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Uncertainty on Dynamic Asset Allocation

Abstract

This paper examines the effects of uncertainty about the predictability of stock returns on
optimal dynamic portfolio choice in a continuous time setting with a long horizon. Uncertainty
about the predictive relation affects the optimal portfolio choice through dynamic learning,
and leads to a rich set of relations between the optimal portfolio choice and the investment
horizon. There are also substantial market timing elements in the optimal hedge demands,
which are caused by stochastic covariance and variance terms arising from dynamic learning.
The opportunity cost of ignoring predictability or learning is found to be quite substantial.



Learning about Predictability: The Effects of Parameter
Uncertainty on Dynamic Asset Allocation

How much should a “long horizon” investor allocate to equity? The conventional wisdom

says that a long horizon investor should invest more in equity because, over long horizons, above-

average returns tend to offset below-average returns. This is the notion of “time diversification”.

Samuelson (1989, 1990), among others, has argued that the notion of “time diversification” is

spurious: when stock returns are i.i.d., for example, the optimal portfolio is independent of

the horizon for an investor with isoelastic utility function. When stock returns are predictable,

however, the optimal stock allocation does depend on the investment horizon, even if the investor

has an isoelastic utility. In this setting, the investment opportunity set is stochastic and the

intertemporal hedge demand introduced by Merton (1971) becomes central to the dynamics of

asset allocation. In this paper, we study how learning about stock return predictability affects the

intertemporal hedge demand and the optimal dynamic portfolio rules, and re-examine the validity

of the prediction of “time diversification” in the context of uncertain predictability.

Although there is a growing body of evidence that stock returns are predictable, the existence

of predictability is still subject to considerable debate. On the one hand, many studies have

identified variables that predict future stock returns in a statistically significant way1. The most

powerful predictive variables in the U.S. have been found to be past market returns, the market

dividend yield, the market earnings/price ratio, and term structure variables2. On the other hand,

critics of these studies point to the possibility of data-mining, the non-robustness of test statistics

and incorrect inferences in small samples. For example, most of the test statistics are not robust

to non-normality of the return distributions and studies with long horizon returns usually lack

power and are subject to small sample problems3.

The controversy surrounding stock return predictability is symptomatic of the fact that the

predictive relation is quite uncertain. An investor must take into account this uncertainty in

choosing the optimal rule for consumption and asset allocation. Suppose that empirical work

finds that the future stock return, rt+1, is predicted by the current dividend, d/pt, so that rt+1 =

at+bt (d/pt)+ε, where bt is statistically significant different from zero in a regression using data
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up to time t. Knowing the criticisms of such empirical studies, an investor must be concerned

that the regression may be mis-specified and the t−statistic misleading. A rational investor will

neither completely ignore the empirical results and treat stock return as i.i.d. series, nor will he

use the estimate bt as if it were the true parameter. Instead, he will derive the optimal dynamic

asset allocation strategy allowing for the possibility that the true value of the predictive coeffcient

may be different from his current estimate bt.

Early work by Brown, Klein and Bawa4 among others has considered the effect of parameter

uncertainty on portfolio selection in a single period context and has shown that the “predictive

distribution” of returns that is obtained by integrating the conditional distribution over the dis-

tribution of the uncertain parameters is different from the distribution that is obtained when the

parameters are treated as known. The additional risk that is introduced by parameter uncertainty

in this context has been labeled “estimation risk”.

More recently, Kandel and Stambaugh (1996) have explored the economic importance of stock

return predictability and the effect of estimation risk when asset returns are partially predictable

and the coefficients of the predictive relation are estimated rather than known. Given that the

exact predictive relation is unknown and that the investor is assumed to trade only at a discrete

one month interval, uncertainty about the parameters of the conditional return distribution -

estimation risk - affects the investor’s optimal portfolio decision. While this simple framework

highlights the economic importance of stock return predictability with estimation risk, the one

period investment horizon assumption precludes considerations of the dynamic effects induced

both by full information hedging and by learning through time, which may be important for

investors with longer horizons.

Gennotte (1986) and Feldman (1992) have shown that in a continuous time setting in which

security prices follow diffusion processes, the effects of parameter uncertainty are rather differ-

ent from those found in the discrete time single period model. In particular, the Brown et al

“estimation risk” effect disappears, so that an investor with logarithmic utility ignores parameter

uncertainty entirely in his portfolio decision5. An investor with non-logarithmic utility must take

account of parameter uncertainty, not because it affects the optimal instantaneous mean variance

efficient portfolio, but because he will learn more about the parameters as time passes. His
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estimates of the unknown parameter values are “state variables” in his dynamic optimization

problem and it is the need to hedge against unanticipated changes in these state variables that

affects the optimal portfolio choice.

The effect of stock return predictability for an investor with a long investment horizon in the

absence of parameter uncertainty has been studied in several recent papers, including Brennan,

Schwartz and Lagnado (1997), Campbell and Viceira (1998), Brandt (1998), and Lynch and

Balduzzi (1998). However, none of these papers take into account the fact that the underlying

predictive relation is uncertain. Barberis (1999) studies a problem that is closely related to the one

analyzed in this paper. He derives a dynamic strategy in a discrete time setting with estimation

risk; however in doing so, he simplifies the problem by ignoring the possibility that the investor

will learn more about the predictive relation as time passes. As a result of this simplification,

the investor’s opportunity set is governed by the predictive variable (the dividend yield) alone,

and the investor ignores the hedge demand for stock that is induced by parameter uncertainty. In

this paper, the investor’s opportunity set depends on not only the current value of the predictive

variable but also the current estimate of the parameter and the variance of the estimate, and we

show that the hedge demand induced by parameter uncertainty is an important component of a

long horizon investor’s optimal portfolio.

This paper examines the optimal dynamic portfolio strategy for a long horizon investor who

takes account of the uncertain evidence of stock return predictability. We study the effect of

parameter uncertainty and its associated hedge component, in a dynamic continuous time context

with a potentially time varying investment opportunity set induced by possible return predictability.

The drift of the single risky asset price process is assumed to be known to be a linear function

of the value of a signal which follows a known Markov process, but the parameters of the

linear predictive relation are unknown and must be estimated. We derive the evolution of the

investor’s beliefs about the unknown parameters when the asset prices are possibly predictable

and the predictive variables themselves are stochastic, and show that this introduces a stochastic

covariance between the current estimate of the parameter and the stock returns. It also introduces a

stochastic variance for the estimated parameters. This feature of the model distinguishes learning

effects with return predictability from learning effects without return predictability analyzed by
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Gennotte (1986), Brennan (1998), and Brennan and Xia (1998a).

Since returns are potentially predictable and time varying, we are able to consider the in-

teraction of investment horizon and parameter uncertainty. The hedge demand associated with

the uncertain parameters plays a predominant role in the optimal strategy, and is the major ele-

ment of the horizon effect. When the stock return is possibly predictable (even if the true but

unknown return process is i.i.d.), the optimal allocation is horizon-dependent: the optimal stock

allocation can increase, decrease or vary non-monotonically with the horizon6, because parameter

uncertainty induces a state dependent hedge demand that may increase or decrease with horizon.

Therefore, the conventional advice that young investors should allocate more wealth in equity

does not hold for eveyone. The introduction of interim consumption reduces the magnitude of

the horizon effect, because it reduces the effective horizon or duration of the consumption.

Market timing, the dependence of the portfolio allocation on the predictive variable, is a

natural consequence of return predictability. The relation between the optimal portfolio allocation

and the predictive variable depends crucially on future learning and investment horizon. Without

learning, the optimal allocation increases monotonically with the current predictive variable7,

because the investor takes advantage of return predictability by investing significantly more in

stock when the expected return is high. When there is learning, however, the optimal allocation is

less sensitive to and no longer monotone in the predictive variable, because as the expected return

becomes higher, the negative amount of stock the investor uses to hedge parameter uncertainty

eventually dominates. In addition, the horizon effect of market timing depends on whether the

investor faces parameter uncertainty. When the predictive relation is known with certainty, the

portfolio allocation is more sensitive to the predictive variable for a long horizon investor than

that for a short horizon investor8. When there is uncertainty about the predictive relation, the

allocation becomes less sensitive to the predictive variable for a long horizon investor. Simulated

results using both historical as well as artificially generated data show that investors who ignore

market timing can incur very large opportunity costs.

The paper is organized as follows. The model is developed in section 2. Section 3 describes

the data and the calibrated parameter values used in the numerical calculations. Section 4 contains

three subsections. The first subsection discusses the effect of parameter uncertainty, interim
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consumption and investment horizon. The second subsection examines the economic importance

of market timing in the context of uncertain predictability. While the first two subsections are

based on results with a constant predictive parameter, the third subsection briefly comments on the

results with stochastic predictive parameter. Section 5 discusses implications for future research

and concludes the paper.

I. The Model

A. The Basic Setting

Consider an investor with a long horizon who can trade continuously in a risk free asset and a

single risky stock. The real return on the risk free asset is assumed to be a constant r, so that

the price of the risk free asset is described by

dB = rBdt. (1)

The stock price with dividend reinvestment, P , is assumed to follow a simple stochastic process

of the following type:
dP

P
= µ(t)dt+ σPdz, (2)

where dz is a (k×1) vector of increments to standard Wiener processes, dzi is independent of dzj

for all i, j = 1, · · · , n and i �= j, and σP is a known constant (1× k) vector. The instantaneous

proportional drift, µ(t), however, is not known to the investor, but is related to an n−vector of

predictive variables, S, by a functional relation µ(t) = µ(S, t). The true relation between the

drift and the predictive variables is not known to the investor, and it is possible that the predictive

variables have no power to predict µ at all. For tractability, it is assumed that the investor knows

that this relation is linear, but that the coefficients are possibly stochastic and are unobservable

to the investor:

µ(t) = α + β ′S(t), (3)

where α is an unknown scalar and β is an n × 1 vector of unknown (unobservable) predictive

coefficients. The coefficients β are assumed to evolve according to the following known diffusion
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process9:

dβ = (a0(P, S, t) + a1(P, S, t)β)dt+ η(P, S, t)dz. (4)

Here a0(P, S, t) is an (n× 1) vector, a1(P, S, t) is an (n×n) matrix and η(P, S, t) is an (n× k)

matrix, all of which are assumed to be known. We can view equation (4), the evolution of the

vector of the unobservable predictive coefficients, as the “transition equation” in a continuous

time analog to the Kalman filtering procedure. When all the coefficients in equation (4) are

zero, β is a vector of unobservable constants. If, in addition, β = 0 in equation (3), the model

corresponds to that of iid returns with unknown drift, which is analyzed by Brennan (1998).

For simplicity, we assume that both the long run mean of µ, µ̄, and the mean of the predictive

variables, S̄, are known constants so that α ≡ µ̄ − β′S̄ is known whenever the value of β is

determined. To complete the model, we assume that the vector of predictive variables, S, follows

a known joint Markov process:

dS = (A0(P, S, t) + A1(P, S, t)β)dt+ σS(P, S, t)dz. (5)

where A0(P, S, t) is (n × 1), A1(P, S, t) is (n × n) and σS(P, S, t) is (n × k). We refer to the

processes for the predictive variables, equations (2) and (5), as “measurement (or observation)

equations”, following the Kalman filtering literature.

The assumption that the parameters in equations (4) and (5) are known is a strong one because

an investor will not generally know for certain either the processes for the predictive variables

or the evolution of the coefficients. A more realistic model would allow for unobservability

in the processes (4) and (5) as well. It is also possible that the processes of the coefficients

and the signals are subject to regime shifts and jumps10. While these are potentially important

considerations, we simplify by modelling the predictive variables as Markovian diffusions with

known parameters. Even this small source of imperfect information has major implications for

optimal portfolio choice and investor welfare.

Following Merton (1971), the investor is assumed to maximize the expected value of a von-

Neumann-Morgenstern utility function defined over consumption, c(t), and wealth at the horizon

W (T ) by choosing an optimal consumption and portfolio strategy, c(t) and x(t), ∀t ∈ [0, T ],
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where x(t) is the proportion of wealth allocated to the risky asset:

max
{x(t),c(t)}

E

{∫ T

0
U(c(t), t)dt+B(W (T ), T )|FI

0

}
, (6)

s.t. dW = (rW + xW (µ̄+ β(S − S̄)− r)− c)dt+ xWσP dz, (7)

where β (or µ) is unknown to the investor and must be inferred, and FI
0 is the investor’s

information set at time 0. We assume that the investor has iso-elastic utility so that the utility of

instantaneous comsumption is

U(c(t)) =




e−ρt c
1−γ
t

1−γ
if γ > 0 and γ �= 1

e−ρt log ct if γ = 1
, (8)

where ρ is the constant time preference parameter, and the bequest function, B(W (T ), T ), is

defined analogously. We assume implicitly that all necessary and sufficient technical conditions

are satisfied for the investor’s problem to have a well-defined solution.

The investor forms his assessment of the predictive relation coefficient β from the observed

stock return and the predictive variable processes. As Detemple (1986), Dothan and Feldman

(1986) and Gennotte (1986) have shown in a related setting, the investor’s decision problem

may be decomposed into two separate problems11: an inference problem in which the investor

updates his estimate of the current value of the unobservable state variable, β; and an optimization

problem in which he uses his current estimate of β to choose an optimal portfolio, taking account

of possible future learning. Although the value of the underlying state variable β is unknown,

the separation theorem implies that the investor’s optimization problem can be solved in terms

of its estimated value.

B. The Investor’s Inference Problem: A Learning Process

The standard Brownian motions z are defined on a probability space (Ω, ℘,F) with a standard

filtration F = {Ft : t ≤ T}. The investor’s information structure is summarized by the filtration

FI generated by the joint processes of signals I(t) = (P (t), S(t)), and FI
t ⊂ Ft. Processes of

dz and β are adapted to Ft but not to FI
t, since the investor does not directly observe β. Let
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bt ≡ E
(
β|FI

t

)
and νt ≡ E

(
(β − bt)(β − bt)

′|FI
t

)
denote the conditional mean and variance of

the investor’s estimate. The investor is assumed to have a Gaussian prior probability distribution

over β, with mean b0 and variance ν0
12.

Following Liptser and Shiryayev (1978), the distribution of β conditional on I(t) = (P (t), S(t))
is also Gaussian with mean bt and variance νt (subscript t is dropped later). In order to gain more

intuition for the continuous time Bayesian updating rule, we concentrate on a specific simplifi-

cation of the model and leave the general case and details of derivation to Appendix A. Suppose

that there is one predictive variable which follows a Ornstein-Uhlenbeck (O-U) process:

ds = κ(s̄− s)dt+ σsdzs. (9)

Then, we can rewrite the stock return process as

dP

P
= (µ̄+ β(s− s̄))dt+ σPdzP . (10)

Let us assume that the coefficient β also follows an O-U process13,

dβ = λ(β̄ − β)dt+ σβdzβ, (11)

and let E(dzpdzs) = ρsPdt, E(dzpdzβ) = ρβPdt etc.

Conditional on the investor’s filtration FI
t, the stock price follows the stochastic process

dP

P
= (µ̄+ b(s− s̄))dt+ σPdẑP , (12)

and the updating rules for the conditional mean and variance are

db = λ(b̄− b)dt+ [ν (s− s̄, 0) + (σβP , σβs)]


 σ2

P σsP

σsP σ2
s




−1 
 σPdẑP

σsdẑs


 , (13)

= λ(b̄− b)dt+ ν1dẑP + ν2dẑs, (14)

dν

dt
= −2λν + σ2

β − [ν (s− s̄, 0) + (σβP , σβs)]


 σ2

P σsP

σsP σ2
s




−1

[ν (s− s̄, 0) + (σβP , σβs)]
′ , (15)

= −2λν + σ2
β − [ν1(s)

2 + ν2(s)
2 + 2ν1(s)ν2(s)ρsP ], (16)
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where b̄, ν1(s), ν2(s), dẑs, and dẑP are given in equations (A12) to (A15). Note that the

innovations in both the stock price and the parameter estimate b are governed by the Brownian

increment dẑP , which is adapted to the investor’s filtration FI , while dzP is not. Conditional on

the measure innovated by FI , the budget constraint (7) becomes

dW = (rW + xW (µ̄+ b(s− s̄)− r)− c)dt+ xWσP dẑp. (17)

As shown in equation (A18) in Appendix A, the state variable, β, and the observation of

stock return and predictive variable are jointly normally distributed. The “best” current estimate

of β is then its conditional mean, b. b in this model is the slope coefficient of regressing stock

return on dividend yield. The updating process is a recursive procedure for computing the optimal

estimate b and its variance at time t based only on the information available at t, and it enables

the estimate to be continually updated as new observations become available.

The change in the best estimate, db in equation (13), consists of two terms: the first term is

a deterministic drift equal to the expected change in b given the current estimate, E (db|bt). The

second term is given by a vector of regression coefficients times a vector of innovations, which

are derived from the signals. The vector of covariances between the innovations in b and the

innovations in the stock price and the predictive variable, [ν (s− s̄, 0) + (σβP , σβs)], determines

how much of the new information is incorporated in the updating of b. It depends on several

important parameters of the model. When the investor is less confident of his current estimate

(higher ν) or when the signal is more highly correlated with the unobservable parameter (larger

values of ρβP and ρβs), he will put more weight on the new information, so that the second term

contributes more to the updating.

The variance updating rule for ν in equation (16) is the usual Ricatti equation. The first

two terms correspond to the incremental uncertainty induced by the stochastic variation in β

itself, while the term in the bracket denotes the reduction in estimation error when additional

information becomes available. The rate of learning depends positively on the mean-reverting

parameter and negatively on the variance of the β process: intuitively, the less variable is β the

more rapidly the investor learns about its current value. Equation (16) differs from the standard

9



Gaussian conditional variance updating rule in that the rate of learning is a function of the current

value of the predictive variable, s. The investor is trying to learn about a regression coefficient

between stock return and s− s̄. When s ≈ s̄, the investor does not learn much about β, and his

uncertainty reduces at a slower rate.

The steady state value for ν, ν̄, is obtained by setting the right hand side of equation (16) to

zero, which means that the investor cannot improve his estimate of the parameter after he reaches

the steady state. When β is stochastic, ν̄ > 0 in general, so that the investor is always “one-step

behind”. In this case, the steady state estimation risk, ν̄, is a function of s, because the path

of s determines how informative the data is as compared to the variation in β. When β is a

constant (i.e., λ = 0 and σβ = 0), although the learning path is still state-dependent, the investor

eventually learns about the true value of β and ν̄ = 0.

As detailed in Appendix A, the covariance between the observation and the state variable

depends on the coefficient matrix in the observation equation, which is a function of the predictive

variable s. Therefore, an interaction of return predictability and learning means that cov
(
db, dP

P

)
depends on both the current level of uncertainty ν and the value of the predictive variable s:

σbP (s) = cov(db,
dP

P
) = σP (ν1 + ρsPν2),

= ν(s− s̄) + ρβPσβσP . (18)

When there is no learning, the first term is zero so that σbP is constant. When there is learning,

the sign of the first term depends on whether s is above or below s̄. In the case of σβ = 0, the

sign of the covariance solely depends on s− s̄. Suppose that s > s̄, then an unexpectedly high

return (dẑP > 0) means that the current estimate bt is too low, and the investor adjusts b upwards

(i.e., db > 0). Thus, in the case of s > s̄, the covariance is positive. Suppose that s < s̄, then bt

is multiplying a negative number, and an unexpectedly high stock return (dẑP > 0) means that

the current estimate of b is too high, so the investor adjusts b downwards (db < 0). Since the

sign of this covariance affects the role of the stock as an instrument for hedging against changes

in b, the stochastic variation in σbP introduces a “timing element” into the hedge demand for the

stock.
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C. The Investor’s Optimization Problem

Given the investor’s information set, FI
t, his decision problem at time t is completely character-

ized by his wealth level Wt, his current assessment of the predictive coefficient, as summarized by

its conditional mean, bt, and variance, νt, and the current observation of the predictive variable,

st. Thus, the investor’s lifetime expected utility under the optimal policy can be written as:

J(W, b, ν, s, t) = max
{(c(τ),x(τ)):t≤τ≤T}

E

{∫ T

t
e−ρτ c1−γ

1− γ
dτ +

e−ρTW 1−γ
T

1− γ
|FI

t

}
, (19)

with a terminal condition

J(W, b, ν, s, T ) = e−ρT W
1−γ
T

1− γ
. (20)

Imposing the budget constraint (17), using the stochastic processes (14) and (16), and noting that

the correlation between dẑP and dẑs is also ρsP , we can derive the condition for optimality in

the investor’s decision problem. The first order conditions for the optimal consumption-portfolio

choice c∗(t) and x∗(t) are derived according to Merton (1971). Under the iso-elastic utility

assumption in equation (8), J(W, b, s, ν, t) is separable in wealth, and can be written as:

J(W, b, ν, s, t) = e−ρtW
1−γ

1− γ
φ(b, ν, s, t). (21)

Calculating the derivatives of J using Equation (21) and then substituting into the original

optimality condition yields a nonlinear second order partial differential equations for φ in four

state variables14 (b, s, ν, t).

The optimal portfolio strategy and consumption-wealth ratio are given by

x∗ =
µ̄+ b(s− s̄)− r

γσ2
P

+

[
φb

γσ2
Pφ

ν(s− s̄) +
φs

γσ2
Pφ

σPσsρsP +
φb

γσ2
Pφ

σPσbρβP

]
, (22)

and (
c

W

)∗
= φ− 1

γ . (23)

The first term in equation (22) is the familiar myopic portfolio allocation to stock, while the

second term represents the investor’s hedge demand for stock. This hedge demand has three

components: the first term in the bracket is the hedge demand due to learning, which represents
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the direct effect of parameter uncertainty; this term disappears when there is no uncertainty about

β (i.e., ν = 0) or s happens to equal s̄. The second term arises from the need to hedge against

changes in the investment opportunity set due to changes in the predictive variable s. This term

drops out if the stock return is uncorrelated with the change in the predictive variable s, i.e., if

ρsP is zero. The third term arises from the need to hedge against changes in the estimate b. This

term disappears if the correlation between β and stock return is zero, or if the true value of β is

a constant (i.e., σβ = 0).

The first term is instantaneously zero when s happens to equal s̄, because the covariance

between the estimation error and stock return, ν(s− s̄), is zero in this special case. Even in this

case, however, the optimal portfolio strategy with and without parameter uncertainty is different

from each other. The magnitude of the second and the third terms in the bracket is different from

that without parameter uncertainty, because the function φ depends on a different set of state

variables due to the presence of parameter uncertainty. As a result, there is an indirect effect of

parameter uncertainty represented by the difference between the hedge demands associated with s

and β in the two cases. The total effect of parameter uncertainty is then given by the summation

of the direct and indirect effects.

In a discrete time setting, estimation risk as discussed by Brown et al. (1979) affects the

investor’s portfolio choice through the variance-covariance matrix of the returns, which is in-

creased by the estimation risk associated with uncertainty about β15. In a continuous time long

horizon model, the instantaneous variance-covariance matrix of the returns is not increased by the

static estimation risk, but the dynamic effect of learning introduces an additional hedge demand

represented by the first term in the bracket and changes the magnitude of the hedge demands

associated with s and β in the second and third terms in the bracket. Barberis (1999) uses the

Brown et. al. (1979) model to study return predictability with static estimation risk in a multi-

period discrete time context. This introduces a hedging demand associated with the predictive

variable represented by the second term in the bracket, but he did not treat the parameter estimate

as a state variable, and thus ignores both the hedge demand associated directly with dynamic

learning and the change in the hedge demand of s caused indirectly by it16. While we emphasize

both, we are able to ignore the effect of static estimation risk on the optimal portfolio since it
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disappears in a continuous time setting.

II. Data, Model Calibration and Numerical Approximation

Two different optimization problems are studied. In the first, the investor maximizes the expected

utility of lifetime consumption and bequest. In the second problem, the investor maximizes the

expected utility of terminal wealth. The risk aversion coefficient, γ, is set to be 5.0. For

computational reasons we consider only a single predictive variable. While several important

predictive variables17 have been identified, we take the dividend yield as the single predictive

variable, d/p ≡ s, because this variable plays a prominent role in studies of return predictability

and enables us to compare our results with existing work. For simplicity, we first assume that β

is constant so that λ and σβ in equation (11) are zero18.

The parameters of the joint stochastic process for the real stock return and dividend yield

were calibrated to the moments of historical observations of U.S. stock market real returns and

dividend yield for the period from January 1950 through December 1997. The stock return is

from the CRSP monthly returns file VWRETD, and the dividend yield series is constructed by

factoring out the dividend from VWRETD and VWRETX in CRSP. The return on the value

weighted CRSP index adjusted by the monthly inflation rate19 was taken as the return of the

stock. The historical annual average inflation rate and the annualized long run mean of the

treasury bill rates were used to derive an estimate for the real interest rate, r, of approximately

3.4%20. The historical mean and volatility of the real return on the CRSP value weighted index

for the period January 1950 to December 1997 are used as estimates of µ̄ and σP . Values for κ,

s̄ and σs were obtained by estimating the exact discrete equivalent of (9) by nonlinear ordinary

least squares regression using monthly data on the dividend yield,

st = s̄(1− e−
κ
12 ) + e−

κ
12 st−∆t + et, (24)

where st is the dividend yield at time t, ∆t = 1/12 (year), and the standard deviation of the

regression residual σe is related to the volatility σs by σs = σe

√
2κ

1−e−κ/6 .
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Table I reports the parameter notations and calibrated values used in the numerical study.

In order to obtain a reasonable range for the value of prior mean b0 and variance ν0, a VAR

regression using stock return and dividend yield with one lag is carried out using data from the

whole sample and one sub-samples (January 1950 to December 1977) and reported in the last

four rows of Table I. The regression results are close to those of Barberis (1998, Table II)21

when the same sub-sample is used. We use the VAR regression results for the values of the prior

mean and variance.

The nonlinear partial differential equation in φ is solved using an implicit finite difference

approximation on a (40× 200× 60) grid for the state variables (s× b× ν). The second-order

partial derivatives with respect to the state variables are discretized using second-order accurate

central difference approximations. The first-order partial derivatives with respect to the state

variables are discretized using first-order accurate difference approximations. The dividend yield

is allowed to range from 0% to 20%. The range of b is set to [−10, 10], and the value of ν0

varies from zero to 12.0 or the standard deviation
√
ν0 varies from 0 to 3.46. Thus, the step sizes

in the three state variables are 0.5%, 0.1 and 0.2, respectively. The time step is set to be one

month ( 1
12

year). For each time step, initial trial values of the optimal control, x∗, are computed

using values of the partial derivatives from the previous time step. Current values of φ(b, s, ν, t)

are then calculated from the partial differential equation using the method of successive over

relaxation, and the optimal control is then re-computed using values of the partial derivatives

from the currently computed values of φ. The new control is then used to compute new values

of φ. This procedure is repeated until it yields satisfactory convergence.

In solving the partial differential equation, we assume that φ is linear at both the upper and

lower boundary of b. The upper boundary for s is also imposed to be linear. To preclude the

possibility of a negative dividend yield, a reflecting barrier at s = 0 is imposed22. The upper

boundary for ν is inaccessible in theory since ν declines monotonically as the investor learns

more through time. We assume that φ has zero second derivative at the upper boundary of ν.

When ν reaches zero, it is absorbed, and the investor no longer has estimation risk. When β

is constant, the partial differential equation reduces to a one-state variable case, and the values

of φ can be calculated according to the closed form formulas given by Kim and Omberg (1996)
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and summarized in Appendix B, which provides a natural lower boundary for ν. When β is

stochastic, the pde along the boundary at ν = 0 has two state variables. We numerically evaluate

this pde and use the result as the natural boundary for the three-state variable PDE.

III. Effect of Learning about Predictability

Numerical results in the first two subsections are based on the assumption of a constant true

value for β and a risk aversion coefficient of 5.0. The predictive variable is the dividend yield,

so that d/p ≡ s in all the results. In subsection A, the effect of the horizon on optimal portfolio

choice is analyzed. Subsection B is devoted to a discussion of the dependence of the portfolio

decision on the current dividend yield and of the economic value of market timing. In subsection

C, we briefly comment on the results when β follows an O-U process.

A. Parameter Uncertainty, Interim Consumption and Horizon

Table II summarizes the solution to an investor’s optimization problems with and without interim

consumption. The results are obtained by assuming b0 = 4.5 and ν0 = 4.0, which corresponds

to the VAR estimate b and its standard error using the whole sample of 1950-1997. Within each

table, the optimal proportion of wealth allocated to stock, the myopic stock allocation, the two

components of hedge demands associated with learning and the stochastic dividend yield, are

reported for five values of d/p and five investment horizons T . Consider the last five columns

of Panel A, where optimal stock allocations are reported for an investor maximizing the expected

utility of terminal wealth. We observe roughly two patterns of horizon effect. When d/p < 4%,

the optimal allocation generally increases with the horizon. When d/p ≥ 4%, it first increases and

then decreases with the horizon. This constrasts with Barberis (1998), who finds that parameter

uncertainty reduces the impact of horizon, but that the long horizon investor still holds more

stock as compared to short horizon ones23.

The driving force for the difference is the two hedge components. The first hedge component

directly reflects the effect of parameter uncertainty in a dynamic setting. As shown in Panel C,
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the magnitude of this hedge demand increases with the investment horizon and the absolute value

of (s− s̄). In the case of d/p = 2%, for example, this first hedge component is 0% of the wealth

when T = 1m, and it increases to 25% for T = 20y. As d/p is closer to its long run of 4%,

the size of the hedge demand decreases for all horizons. This hedge component is positive when

s < s̄ and negative when s > s̄. Suppose that b0 > 0 and the investor observes s > s̄, then an

unexpectedly high stock return (a piece of good news) means that the current estimate is too low

and the investor revises the estimate upward (another piece of good news) so that the revision

of b, which represents a change in the predictability and the future investment opportunity set,

is positively correlated with current stock return. To hedge for the revision of b or the change

in the future oppotunity set, the investor wants to sell (hold) something positively (negatively)

correlated with it. Therefore, the hedge demand for stock associated with state variable b is

negative. Conversely, if s < s̄, an unexpectedly high stock return (a piece of good news) means

that the current estimate of b is too high and the investor revises the estimate downward (a piece

of bad news) so that the covariance between db and the stock is negative. To hedge for the

revision of b, the investor’s hedge demand for stock is positive. The second hedge component

indirectly reflects the impact of parameter uncertainty. When ν0 = 0, both the optimal allocation

and the hedge demand, as shown in Appendix B, increase with horizon when the current estimate

of excess stock return is positive. However, when ν0 = 4.0, as shown in Panel D of Table II, the

second hedge demand can first increase and then decrease with horizon. A possible reason is that

the investor’s indirect utility function with parameter uncertainty becomes less and less sensitive

to the predictive variable as the horizon becomes longer, so that ∂ lnφ(b,s,ν,t)
∂s

first increases and

then decreases with T . This is reasonable because the investor is uncertain about the predictive

power of dividend yield, and the uncertainty becomes more important as T increases.

Comparing results in the first five columns with those in the last five columns, we find that

the general horizon effect with and without interim consumption is similar qualitatively, but that

the magnitude of the effect is smaller. Interim consumption reduces the effective horizon relative

to the stated horizon, and so the horizon effect is accordingly smaller. This is also reflected

in the difference in hedge demands between long and short horizon investors. The two hedge

components with interim consumption are sometimes only 50% of those with terminal wealth.
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This indicates that the presence of interim consumption mainly reduces the impact of parameter

uncertainty for any given investment horizon.

The total impact of parameter uncertainty is further highlighted in Table IV., where the

optimal demand for stock is compared for the myopic strategy (KS), approximates the strategy

adopted by an investor in Kandel and Stambaugh (1996), the dynamic strategy without parameter

uncertainty (BSL), which approximates the strategy adopted by the investor in Brennan, Schwartz

and Lagnado (1997), and the optimal strategy (O). Panel A compares the portfolio allocation

under the three strategies for b0 = 0. Under both KS and BSL strategies, b0 = 0 implies that

the stock return is not predictable and follows an i.i.d. distribution. The optimal allocation for

every horizon is a constant myopic 55%. In constrast, the optimal allocation under strategy O

is horizon-dependent. Even though the current estimate indicates no predictability, the investor

optimally allows for the possibility that he β is note equal to zero and he will learn more about

it in the future. Panel B reports results for b0 = 4.5. A certain return predictability plus a

negative correlation between dividend yield and stock return introduces a mean-reverting pattern

into the return, and the allocation under BSL strategy increases with the horizon, because the

hedge demand for stock is positive and increases with horizon. In constrast, when the return

predictability is uncertain, a high current return could imply a better future investment opportunity

set as mentioned earlier, which results in positive serial correlation in stock return and a negative

horizon effect. Not surprisingly, the allocation under the O strategy could decrease with the

horizon. The importance of the indirect impact of parameter uncertainty is indicated in the case

of d/p = 4%. Even though the direct impact given in the first hedge component is zero, the

optimal allocation under BSL and O are quite different, because the indirect utility function, φ,

and its sensitivity to a change in d/p, ∂ lnφ(b,s,ν,t)
∂s

, differ in the two strategies.

The comparison of the BSL and O strategies is also carried out in Figure 1. We note that the

horizon effect is state-dependent. It could be increasing, decreasing or non-monotone in horizon.

Thus, although horizon matters, the conventional wisdom that the young investor holds more

proportion of wealth in equity does not hold for every state and for every investor.

Tables IV, V and VI examine the impact of parameter uncertainty for a long horizon

investor when he has different levels of prior uncertainty, ν0. Table IV shows that the size
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of the first hedge component increases with the level of parameter uncertainty: the investor

wants to hold more stock to hedge the revision of b when he is more uncertain about it. The

sign of this hedge component changes when d/p changes from below to above s̄, because the

covariance between db and stock return changes sign. Table V shows that, while an increase in

parameter uncertainty increases the importance of the first hedge demand, an increase in the level

of parameter uncertainty reduce the importance of the second hedge component as the size of

the hedge demand for stock is smaller. When parameter uncertainty is high, the optimal strategy

and the optimal indirect utility function are less responsive to a change in the dividend yield,

because the investor optimally choose to act more conservatively in return predictability. This

conservatism makes the indirect expected utilty of wealth and thus the hedge component against

the change in dividend yield small. As a result, the first (second) hedge component dominates

when ν0 is high (low). When the first hedge component decreases with parameter uncertainty, then

the optimal demand for stock also decreases with it. When the first hedge component increases

with parameter uncertainty, the optimal demand for stock also increases with it as observed in

Table VI.

From these tables, we also observe that the magnitude of the hedge demand increases with

b0 for any fixed d/p and ν0. As b0 gets larger, return predictability is more important. A change

in b0 not only affects the size of the short run expected stock return but also the importance of

stock return predictability in the long run. Thus, the need to hedge increases with the size of b0.

We can gain a little intuition about the horizon effect on optimal portfolio choice by looking at

the moments of cumulative stock returns for a buy-and-hold mean-variance optimizing investor.

Appendix C contains the derivation of the mean, variance and covariance for stock returns over

horizon (T −t) when the return predictability is certain. From equations (C4) and (C5), we know

that both the cumulative mean, E, and the cumulative variance, V , increase with the horizon.

For long horizon investors and with commonly estimated parameter values, E generally increases

faster than V , so that the mean variance ratio, E
V

, increases with the horizon. A buy-and-hold

mean-variance optimizing investor would hold more wealth in stock when the investment horizon

is longer. For an investor engaging in optimal dynamic rebalancing, we consider the first order

autocovariance, C1, of the stock return as given in equation (C8). A large negative ρsP implies a
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negative C1, which in turn implies mean-reversion in the stock return . Not surprisingly, both the

current analysis and that of Barberis (1999) find that the optimal stock allocation is increasing

in the horizon when there is no learning.

B. Market Timing and the Value of Uncertain Predictability

A natural consequence of return predictability is market timing: the optimal stock allocation

depends on the current value of the predictive variable. The intensity of market timing depends

crucially on future learning and investment horizon.

Figure 2 compares the optimal market timing under the KS, BSL and the optimal strategies.

The first two panels assumes that b0 = 0, i.e., the current estimate indicates no return predictabil-

ity. Both KS and BSL treat stock return as if it was truly i.i.d.. Not surprisingly, both stock

allocation rules do not depend on the current observation of d/p. The optimal strategy, instead,

correctly allows for the possibility of future learning and accordingly hedges for future updating

in b. There are two competing effects in the optimal portfolio allocation when d/p increases. On

the one hand, an increase in the dividend yield implies a higher expected stock return, which calls

for an increase in stock allocation. On the other hand, when the dividend yield becomes much

larger than its long run mean and the expected stock return becomes too high, the investor be-

comes more cautious and the hedge demand associated with parameter uncertainty becomes more

negative, so the optimal allocation should decrease with the dividend yield. Whether the optimal

stock demand increases or decreases with dividend yield depends on which term is more impor-

tant. The negative hedge component eventually dominates, and a further increase in dividend

yield implies that the investor reduces the optimal demand for stock.

The bottom two panels report the comparison when b0 = 1.5, i.e., the current estimate indicates

return predictability. Both KS and BSL strategies lead to a linear dependence of optimal allocation

on the predictive variable as also given in Campbell and Viceira (1998). The stock allocation

under the KS strategy is x∗KS =
µ̄−r+b0(s−s̄)

γσ2
P

, and x∗
KS increases with s with a slope of b0

γσ2
P

. The

stock allocation under the BSL strategy, x∗BSL, is given in equation (B4), and is linearly depends

on s, with a slope of b0
γσ2

P
+

b20ρsP σsC(τ)

γσP
, where C(τ) < 0 is given in (B11) and ρsP is negative.
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Thus, the slope of the BSL strategy is always larger than that of the KS strategy by the amount

of b20ρsP σsC(τ)

γσP
. As dividend yield becomes large, the investor with KS or BSL strategy holds a

very large position in stock. The investor with the optimal strategy instead holds very reasonable

positions even when dividend yield becomes extremely large, because the negative hedge demand

for parameter uncertainty is more than enough to offset the increase in the allocation caused

by a greater expected return. In constrast with the linear dependence of KS and BSL strategy,

the optimal strategy again leads to a hump-shaped relation between optimal allocation and the

predictive variable.

This non-monotone dependence of the optimal strategy on the predictive variable is also given

in Stambaugh (1999). The pattern in Stambaugh (1999) arises from the conditional skewness

in the predictive distribution of long-horizon returns in the case of large dividend yield. Our

observation is driven mainly by the increasingly large negative hedge demand associated with

parameter uncertainty as the predictive variable becomes larger.

Figure 3 plots the proportion of wealth invested in stock given historical data of stock return

and dividend yield from January 1978 to December 1997. The investment horizon is fixed at

twenty years, so the investor starts with a targeted horizon date at December 1997 and faces a

horizon date moving through time. We assume that the investor’s risk aversion parameter is equal

to 5.0. The investor uses the VAR regression results, β̂ and var(β̂), from the sample of January

1950 - December 1977, as his prior mean and variance of the estimate, b0 = 6.76 and ν0 = 6.38.

He updates the estimate b and its variance ν as he observes the stock return and dividend yield

through time. The portfolio choice is calculated under the optimal, the “KS”, the “BSL” and

the “iid” strategies. Under the “iid” strategy the investor ignores predictability and assumes that

the expected stock return is constant and equals µ̄, so that there is no market timing and the

proportion of wealth allocated to stock is a constant 0.55. The three other strategies take strong

advantage of return predictability. Compared to the optimal strategy, “BSL” strategy, which does

not account for parameter uncertainty, shows great variability through time when the stock return

and dividend yield change. In a short period, the “BSL” strategy could adopt very large positive

or negative positions, indicating a much too aggressive market timing. Although “KS” strategy is

less aggressive, the magnitude and direction of market timing differ quite substantially from those
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under the optimal strategy in certain periods. In 1990’s, the large stock price run-up resulted in

a historically low dividend yield. The investor continuouslly revised the estimate b downward,

but it was still positive at the end of 1997. A positive b with a very small dividend yield implies

that the expected excess stock return, b(s − s̄), is negative. Not surprisingly, all market timing

strategies call for large short positions in the stock market in recent years. The short position for

the optimal strategy, however, is the smallest, because conditional on the current state of s < s̄

the hedge demand associated with parameter uncertainty is positive, which offsets the negative

stock demand associated with a negative excess stock return. As the estimate of β becomes more

precise, the hedge demand becomes less important, and the optimal portfolio strategy converges

toward that of BSL as time passes.

To assess the economic value of uncertain stock return predictability, we run a horse race

among the four strategies. Define the certainty equivalent wealth (CEW) of a specific strategy

δ for an investor as the amount of wealth that makes the investor indifferent between receiving

CEW for sure at the horizon T and having $1 today to invest up to the horizon using strategy δ:

e−ρT CEWδ(b, s, ν, T )
1−γ

1− γ
=
$11−γ

1− γ
φ(b, s, ν, T |δ), (25)

which simplifies to:

CEWδ(b, s, ν, T ) = eρTφ(b, s, ν, T |δ) 1
1−γ ,

where T is the remaining time to the horizon. Define the present value of the CEWδ(b, s, ν, T )

as PV CEWδ(b, s, ν, T ) ≡ e−rTCEWδ(b, s, ν, T ), where r is the constant real risk free rate.

φ(b, s, ν, T |δ) is the value of the investment opportunities remaining till the horizon T for an

investor with $1 of wealth. It is computed numerically by solving the optimization equation with

the portfolio weight given by strategy δ.

Figure 4 highlights the economic value of the optimal vs. the myopic “KS” strategy using

the historical stock returns and dividend yield. The investor’s prior mean and variance of β,

b0 and ν0, are set to equal to 6.76 and 6.38, the VAR regression results, β̂ and var(β̂), with

a sample of January 1950 to December 1977. bt and νt are updated each month from January

1978 to December 1997 as the investor observes the historical values of stock return and the
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dividend yield. The optimal strategy, which correctly hedges for the updating of b, significantly

improves the investor’s welfare at every point of time. In certain historical periods, the optimal

strategy can double the investor’s present value of certainty equivalent wealth when compared to

the myopic strategy. Even in recent years, when “KS” strategy is close to the optimal strategy,

the improvement is still about 15%. This indicates that dynamic strategy allowing for learning

has significant economic value to the investor.

C. Stochastic β

When β is stochastic and follows an O-U process, we estimate λ, b̄ and σβ together with

parameters in Table I. We discretize equations (12) and (11) with a one-month time step and

write them in a state space representation. The parameters of this state space model are estimated

from monthly data on the real stock return and dividend yield via the Kalman filter algorithm

by assuming that the state variable β is uncorrelated with the observations of stock return and

dividend yield.

The estimates for λ, b̄ and σβ are, respectively, 0.115, −1.0 and 1.226. The estimates indicate

that the β process is very persistent with high volatility. Using this estimates and the assumption

that ρsβ = 0 and ρPβ = 0, we can solve the partial differential equation for the optimal portfolio

weights. Because of the assumption ρPβ = 0, the third hedge component in equation (22) remains

zero, but the importance of the other two hedge components changed. Even when the investor

treats the current estimate of β as its true value (i.e., ν0 = 0), there are two state variables, β

and d/p, governing the investment opportunity set. Because β varies stochastically over time,

the investor’s hedge behavior associated with d/p changes as well. When β is constant, the

mean reverting of d/p and the negative correlation between d/p and stock return translate into a

mean reverting pattern in stock return, and thus the investor’s hedge demand for stock as well

as optimal stock allocation increases with horizon. In constrast, the optimal stock allocation

with stochastic β first increases and then decreases with horizon. The effect of learning in this

case, however, is similar to the case with constant β. We find that the optimal stock allocation

generally decreases with horizon when d/p > 4% and increases with horizon when d/p ≤ 4%.

22



The sensitivity of optimal stock allocation to dividend yield is generally smaller when there is

parameter uncertainty. At a specific horizon with the same parameter values, the investor with

parameter uncertainty (ν0 > 0) usually holds less stock as compared with the investor without

uncertainty (ν0 = 0) when d/p > 4% and the opposite is true for d/p ≤ 4%. This indicates

that the hedge demand for stock associated with parameter uncertainty is generally negative for

d/p > 4% and positive for d/p ≤ 4%. All these qualitative effects of parameter uncertainty with

stochastic β are consistent with those with constant β.

IV. Conclusions and Future Work

We have analyzed the effect of learning on optimal consumption and portfolio choice for an

investor with a long investment horizon when there is uncertain evidence of return predictability.

The uncertainty about the predictive parameter introduces dynamic learning into the model. Our

learning model is characterized by a stochastic variance of the estimate and a stochastic covariance

between the stock return and the current estimate of the predictive parameter. The optimal stock

allocation with learning can increase, decrease or vary non-monotonically with the horizon, which

is quite different from when there is no learning or predictability. The prospect of learning affects

not only the magnitude but also the sign of the horizon effect. In addition, interim consumption

reduces or even reverses the relation between the optimal stock allocation and the horizon. We

examine the dependence of the optimal allocation on the current value of the predictive variable.

When there is no learning, the long-horizon investor times the market more aggressively than a

myopic investor. In contrast, a myopic investor times the market more aggressively than a long-

horizon investor when there is learning. The consideration of interim consumption reduces this

sensitivity. Simulation results using historical data show that investors who ignore the opportunity

of market timing can incur very large opportunity costs, so that return predictability, even if quite

uncertain, is economically valuable. The hedge demands associated with learning and stochastic

predictive variable depend on the current estimate of the parameter, the level of uncertainty about

the estimate, the value of the predictive variable, and the investment horizon. The optimal hedge

demands are non-zero even if the current estimate indicates no return predictability.
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This study is only an initial attempt to assess the economic importance of the empirical

evidence on the stock return predictability. The dynamic effect of learning has substantial im-

plications for the optimal portfolio choice and investor welfare. Although we have considered

uncertainty about the predictive parameter β, we have assumed that the investor knows everything

else: the nature of the predictive relation and the process for the predictive variable. We have

also ignored model uncertainty. For example, the investor could have probability distributions

over two possible stock return processes: one with i.i.d. returns and the other with predictability.

Brennan and Xia (1999) assess the importance of this type of model uncertainty on the optimal

portfolio decision. A challenging future task is to combine model uncertainty with parameter

uncertainty in the context of predictable stock returns.
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Table I:
Model Calibration: Parameter Values Used in the Numerical Analysis

This table lists parameter notations and calibrated values used in the numerical analysis of the nonlinear second order differential equations
in terms of φ with four state variables (b, s, ν, t) given in footnote 16. The parameter values are estimated from U.S. historical monthly data
of real stock returns and dividend yield from January 1950 to December 1997. When β is constant, parameter values are estimated using
(nonlinear) OLS. When β is stochastic, parameter values are estimated using Kalman filter.

Parameter Descriptions Notation Parameter Values
β is constant

1. volatility (standard deviation) of the dividend yield σs 0.6%
2. historical long run mean of the stock return µ̄ 9.1%
3. volatility (standard deviation) of the stock return σP 14.4%
4. correlation coefficient between the dividend yield and the
stock return processes

ρsP -0.93

5. mean reversion coefficient for the dividend yield process κ 0.19
6. historical long run mean of the dividend yield s̄ 4.0%
7. coefficient of risk aversion γ 5.0
8. subjective discount factor ρ 1%
9. real interest rate r 3.4%

10. current estimate of β (January 1950 - December 1997) b0 4.54
11. current estimate variance ν0 4.33

12. current estimate of β (January 1950 - December 1977) b0 6.76
13. current estimate variance ν0 6.38
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Table II:
Optimal Stock Allocation: The Horizon Effect (1)

(γ = 5.0, b0 = 4.5 and ν0 = 4.0)
This table presents of the optimal stock allocation, the myopic allocation and the two hedge demands for stock at different in-
vestment horizons for different values of the investment horizon and the predictive variable (dividend yield) s ≡ d/p when both
predictability and learning are present. We assume that the true value of beta is a constant. The myopic stock allocation is defined by

x∗
1 =

µ̄+b(s−s̄)−r

γσ2
P

, and the first hedge component is defined by x∗2 = φb

γσ2
P

φ
ν(s− s̄), while the second hedge demand is defined

by x∗3 = φs

γσ2
P

φ
σP σsρsP . The optimal stock allocation is then given by x∗1 + x∗

2 + x∗
3 . All results are obtained by numerically

solving the nonlinear second order differential equations in terms of φ with three state variables (b, s, ν). The first five columns report
the optimal stock allocation when the investor maximizes the expected utility of lifetime consumption, and the second five columns
report the allocation when the investor maximizes the expected utility of terminal wealth. In this table, the investor’s risk aversion
coefficient is γ = 5.0. The uncertainty about the investor estimate is given by

√
ν0 = 2, which corresponds to the standard deviation

of β̂ in the VAR regression if the investor uses the sample period of 1950-1997 to form his prior. The allocation is conditional on a
prior of b0 = 4.5, which is the VAR estimate of β for the same sample period.

Interim consumption Terminal Wealth
d/p 1m 1y 5y 10y 20y 1m 1y 5y 10y 20y

Panel A: Optimal Stock Allocation
2.0% -0.34 -0.34 -0.32 -0.27 -0.18 -0.32 -0.34 -0.29 -0.14 0.09
3.0 0.12 0.13 0.20 0.27 0.36 0.12 0.13 0.27 0.43 0.54
4.0 0.56 0.61 0.75 0.83 0.86 0.56 0.63 0.87 0.95 0.88
5.0 0.99 1.07 1.19 1.22 1.19 0.99 1.09 1.27 1.23 1.04
6.0 1.43 1.49 1.49 1.42 1.32 1.42 1.48 1.46 1.30 1.05

Panel B: Myopic Allocation of Stock x∗1
2.0% -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32
3.0 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
4.0 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
5.0 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
6.0 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42

Panel C: Allocation to Stock to Hedge Parameter Uncertainty x∗2
2.0% 0.00 0.01 0.04 0.06 0.11 0.00 0.02 0.06 0.11 0.25
3.0 0.00 0.00 0.01 0.02 0.05 0.00 0.00 0.01 0.05 0.15
4.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5.0 0.00 -0.01 -0.06 -0.09 -0.14 0.00 -0.02 -0.10 -0.17 -0.26
6.0 -0.01 -0.08 -0.25 -0.33 -0.41 -0.01 -0.08 -0.33 -0.47 -0.62

Panel D: Allocation to Stock to Hedge the Stochastic Predictive Variable x∗3
2.0% -0.02 -0.03 -0.05 -0.02 -0.03 0.00 -0.03 -0.04 0.07 0.16
3.0 0.00 0.02 0.08 0.14 0.19 0.00 0.02 0.14 0.26 0.28
4.0 0.01 0.06 0.20 0.28 0.31 0.01 0.08 0.32 0.40 0.33
5.0 0.01 0.10 0.27 0.33 0.35 0.01 0.12 0.39 0.41 0.31
6.0 0.02 0.15 0.31 0.33 0.32 0.01 0.15 0.37 0.35 0.25
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Table III:
Stock Allocation Under Different Investment Strategies

(ν0 = 4.0, T = 20 years and γ = 5.0)
This table compares the stock allocation decision under three different strategies with a twenty-year investment horizon for different
values of the predictive variable d/p and the investment horizon T . All the three strategies give rise to almost same optimal stock
allocations as the myopic one when the horizon is one-month, so the comparisons for one-month horizon is omitted. The results are
obtained by solving the nonlinear second order differential equations in terms of φ with three state variables (b, s, ν). In this table, the
first five columns report comparisons when the investor maximizes the expected utility of lifetime consumption and the second five
columns report results when he maximizes the expected utility of terminal wealth. The level of parameter uncertainty is summarized
by

√
ν0 = 2.0, which corresponds to the standard deviation ofβ̂ in the VAR regression for the sample period 1950-1997. Investment

strategy (i) is the “myopic portfolio strategy” (KS), strategy (ii) is the “dynamic portfolio strategy ignoring learning” (BSL), and
strategy (iii) is the “dynamic portfolio strategy considering learning” (O). The iid strategy implies a constant stock allocation for a
given γ, which equals 0.55 when γ = 5.0. Panel A reports the optimal portfolio under the three strategies when prior estimate is
b0 = 0.0 (current estimate indicates no predictability), and Panel B reports the results by assuming b0 = 4.5 (VAR estimate of the
predictive coefficient in the whole sample of 1950-1997).

Investment Horizon: T
1m 1y 5y 10y 20y 1m 1y 5y 10y 20y

d/p Strategy Interim Consumption Terminal Wealth

Panel A: b0 = 0.0%
2% (KS) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

(BSL) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
(O) 0.53 0.53 0.50 0.49 0.50 0.55 0.52 0.48 0.50 0.56

4% (KS) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
(BSL) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
(O) 0.55 0.55 0.55 0.55 0.54 0.55 0.55 0.55 0.54 0.52

6% (KS) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
(BSL) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
(O) 0.55 0.53 0.49 0.46 0.43 0.55 0.52 0.45 0.40 0.32

Panel B: b0 = 4.5%
2% (KS) -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32 -0.32

(BSL) -0.32 -0.35 -0.36 -0.32 -0.25 -0.32 -0.35 -0.35 -0.20 0.08
(O) -0.34 -0.36 -0.32 -0.27 -0.18 -0.32 -0.34 -0.29 -0.14 0.09

4% (KS) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
(BSL) 0.55 0.61 0.77 0.91 1.04 0.56 0.63 0.97 1.32 1.71
(O) 0.56 0.61 0.75 0.83 0.86 0.56 0.63 0.87 0.95 0.88

6% (KS) 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42
(BSL) 1.42 1.56 1.85 2.02 2.15 1.43 1.61 2.29 2.85 3.34
(O) 1.42 1.48 1.49 1.44 1.35 1.42 1.48 1.46 1.30 1.05
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Table IV:
Optimal Stock Demand to Hedge Parameter Uncertainty

(T = 20 years and γ = 5.0)
This table summarizes the effect of parameter uncertainty on the optimal stock allocation for different values of the investor’s prior b
and preditive variable s ≡ d/p. The results are obtained by solving the nonlinear second order differential equations in terms of φ
with three state variables (b, s, ν), and the investment strategy is the “dynamic portfolio strategy considering parameter uncertainty”.
When the investment horizon is one month, the optimal stock allocation is the same as the myopic one, so the comparison is trivial
and omitted. Only the comparisons with a twenty year horizon is reported. Panel A reports results with d/p = 2%, panel B has
results with d/p = 4%, and Panel C with d/p = 6%. An investor using the whole sample estimation has a ν0 = 4.0; an investor
using Barberis’ sample or the sample of first twenty years’ data has roughly a ν0 = 6.0; if the investor ignores parameter uncertainty,
then ν0 = 0.0. The remaining values of ν0 are randomly chosen.

Levels of Parameter Uncertainty ν0
Prior b0 ν0 = 0.0 ν0 = 1.0 ν0 = 2.0 ν0 = 3.0 ν0 = 4.0 ν0 = 6.0

Panel A: d/p = 2%
0.0 0.00 0.01 0.02 0.03 0.03 0.05
1.5 0.00 0.03 0.06 0.08 0.10 0.13
2.5 0.00 0.05 0.08 0.12 0.15 0.20
3.5 0.00 0.06 0.11 0.16 0.20 0.26
4.5 0.00 0.08 0.15 0.20 0.25 0.33

Panel B: d/p = 4%
0.0 0.00 0.00 0.00 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.00 0.00 0.00 0.00 0.00 0.00
3.5 0.00 0.00 0.00 0.00 0.00 0.00
4.5 0.00 0.00 0.00 0.00 0.00 0.00

Panel C: d/p = 6%
0.0 0.00 -0.08 -0.14 -0.18 -0.22 -0.28
1.5 0.00 -0.14 -0.23 -0.29 -0.35 -0.43
2.5 0.00 -0.18 -0.29 -0.37 -0.44 -0.53
3.5 0.00 -0.22 -0.36 -0.45 -0.53 -0.64
4.5 0.00 -0.24 -0.41 -0.53 -0.62 -0.74
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Table V:
Optimal Stock Demand to Hedge Stochastic Predictive Variable

(T = 20 years and γ = 5.0)
This table summarizes the effect of parameter uncertainty on the optimal stock allocation for different values of the investor’s prior b
and preditive variable s ≡ d/p. The results are obtained by solving the nonlinear second order differential equations in terms of φ
with three state variables (b, s, ν), and the investment strategy is the “dynamic portfolio strategy considering parameter uncertainty”.
When the investment horizon is one month, the optimal stock allocation is the same as the myopic one, so the comparison is trivial
and omitted. Only the comparisons with a twenty year horizon is reported. Panel A reports results with d/p = 2%, panel B has
results with d/p = 4%, and Panel C with d/p = 6%. An investor using the whole sample estimation has a ν0 = 4.0; an investor
using Barberis’ sample or the sample of first twenty years’ data has roughly a ν0 = 6.0; if the investor ignores parameter uncertainty,
then ν0 = 0.0. The remaining values of ν0 are randomly chosen.

Levels of Parameter Uncertainty ν0
Prior b0 ν0 = 0.0 ν0 = 1.0 ν0 = 2.0 ν0 = 3.0 ν0 = 4.0 ν0 = 6.0

Panel A: d/p = 2%
0.0 0.00 0.00 -0.01 -0.02 -0.02 -0.02
1.5 0.15 0.11 0.09 0.07 0.06 0.05
2.5 0.25 0.18 0.15 0.12 0.11 0.09
3.5 0.36 0.22 0.18 0.16 0.14 0.12
4.5 0.40 0.22 0.19 0.17 0.16 0.14

Panel B: d/p = 4%
0.0 0.00 -0.01 -0.02 -0.03 -0.03 -0.04
1.5 0.19 0.12 0.09 0.07 0.06 0.03
2.5 0.41 0.26 0.20 0.16 0.13 0.09
3.5 0.74 0.43 0.33 0.27 0.23 0.17
4.5 1.16 0.62 0.49 0.40 0.33 0.25

Panel C: d/p = 6%
0.0 0.00 -0.01 -0.01 -0.01 -0.01 -0.02
1.5 0.24 0.12 0.08 0.06 0.04 0.02
2.5 0.57 0.25 0.17 0.13 0.10 0.06
3.5 1.12 0.44 0.29 0.21 0.17 0.10
4.5 1.92 0.66 0.45 0.33 0.25 0.16
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Table VI:
The Effect of Parameter Uncertainty on the Optimal Stock Allocation

(T = 20 years and γ = 5.0)
This table summarizes the effect of parameter uncertainty on the optimal stock allocation for different values of the investor’s prior b
and preditive variable s ≡ d/p. The results are obtained by solving the nonlinear second order differential equations in terms of φ
with three state variables (b, s, ν), and the investment strategy is the “dynamic portfolio strategy considering parameter uncertainty”.
When the investment horizon is one month, the optimal stock allocation is the same as the myopic one, so the comparison is trivial
and omitted. Only the comparisons with a twenty year horizon is reported. Panel A reports results with d/p = 2%, panel B has
results with d/p = 4%, and Panel C with d/p = 6%. An investor using the whole sample estimation has a ν0 = 4.0; an investor
using Barberis’ sample or the sample of first twenty years’ data has roughly a ν0 = 6.0; if the investor ignores parameter uncertainty,
then ν0 = 0.0. The remaining values of ν0 are randomly chosen.

Levels of Parameter Uncertainty ν0
Prior b0 ν0 = 0.0 ν0 = 1.0 ν0 = 2.0 ν0 = 3.0 ν0 = 4.0 ν0 = 6.0

Panel A: d/p = 2%
0.0 0.55 0.55 0.56 0.56 0.56 0.58
1.5 0.40 0.40 0.40 0.41 0.42 0.45
2.5 0.32 0.29 0.30 0.31 0.32 0.35
3.5 0.23 0.16 0.17 0.19 0.21 0.26
4.5 0.08 -0.02 0.02 0.06 0.09 0.16

Panel B: d/p = 4%
0.0 0.55 0.54 0.53 0.52 0.52 0.51
1.5 0.74 0.67 0.64 0.62 0.61 0.58
2.5 0.96 0.81 0.75 0.71 0.68 0.64
3.5 1.29 0.97 0.88 0.82 0.76 0.72
4.5 1.71 1.17 1.04 0.95 0.88 0.80

Panel C: d/p = 6%
0.0 0.55 0.46 0.40 0.36 0.32 0.26
1.5 1.08 0.81 0.69 0.60 0.54 0.43
2.5 1.60 1.10 0.91 0.78 0.69 0.56
3.5 2.34 1.44 1.16 0.99 0.86 0.69
4.5 3.34 1.84 1.45 1.22 1.05 0.83
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Figure 1:
The Term Structure of Optimal Portfolio Allocation: Effect of learning

(γ = 5.0 and b0 = 1.5)

This figure plots the optimal proportion of wealth allocated to stock for a horizon of 1 month to 240 months. The optimal portfolio allocation

when the investor faces a certain predictability is compared with the allocation when the investor faces uncertain predictability.

Legend: ν0 = 0.0: solid line; ν0 = 4.0: dashed line.
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Figure a: d/p = 2%, without interim consumption
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Figure b: d/p = 2%, with interim consumption
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Figure c: d/p = 4%, without interim consumption
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Figure d: d/p = 4%, with interim consumption
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Figure e: d/p = 6%, without interim consumption
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Figure f: d/p = 6%, with interim consumption
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Figure 2:
Optimal Allocation Conditional On Dividend Yield: Effect of Parameter Uncertainty on Market

Timing
(γ = 5.0 and T = 20 Years)

This figure plots the optimal proportion of wealth allocated to stock as a function of the current observation of dividend yield. The first two

panels assume that b0 = 0 and the last two assume that b0 = 1.5. The allocations under myopic strategy, dynamic strategy without learning and

optimal strategy are compared in each panel.

Legend: optimal strategy: solid line; dynamic strategy without parameter uncertainty: dashed line; myopic strategy: dotted line.
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Figure 3:
Simulated Optimal Portfolio Allocation Using Historical Stock Return and Dividend Yield

(γ = 5.0, b0 = 6.76, ν0 = 6.38 and T = 20)

This figure plots the optimal proportion of wealth allocated to stock for each month from January 1978 to December 1997 under the optimal,

KS, BSL and iid investment strategies. The portfolios are not constrained to be non-negative. The portfolios are calculated using the historical

value-weighted market stock return and the dividend yield to update b and ν through time. The prior b0 and ν0 are set to equal the VAR

estimation for the sample period of February 1950 to December 1977.
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Figure 4:
Economic Value of Uncertain Predictability: CEW with Historical Stock Return and Dividend

Yield
(γ = 5.0, T = 20 years, b0 = 6.76 and ν0 = 6.38)

This figure compares the economic value of the optimal and KS investment strategies for each month from January 1978 to December 1997.
The portfolios are calculated using the historical value-weighted market stock return and the dividend yield to update b and ν through time. The
prior b0 = 6.76 and ν0 = 6.38 are set to equal the VAR estimation for the sample period of February 1950 to December 1977. The economic
value is calculated in terms of PVCEW. Define the certainty equivalent wealth (CEW) of a specific strategy δ for an investor as the amount of
wealth which makes the investor indifferent between receiving it for sure at the horizon T and having $1 today to invest up to the horizon using
strategy δ. Thus, the present value of the CEW of strategy δ for investment horizon T is defined by

PV CEWδ(b, s, ν, T ) = e−(r−ρ)Tφ(b, s, ν, T |δ) 1
1−γ .
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Appendix

A The Investor’s Inference Problem

The investor’s prior distribution over the initial value of β is assumed to be Gaussian, and β

is assumed to follow (4). Because, (i) dP
P

and dS are following a joint Brownian motion; and

(ii) all the parameters in (4), (2) and (5) are linear functions of the unobservable state variable

β, the distribution function of β at time t, Ft(x) = P (β ≤ x|FI
t), is (conditionally) Gaussian

given the investor’s information structure at time t, FI
t, which is generated by the joint processes

I(t) = (P (t), S(t)). Let bt = E(βt|F I
t ), then b will be the optimal (in the mean square sense)

estimate of β from I(t). The knowledge of the variance νt = E((β − b)(β − b)′|F I
t ), which

is an n × n matrix, gives us a measure of filtering error and the investor’s level of uncertainty.

We call the process for I(t) = (P (t), S(t)) the investor’s signal used to form expectations of β.

Let’s write the processes for signals (the measurement equation) as:

dI = (I0(I, t) + I1(I, t)β)dt+ ω(I, t)dz, (A1)

where I0(I, t) is an (n + 1)× 1 vector with µ̄ in the first row and A0 in the rest rows, I1(I, t)
and ω(I, t) are matrices of the dimension of ((n+1)×n) and ((n+1)× n) with S−S̄ and A1

form the rows of the former and σP and σS form the rows of the latter. Rewrite the process for

β (the transition equation) as

dβ = [a0(I, t) + a1(I, t)β]dt+ η(I, t)dz. (A2)

Define Γ(I, t) = ηω′ as the covariance between the signals and the state variables, Σ(I, t) =
ηη′ as the variance-covariance matrix of the state variables, and Φ(I, t) = ωω′ as the variance-

covariance matrix of the signal processes. A direct extention of Theorem 12.1 in Liptser &

Shiryayev (1978) to vectors of measurement and transition equations yields:

db(t) = [a0(I, t) + a1(I, t)b]dt+ [ν(t)I1(I, t)′ + Γ(I, t)]Φ(I, t)−1ω(I, t)dẑ(t), (A3)

dν(t) = a1(I, t)ν(t) + ν(t)a1(I, t)′ + Σ(I, t) (A4)
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− [ν(t)I1(I, t)′ + Γ(I, t)]Φ(I, t)−1[ν(t)I1(I, t)′ + Γ(I, t)]′,

where

dẑ(t) = ω−1
{
dI −E

(
dI|F I

t

)}
(A5)

= ω−1 {dI − [(I0(I, t) + I1(I, t)b)dt]} .

The vector of innovation processes, ẑ(t), is Wiener processes with respect to the investor’s

information filtration FI
t . Note that b(t) and ν(t) satisfy equations (A4) and (A5) subject to the

conditions b0 = E(β0|F I
0 ) and ν0 = E[(β0 − b0)(β0 − b0)

′|F I
0 ].

Next we consider the case of n = 1 and k = 3, i.e., there is only one predictive variable and

three sources of Brownian motion. Let’s specify the diffusion process for the predictive variable

as

ds = κ(s̄− s)dt+ σsdzs, (A6)

rewrite the process for stock returns as

dP

P
= (µ̄+ β(s− s̄))dt+ σPdzP , (A7)

and assume that the coefficient β itself is also mean-reverting,

dβ = λ(β̄ − β)dt+ σβdzβ. (A8)

Assume that E(dzpdzs) = ρsPdt, E(dzpdzβ) = ρβPdt, and E(dzβdzs) = ρβsdt. Under these

simplifying assumptions, the process satisfied by b and ν reduces to

db = λ(b̄− b)dt+ [ν (s− s̄, 0) + (σβP , σβs)]


 σ2

P σsP

σsP σ2
s




−1 
 σPdẑP

σsdẑs


 ,

= λ(b̄− b)dt+ ν1dẑP + ν2dẑs, (A9)

dν

dt
= −2λν + σ2

β − [ν (s− s̄, 0) + (σβP , σβs)]


 σ2

P σsP

σsP σ2
s




−1

[ν (s− s̄, 0) + (σβP , σβs)]
′ ,

= −2λν + σ2
β − [ν2

1 + ν2
2 + 2ν1ν2ρsP ], (A10)
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where

b̄ = β̄, (A11)

ν1 =
ν(s− s̄) + σPσβ(ρβP − ρβsρsP )

σP (1− ρ2
sP )

, (A12)

ν2 =
−ν(s− s̄)ρsP + σPσβ(ρβs − ρβPρsP )

σP (1− ρ2
sP )

, (A13)

dẑP =
1

σP

(
dP

P
− (µ̄+ b(i− i∗)dt

)
,

= dzP +
(s− s̄)(β − b)

σP
dt, (A14)

dẑs =
1

σs
(ds− κ(s̄− s))dt) ,

= dzs. (A15)

Both the Brownian motions dẑP and dẑs are adapted to the investor’s information set, while dzP

is not due to the unknown β.

To understand the intuition behind the updating rule, we can re-write the observation (mea-

surement) equation as:

yt =




(
dP
P

)
t

st


 =


 µ̄dt(

1− e−κdt
)
s̄+ e−κdtst−dt


+


 (st−dt − s̄)dt

0


 b̂t

+


 (st−dt − s̄)(β − b̂t)dt

0


+


 σP 0

0 σs





 dzP

dzs


 ; (A16)

and the transition equation for the stochastic state variable β as:

βt =
(
1− e−λdt

)
β̄ + e−λdtβt−dt + σβdzβ ,

≡ b̂t + (βt − b̂t) + σβdzβ . (A17)

The observation yt is normally distributed with mean ȳt given by the first two terms in (A16)

and variance Φ =


 σ2

P σsP

σsP σ2
s


. Note that the variance, Φ, does not reflect the estimation

error given by the third term of (A16), because the estimation error has an order of dt, which is

dominated by the term of innovations (dz). In a discrete time model, where dt is not infinitely
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small, then the estimation error should make Φ larger than the variance-covariance matrix of the

innovations.

This is the usual Kalman filtering state space form with time-varying measurement matrices.

From equations (A16) and (A17), we get the covariance between βt and yt as Γ = ν × (s −
s̄, 0) + (σβP , σβs). yt and βt have conditional joint normal distribution with


 yt

βt


 ∼




 ȳt

b̂t


 ,


 Φ Γ

Γ ν + σ2
β




 . (A18)

The best estimate in terms of minumum mean squared error, bt, of βt given additional information

provided by yt, is then given by

E(βt|yt) = bt =
(
1− e−λdt

)
β̄ + e−λdtbt−dt + ΓΦ

−1(yt − ȳt); (A19)

and

bt − bt−dt =
(
1− e−λdt

)
(β̄ − bt−dt) + ΓΦ

−1(yt − ȳt)

≈ λ(b̄− b)dt+ ΓΦ−1(yt − ȳt). (A20)

When the predictive variable is constant, i.e., when λ = 0 and σβ = 0, the above equations

can be furtherly simplified into:

db =
ν(s− s̄)

σP (1− ρ2
sP )
(dzP − ρsPdzs) +

ν(s− s̄)2(β − b)

σ2
P (1− ρ2

sP )
dt, (A21)

=
ν(s− s̄)

σP (1− ρ2
sP )
(dẑP − ρsPdzs). (A22)
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B Closed Form Solution without Learning

When ν = 0 and β is constant, the investment opportunity set is completely summarized by the

dynamics of s, and the investor’s optimization problem is described by equation (B1):

0 =
1

2
σ2
sφss + κ(s̄− s)φs + φt +

[
(1− γ)r +

1

2
γ(1− γ)σ2

P (x
∗)2 − ρ

]
φ, (B1)

where x∗ is given by

x∗ =
µ̄+ β(s− s̄)− r

γσ2
P

+
ρsPσsσPφs

γσ2
Pφ

. (B2)

Kim and Omberg (1996) provides a closed form solution to this equation when the investor’s

utility function is from the HARA family.

Define y = (µ̄− βs̄− r) + βs as the new state variable to replace s, and let τ = T − t be

the horizon, we conjecture that

φ = exp
{
A(τ) +B(τ)y +

1

2
C(τ)y2

}
. (B3)

With the above conjecture, the optimal portfolio choice x∗ is given by

x∗ =
y

γσ2
P

+
(B(τ) + C(τ)y)βρsPσs

γσP
. (B4)

The expressions of A(τ), B(τ) and C(τ) can be solved recursively from the following ordinary

differential equations:

Cτ = a1C
2(τ) + a2C(τ) + a3, (B5)

Bτ = a1B(τ)C(τ) +
1

2
a2B(τ) + κ(µ̄− r)C(τ), (B6)

Aτ =
1

2
a1B

2(τ) +
1

2
(βσs)

2C(τ) + κ(µ̄− r)B(τ) + (r(1− γ)− ρ), (B7)

with boundary conditions of

A(τ) = 0, B(τ) = 0, and C(τ) = 0 at τ = 0,
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where the parameters are:

a1 = (βσs)
2

(
1 +

1− γ

γ
ρ2
sP

)
, (B8)

a2 = 2

(
(1− γ)βσsρsP

γσP
− κ

)
, (B9)

a3 =
1− γ

γσ2
P

. (B10)

Note that a1 = 0 when β = 0, so that the optimization problem reduces to the case with no

predictability. The investment opportunity set is then constant, and the problem has a simple

closed form solution as given in Ingersoll (1986) or Merton (1990).

There are five different solutions depending on the parameter values of the model when β �= 0.
The details are given in the appendix of Kim and Omberg (1996). Because q = a22 − 4a1a3 > 0

and a3 > 0 for all the values of β and γ used in this study, we have a well-behaved normal

solution:

C(τ) =
2a3 (1− e−ητ )

(η − a2) + (η + a2)e−ητ
, (B11)

B(τ) =
4a3κ(µ̄− r)

(
1− e−

ητ
2

)2

η [(η − a2) + (η + a2)e−ητ ]
, (B12)

A(τ) =

[
a3

(
2κ2(µ̄− r)2

η2
+
(βσs)

2

η − a2

)
+ r(1− γ)− ρ

]
τ

+
4a3κ

2(µ̄− r)2
[
(2a2 + η)e−ητ − 4a2e

− ητ
2 + 2a2 − η

]
η3 [(η − a2) + (η + a2)e−ητ ]

+
2a3(βσs)

2

η2 − a2
2

ln

∣∣∣∣∣(η − a2) + (η + a2)e
−ητ

2η

∣∣∣∣∣ , (B13)

where η =
√
q.

The horizon effect on the optimal portfolio allocation can be derived in closed form when

there is no parameter uncertainty. We fist derive the dependence of B(τ) and C(τ) on the horizon,

τ :

∂C

∂τ
=

4a3η
2e−ητ

[η − a2 + (η + a2)e−ητ ]2
, (B14)
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∂B

∂τ
=

4a3κ(µ̄− r)
(
1− e−

ητ
2

)
e−

ητ
2

(
η − a2 + (η + a2)e

− ητ
2

)
[η − a2 + (η + a2)e−ητ ]2

. (B15)

Note that we only consider the situation when the investor is more risk averse than the log

utility, i.e., γ > 1. This implies that

a1 > (βσs)
2
(
1− ρ2

sP

)
≥ 0, (B16)

a3 < 0, (B17)

η ≥ |a2|, (B18)

and (
η − a2 + (η + a2)e

− ητ
2

)
> 0. (B19)

Therefore,

∂C

∂τ
< 0, (B20)

∂B

∂τ
< 0. (B21)

The horizon effect on the optimal allocation can be obtained from

∂x∗

∂τ
=

βρsPσs

γσ2
P

(
∂B

∂τ
+

∂C

∂τ
y

)
(B22)

In our example, ρsP = −0.93 < 0, so a sufficient condition for ∂x∗
∂τ

> 0 is that y > 0 or

β(s− s̄) + (µ̄− r) > 0. This is satisfied for most reasonable parameter values of β and (s− s̄).

Only when s < s̄ and β is sufficiently large then y < 0. When ρsP < 0 and for a given value of

y, the horizon effect is summarized by

∂x∗

∂τ




> 0 if ζ(τ) < y

≤ 0 if ζ(τ) ≥ y
, (B23)

where

ζ(τ) = −
∂B
∂τ
∂C
∂τ

=
κ(µ̄− r)

(
1− e

ητ
2

) (
η − a2 + (η + a2)e

− ητ
2

)
η2

. (B24)
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Let the cutoff horizon be τ∗ such as ζ(τ ∗) = y, then

τ ∗ =
2

η
ln


−

[
y + 2a2κ

η2 (µ̄− r)
]
+
√
∆

2κ
η2 (µ̄− r)(η − a2)


 , (B25)

where

∆ = y2 + 4y
a2κ(µ̄− r)

η2
+ 4

κ2(µ̄− r)2

η2
. (B26)

Equation (B23) can be simplied as:

∂x∗

∂τ




> 0 if τ > max(0, τ ∗)

≤ 0 if 0 ≤ τ ≤ max(0, τ ∗)
, (B27)

Therefore, if τ∗ > 0, then the optimal portfolio allocation is decreasing with the horizon

when τ < τ∗ and the optimal portfolio allocation is increasing with the horizon when τ > τ∗. If

τ ∗ ≤ 0, then the optimal portfolio allocation is always increasing with the horizon.
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C Moments of the Stock Return With Certain Predictability

The intuition behind the horizon effect comparisons when there is no learning vs. when there is

learning can be seen mathematically. First, let’s consider the case with no learning with a known

constant β. We obtain a closed form solution for the mean and variance of the stock returns over

a horizon T .

lnPT − lnP0 =
∫ T

0

(
µ̄− βs̄− 1

2
σ2
P

)
dτ + β

∫ T

0
sτdτ + σP

∫ T

0
dzP (τ)

=
(
µ̄− 1

2
σ2
P

)
T +

β(s0 − s̄)

κ

(
1− e−κT

)

+ σP

∫ T

0
dzP (τ) +

βσs

κ

∫ T

0

(
1− eκ(τ−T )

)
dzs(τ). (C1)

From equation (C1), we have

E = E [ln (PT/Pt)| FI
t] =

(
µ̄− 1

2
σ2
P

)
(T − t) +

β(st − s̄)

κ

(
1− e−κ(T−t)

)
, (C2)

V = V ar [ln (PT/Pt)| FI
t] =

(
σ2
P +

β2σ2
s

κ2
+
2βρsPσsσP

κ

)
(T − t)

− 2

(
β2σ2

s

κ3
+

βρsPσsσP

κ2

)(
1− e−κ(T−t)

)
+

β2σ2
s

2κ3

(
1− e−2κ(T−t)

)
. (C3)

When the stock return is predictable, the expected cumulative return for an interval of T − t

depends both on its long run mean and the current observation of the predictive variable. The

variance of the return is affected by its own volatility, the volatility of the predictive variable,

the correlation between the two series and the predictive coefficient. When β = 0 or σs = 0, the

mean and the variance grow proportionally with the horizon. The mean-variance ratio remains

the same regardless of the investment horizon, so the investor would choose to invest the same

proportion of his wealth in the stock.

When neither β = 0 nor σs = 0, the expected return is still increasing with the investment

horizon if st ≥ s̄ or T − t is large enough, since

∂E

∂(T − t)
=

(
µ̄− 1

2
σ2
P

)
+ β(st − s̄)e−κ(T−t) > 0, (C4)

when the second term is close to zero or positive. The variance of the cumulative return also
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increases with the investment horizon:

∂V

∂(T − t)
=

[(
σPρsP +

βσs

κ

)
− βσs

κ
e−κ(T−t)

]2

+ σ2
P

(
1− ρ2

sP

)
> 0. (C5)

When T − t is long so that the terms associated with e−κ(T−t) become less important or when we

consider the relative magnitudes between the mean and the variance of stock return, we generally

have ∂(E−V )
∂(T−t)

> 0, which implies that the mean increases with the horizon faster than the variance,

so a buy-and-hold investor will generally hold more wealth in stock if the horizon is longer.

For an investor who rebalances dynamicaly, we consider the covariance between returns over

periods (t1 − t2) and (t2 − t) where t1 > t2 > t,

C = Cov
(
ln (Pt1/Pt2) , ln (Pt2/Pt) |FI

t

)

=
β2σ2

s

2κ3

(
1− e−κ(t1−t2)

) (
1− e−κ(t2−t)

)2

+
βρsPσsσP

κ2

(
1− e−κ(t1−t2)

) (
1− e−κ(t2−t)

)
. (C6)

In the special case where t1 − t2 = 1 and t2 − t = 1, then the first order auto covariance of stock

returns is given by

C1 =
(1− e−κ)

2

κ2

[
β2σ2

s

2κ

(
1− e−κ

)
+ βρsPσsσP

]
(C7)




≥ 0 : ρsP ≥ −βσs(1−e−κ)
2κσP

and β > 0

≥ 0 : ρsP ≤ −βσs(1−e−κ)
2κσP

and β < 0

= 0 : β = 0 or σs = 0

< 0 : Otherwise

(C8)

This shows that the stock return is iid when there is no predictability or the predictive variable

is non-stochastic. Return predictability introduces serial correlation into the return series except

for the special cases where ρsP = −βσs(1−e−κ)
2κσP

. In our study, the dividend yield serves as the

predictive variable. The large negative correlation between the stock return and the dividend

yield, ρsP = −0.93, introduces a negative first order autocorrelation in the stock return. This

mean-reverting pattern in the return calls for a positive hedge demand as shown in Appendix B,

so a long horizon investor holds more wealth in stock.
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Footnotes

1Summers (1986) and Fama & French (1988b), for example, argue that the log stock index
price may be described by the sum of a random walk and a stationary mean-reverting component.
Shiller and Perron (1985) and Poterba and Summers (1987) also propose similar models but
motivate their alternative hypotheses as models of investors’ fads. However, Lo and MacKinlay
(1988) reject both the random walk hypothesis and the mean-reverting alternative using U.S. data.

2Refer to Fama (1991) for a summary of these empirical studies on return predictability. For
example, Fama (1981) finds that stock returns are negatively related to expected inflation and
the level of short-term interest rate. Keim and Stambaugh (1986) find that several predetermined
variables that reflect levels of bond and stock prices appear to predict returns on common stocks of
firms of various sizes, long-term bonds of various default risk, and default-free bonds of various
maturities. Fama and French (1988a) report that past returns over a long horizon can predict as
much as 40% of future returns. Kothari and Shanken (1997) also find that the book-to-market
ratio (B/M) has predictive power. While most studies that use daily or weekly data find very low
predictability as measured by statistics such as R2 or p−values, the evidence of predictability
using long-horizon returns is much more striking.

3Hodrick (1992) and Goetzmann and Jorion (1993), for example, argue that many findings
based on long horizon return regressions may be spurious due to the poor small sample properties
of commonly used inference methods.

4Many authors have discussed the importance of estimation risk and/or learning. Bawa, Brown
and Klein (1979) is a collection of papers about estimation risk and optimal portfolio choice in
a one period setting. Stulz (1986, 1987) studies the effect of learning about the monetary policy
on interest and exchange rates. Detemple (1986) discusses about estimation risk in a production
economy, while Dothan and Feldman (1986) and Feldman (1992) discuss the term structure and
interest rate dynamics with Learning. Gennotte (1986) is a good example of the study of signal
filtration and learning in a dynamic portfolio choice setting.

5An investor with logarithmic utility optimally ignores stochastic variation in the future in-
vestment opportunity set.

6Brandt (1999) finds that the conventional advice is correct in that the long horizon investor
holds more stock. Barberis (1999) found that the static estimation risk reduces the horizon effect,
but the stock allocation still increases with horizon, although to a less extent.

7This is consistent with the finding of Campbell and Viceira (1999) where no parameter
uncertainty is considered.

8We only consider investors with a risk aversion parameter greater than the logarithmic case
in this paper.

9The assumption of a stochastic process for β can be motivated by Bossaerts and Hillion
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(1999), who find that predictive relation is not stationary and predictive parameters can vary
through time.

10Stulz (1986, 1987) shows in the context of monetary policy and interest rates that regime
shifts have important implications for learning. Veronesi (1999) analyzes a model in which the
growth rate of the dividend switches among several discrete states.

11The separation theorem is not affected by the predictability assumed here, because the pre-
dictive relation equation (3) only implies that the coefficients in the transition and possibly in the
measurement (observation) equation are stochastic and time-varying, so that a non-linear filtering
is called for.

12We do not model why the investor has such a normal prior and how the prior mean and
variance are derived. In the numerical study, we assume that the investor’s prior mean and
variance are derived from regression studies using historical data.

13The assumption that the signal follows an O-U process as in equation (9) is consistent with
Barberis (1999) and Stambaugh (1999) among others, who generally assume that the predictor
such as dividend yield follows a AR(1) process in discrete time.

14The partial differential equation is given by

0 =
1

2
σ2
sφss +

1

2
(ν2

1 + ν2
2 + 2ν1ν2ρsP )φbb + σs(ν1ρsP + ν2)φsP + φt

+ [κ(s̄− s) + (1− γ)ρsPσsσPx
∗]φs + [λ(b̄− b) + (1− γ)σP (ν1 + ν2ρsP )x

∗]φb

+ [−2λν + σ2
β − (ν2

1 + ν2
2 + 2ν1ν2ρsP )]φν + γφ

γ−1
γ

+ [(1− γ)((µ̄+ b(s− s̄)− r)x∗ + r)− 1

2
γ(1− γ)σ2

P (x
∗)2 − ρ]φ,

where x∗ is the optimal portfolio strategy and is given by (22). The PDE will be solved numeri-
cally with a boundary condition:

φ(b, ν, s, T ) = 1. (C9)

15See Kandel and Stambaugh (1996) for detailed formulas and discussions.

16Barberis assumes β to be constant, so that the third term in the bracket is zero.

17Most powerful predictive variables include past market returns, the dividend yield, and the
earnings-price ratio, nominal interest rates and expected inflation.

18When β follows an O-U process, the model is estimated using Kalman filtering algorithm.
The estimates for λ and σβ are reported in Section IIIC.

19Inflation rate is calculated from the CPI data from Datastream.
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20This is comparable with the yield on US indexed bonds of about 4.0% as of July 1999.

21We use annualized stock return and annual dividend yield in the VAR regression. Our
estimated coefficients and standard errors are thus exactly 12 times as large as the results from
regressions using monthly returns.

22A linear boundary condition is also tried and the results are the same. The process s has a
conditional Gaussian distribution, with

st|s0 ∼ N

(
e−κts0 + (1− e−κt)s̄,

σ2
s

2κ
(1− e−2κt)

)
.

In the numerical study, we set s̄ = 4%, κ = 0.19 and σs = 0.6%, which leads to a mean of
4% and a standard deviation of 0.009% for st|s0 when t is set to 20 and s0 is assumed to be
at s̄. Therefore, the probability that s reaches the boundary in twenty years is almost zero. The
conditional distribution of bt given ν and s is also Gaussian as indicated by equation (14). The
probability that b reaches the boundary of b = 10.0 or b = −10.0 in twenty years depends on the
conditional distribution of bt. Since the boundary is 20 standard deviations away from zero, the
probability of b reaching the boundary in 20 years is also small under the null hypothesis of no
predictability.

23Barberis (1998) finds that the allocation could decrease with horizon when the investor uses a
buy-and-hold strategy and takes estimation risk into consideration. However, he does not discuss
the state dependence of horizon effect. Brennan (1997) finds that the horizon effect is negative
when the true stock return is i.i.d. and there is learning.
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