of the behavior of
unsteady flow are thus of broad utility.

A dimensionless quantity that may serve as a
general-purpose indicator of the nature of unsteady
flow is the Womersley number, Wo,

L |n
Wo:i\/; (1)

where L is the characteristic length in m; » is the
frequency of the unsteady flow or movements in
radians/s (n = 2nf where f is frequency in cycles/s),
and v is the kinematic viscosity of the fluid in m?s.
At the present time this dimensionless parameter is
used almost exclusively for cases of flow inside
circular cylinders, at least in the biological literature
(e.g. Pedley er al., 1977; Caro et al., 1978; Daniel
et al., 1989; Vogel, 1994a), presumably because this
is the geometry for which a mathematical foun-
dation has been laid in an explicit biological
context. Four decades ago such a foundation was
laid in a study on flow in mammalian blood vessels
(Womersley, 1955); this flow is unsteady because of
the rhythmic nature of pressure applied by a
beating heart. Womersley identified a dimensionless
parameter group (equation 1, L = internal diameter
of the cylindrical vessel), later named after him,
useful in indicating a dichotomy in fluid behavior:
when Wo < 1, the fluid behaves in a “quasi-steady”
manner, while for Wo > 1, the behavior of the fluid
deviates more and more from quasi-steady behav-
ior. Note that this (standard) terminology can be
confusing: “quasi-steady” does not mean “approxi-
mately steady” (i.e., not changing very much in
time). Rather, “quasi-steady” means that at any
time, the instantaneous flow rate is determined by
the instantaneous pressure gradient. Thus, quasi-
steady flow can actually oscillate more vigorously
than non-quasi-steady flow simply because it will
keep up with a rapidly changing pressure gradient.
Womersley’s contribution was evaluated by Mc-
Donald (1955, p. 547), who pointed out that there
were “no theoretical innovations but it is original in
that it is put in a form that can be computed
easily” (this ease of computation assumes famili-
arity with Bessel functions and Fourier series).
Parallel but separate mathematical treatments at
that same time in the engineering literature may be

accessed by consulting Schlichting (1979) or White
(1991).

The purpose of this study is to document the more
general use of the Womersley number, i.e., for flow
situations other than inside circular cylinders. In fluid
mechanical terms, the fundamental importance of Wo
is demonstrated by its appearance in non-dimensional
forms of the fluid mechanical Navier—Stokes
equations along with another dimensionless number,
the Reynolds number (Re)

LU,
Ty

Re )
where U is a characteristic velocity [e.g. p. 54, Happel
& Brenner (1965) the “vibrational Reynolds number”
L’n/vis used instead of Wo; or p. 131 in Fung (1997)].
Thus, if Re and Wo are the same for two
geometrically similar flows, the flows are considered
“dynamically similar” meaning that the (dimension-
less) solutions for velocity are identical (Fung, 1997,
p. 131) whether or not the solutions can be derived.
Exact solutions of the Navier-Stokes equations for
unsteady flow are possible only for very simple
geometries or restricted boundary conditions.

In many biological applications an investigator
may need only a qualitative indicator of fluid
behavior. Because of its appearance in the Navier—
Stokes equations, Wo is such a qualitative indicator
for unsteady flow behavior. Before associations may
be made between unsteady fluid behaviors and
magnitudes of Wo, the appropriate foundation must
be Iaid for the relevant physical setting (which will
include the geometry and Re range).

To extend the present foundation for the appli-
cation of Wo in an explicit biological context, we
consider another case of internal flow. We provide the
exact analytical solutions for the unsteady flow
between two parallel walls that results from a
sinusoidally-applied pressure gradient (solutions for
velocity, volume flow rate, and velocity gradient at
the wall). We report these solutions in a form more
accessible to a broad biological audience than usually
found in the fluid mechanical engineering literature,
Le., the solutions are not left in differential, integral,
or complex form. While the direct applications of
these mathematical solutions are restricted to cases of
flow through gaps of appropriate geometry, the value
of considering the general patterns of fluid behavior
described by these equations is that these patterns will
approximate the fluid behavior for many other
geometries for which exact solutions are not available.
We tabulate examples of dimensionless parameters
similar to the Womersley number, primarily from the
engineering literature, both to alert users to
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differences in notation and definition and to
underscore that the Womersley number is of more
general applicability than currently recognized in the
biological literature.

Mathematical Solutions for Internal Flow Driven by an
Oscillating Pressure Gradient

CASE OF ONE-DIMENSIONAL FLOW BETWEEN TWO
PARALLEL FLAT PLATES

This is the simplest possible example of an internal
flow geometry with which to discuss the patterns of
fluid flow with changing values of Wo. Consider the
one-dimensional flow of a fluid of density p and
dynamic viscosity u between two flat parallel plates of
length / separated by a distance 2a (2a = L), as
illustrated in Fig. 1.

The governing equation of motion of the fluid is
given by the following form of the Navier—Stokes
equation

Pu(y,t) pluyt) _10p
oy’ u 0t uodx

)

where u(yp,t) represents the velocity of the fluid in the
x direction, and Jp/0x is the pressure gradient. The
boundary conditions follow the standard ‘‘no-slip”
rule:

u(—a,ty=0, u(a,t) =0 for all «. ()]
Consider a pressure gradient dp/dx which is periodic

in time, namely,

@_p _pl___ int
ox I Ae )

where the frequency n was defined above (equation 1),

Direction

of flow
o ———

F1G. 1. One-dimensional fluid flow (in x direction) between two
fixed parallel flat plates.

the constant A4 is real, and i is \/: 1. [Note that
e™ = cos(nt) + i sin(nt).]

Although the solution for velocity in this case may
be found in the engineering literature (e.g. Landau &
Lifshitz, 1959, p. 95; Kurzweg, 1985, p.292), it is
reported in complex form, namely,

cosh< Wo i X)
4 a

ulyt “inp - cosh(Wo i'?) e, (6)

and hence the reader must solve for the real part of
this solution (discarding the imaginary components).
In order to make the information contained in this
mathematical expression more accessible to a broad
biological audience, we therefore present the solutions
for velocity, total volume flow rate, and the velocity
gradient at the wall in explicit (real) form.
The real part of eqn (6) is

u(t) = ni/;y {[sinh(bl(y)sin(Dz(y)
+ sinh®y(y)sin®;(y)]cos (nt)

+ [y — cosh®(y)cosPy)

- cosh(Dz(y)costb,(y)]sin(nz)}, @)

where

O,(y) = % (1 + %) Ox(y) = % (1 - %) ®)

y = cosh(\/EWo) + cos(ﬁWo).

The amplitude of this oscillating velocity, ., is:
Unar =
n%y {[sinhd).(y)sind)z(y) + sinh®y()sin® ()]

+ [y — cosh®(y)cosP(y)

- COSh(I)z(y)COSCD|(y)]2}O'5 )

The volume flow rate of the fluid through a unit
depth, Q(r), is given by

o) = j u(v,1)dy (10)
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or

0=

-2/4—03{“((9] —9) cos(nt)

H \/EW03
_ (®| + @2) — \/EWO

\/EW03

sin(nt)}, an

where

o = smh(:y{ZWo), 0, = sin(, fy2 Wo)‘

The amplitude of this oscillating volume flow rate,

Qnm Xy iS

(12)

to aid in the numerical approximation of velocity at
any point in time. It is worth noting that
mathematically less complex expressions for the same
geometry (written as series approximations) appear in
White (1991; pp. 135-136). Because the relationship of
velocity to the other parameters changes so drastically
with Wo, White supplied different equations for the
two cases of Wo <2 and Wo > 2 (note that White
used a different notation: White’s w* = Wo?).

Fluid Behavior Predicted from the Magnitude of Wo

The equations supplied above for the case of flow
between parallel flat plates predict fluid behavior

Qmax =

244° <sinh(\/§ Wo))2 N (sin(\/z— W0)>
Y

p Wo' Y

\/5 Wo[sinh(ﬁ Wo) + sin(ﬁ Wo)l N
Y

Wo* (13)

The velocity gradient at the wall is

du(a,t)= —A Wo

dy \/Enpay

{[sinh(ﬁ Wo) + sin(\/2Wo)lcos (nt)

+ [sinh(\/2Wo) — sin(,/2 Wo)]sin(nt)}

(14

_ _du(—a,)
=5

The maximum velocity gradient [the amplitude of
eqn (14)], (dufa,n)/dy)me, is

du(a,t)
dy Mmax

- fl p”;oy / [sinh(y/2Wo)P + [sin(\/2Wa] (15)

CASE OF ONE-DIMENSIONAL FLOW INSIDE A CIRCULAR
CYLINDER

As already noted, a mathematical expression
allowing the prediction of velocity profiles for the case
of flow inside a circular cylinder subjected to a
longitudinal oscillating pressure gradient may be
found in Womersley (1955). Because that equation
contains Bessel functions, Womersley supplied tables

which is qualitatively similar to that seen in the case
of flow inside a cylinder. Therefore, although the
graphs below will specifically correspond to the case
of flow between parallel flat plates, the two cases will
be discussed together, with quantitative differences
identified when appropriate. This allows generaliz-
ations to be made for flow inside biological structures
for the range of geometries that encompass these two
cases (subject to the assumptions discussed below).

VELOCITY PROFILES

A generalization that may be made for any spatial
location within an enclosed fluid subjected to an
oscillating pressure gradient as defined above (e. g. the
fluid is confined to one-dimensional motion) is that
the velocity at that point will vary sinusoidally with
the same frequency as the driving pressure gradient
(for a given Wo). This becomes clear from
examination of eqn (7) above [or the series
approximations in White (1991) for the cylindrical
case]. Note that for any given Wo (ie. a given
frequency, gap size, and fluid viscosity) and y
(position relative to a wall), eqn (7) is simply a cosine
term added to a sine term of the same frequency but
different amplitude; ie., eqn (7) reduces to
u(t) = cicos(nt) + c,sin(ns) which in turn can be
simplified as u(r) = c;cos(nt — ¢) where ¢; = /c? + ¢
[for useful discussion of trigonometric properties see
Caro et al. (1978, pp. 106-129)]. These velocity
oscillations may be out of phase with the driving
pressure gradient and the amplitude of the velocity
oscillations may be affected; the magnitude of Wo
will determine both the degree of this phase shift
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Time course of pressure gradient causing flow:

-A

Pressure gradient (dp/dx)
o

Resulting velocity profiles at eight points during cycle:

SIS SIS SIS LSS Sl Sl LSS AL
Wo = 0.1  —|
ST Ty Ry Y A A e R
Y o, Yoo, S A N A S S
Wo =1
///,f’ //// ///'/ /// /// /// s /. '//,'/ 4 7 /’//"/ VT 4
VLA S LSS S SSSS LesS L ALS
Wo =10
ey AN N AN VA

F1G. 2. Velocity profiles between two flat plates at eight points in time during a single cycle of a sinusoidally-varying pressure gradient
for three values of the dimensionless Womersley number. The length of a horizontal arrow indicates the magnitude of the velocity for
that location and is non-dimensionalized by dividing by the maximum velocity at any location during a complete cycle. A4 is assumed to

be a positive constant.

and the change in amplitude relative to the steady
state case.

The effect of Wo on this behavior of the fluid can
most easily be visualized by examining velocity flow
profiles. Examples of velocity profiles for different
values of Wo at eight different points in time during
a single cycle of an oscillating pressure gradient (Fig.
2) show many characteristics shared by fluid behavior
inside circular cylinders (Caro et al., 1978). When
Wo < 1, the fluid behaves in a quasi-steady manner:
the velocity profile corresponds closely to that
expected for the instantaneous value of the pressure
gradient driving the flow (p/0x). For example, when
the pressure gradient is zero (dp/dx = 0), the velocity
of the fluid is negligible at every point across the gap.
When Wo = 1, the velocity flow profiles still exhibit
the rounded Poiseuille shape but they begin to show
a phase lag with respect to the pressure gradient; e.g.

when the pressure gradient is zero there is still
perceptible flow in the decelerating fluid (Fig. 2). As
Wo increases further (e.g., Wo = 10, Fig. 2), the phase
lag becomes much more pronounced and the velocity
profiles change shape; the maximum velocity is no
longer centered between the two plates.

Another change in the flow that occurs with an
increase in Wo is a change in the amplitude of the
velocity oscillations; this cannot be seen in Fig. 2
because the velocity profiles were drawn to different
scales for different Wo values to make differences in
their shapes visible. The amplitude of the velocity
oscillations will show the same basic pattern for all
spatial locations; Fig. 3 shows the predictions at the
midplane (y = 0). It is usual to present graphs such as
this in dimensionless form to present as general a
conclusion as possible. In Fig. 3 the velocity at the
midplane (#(0,¢)) is normalized relative t0 e, the
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maximum steady velocity that would result if the
driving pressure gradient was held constant at its
minimum (i.e. greatest negative) value:

Aa’
a‘ - _A9 Usteady, y =0 = 7#-

(16)
[eqn (16) may be found in any introductory fluid
mechanics textbook such as Fox & McDonald
(1978)).

Figure 3(a) shows a single oscillation of the
pressure gradient. In Fig. 3(b) the resulting velocity
oscillations are depicted for the corresponding points
in time during this single cycle (time is normalized by
the length of the period). Thus, Fig. 3 illustrates that
for low Wo (Wo < 1), the amplitude of the oscillating
velocity is approximately equal to u,..,,. However, as
Wo exceeds 1 in magnitude, the amplitude of the
oscillating velocity quickly declines relative to the
steady-state case.

While the dimensionless presentation seen in Fig. 3
is very useful, it does obscure an important feature of
the fluid behavior that is more obvious when velocity
is graphed without normalizing relative to the
steady-state standard. This feature is that the
(non-normalized) velocity oscillations will either
increase or diminish in amplitude depending on
whether the change in Wo is caused by a change in
size (a) or frequency (n) (Fig. 4). This fact is not
obvious from Fig. 3 simply because u(y,t) scales
differently than u,.. with a and n [comparing eqn (7)

(a)

Pressure gradient (dp/dx)
[=T S

el
J_/ \ time/T
-A

(b)
- 1__A Wo = 0.1
3 N /Wo=1
< D /7 _Wo=2
= P <
E 0 ¢ Ty —
'g \\ 27 wo =5 time/T
2 147

Fic. 3. (a) Sinusoidally-varying pressure gradient driving flow
between flat plates (4 is assumed to be a positive constant). (b) The
resulting sinusoidally-varying velocity undergoes both a phase shift
and an amplitude change as Wo increases. The velocity at midplane
(y =0) is shown for four values of Wo, and is normalized by
dividing by the steady-state velocity defined in the text. A single
cycle covers the same distance on the x-axis when the time is
normalized by dividing by T, the period (the length of time of 1
cycle).

(a)

T

4 J/ \ time/T>
(b)

comparing different frequencies (n)

Pressure gradient (dp/dx)

o Wo =0.1

1 7 Wo=1

> 4 Wo =2

] /7 _

» S AL A -

&5 Z Wo=5

% , time/T

=

=)

I

Eay =

- Wo \11/ ~Wo=2
7 .

*? P S time/T

19 hge—

5] . .’ -

E AL Wo =5

FiG. 4. (a) Sinusoidally-varing pressure gradient driving flow
between flat plates (A is assumed to be a positive constant). Same
as Fig. 3(a). (b) and (c) The resulting sinusoidally-varying velocity
undergoes both a phase shift and an amplitude change as Wo
increases. The velocity halfway between the plates (y = 0) is shown,
but unlike Fig. 3 is not normalized relative to a standard. (b) Wo
increases by increasing », holding a constant. The amplitude of the
velocity oscillations diminishes with increasing Wo. (c) Wo
increases by increasing a, holding n constant. The amplitude of the
velocity oscillations increases with increasing Wo until Wo ~ 3.
The velocity oscillations corresponding to Wo = 0.1 are not
graphed because they are not perceptibly different from the line
marking the x-axis.

with eqn (16) noting that 4/np may be written as
Aa*|Woy].

In Fig. 4, graphs (b) and (c) contrast the flow
response to increasing Wo depending on whether the
pressure gradient is oscillating more frequently [graph
(b), n is changing] or if the surfaces are farther apart
[graph (c), a is changing]. When the frequency is
sufficiently high that Wo exceeds one in magnitude,
the amplitude of the velocity oscillations decreases
precipitously relative to that seen at lower frequencies
[Fig. 4(b)], as if the fluid cannot “keep up” with the
rapid reversals in pressure gradient (especially fluid
located farther from the walls). In contrast, when Wo
increases due to a larger gap size, the velocity
oscillations increase in amplitude (bottom graph)
until Wo exceeds some critical value. The magnitude
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(a)

A change in frequency but not amplitude

opldx
[l

s change in frequency AND amplitude
Aa
Q 0 AR
VARV
-Ad®

2u ]

F1G. 5. (a) The sinusoidally-varying pressure gradient increases
in frequency (corresponding to an increase in Wo from 1 to 5) but
not amplitude. (b) The corresponding change in the volume flow
rate between the two flat plates shows a change in both frequency
and amplitude. 4 is assumed to be a positive constant.

of this critical value changes with location (y), and is
approximately three for this example (y = 0). Notice
that in either case (changing » or a), as Wo increases,
the velocity oscillations become more and more out
of phase with the oscillating pressure gradient.

VOLUME FLOW RATE

For some physiological functions, the total flow
rate through a gap or tube is of greater interest than
the velocity profile. Not surprisingly, volume flow rate
varies with Wo in a virtually identical manner to the
variation already described for the velocity measured
at any point; i.e., if the driving pressure gradient
oscillates more rapidly without changing amplitude,

dpldx

i e o - - - - -

69

the corresponding oscillations in total flow also
increase in frequency but decrease in amplitude when
the frequency is high enough such that Wo > 1. A
simple graphical example of what is meant by this
may be seen in Fig. 5.

A graph showing the general pattern of the
decrease in amplitude of the oscillating volume flow
rate with increasing Wo is shown in Fig. 6 for values
of 0 < Wo < 10 for the case of flow between parallel
flat plates. This graph is virtually identical to the
original illustration in Womersley (1955) for the case
of flow inside a cylinder; identical definitions were
used to facilitate comparisons. The amplitude of the
oscillating volume flow rate, Q... [eqn (13)], is
normalized by dividing by the magnitude of the
maximum steady flow that would result from the
steady application of the minimum pressure gradient
(Qsteaar, defined graphically in Fig. 6). Q. for the
case of flat plates is

244°

Qieats = B

Note that the amplitude of the oscillating volume
flow rate drops sharply for values of Wo > 1 (Fig. 6);
at Wo =1 the amplitude is 92% of its steady-state
value, while the amplitude is halved by Wo = 2. This
drop is even sharper than that seen for the geometry
of flow inside a circular cylinder, where the amplitude
is not halved until Wo > 3 (see fig. 2; Womersley,
1955). As seen in the velocity relationships above, use
of the (standard) normalizing process obscures the
differences in flow expected if a change in Wo results
from a change in frequency or size. A decrease in the
amplitude of the (non-normalized) oscillating volume
flow rate as depicted in Fig. 6 would be expected only
for the case of increasing frequency. For the case of
Wo increasing only with size (such as identical
oscillating pressure gradients reaching gaps that differ

(7

Definition of @ Definition of @

max’ steady:
/\ Iplox
- 0 -
/ time time
Q
74 ; éQmax Y 0 Qsteady
\/time time

F1G. 6. As Wo increases, the maximum volume flow rate, Q... (the amplitude of the sinusoidally-varying Q), is a smaller and smaller
fraction of the corresponding steady-state value Q. (the volume flow rate that would result from a constant pressure gradient of the

magnitude of the amplitude of the varying pressure gradient).
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Aa 7~ aischanging, n is constant

3>

(=]

F1G. 7. The magnitude of the maximum velocity gradient at the
wall (|du/dy|ms at y=a or y = —a) during oscillatory flow
changes dramatically with a change in Wo when Wo = O(1).
Whether |du/dy|m. increases or decreases with increasing Wo
depends on whether the increase in Wo is caused by an increase in
gap width (dashed line) or an increase in oscillation frequency
(solid line). 4 is assumed to be a positive constant.

in size), the amplitude of the oscillating volume flow
rate would be expected to increase monotonically
with size in the range 0 < Wo < 10.

VELOCITY GRADIENT AT THE WALL

What does this oscillating flow “feel” like at the
wall? The shear stress at an infinitesimal area of wall
is directly proportional to the local velocity gradient
(du/dy at y = a or y = —a), so therefore a changing
velocity profile will lead to a changing shear stress at
the wall. It follows from eqn (14) that the stress on
the wall will also vary sinusoidally with time at the
same frequency as the oscillating pressure gradient.
The magnitude of the maximum force on the wall
during a cycle will depend on Wo, n, and a [eqn (15)).
For an increase in oscillation frequency that causes
Wo to exceed one in magnitude, there is a rapid
decrease in the maximum velocity gradient at the wall
(Fig. 7) despite the change in the shape of the velocity
profile (Fig. 2). This decline (Fig. 7) is very similar to
the decline seen in the volume flow rate (Fig. 6); in
both cases, the amplitude has dropped to about 92%
of its maximal (steady) value at Wo = 1, and is halved
close to Wo = 2. The main difference can be seen for
the higher Wo’s, where the amplitude has dropped to
only 10% of its maximal value at Wo = 10 for the
velocity gradient (Fig. 7), but the amplitude of the
volume flow rate had dropped to 10% of its maximal
value by Wo =5 (Fig. 6). This difference in rate of
decline is a direct consequence of the change in shape
of the velocity profile with higher Wo (Fig. 2); the
fluid oscillating nearer the walls at higher Wo affects
the wall shear stress more substantially than it
contributes to the total volume flow oscillations. For
an increase in gap width (Fig. 7, dashed line), the

maximum force on the wall will increase dramatically
when the value of Wo lies within the range
0 < Wo <2 but will be relatively insensitive to
further increases in gap width that cause Wo to exceed
about three in magnitude.

Discussion

Unsteady flow, common in biological systems
(Vogel, 1994a), can greatly complicate efforts to make
even a qualitative description of physiological
processes that are affected by flow. Therefore, the
identification of simple guides to unsteady fluid
behavior is very useful. Guides to mechanical
behavior often take the form of dimensionless
numbers, which are groupings of parameters that
define the system geometry and physical properties
such that all units cancel (McMahon & Bonner, 1983;
Pennycuick, 1992). The magnitude of a dimensionless
number can usually be related to the relative
importance of competing mechanical phenomena for
a specific set of circumstances, thereby allowing
insight into some mechanical events, such as whether
a fluid is likely to exhibit laminar or turbulent
behavior, for example.

Along these lines, one interpretation of the
Womersley number is the ratio of the characteristic
depth measured within the fluid (L/2) to the depth of
the oscillating boundary layer, which will be on
the order of ,/(v/n) for a variety of geometries in
unsteady flow [e.g. inside cylinder, (Pedley et al.,
1977), rotating disk, oscillating flat plate (Schlichting,
1979)]. (The relevance of L/2 instead of L for
comparison with the depth of the boundary layer is
most obvious for cases of internal flow, where a lumen
diameter includes two boundary layers.) Thus, when
Wo < 1, the oscillating boundary layer straddles the
entire fluid gap or space, while for Wo > 1, the
oscillating boundary layer is confined close to the
surface (e.g. see velocity profiles in Fig. 2). Note that
this is an order-of-magnitude physical description and
should not be applied as an exact solution for any
arbitrary geometry. Despite this caveat, it should be
obvious that there is no physical reason to limit the
application of Wo to internal one-dimensional
oscillating flow, and many of the inferences drawn in
this paper will be approximately valid for many other
situations. We will return to this point after discussing
the implications of the analysis for one-dimensional
internal flow.

It was shown in the above analysis that an unsteady
flow through a gap between two parallel flat plates
qualitatively follows the same behavior demonstrated
earlier for longitudinal flow inside a circular cylinder
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(Womersley, 1955). Specifically, the magnitude of the
same dimensionless group, Wo [eqn (1)], can be used
to predict the unsteadiness of flow responding to an
oscillating pressure gradient, with the flow faithfully
tracking the time-varying pressure gradient when
Wo < 1 (“*quasi-steady’’) and becoming less respon-
sive to changes when Wo > 1. In addition, a phase
shift is expected between the pressure gradient and the
flow when Wo > 1. Therefore, flow through any gap,
opening, or passage that falls within the range of these
geometries may be characterized in its time-dependent
response in part by the magnitude of Wo; the more
closely the biological geometry comes to these
mathematical ideals, the more closely the quantitative
fit of the predictions of flow behavior (also subject to
the assumptions in the analysis; see below for
discussion).

While the magnitude of Wo by itself will allow the
insights into the fluid behavior just stated above,
there are additional aspects to the fluid behavior that
are not obvious in a completely non-dimensional
formulation. That is, a change in size will have a
completely different effect on the (absolute) oscil-
lation amplitude of the flow than a change in
frequency even if identical values of Wo are
generated. This is true whether flow is described by
velocity, the volume flow rate, or the velocity
gradient at the surface (all discussed explicitly
above). For example, if Wo increases due to an
increase in the frequency of the driving pressure
gradient (in the absence of other changes), the
amplitudes of the unsteady component of the flow
are expected to decrease sharply for velocity, volume
flow rate, and the velocity gradient at the surface,
when the magnitude of Wo exceeds one. That is, the
flow will seem much less unsteady as it passes
through the gap. On the other hand, if the oscillating
pressure gradient remains constant and the size of
the gap through which the fluid can move is
increased, the velocity and velocity gradient oscil-
lations will become amplified (the amplitudes of the
unsteady components will increase) but only up to a
value of Wo ~ 2. For Wo > 2, further increases in
size will not be reflected in significant increases in
amplitude for the velocity and velocity gradient
oscillations (e.g. see Figs 3 and 6). The volume flow
rate oscillations will continue to increase with Wo as
long as the assumptions of the analysis are valid.
Note that the amplitude of the driving pressure
gradient has been held arbitrarily constant (4) in
this discussion. If 4 has some relationship with
another variable (such as A4 increasing with fre-
quency) then the flow may become either more or
less unsteady (in amplitude) with a change in Wo

depending not only on the magnitude of Wo but also
on this relationship.

What are the biological ramifications of this
pronounced change in fluid behavior as the
magnitude of Wo crosses the critical value of one?
Clearly, a given structure may function in a different
manner when exposed to different frequencies of
oscillating pressure gradients, experiencing pro-
nounced unsteady flow through gaps at lower
frequencies and almost no unsteady flow at higher
frequencies. In fact, this analysis shows that there is
an upper frequency limit for maintaining significant
tidal flow through a gap of a given size, corresponding
to the frequency at which Wo ~ 1.

EXAMPLES OF OSCILLATING INTERNAL FLOW IN
BIOLOGICAL SYSTEMS

The case of internal flow within cylinders in the
biological context of blood circulation has a
tremendous literature and is described as the most
advanced branch of biomechanics (Fung, 1997, p. v).
Because flow inside cylinders has been so thoroughly
discussed in the biological literature, it will not be
discussed further here (e.g. see Caro et al., 1978;
Fung, 1997). Instead, other examples of oscillating
internal flow will be very briefly noted; both for
another geometry (flow between flat plates) and other
physiological functions (e.g. sensory systems).

What range of Womersley numbers exist for
unsteady internal flow in biological systems? Wo is a
function of size, frequency, and kinematic viscosity of
the fluid [eqn (1)]- Therefore, for a given fluid (with
a given kinematic viscosity), the range of combi-
nations of frequencies and sizes for which Wo < 1
and Wo > 1 can be identified (Fig. 8). For example,

100 000 Wo > 1

10 000 |~

Wo =1 for air
1000 +—

100 |-

Wo =1 for water
10

Frequency (Hz)

1 —
Wo <1
0.1 —
0.01 —

| ! | |
10 ym 100 um 1 mm 10 mm

Characteristic length

Fi1G. 8. The combinations of frequency and size (gap) for which
Wo < 1, Wo =1, and Wo > | are identified for two examples of
fluids (air, v=15x 10-°m? s~'; water, v=1 x 10-*m’ s~').
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1 mm

10 gm

100 ym

F1G. 9. Examples of flat plates in biological systems. (a) Fish olfactory organ with wall of chamber removed, viewed from side [redrawn
with permission from Kleerekoper (1969, Olfaction in Fishes. Bloomington: Indiana University Press, figure 27, p. 51), Anguilla anguilla,
scale estimated from other sources]. Water flows from the anterior naris (seen at right) to posterior naris (left) passing between the lamellae.
(b) Beetle antenna viewed from dorsal vantage (redrawn from unpublished scanning electron micrograph by R. J. Elzinga, Polyphylla sp.).
Air passes between the seven lamellae (shown in closed position). (c) Fish gill viewed from the buccal chamber [redrawn with permission
from Ellis & Smith (1983, J. Exp. Zool. 227, 371-380, figure 2), Anguilla anguilla). Water passes between lamellae into the plane of the
figure. (d) Surface of moth antenna viewed in high magnification illustrating the location of sensory hairs between flat scales [redrawn with
permission from Van Der Pers er al. (1980, Inz. J. Insect Morphol. Embryol., 9, 15-23, figure 2), Yponomeuta malinellus). Distal is to the
right. () Surface of stonefly antenna illustrating linear array of cylindrical sensory hairs [redrawn with permission from Kapoor (1985,
Int. Insect Morphol. Embryol., 14, 273-280, figure 2C), Paragnetina media). Distal is to the right.

air passing through any gap or opening less than
Imm in size will show quasi-steady behavior
(Wo < 1) if exposed to a driving pressure gradient
frequency of 10 Hz or less. For frequencies of 1 Hz or
less, Wo < 1 for gaps <5 mm. Because water is 15
times less kinematically viscous than air [for general
discussion see Denny (1993); and Vogel (1994a)],
water oscillating at one-fifteenth of the same
frequency as air oscillating through a gap of the same
size will lead to flow with the same magnitude of Wo
feqn (1); Fig. 8]. On the other hand, because of the
squareroot term, the same oscillation frequency
through the same gap size will lead to a Wo
approximately four times greater (\/E) in water than
in air. This latter point is particularly significant when
considering mechanoreception in water vs. air.
Surfaces shaped approximately like parallel flat
plates do occur in biological systems, especially for

surfaces involved in exchange processes (Vogel 1994a,
p. 300) (Fig. 9). For example, in fish, both gills and
olfactory organs are commonly composed of parallel
flat surfaces between which water flows (Hughes,
1966, 1984; Kleerekoper, 1969; Hara, 1975) [Fig. 9(a)
and (c)]. As another example, while individual sensory
hairs on arthropods are often cylindrical in shape
(Ghiradella et al., 1968; Altner & Prillinger, 1980),
they may be laterally flattened and thus more
plate-like (Olson & Andow, 1993), located on flat
surfaces arranged in parallel arrays [Fig. 9(b) and (d);
Inouchi et al., 1987], or arranged in linear arrays
perhaps better approximated as flat plates than as
single isolated cylinders [Fig. 9(¢); Payne et al., 1973,
Van Der Pers et al., 1980, Gleeson et al., 1993]. In
some cases, such as these externally-projecting
sensory structures, the relevant flow is difficult to
characterize as either strictly external or internal flow
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and will have attributes of each. These biological flat
surfaces may experience unsteady flow either because
of the behavior of an associated pump or because of
the unsteady nature of the ambient fluid due to a
mechanical disturbance.

From consideration of Fig. 8, it secems probable
that many of the flows driven by biological pumps
between flat plate-like exchange surfaces will have
Wo < 1, due to the combination of small gap sizes
and relatively low frequencies. For example, consider
fish gills, that have been the subject of detailed
examination. Water flow between lamellae in fish gills
is usually unsteady because the water flow is driven
by muscular pumping; these muscular pumps occur
on both the “upstream” (buccal) and “downstream”
(opercular) sides of the gill (sometimes visualized in
figures as two pistons driving an oscillating pressure
gradient, e.g. Hughes, 1984). Steady-state (Hagen-
Poiseuille) equations are usually used as a first
approximation during analysis of gas exchange in fish
gills even for fish with pulsatile water movement
across their gills (e.g. Hughes, 1984; Piiper & Scheid,
1984). Wo is probably less than one in magnitude in
this case: e.g. an estimate of Wo < 0.2 results from a
distance between lamellae in a fish gill ~20-100 um
(Piiper & Scheid, 1984), frequency of pulsatile water
flow =x0.5-1Hz (Holeton & Jones, 1975), and
kinematic viscosity of seawater ~1 x 107° m? s~!
(at 20°C, Vogel, 1994a). Naturally any additional
factors such as lamellar movements [unknown but
identified as a possible complication by Randall &
Daxboeck (1984)] would greatly influence the flow
conditions.

Unlike biological pumps (at least the so-called
positive-displacement pumps; Vogel, 1994b), which
often operate in the frequency range on the order of
1 Hz, oscillations in the ambient fluid commonly have
frequencies on the order of 10 or 100 Hz (such as the
“near-field” component of sound or disturbances set
up by oscillating appendages). Therefore, flow
through sensory structures detecting oscillations in
fluid could experience Wo > 1. Recall that for
Wo > 1, most of the oscillating fluid flow is near the
surface. Thus, Denton & Gray (1989) point out that
for the fish lateral-line system (a peripherally-located
mechanosensory organ used in schooling behavior,
obstacle avoidance, and detection of prey), a wide
range of Wo’s are found corresponding to the wide
range of frequencies for which lateral lines are
thought to operate (Denton & Gray refer to “Wo” as
“k”). Because the larger canals (I mm in internal
diameter) will operate in Wo > 1, the changing
velocity profile will be confined to the sides of the
canal even for low frequencies of a few Hz; they

suggest that this explains why very short sensory units
(““cupulae”) are sometimes found in the very large
canals.

It 1s not just mechanosensory systems that deal with
fluid of an oscillatory nature; it has been noted
repeatedly that air or water flow is frequently
unsteady as it approaches a chemoreceptive surface
on an organism (Schmitt & Ache, 1979; Atema, 1985;
Dusenbery, 1992). For example, in the presence of
appropriate chemical stimuli, mammals sniff, fish
sniff, reptiles flick their tongues, crustaceans flick their
antennules (which are covered with sensory hairs) and
fan their thoracic appendages, and insects wave their
antennae (covered with sensory hairs) and fan their
wings (these fanning behaviors exhibited by
arthropods will change the air flow over chemosen-
sory structures among other possible functions)
(Schneider, 1964; Macrides & Chorover, 1972; Nevitt,
1991; Gleeson et al., 1993; Cooper, 1994; Schwenk
1994). Although the term “sniffing” is used whether
unsteady fluid is moved across a chemosensory
surface or whether the chemosensory organ is
oscillated through a fluid, the formulation in this
paper is most appropriately applied to the former
class of cases (primarily because of amplitude
differences). Differences between these two cases will
be the subject of a future communication.

What is the magnitude of Wo for cases of an
oscillating flow applied to an olfactory structure that
may be approximated as an array of gaps? A
necessarily rough estimate of available frequencies
and gap sizes suggests that for sniffing in vertebrates
(frequency on the order of 1 Hz, gaps often <1 mm
across) and wing-fanning in insects (frequency on the
order of 50 Hz, gaps between flat surfaces on
antennae often <100 um), Wo’s will often be below
1 in magnitude (see Fig. 8). In these cases,
quasi-steady conditions will exist for air or water
passing across the olfactory receptors. This means
that the flow will vary in phase with the unsteady flow
of air or water supplied to the chemoreceptive
surfaces and will not exhibit the lower amplitudes
associated with higher values of Wo. Note that this
does not necessarily imply perception of an unsteady
interception of chemical signal molecules, because the
perception of signal interception will depend on the
temporal characteristics of the sensory neurons as
well (Atema, 1987, 1988; Christensen & Hildebrand,
1988). Whether this low Wo flow profile, that results
in the bulk of the fluid being maximally distant from
the intercepting surfaces, is a significant barrier in
terms of the diffusion of the signal molecules to the
receptive surfaces will depend on the magnitude of the
diffusion coefficient(s) of the signal molecule(s) of



74 C. LOUDON AND A. TORDESILLAS

interest (Murray, 1977; DeSimone, 1981; Hahn ef a!.,
1994; Koehl, 1996). The dimensionless number
that quantifies the diffusion coefficient relative to the
physical properties of the surrounding fluid is
the Schmidt number (Sc = kinematic viscosity/diffu-
sion coefficient), although there are additional
dimensionless numbers useful in describing mass
transport.

ASSUMPTIONS OF ANALYSIS

A primary assumption of the mathematical analysis
is that the flow is one-dimensional. This means that
while the physical setting may be three-dimensional,
velocity will vary only with distance from the wall
(u(y,t) not u(x,y,z,t)). This will be approximately true
for flow in a gap or tube in the absence of turbulence.
Turbulence is the macroscopic mixing between
adjacent fluid layers, in contrast to the laminar
behavior seen in slower flows in which the fluid layers
slip smoothly past each other. The flow behavior
(laminar or turbulent) for a steady-state situation is
determined by the value of the Reynolds number
[eqn (2)]. For steady flow inside a cylinder or between
parallel walls this transition from laminar to turbulent
flow takes place at speeds corresponding to
Re ~ 2000 [flat plates, Re & 1400; circular cylinder
Re = 2300; Fox & McDonald (1978); Re is calculated
from eqn (2) using the average cross-sectional velocity
for U, and the distance between the plates or the
diameter of the cylinder for L]. These transition Re’s
are approximate because in practice they also depend
on other factors such as the roughness of the surface
(Fox & McDonald, 1978; Vogel, 1994a).

For oscillating flow, where u is changing, Re based
on instantaneous velocity (averaged over the flow
cross-section) will also be changing. It follows that
during oscillating flows that span the transition Re,
the flow might become periodically turbulent when
the flow is at its fastest and then return to laminar
behavior during the slower flow parts of the cycle, and
this is in fact what is observed (Nerem & Seed, 1972;
Merkli & Thomann, 1975; Kurzweg et al., 1989; Choi
& Wroblewski, 1993). However, the transition Re’s
for oscillating flow may differ from the transition Re’s
for steady state flow. It has been found empirically
that the transition between laminar and turbulent
flow in oscillating flow is affected by the magnitudes
of both Re and Wo especially when Wo > 8; for
measurements within glass tubes the transition Re’s
were approximately 700 times the magnitude of Wo
for Wo > 8 (Kurzweg et al., 1989; non-invasive flow
measurement; Wo range 5-20; Re,.. range 1500—
20 000) while for measurements within a dog’s blood
vessel the transition Re’s were 150-250 times the

magnitude of Wo (Nerem & Seed, 1972; hot-film
probe; Wo range 5-30; Re,.. range 1000-8000).
Therefore, the assumption of laminar flow is probably
valid for Re,. <5000 and Wo <20 for the
geometries under question.

It also follows from the assumption of one-dimen-
sional flow that velocity is independent of down-
stream location. Thus, the analysis herein will be most
applicable to the middle of longer channels (avoiding
“edge” effects) and especially for lower Re flow where
those edge effects are less extensive (Fox &
McDonald, 1978; Vogel, 1994a). Because the entrance
length for oscillating flow is inversely proportional to
the frequency of oscillation (Caro er al. 1978; p. 321),
edge effects will also be less extensive at higher Wo.
The mathematical assumption of independence of
downstream location also means that length-depen-
dent acoustic phenomena such as resonance, or
propagation of the “far field” aspects of sound are
not described by these mathematics [for useful
discussion on this latter topic see Camhi (1984);
Dusenbery (1992) and Fletcher (1992)]. However, the
“near field” or “displacement component™ of sound,
which describes the bulk oscillation of the medium,
does correspond to this formulation.

ADDITIVE NATURE OF STEADY AND UNSTEADY FLOW
COMPONENTS

All of the preceeding discussion and analysis has
assumed a pressure gradient with a zero average that
results in zero net flow; i.e., the pressure gradient
alternates between positive and equivalent negative
values, driving an oscillating fluid volume that goes
nowhere on average. For many of the biologically
important unsteady flows, the average pressure
gradient and the average flow are not zero, and so the
relevance of the preceeding analysis for cases with
non-zero net flow must be questioned. Curiously, this
point often receives only brief mention if any; in the
original analysis (Womersley, 1955), the mathemati-
cal treatment explicitly assumed an average net
pressure gradient of zero with no net flow, although
a statement was made that a steady flow term was not
included. Clearly blood does experience net flow in
one direction through the body; McDonald (1955)
noted this and suggested that the steady flow
component may be simply added to the unsteady
oscillating component(s), although his suggestion was
made in the absence of mathematical proof or
reference.

Addition of steady and unsteady solutions means
that if the driving pressure gradient dp/0x is a
combination of an oscillatory (— 4e™) and a constant
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component (— Py), then the corresponding velocity
u(y,t) must satisfy

Ou(y,t) _pou(p,t)
oy? u ar

—%(Ae"" + P, (18)

Here u(y,?) 1s the sum of the velocity solutions for
purely oscillatory and purely constant pressure
gradients, i.e.,

U(V, t) = Upse + Usteadv s ( 1 9)

where wu,. and wu.., denote the velocity solutions
corresponding to oscillatory and constant pressure
gradients respectively; that is, .. and u,.q satisfy

unsteady oscillatory flow:

P Oty 1

B o TR @
and
steady flow:
62usteud_r _ l

The addition of steady and unsteady solutions is only
legitimate when a linear form of the Navier-Stokes
equation [such as eqns (3) and (18)] is valid. A general
warning has been made by Goldschmied (1974), that
the nonlinearities of the (full) Navier—Stokes
equations preclude simple addition of steady and
unsteady solutions under many conditions, e.g., if the
magnitude of the steady flow component is suffi-
ciently large. The range of conditions for which
simple addition of steady and non-steady components
is a valid approximation has been empirically
addressed for flow inside a cylinder (Goldschmied,
1974; Fei et al., 1990): simple addition of the unsteady
and steady components was valid for Re < 20000
(based on maximum velocity) and Wo < 45, when the
amplitude of the steady component was as large as the
amplitude of the unsteady flow component [Wo
calculated from reported “Stokes number” in
Goldschmied (1974) and reported as “a” in Fei et al.
(1990)]. Watson (1983) and Joshi et al. (1983) also
give evidence for the additive effects of the steady and
unsteady components of longitudinal mass transfer
for one-dimensional flow in circular and rectangular
channels (1 < Wo < 8).

When the steady and unsteady flow components
can be considered simply additive, the average flow
rate (=steady component) can simply be predicted
from the average pressure gradient (=steady com-
ponent) (because the average of the sinusoidal
unsteady component will be zero). Thus, in response
to the opening question of when is it safe to ignore

the unsteady nature of flow, the answer is that the
unsteadiness of the flow will reflect the unsteadiness
of the driving pressure gradient when Wo < 1, and
that the flow will be less and less unsteady as Wo
exceeds 1 in magnitude (the normalized amplitude of
the fluid oscillations will diminish). Furthermore,
whether Wo is greater or less than one in magnitude,
the time-averaged flow may still be safely predicted
from the time-averaged pressure gradient as if
steady-state conditions exist, as long as the assump-
tions upon which the analysis is based are
approximately satisfied. This means that any physio-
logical process that is a function (at least primarily)
of the average volume flow rate will also be
independent of Wo and for these processes any
oscillations may be functionally invisible. It is only
those processes that scale nonlinearly with (instan-
taneous) flow rate that will experience an average
effect that differs from that developed by a constant
flow rate of the same average magnitude. Exchange
processes (exchange of heat, mass, or force pro-
duction) often have a nonlinear relationship with flow
rate, but because the scaling factors are dependent on
the range of parameters (or the magnitudes of the
relevant dimensionless numbers) there will usually
exist some size and velocity scales within which
oscillations will be functionally neutral and other size
and velocity ranges where oscillations will have a
tremendous functional effect.

An example of a case where the steady and
unsteady flow components are not believed to be
additive is in the case of fast blood flow in large
vessels (where the flow is not one-dimensional); in this
case the average wall shear stress in highly oscillating
flow would not be expected to be the same as the wall
shear stress in a steady flow with the same mean flow
rate (Pedley, 1995).

OTHER APPLICATIONS OF WO

The transition in fluid behavior at Wo =~ 1
discussed in detail above for cases of one-dimensional
oscillatory internal flow is not the only kind of
biologically-significant unsteady fluid behavior
identified by the magnitude of Wo. For example,
another fluid mechanical behavior that is a function
of Wo is “streaming.” Streaming (also called
“acoustic streaming” or ‘‘secondary flow™) is the
formation of pockets of steady circulating fluid that
develop in proximity to a surface when that surface
is oscillating with respect to a fluid (either the fluid or
the solid can be oscillating with respect to the
observer, and streaming develops whether the object
is flat or curved and whether the flow is internal or
external as long as there is a two-dimensional
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component to the flow) (Stuart, 1966; Wang, 1968;
Schlichting, 1979; Sobey, 1983; White, 1991). These
patterns result in net flow at points within these areas
of circulation, even if the oscillating body itself has no
net movement (averaged over time). Although it is
clear that the details of streaming (such as the size,
number and location of circulating cells) are a
function of object shape, Re, and Wo (Merkli &
Thomann, 1975; Nishimura et al., 1989; Tatsuno &
Bearman, 1990), the critical magnitudes of Re and Wo
below which streaming is less likely do not seem to be
available in the literature in a form that can be easily
applied (e.g. the magnitude of the streaming
component is reported in differential form). Thus, we
are unable to provide limits for Re and Wo below
which streaming will not occur for representative
geometries, but clearly the lower the magnitudes for
both Re and Wo, the less likely streaming will be. In
a review of the streaming literature, Wang (1968)
indicates that streaming will be negligible when Wo is
less than one in order of magnitude (arbitrary
geometry). In a biological study, Humphrey et al.
(1993) suggest that steady streaming is expected to be
negligibly small adjacent to filiform hairs (x 10 um
diameter) on spider legs in response to the oscillation
of air produced by motions of a nearby insect, but
that streaming is possible in principle around the
spider leg as a whole or around other larger
cylindrical structures such as cricket cerci. In general
the biological occurrence and physiological signifi-
cance of streaming remains to be determined.
When the general (primarily engineering) literature
on unsteady flow for a variety of geometries is
examined, dimensionless groupings similar to Wo
appear in solutions to transport problems (transport
of mass, heat, or momentum) although there is a lack
of conformity in their definitions and usage (Table 1
and other examples throughout this paper). For
example, Nishimura et al. (1989) use Wo =4 as a
transition point in fluid behavior but their “Wo” is
equivalent to Wo’/27 as usually defined (see Table 1).
Note also that in some cases the characteristic length
used to compute Wo lies within the fluid (e.g. internal
flow, external flow adjacent to a flat plate) and in
other cases the characteristic length lies outside the
fluid (e.g. external flow around a cylinder where L
refers to its diameter), which complicates compari-
sons between cases (as occurs for other dimensionless
numbers). Despite these points, clearly the magnitude
of Wo indicates significant aspects of unsteady fluid
behavior, and their corresponding influence on
transport processes, in a variety of cases including
both external and internal flow and curved or flat
surfaces. However, the identification of Wo = 1 as an

Table 1
Examples of Womersley-like dimensionless numbers

Reference

Geometry

Remarks

Referred to as

Parameter

Womersley (1955)
Stuart (1966)

flow inside circular cylinder
flow around circular cylinder

flow around sphere

Wo (original)
1/2Wo)
4Wo?

o = L(n/4v)*s
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v{(nL?)

8=

Al Taweel & Landau (1976)

Schlichting (1979)

vibration number

Lnjv
n = L(n/8v)*?

N =

flow near oscillating flat plate

(“‘Stokes’ 2nd problem™)
flow between 2 flat plates

Wo /(2)().5

Kurzweg (1985)
Condoret et al. (1989)
Nishimura er al. (1989)

Sarpkaya (1986)
Denny (1988)

flow in a packed bed (around spheres)
flow between wavy-walled channels
flow around circular cylinder

flow between 2 parallel disks

flow around circular cylinder
oscillating fluid near flat plate

2Won
Wo/(2)"
4Wo?
Wo?/(2r)
2Woin
4Wo?

Wo

Womersley number
Stokes number

Womersley number

Ln/(2nv)
L(n/8v)"s
Lnjv

nL*(8nv)

Ln/(2nv)
R., = Lnjv

2

o= L(n/4v)*S

B
o
B

Tatsuno & Bearman (1990)

Wang et al. (1990)

Reynolds number

related to the angular frequency

Womersley number
Stokes parameter

Choi & Wroblewski (1993)

Zagzoule et al. (1991)
Humphrey ef al. (1993)
Kim ez al. (1994)

flow inside distensible tube
flow around circular cylinder
flow through porous media

flow inside tube

Wo/(2)"s

pulsation frequency

parameter

L(n/av)’s

@np)’s

= L(n/8v)**
ResSts = Lnjdv
M = L(n/8v)*S

A

, distance between two parallel plates, or twice

g to facilitate comparisons: L is diameter of cylinder or sphere

Nomenclature changed from original references to the followin

the distance from a single plate (m);

= 2nf where f is frequency in Hz); v is kinematic viscosity (m2 s-').

n is angular frequency (radians s ') (

£
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approximate limit for the quasi-steady behavior of
internal flow may not be applied arbitrarily for other
geometries and boundary conditions nor for other
unsteady fluid behaviors influenced by the magnitude
of Wo.
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APPENDIX

A amplitude of pressure gradient oscillations, N
m—3

a half of the distance between the two parallel
plates, m

e base of natural logarithm (2.718 .. )

f frequency, cycles s !

i -1

3 Ifraktur; imaginary part of a complex
number

L characteristic length, m; L = 2R

[ length of parallel plates in x direction, m

n frequency, radians/s; n = 2xnf

)4 pressure, Pa

0 volume flow rate, m* s~

R half of characteristic length, m; R = L/2

R Rfraktur; real part of a complex number

Re Reynolds number (dimensionless);
Re = LU,jv

St Strouhal number (dimensionless); St = fL/U,

T period of cycle, s; T = 1/f

t time, s

u velocity component in x direction, m s~

U, characteristic velocity used to calculate

dimensionless numbers, m s~
Wo Womersley number (dimensionless);

Wo = 0.5L(n/v)"*
U dynamic viscosity of fluid, kg (m s) ™'
kinematic viscosity of fluid, m>s—'; v = u/p
P density of fluid, kg m~?

<

<)






