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Harvester Ant Colony Variation in Foraging Activity and
Response to Humidity
Deborah M. Gordon*, Katherine N. Dektar¤a, Noa Pinter-Wollman¤b

Department of Biology, Stanford University, Stanford, California, United States of America

Abstract

Collective behavior is produced by interactions among individuals. Differences among groups in individual response to
interactions can lead to ecologically important variation among groups in collective behavior. Here we examine variation
among colonies in the foraging behavior of the harvester ant, Pogonomyrmex barbatus. Previous work shows how colonies
regulate foraging in response to food availability and desiccation costs: the rate at which outgoing foragers leave the nest
depends on the rate at which foragers return with food. To examine how colonies vary in response to humidity and in
foraging rate, we performed field experiments that manipulated forager return rate in 94 trials with 17 colonies over 3 years.
We found that the effect of returning foragers on the rate of outgoing foragers increases with humidity. There are
consistent differences among colonies in foraging activity that persist from year to year.
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Introduction

Collective behavior arises from the local interactions of

individuals. Bird flocks and fish schools turn, termites build nests,

and wildebeest cross the plains, because individuals respond to

what others are doing nearby. The first question about collective

behavior is how the actions of individuals add up to the dynamic

behavior we observe. The recent explosion of work on collective

behavior in many different animal groups (e.g. [1–5]) seeks to

describe how local interactions among individuals produce a

certain collective outcome.

Evolutionary questions about behavior require us to think about

variation, and there is growing interest in individual variation in

behavior [6]. Consistent differences among individuals in behavior

[7], recently called personality [8–9], temperament [10] or

behavioral syndromes [11], may be heritable reaction norms like

those created by phenotypic plasticity in any other trait [12].

Recent work shows variation among social insect colonies in

behavior. Honeybee colonies differ in pollen and nectar collection

[13] and in foraging behavior [14]. Ant colonies differ in foraging

activity [15–18], and in the aggression levels of colonies [19] and

individuals [20–21]. Colonies function as reproductive individuals;

the colony produces reproductives, who mate with the reproduc-

tives of other colonies and then form offspring colonies. When the

collective behavior of a colony is heritable and ecologically

important, selection may act on variation among colonies in

collective behavior.

Here we examine differences among colonies of the red

harvester ant, Pogonomyrmex barbatus, in the collective behavior that

regulates foraging in response to food availability. An inactive

forager is stimulated to leave the nest on its next trip by the return

of foragers with food [17,22–24]. Interactions between returning

and outgoing foragers consist of brief antennal contacts inside the

nest entrance as the ants come in and out. During an antennal

contact a forager detects the task-specific cuticular hydrocarbon

profile of the other [25] and whether it is carrying food [26].

Forager return rate reflects food availability because the duration

of a foraging trip depends on search time [27]. The more food is

available, the less time is needed to search and the more quickly a

forager returns with food. Thus the overall rate of return of

successful foragers reflects the availability of food on that day.

Harvester ants foraging in hot, dry conditions lose water, but

obtain water from metabolizing fats in the seeds that they eat [28–

29]. Positive feedback on foraging activity, from returning foragers

with food, allows the colony to regulate its foraging activity

according to the current costs of desiccation and the benefits based

on current food availability.

In many harvester ant species, foraging behavior is influenced

by the weather [30–31]. For example, in the ant Messor andrei,

recruitment to food bait is higher in more humid conditions [18].

Both humidity and food availability are affected by day to day

changes in weather conditions. Food is distributed by wind and

flooding and rain uncovers seeds in the top layer of the soil [32–

33]. In P. barbatus, daily changes in conditions such as humidity
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and food availability produce strong daily trends in the foraging

activity of all colonies [24,34].

Colonies may vary in the relation between humidity and

foraging activity. Previous work shows that colonies differ

consistently from year to year in how often they forage at all

[16]. Most colonies forage on days with high humidity and high

food availability, such as those just after a rain when flooding has

exposed a layer of seeds in the soil. Few colonies forage on very dry

days. Previous work also showed that colonies differ in how likely

they are to adjust the rate of outgoing foragers to the rate of

forager return [17]. While all colonies tend to adjust outgoing

foraging rate closely when conditions are good, only some colonies

do so in poor conditions.

Here we asked whether the response of outgoing foragers to

returning foragers depends on humidity, and whether the

magnitude of response predicts the level of foraging activity. We

then considered whether colonies differ in foraging activity, and

whether colony differences in foraging behavior persist from year

to year.

Methods

We examined foraging behavior repeatedly in the same colonies

over several years and over a range of naturally occurring

conditions, so as to encompass the diverse factors that influence

colony foraging decisions. To examine how the rate of outgoing

foragers depends on the rate of returning foragers, we conducted

experiments that manipulated forager return rate. Experiments

were performed in August 2009, August-September 2010, and

August-September 2011, at the site of a long-term study since

1985 of a population of P. barbatus near Rodeo, New Mexico,

USA. No permits were required for the field work; permission was

granted by Stanford University. Over the course of 3 years we

conducted a total of 94 trials with 17 colonies. Three of the 17

colonies were measured in all 3 years, and an additional 2 colonies

were measured in 2 of the 3 years. In 2009 there were 32 trials in 8

colonies on 10 days; in 2010 there were 29 trials in 8 colonies on 5

days; in 2011 there were 33 trials in 10 colonies on 12 days (Table

S1). All colonies were mature, more than 5 years old (ages

determined by yearly census; methods in Gordon and Kulig 1996),

except for one colony, 112, which was measured in all 3 years and

was 4 years old in 2009.

Returning foragers were prevented from returning to the nest in

minutes 4–7 of a 20-min observation period in 2009 and 2010,

and a 14-min observation period in 2011. The observation period

was reduced because the results from 2009 and 2010 showed that

foraging rates did not change much after about 3 minutes

following the removal of returning foragers. After the 3 minutes of

removals, from minute 8 to the end of the trial, other returning

foragers went back to the nest undisturbed, while the ants that had

been collected were not released until after the trial. Methods were

the same as in [24] and [17]. Rates of returning and outgoing

foragers crossing an imaginary line along the trail were measured

from video film using an image analysis system developed by

Martin Stumpe (http://www.antracks.org). Methods for obtaining

the data from image analysis results are described in Prabhakar

et al. [35].

As a measure of foraging rate, we used the mean rate of

returning foragers per sec. We used the rate of forager return

because it reflects both the rate at which foragers went out and

food availability. Foraging rate was measured when colonies were

undisturbed, before any removals were made. For each trial, the

foraging rate was the mean rate of returning foragers per sec from

1 to 240 sec.

To characterize differences among colonies in response to the

rate of returning foragers, we used a stochastic version of a

threshold model (e.g. [13]). In the model, the probability that

foragers leave the nest depends on the rate of forager return. We

estimated the colony-specific value of the parameter c in a

modified version of an algorithm [35] that predicts the flow of

outgoing foragers (an):

an~max(an{1{qDn{1zcAn,a0~0:01 ð1Þ

Dn*Poisson(an)D ð2Þ

An is the observed number of returning food-bearing foragers at

time n. To find the value of c that best fit the data for each trial, we

kept all other parameters fixed at the values that, in previous work,

provided a good fit to data from forager removal experiments,

predicting the number of outgoing foragers at time n, Dn, from the

observed rate of returning foragers. The baseline value at which

outgoing foragers leave the nest if no foragers return was a0 = 0.01,

based on previous data from 5 trials of a similar experiment with

each of 14 colonies in field experiments in 2008 [17]. If at a given

time step very few ants were returning and (an21 2 qDn21+
cAn),a0, the value of an was set to a0. The parameter q, which

represents the reduction in availability of outgoing foragers due to

the departure of foragers, was set at 0.05, based on observations

inside the nest in field colonies (Pinter-Wollman et al. in review).

To estimate c for each trial, we used observed rates of returning

foragers throughout the trial (An), from 0 to 1200 seconds for the

20-min trials from 2009 and 2010, and 0 to 840 sec for the 14-min

trials in 2011, and the algorithm from equations 1) and 2) above

[35] to simulate the rate of outgoing foragers. For each trial we

found c by testing a range of values from 0.01 to 0.25, using the

same model-fitting procedures as in [35]: to set a value of c for

each trial, we compared simulated and observed rates of outgoing

foragers in 200 simulations of each value, and chose the value of c

that gave the lowest root mean square error (RMSE) [36] of the

difference between the simulated and observed rates.

We examined whether c, the effect of returning foragers on the

rate of outgoing foragers, is associated with current humidity. As a

measure of humidity we used dew point, the temperature at which

water vapor condenses. The higher the humidity, the higher the

temperature at which water vapor condenses, and thus dew point

is an absolute measure of humidity. Measures of dew point for a

given day were obtained from http://www.wunderground.com/

showing weather data for San Simon, which tends to have similar

conditions as the study area because it is in the same floodplain

and at a similar elevation, about 50 km from the study area. We

used linear mixed-effects models to test whether foraging rate

depends on dew point, and whether the effect of returning foragers

on the rate of outgoing foragers (c) depends on dew point. Foraging

rate and c were the dependent variables in two separate models. In

each model, dew point was the main fixed effect and, to account

for variation among colonies, we included colony as a random

effect. To examine the relation of c and foraging rate, we

performed a linear regression of c on foraging rate, using the mean

values of c and foraging rate for each colony within each year.

To examine whether colony differences in foraging activity

persist from year to year, we first considered the data for 5 colonies

for which removal experiments were performed in both 2010 and

2011 (Table S1). We compared the values for 2010 and 2011 for

each colony with 2 repeated-measures ANOVAs, either with

Harvester Ant Colony Variation in Foraging
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foraging rate or c as dependent variables. Three of these 5 colonies

were also tested in 2009. For these 3 colonies we then used 2

different repeated measures ANOVAs with year within colony

(2009, 2010, 2011) as main effect and either foraging rate or c as

dependent variables.

We then examined variation among colonies in c and foraging

rate. To test for colony differences, we performed 2 nested

ANOVAs with colony, year, and day within year as main effects,

and either foraging rate or c as dependent variables.

All statistical tests were conducted using the software R (version

2.12.1).

Results

The effect of returning foragers on the rate of outgoing foragers,

c, depends on humidity. The higher the humidity, the higher the

value of c, or the more each returning forager stimulates other

workers to go out and forage. There was a positive association

between the effect of returning foragers and dew point (data for all

94 trials of 17 colonies in 3 years; linear mixed-effects model:

p,0.0001, Fig. 1A).The increased response to returning foragers

when humidity is high is not always sufficient to raise foraging

rates. There was no significant relation of foraging rate and dew

point (linear mixed-effects model, dew point: p = 0.49, Fig. 1B),

and no relation of the effect of returning foragers on outgoing

foragers and foraging rate (Fig. 1C) (linear regression: r2 = 0.02,

p = 0.48).

The effect of each returning forager on the rate of outgoing

foragers, c, appears to shift somewhat from year to year,

presumably reflecting changes in conditions. For all 5 colonies

tested both in 2010 and 2011, there was no significant difference

from 2010 to 2011 in the effect of returning foragers (Repeated

measures ANOVA: F = 0.07; df = 1; p = 0.8, Fig. 2A), but over 3

years, for the three colonies that were tested in 2009, 2010, and

2011, there were significant differences among years in the effect

of returning foragers (Repeated measures ANOVA: F = 12.4,

df = 2, p = 0.02). Foraging rate varied from year to year for the 5

colonies tested in 2010 and 2011 (Repeated measures ANOVA:

F = 15.3; df = 1; p = 0.02), and for the three colonies that were

tested in 2009, 2010, and 2011 (Repeated measures ANOVA:

F = 9.1; df = 2; p = 0.03).

Colonies differed consistently in foraging rate, the rate of

returning foragers per second (Fig. 3). There was a significant

effect of colony on foraging rate (Table 1), despite significant

differences among years (e.g. Fig. 2B) and from day to day.

Colonies did not differ in the effect of returning foragers on the

rate of outgoing foragers (c) (Table 1).

Figure 1. Relation of foraging activity and dew point, a measure of humidity. A. Relation of the effect of returning foragers on the rate of
outgoing foragers (c) and dew point. B. Relation of foraging rate and dew point. The dotted lines show the least squares fit. C. Relation of effect of
returning foragers and forager rate.
doi:10.1371/journal.pone.0063363.g001

Figure 2. Differences between 2010 and 2011 for 5 colonies. A.
The effect of returning foragers on the rate of outgoing foragers (c). B.
Foraging rate. Boxes indicate the lower and upper quartiles; horizontal
lines within boxes indicate the median, whiskers extend to 1.5
interquartile range from the box, and points indicate outliers.
doi:10.1371/journal.pone.0063363.g002
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Discussion

Colonies differ consistently in foraging activity (Fig. 3), and such

differences persist from year to year. It is important to note that

colony differences in foraging rate do not arise simply from

differences in the numbers of ants available to forage. Colony

behavior depends on colony size in many ant species (e.g. [37–

40]). However, differences among colonies are also due to

differences in how colonies regulate the activity of their available

foragers. For example, some colonies with a low average foraging

rate clearly have enough foragers to go out at high rates on some

days (e.g. colonies 342 and 949, Fig. 3). Colony variation in

foraging rate was also observed in previous work done in a single

year [18], and was correlated with variation among colonies in

their response to patrollers early in the morning.

Further work is needed to determine why colonies differ in

foraging activity. In harvester ants, olfactory cues are used in

interactions [25,41], and there may be variation among colonies in

the action of olfactory receptors [42–43]. In Camponotus ants,

workers react to an olfactory stimulus from 5 minutes earlier [44];

such olfactory responses change in the course of an ant’s

development [45] and this process may vary among colonies.

Finally, differences among colonies in nest structure (e.g. [18,46])

may influence the strength of chemical cues that ants exchange

[47].

Humidity influences the response of outgoing foragers to

returning foragers. It is possible that humidity affects the behavior

of returning foragers in some way that increases the extent to

which returning foragers stimulate those waiting inside the nest

entrance. It is also possible that humidity influences the perception

of chemical cues in interactions between returning and outgoing

forager. Further work is needed to investigate these possibilities.

However, humidity does not in itself predict foraging activity. The

lack of relation between dew point and foraging rate suggests that

within the range of humidity conditions on the days we observed

foraging, food availability, as well as any other factors that

diminish forager return rate, had a stronger influence on foraging

activity than humidity. Though in general, returning foragers tend

to stimulate the rate of outgoing foragers more when humidity is

higher (Fig. 1A), this does not lead to a significant effect of dew

point on foraging rate (Fig. 1C). This suggests that the negative

effect of low food availability can override the positive effect of dew

point: if food availability is low enough on a humid day, then the

rate of forager return will be very low. Even if the effect of each

Figure 3. Variation among colonies in foraging rate. Numbers on the x-axis are the colony IDs. Boxes indicate the lower and upper quartiles;
horizontal lines within boxes indicate the median, whiskers extend to 1.5 interquartile range from the box. Points represent the values of foraging
rate for each trial. Black dots are for trials conducted in 2009, red dots for 2010, and green dots for 2011. Overlapping points are slightly offset along
the x axis.
doi:10.1371/journal.pone.0063363.g003

Table 1. Results of ANOVAs on effect of returning foragers and foraging rate.

Overall model Main effects

Colony Year Day (nested in year)

Adjusted r2 F P DF F P DF F P DF F P

Effect of returning foragers (c) 0.39 2.4 0.001 16 1.14 0.35 2 13.63 ,0.0001 24 1.86 0.03

Foraging rate (ants/sec) 0.47 2.98 ,0.0001 16 4.78 ,0.0001 2 11.98 ,0.0001 24 1.81 0.04

doi:10.1371/journal.pone.0063363.t001
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returning forager is high, if the foragers return very infrequently,

the rate at which outgoing foragers leave the nest will remain low,

which perpetuates a low rate of forager return. Experiments that

manipulate food supply in different humidity conditions would

help to determine how colony response to food availability and

humidity each contribute to foraging rates.

Many factors affect foraging rate at any time, such as

temperature [31] and the vegetation ants have to travel through

to reach the food [48], while other processes such as predation

[49] and amount of stored food [50], probably influence whether a

colony forages at all on a given day. Colonies compete with

neighbors for foraging area, and colony decisions about interac-

tions with the foragers of neighboring colonies depend on the ages

of the colonies involved [32,51–52], so foraging activity also

depends on a colony’s age and the age distribution of neighboring

colonies. Combining all of these factors, colonies show consistent

differences in foraging activity. The question remains open

whether colony differences in foraging activity are associated with

variation in colony fitness [53].

Supporting Information

Table S1 Forager removal experiments by colony and
year. Bold indicates colonies for which trials were performed in

all 3 years; italics indicates colonies for which trials were

performed in 2 years.

(DOCX)
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