
IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 3, JULY 2021 1049

Data-Driven Real-Valued
Timed-Failure-Propagation-Graph Refinement

for Complex System Fault Diagnosis
Gang Chen , Xinfan Lin , Member, IEEE , and Zhaodan Kong , Member, IEEE

Abstract—Timed Failure Propagation Graphs (TFPGs)
have been widely used for the failure modeling and diag-
nosis of safety-critical systems. Currently most TFPGs are
manually constructed by system experts, a process that
can be time-consuming, error-prone, and even impossible
for systems with highly nonlinear and machine-learning-
based components. This letter proposes a new type
of TFPGs, called Real-Valued Timed Failure Propagation
Graphs (rTFPGs), designed for continuous-state systems.
More importantly, it presents a systematic way of construct-
ing rTFPGs by combining the powers of human experts and
data-driven methods: first, an expert constructs a partial
rTFPG based on his/her expertise; then a data-driven algo-
rithm refines the rTFPG by adding nodes and edges based
on a given set of labeled signals. The proposed approach
has been successfully implemented and evaluated on three
case studies.

Index Terms—Failure diagnosis, signal temporal logic,
spacecraft power system, timed failure propagation graphs.

I. INTRODUCTION

T IMELY and correct detection of faults are essential for the
operation of safety-critical systems. Tradition fault detec-

tion methods, such as machine learning based ones, which
learn a set of fault-relevant features, and model-based ones,
which construct a residual signal and then determine a resid-
ual evaluation function (based on the signal) to compare the
residual with a predefined threshold [1], cannot provide the
causal and temporal aspects of failure events in a wide vari-
ety of engineering systems. Since early 1990s, Timed Failure
Propagation Graphs (TFPGs) have been widely used for fault
diagnosis in practice, e.g., by NASA [2]. TFPGs’ popularity is
partly due to their directed graph formalism and their ability

Manuscript received April 8, 2020; revised June 18, 2020; accepted
July 10, 2020. Date of publication July 16, 2020; date of current ver-
sion July 30, 2020. This work was supported by the Space Technology
Research Institutes from NASA’s Space Technology Research Grants
Program under Grant 80NSSC19K1052. Recommended by Senior
Editor F. Dabbene. (Corresponding author: Zhaodan Kong.)

The authors are with the Department of Mechanical and
Aerospace Engineering, University of California at Davis, Davis,
CA 95616 USA (e-mail: ggchen@ucdavis.edu; lxflin@ucdavis.edu;
zdkong@ucdavis.edu).

Digital Object Identifier 10.1109/LCSYS.2020.3009932

to describe the occurrence of failures, their direct and indirect
effects, and the corresponding consequences over time [2].

a) Related Work: TFPGs are primarily constructed man-
ually by system experts. The construction process can be
time-consuming, error-prone, and even impossible for systems
with highly nonlinear and machine-learning-based compo-
nents. Therefore, in recent years, the automatic synthesis of
TFPGs has become an increasingly active research area [3],
[4], [5]. These existing methods convert the TFPG synthesis
problem into either i) a timed automaton learning problem
and then rely on state-of-the-art automata learning algorithms
to construct the TFPG [3], or ii) a set of proof obligations
and then use state-of-the-art model checkers to verify (refine
if necessary) the TFPG [4], [5]. There are two main issues
with existing approaches. First, they all assume that all the
nodes of the to-be-synthesized TFPG are given, which is a
strong assumption for many complex systems, since experts
may not be able to delineate all system failures and discrep-
ancies. Second, they can only deal with discrete-state systems,
while many, if not most, realistic systems are of continuous
states.

b) Contributions: This letter makes two main contribu-
tions. First, it proposes a new formalism of TFPGs, called
Real-Valued Timed Failure Propagation Graphs (rTFPGs), that
are capable of abstracting and diagnosing faults of continuous-
state systems. Second, it proposes a data-driven method that
can construct an rTFPG based on a set of signals labeled by
their failure modes.

II. REAL-VALUED TIMED FAILURE PROPAGATION

GRAPHS

A. Definitions of Signals and rTFPGs

Definition 1 (Signal): Given a discrete time domain N, a
continuous-state signal is a mapping x : N → R

n. We use x[t]
to denote the value of signal x at time t and xi, i = 1, . . . , n
to denote the i-th dimension of signal x.

We first introduce Real-Valued Timed Failure Propagation
Graphs (rTFPGs), based on the definition of TFPGs [6].

Definition 2 (rTFPG): An rTFPG is a tuple G =
〈F, D, E, ET, DC, DP〉, where (i) F is a set of failure mode
nodes; (ii) D is a set of discrepancy nodes; (iii) E ⊆ V × V is

2475-1456 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 27,2020 at 20:22:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4970-2540
https://orcid.org/0000-0002-2929-8563
https://orcid.org/0000-0002-2493-1366

1050 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 3, JULY 2021

Fig. 1. An example signal x .

a set of edges with V = F ∪D; (iv) ET : E → I maps an edge
e ∈ E to a time interval [tmin(e), tmax(e)] ∈ I with tmin(e) and
tmax(e) being the minimum and maximum propagation times
on the edge e; (v) DC : D → {AND, OR} maps a discrepancy
node d ∈ D to its discrepancy type; and (vi) DP maps a dis-
crepancy node d ∈ D to a predicate μ := f (x) ∼ c ∈ � over
a signal x, where f : Rn → R is a function, ∼∈ {<,≥}, and
c ∈ R a constant. We use OR(G), AND(G), D(G), and F(G) to
denote the sets of OR nodes, AND nodes, discrepancy nodes,
and failure mode nodes of an rTFPG G, respectively. One
important feature of an rTFPG is that its edges are directed
from failure mode(s) to discrepancy node(s).

One major difference between the proposed formalism of
rTFPG and the existing formalism of TFPG is that the seman-
tics of the former is defined over real-valued signals while
that of the latter is defined over discrete events. On the other
hand, rTFPG inherits all the desirable properties of TFPG. For
instance, an rTFPG is a causal model that captures the causal
and temporal aspects of failure events in a wide variety of
engineering systems. Moreover, with the help of an rTFPG, a
human user can comprehend the cause of failure events and
as well as their temporal properties.

Example 1: Fig. 2 shows one such rTFPG. The main dif-
ference between an rTFPG and a typical TFPG is that the
discrepancy nodes of an rTFPG are defined by predicates. For
example, the predicate x1 ≥ 2 attached to the node D2 means
that D2 can be activated only if x1 ≥ 2. The graph shows
that when failure FM1 happens, event D1 will happen imme-
diately, then event D2 will happen within next 2 to 5 seconds
and event D4 will happen within the next 3 to 6 seconds. Three
to five seconds after event D2 happens and 3 to 8 seconds after
event D4 happens, event D3 will happen.

B. Semantics (Satisfaction) of rTFPG

Definition 3 (Mapping �G): Given a signal x and an rTFPG
G, a mapping �G can be introduced to map the signal x
to a discrete-state trace π by mapping x[t] to π [t] as fol-
lows: π [t] := �G(x[t]) = (u1, . . . , u|F(G)|, v1, . . . , v|D(G)|, t)T ,
where ui is 1 if the ith failure mode node in F(G) is active
and 0 otherwise, vi is 1 if the ith discrepancy node in D(G)

is active and 0 otherwise. We call trace π an rTFPG trace,
which represents failure propagation as a timed sequence of
failure mode and discrepancy occurrences.

Example 2 (Continued): Fig. 3 illustrates the rTFPG trace
π := π [0], . . . , π [8] corresponding to the signal x shown in
Fig. 1 and the rTFPG G shown in Fig. 2. The initial state, a

Fig. 2. An example rTFPG G. Dotted and solid boxes are fail-
ure mode node and AND node, respectively. Circles are OR nodes.
F (G) = {FM1}, D(G) = {D1, D2, D3, D4}, AND(G) = {D3}, and
OR(G) = {D1, D2, D4}.

Fig. 3. The rTFPG trace π corresponding to the signal shown in Fig. 1
and the rTFPG shown in Fig. 2. The grey nodes are the ones that are
active and assigned to Boolean value 1.

default 0 vector, is reset at time 0 to π [0] = [1, 1, 0, 0, 0, 0]T

with the first 1 indicating the only fault mode node FM1 being
active, the second 1 indicating the discrepancy node D1 being
active (i.e., its predicate x1 < 2 being satisfied), the next three
zeros indicating the other three discrepancy nodes being inac-
tive (i.e., their predicates being violated), and the last 0 being
the time. The next two state π [1] and π [2] share the same first
five elements with π [0] but with different time t. At t = 3,
a number of events happen: (i) D1’s predicate x1 < 2 is not
satisfied anymore, making D1 inactive; (ii) the predicates cor-
responding to D2 and D3 are now satisfied, making D2 and
D3 active; therefore we have π [3] = [1, 0, 1, 1, 0, 3]T . The
remaining portion of π can be obtained similarly and easily.

With Def. 3, given an rTFPG G, we are able to map a
continuous-state signal x to a discrete-state rTFPG trace π .
It is important to point out that the discrete state nature of
such traces allows us to use existing work on TFPGs [4] to
define the conditions for a signal x to satisfy an rTFPG G. In
the following, let π be the corresponding rTFPG trace of the
signal x after applying the map �G to x; moreover, we say
x[t] |= d ∈ D(G) if π [t] |= d, which is well defined [4], since
π is a discrete-state trace and d is a node of an rTFPG.

Definition 4 (rTFPG Satisfaction): Given an rTFPG G and
a set of signals S, G is satisfiable with respect to S if for each
node d of G, there exists a signal x ∈ S, s.t. ∃j ∈ N, x[j] |= d.

Example 3 (Continued): D1 is activated at t = 0 s. The
satisfaction conditions for D2 require D1 keeps being active
for at least 2 secs and then D2 is activated within 3 secs
(= 5−2 = tmax(e)−tmin(e) with e = (D1, D2)). The signal x in
Fig. 1 satisfies that D1 is active for the first 3 secs and then D2
is activated (its predicate x1 ≥ 2 holds) at t = 3 s. Therefore,
D2 is satisfied. D4 is satisfied similarly. The satisfaction con-
ditions for D3 require that D2 and D4 keep being active for at
least 3 secs and then D3 is activated within either 2 (= 5 − 3

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 27,2020 at 20:22:01 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DATA-DRIVEN REAL-VALUED TIMED-FAILURE-PROPAGATION-GRAPH REFINEMENT FOR COMPLEX SYSTEM FAULT DIAGNOSIS 1051

for e = (D2, D3)) or 5 (= 8 − 3 for e = (D4, D3)) secs. The
signal x satisfies that D3 is activated at t = 7 s. Therefore, D3
is satisfied and subsequently the rTFPG in Fig. 2 is satisfiable
by the signal x.

In principle then, with the help of �G, we are able to check
the satisfaction of a continuous-state signal x with respect
to an rTFPG G using existing verification tools suitable for
TFPGs, e.g., Satisfiability Modulo Theories (SMT) solvers. In
this letter, we will take advantage of a formalism called Signal
Temporal Logic (STL).

Definition 5 (STL): STL is a predicate logic defined over
signals with its syntax defined as [7]: ϕ := μ|¬ϕ|ϕ1 ∧ϕ2|ϕ1 ∨
ϕ2|ϕ1U[a,b]ϕ2, where a, b ∈ R; μ ∈ � is a predicate defined
the same as in Def. 2; Boolean operators ¬, ∧, and ∨ are
negation (“not”), conjunction (“and”), and disjunction (“or”),
respectively; and temporal operator U stands for “until”. The
STL is equipped with a quantitative semantics called robust-
ness degree ρ, which maps an STL formula ϕ and a signal
x to a real value ρ(ϕ, x) [7]. ρ(ϕ, x) ≥ 0 if x satisfies ϕ

and ρ(ϕ, x) < 0 if x violates ϕ. Therefore, the calculation of
robustness degree provides us a way to check whether a signal
x satisfies an STL formula ϕ.

Definition 6 (Activation Graph (AG)): Given a signal x and
an rTFPG G, the AG σ of x is the subgraph of G that has
been activated by the signal x. In this letter, we assume that
a signal x corresponds to only one failure mode p. We call p
the label of the signal x.

Lemma 1: Any node d ∈ D(G) of an AG σ can be mapped
to an STL formula ϕd, s.t. if a signal x activates the node d,
we have x |= ϕd.

Proof: Let μd be the predicate of node d. Assume d has nd

direct predecessors. The STL formula ϕd can be constructed
recursively as follows: if d is an AND node, ϕd can be writ-
ten as ∧nd

i=1(ϕiU[tmin(i),tmax(i)]μd); if d is an OR node, ϕd can
be written as ∨nd

i=1(ϕiU[tmin(i),tmax(i)]μd); in both cases, ϕi is
the STL formula of the ith predecessor, [tmin(i), tmax(i)] is the
temporal interval of the edge directed from the ith predecessor
to d; ϕi can be constructed similarly as ϕd. The construction
process will terminate when we have reached a fault mode
node.

Example 4 (Continued): The AG σ of the signal x shown
in Fig. 1 is the entire rTFPG G shown in Fig. 2. The node
D3 can be mapped to an STL formula ϕD3 := (ϕ1U[3,5](x2 <

2)) ∧ (ϕ2U[3,8](x2 < 2)), where ϕ1 = (x1 < 2)U[2,5](x1 > 2)

and ϕ2 = (x1 < 2))U[3,6](x3 < 2). Any signal x activating the
node D3 must satisfy ϕD3.

III. PROBLEM FORMULATION

Definition 7 (rTFPG Diagnosability): Given an rTFPG G
and a set of labeled signals S (with each signal x labeled by
its failure mode px ∈ F(G)), G is diagnosable with respect to
S if the following two conditions hold: (i) for any two signals
x′, x′′ ∈ S that have different labels (i.e., px′ �= px′′), ∃d ∈ σx′
s.t. x′ |= ϕd and x′′ |= ¬ϕd, where σx′ is the AG of the signal
x′; (ii) for any two signals x′, x′′ ∈ S that have the same label
(i.e., px′ = px′′), ∃d ∈ σx′ s.t. x′ |= ϕd and x′′ |= ϕd, where σx′
is the AG of the signal x′.

Algorithm 1 rTFPG Refinement Algorithm
Input: An initially satisfiable rTFPG G and a set of labeled
signals S = ∪p∈F(G)Sp, where Sp is the set of all signals labeled
by the same failure mode p ∈ F(G)

Output: A G that solves Prob. 1

1: for each and every p ∈ F(G) do
2: Set S+ := Sp and S− := S/S+
3: Refine(p, S := S+ ∪ S−, G)

4: Return G

The problem we are solving in this letter can be infor-
mally stated as finding an rTFPG G that captures the failure
propagation demonstrated by a set of continuous-state signals
S. Based on the definition of rTFPG diagnosability, such a
problem can be formally defined as follows.

Problem 1 (rTFPG Refinement): Given an initially satisfi-
able rTFPG G and a set of labeled signals S (with each signal
x labeled by its failure mode px ∈ F(G)), find another sat-
isfiable rTFPG G′ satisfying the following properties: (i) G′
is diagnosable with respect to S, (ii) F(G′) = F(G), and (iii)
D(G) ⊆ D(G′).

Remark 1: G, in our case, can be constructed by a system
expert. One underlying assumption we are making here is
the expert knows all the failure modes F(G). However, the
expert knows neither all the discrepancies, i.e., those nodes
in D(G′)/D(G), nor all the edges, including those connecting
(i) both nodes in D(G′)/D(G), (ii) one node in D(G′)/D(G)

and the other in D(G), and (iii) both nodes in D(G). These
edges characterize how failures propagate temporally and can
be hard for experts to conceive a priori. A TFPG is equivalent
to a timed automaton [3]. Since we can map an rTFPG into
a TFPG by applying �G, Problem 1 can be considered as an
automaton learning problem and the solution proposed in this
letter provides a new way to learn automata from data.

IV. SOLUTION

A. Data-Driven rTFPG Refinement Algorithm

Alg. 1 shows the pseudo-code of our proposed algorithm
to solve Prob. 1. For every failure mode p ∈ F(G), Line 2
assigns all signals with label p as the positive example set S+
and all the other signals as negative example set S−; Line 3
tries to find an rTFPG G that is diagnosible with respect to
S := S+ ∪ S−. Specifically, the algorithm first tries to find a
node d ∈ D(G) of the current G, which is set initially to the
G provided by a system expert, as well as an STL formula ϕd

such that all signals in S+ satisfy ϕd while those in S− violate
ϕd. If this can be achieved for the current G, the algorithm
will move to the next failure mode; otherwise, it will refine
G by using Alg. 2. The algorithm will terminate once it has
checked all failure modes in F(G) and subsequently found a
G that can successfully diagnose all failures (thereby solving
Prob. 1).

Alg. 2 shows the pseudo-code of the recursive function
Refine(p, S, G) used in Alg. 1. Alg. 2 is provided with a
set of candidate discrepancy nodes H and a set of candi-
date time intervals I. Each d ∈ H is defined by its predicate

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 27,2020 at 20:22:01 UTC from IEEE Xplore. Restrictions apply.

1052 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 3, JULY 2021

Algorithm 2 Refine(p, S, G)

Input: An rTFPG G with its set of edges as E, a node p ∈
D(G) ∪ F(G), a set of labeled signals S := S+ ∪ S−, a set of
candidate discrepancy nodes H (H ∩ D(G) = ∅), and a set of
candidate time intervals I
Output: A refined rTFPG G

1: while DE(p, S, G) > 0 do
2: for d′ ∈ D(G) ∧ (p, d′) ∈ E do
3: if DE(d′, S, G) ≤ DE(p, S, G) then
4: Refine(d′, S, G), break
5: for (d′ ∈ D(G) \ mcs(p, D(G), S)) ∧ (d′, p) �∈ E do
6: Construct G′ s.t. E′ := E ∪ (d′, p)

7: if DE(p, S, G′) ≤ DE(p, s, G) then
8: G := G′, Refine(p, S, G)

9: for d′ ∈ H do
10: Construct G′ s.t. D(G′) := D(G) ∪ d′ and E′ :=

E ∪ e′, where e′ := (p, d′) ∧ [tmin(e′), tmax(e′)] ∈ I
11: if DE(d′, S, G′) < DE(p, S, G) then
12: G := G′, Refine(d′, S, G), break
13: else
14: Construct G′′ s.t. D(G′′) := D(G′) and E′′ :=

E′ ∪ (v, d′), where v is a predecessor of p
15: if DE(p, S, G′′) < DE(p, S, G) then
16: G := G′′, Refine(p, S, G), break
17: Return G

μ := f (x) ∼ c, which is parameterized by ∼∈ {≥,<} and
c, and its discrepancy type, i.e., AND or OR. Each i ∈ I is
defined by an interval [tmin(i), tmax(i)]. In this letter, the sets
of c, tmin, and tmax are discrete.

Alg. 2 uses the metric DE(p, S, G), called the diagnosis
error (DE), to guide the refinement process, e.g., on whether
to refine the current rTFPG and, if so, which discrepancy node
to be added. DE(p, S, G) is computed by Alg. 3. It is based
on the concept of cut-set [8].

Definition 8 (Cut-Set): Given an rTFPG G, a node d ∈
D(G), and a set of signals S, a set cs ⊆ D(G) \ d is a cut-set
of d iff there exists a signal x ∈ S, for which ∃k ∈ N, s.t.
x[k] |= d and ∀d′ ∈ cs ⇔ ∃i ≤ k, x[i] |= d′. A cut-set cs of
d is minimal iff no proper subset of cs is a cut-set. We use
acs(d, D(G), S) to denote all the cut-sets of d with respect to
S and mcs(d, D(G), S) to denote its minimal cut-set.

Lemma 2: Given an rTFPG G, a node d ∈ D(G) and one
of its cut-set cs ∈ acs(d, D(G), S), if a signal x activates the
node d, ∀d′ ∈ cs, x activates the node d′ as well.

Proof: According to Lemma 1, a signal x activates a node d
indicates there exists an AG σ and a node d ∈ σ s.t. x |= ϕd.
Then, based on Def. 8, we have ∀d′ ∈ cs ⇔ ∃i ≤ k, x[i] |= d′.
Therefore, ∀d′ ∈ cs, there exists an AG σ ′ s.t. σ ′ ⊂ σ , d′ ∈ σ ′,
and x |= ϕd′ (implying d′ is activated by x as well, according
to Lemma 1).

Example 5 (Continued): The signal x shown in Fig. 1
activates D1, D2, D3, and D4 of the rTFPG G shown in
Fig. 2. Therefore, acs(D4, D(G), S) = {{D1, D2, D3}} and
mcs(D4, D(G), S) = {D1, D2, D3}, where S = S+ = x.
Note that acs and mcs are different: acs is the cut-set that

Algorithm 3 DE(p, S, G)

Input: An rTFPG G, a node p ∈ D(G) ∪ F(G), and a set of
labeled signals S := S+ ∪ S−
Output: The diagnosis error of node p

1: � := ∅
2: if p ∈ F(G) then
3: DE := 1
4: else
5: while ∃cs1, cs2 ∈ acs(p, D(G), S+)∧(∃d ∈ cs1∩cs2∩

OR(G)) do
6: acs(p, D(G), S+) := (acs(p, D(G), S+)

/cs1/cs2) ∪ {cs1 ∪ cs2}
7: for cs ∈ acs(p, D(G), S+) do
8: Construct Gcs s.t. D(Gcs) = cs ∪ {p}
9: � := � ∪ {ϕcs} where ϕcs is the STL formula

corresponding to Gcs and p

10: DE := minϕ∈� MR(ϕ, S), where

MR(ϕ, S) =
{

1, if ∃x ∈ S+, x � ϕ
|{x|x∈S−∧x|=ϕ}|

|S| , otherwise
(1)

11: Return DE

includes all discrepancy nodes activated by the fault signals in
S, while mcs includes discrepancy nodes activated by one sig-
nal. Therefore, mcs is a subset of acs. In this example, since
there is only one signal, acs and mcs are the same.

Alg. 3 checks all the cut-sets of p and returns their best
performance in the context of diagnosing S (quantified by
Eqn. (1)). Line 1 checks whether p is a failure mode node.
If it is, DE will be 1; otherwise, Line 5-10 will compute
the DE for p. Line 5-6 find acs(p, D(G), S+), all the cut-
sets of p, and merge those that share the same OR node.
Line 8-9 construct an STL formula ϕcs for each and every
cut-set cs of acs(p, D(G), S+). Finally, Line 10 finds the cut-
set with the lowest MR(ϕ, S), which is defined in Eqn. (1).
MR(ϕ, S) quantifies the mis-classification rate of ϕ in terms
of S := S+ ∪S− [9]. In our case, we use the robustness degree
ρ(ϕ, x) to check the satisfaction of a signal x ∈ S with respect
to an STL formula ϕ (see Definition 5).

Finally, let’s elaborate on Alg. 2. Line 1 indicates that
the algorithm will terminate if DE(p, S, G) of the current
rTFPG G and the current node p with respect to S is zero.
Otherwise, i.e., if DE(p, S, G) is positive, Line 2-16 try to
decrease DE(p, S, G) by exploring three options: (i) select-
ing a new but existing node p, (ii) adding a new edge to
G, and (iii) adding a new node from the candidate discrep-
ancy node set H and its corresponding edge(s) to G. Line
2-4 implement option (i) and try to find a direct successor
d′ of p that has a lower DE(d′,�, G). If such a node can
be found, the algorithm will start its refinement from d′ (the
algorithm is recursive in nature). Line 5-8 implement option
(ii), add a new edge (d′, p), where d′ is inside D(G) but out-
side mcs(p, D(G), S), to the current G, resulting a new rTFPG
G′, and check whether G′ decreases DE(p, S, G′). If so, the
refinement will continue with G′. Line 9-16 implement option

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 27,2020 at 20:22:01 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: DATA-DRIVEN REAL-VALUED TIMED-FAILURE-PROPAGATION-GRAPH REFINEMENT FOR COMPLEX SYSTEM FAULT DIAGNOSIS 1053

(iii) and try to add new node(s) from H. There are two sub-
options: Line 10-12 implement the first sub-option by simply
adding a new node d′ ∈ H and a new edge (p, d′) to the cur-
rent G, resulting a new rTFPG G′, and checking whether G′
decreases DE(p, S, G′) (see Proposition 1); if so, the refine-
ment will continue with G′; otherwise, Line 14-16 implement
the second sub-option by adding another edge (v, d′) to G′,
resulting a new rTFPG G′′, where v is a predecessor of p,
and checking whether G′′ decreases DE(p, S, G′′); if so, the
refinement will continue with G′′.

B. Performance Guarantees

Line 10 of Alg. 2 attempts to decrease DE(p, S, G) by
adding a node d′ ∈ H together with an edge (p, d′) to the
current rTFPG G. Such a node d′ is likely to exist according
to the following proposition:

Proposition 1: Given an rTFPG G, a set of labeled signals
S := S+ ∪ S−, and a node p ∈ D(G), let ϕp be the STL
formula for p that minimizes Eqn. 1, Tp be the horizon of
ϕp [10], and P+, N+, P−, and N− be the sets of correctly
classified positive and negative signals and falsely classified
positive and negative signals by ϕp, respectively, if either (i)
∃k > Tp, ∃y ∈ N−, minx∈P+(xi[k] − yi[k]) > 0 or (ii) ∃k >

Tp, ∃y ∈ N−, maxx∈P+(xi[k] − yi[k]) < 0, then there exists a
node d′ leading to a decreased DE(p, S, G′), where D(G′) :=
D(G) ∪ d′ and E(G′) := E(G) ∪ (p, d′).

Proof: It is quite straightforward that the satisfaction of all
the signals in P+ and N+ with respect to ϕp will not be affected
by the newly added node d′ and edge (p, d′) (i.e., the sig-
nals that are correctly classified by G will still be correctly
classified by G′). If condition (i) holds, with properly chosen
parameters c, tmin, tmax (e.g., if such parameters exist in H and
I provided for Alg. 2), a node d′ with a predicate of the form
xi ≥ c and an edge (p, d′) with a time interval [tmin, tmax] can
decrease DE(p, S, G′) by decreasing the number of signals in
N− (in our case, |P−| = 0). Similarly, if condition (ii) holds,
with properly chosen parameters c, tmin, tmax, a node d′ with
a predicate of the form xi < c and an edge (p, d′) with a time
interval [tmin, tmax] can decrease DE(p, S, G′) by decreasing
the value of |N−|.

Theorem 1: Given an initially satisfiable rTFPG G, the
refined rTFPG G′ obtained by using Alg. 1 is also satisfiable.

Proof: Line 8, 12, and 16 of Alg. 2 refine the current rTFPG
G by adding either node(s) or edge(s). Each such refinement
guarantee that (i) those nodes in D(G) that are activated by
signals in S+ are still going to be activated and (ii) the newly
added nodes, i.e., those in D(G′)/D(G), are also activated
by signals in S+. Therefore, according to Def. 4, the refined
rTFPG G′ obtained by using Alg. 1 is satisfiable.

Theorem 2: If Alg. 1 terminates, then the refined rTFPG G′
obtained by using the algorithm is diagnosable with respect to
the labeled signal set S := S+ ∪ S−.

Proof: Let p be the last node that Alg. 1 visits before the
algorithm terminates and ϕp be its corresponding STL formula.
Then both conditions for the diagnosability of G′ with respect
to S are satisfied. (i) For two signals x′, x′′ ∈ S that have
different labels (i.e., px′ �= px′′), WLOG, assume x′ ∈ S+ and

x′′ ∈ S−. When Alg. 1 terminates, DE(p, S+ ∪ S−, G′) is zero,
implying x′ |= ϕp and x′′ |= ¬ϕp. (ii) For two signals x′, x′′ ∈ S
that have the same label (i.e., px′ = px′′), WLOG, assume
x′, x′′ ∈ S+. When Alg. 1 terminates, DE(p, S+ ∪ S−, G′) is
zero, implying x′ |= ϕp and x′′ |= ϕp.

With Theorems 1 and 2, we can conclude that if Alg. 1
terminates, it will return an rTFPG G′ that solves Prob. 1,
i.e., obtaining an rTFPG that is diagnosable with respect to
S. Moreover, Alg. 1 can handle multiply failure modes in a
step-by-step manner (as indicated by Line 1): for each failure
mode p, the algorithm sets the signals labeled by p as positive
examples and the others as negative examples.

c) Limitations: We cannot guarantee obtaining a globally
optimal rTFPG (here optimality refers to minimizing the diag-
nosis error DE) but only a locally optimal one, given the fact
that the global optimality depends on the initial graph, which
is provided by the human expert. Proposition 1 shows that
from this initial graph, new nodes can be added to decrease
DE. If a node does not decrease diagnosis error DE, which
will leads to a locally optimal graph eventually, the node will
not be added. Moreover, another issue of our proposed method
is its scalability, since, in the worst case, it the needs to check
all the possible failure nodes. We will address both issues in
the future, which is out of the scope of this letter.

V. CASE STUDIES

In this section, we will validate the performance of our
proposed method with three case studies, two simulated and
one real. First, we apply the proposed method to an advanced
diagnostics and prognostics testbed (ADAPT) developed by
NASA [11]. The ADAPT emulates a spacecraft power stor-
age and distribution system with three major components, a
power generation component with two battery chargers and
a solar panel, a power storage component with three sets of
lead-acid batteries, and the a power distribution component
with two inverters and a number of loads. Here we only con-
sider abrupt faults, i.e., those unexpected abrupt changes in
the system parameter values. Specifically, we introduce three
types of abrupt faults into the system (i.e., the number of fail-
ure modes |F(G)| = 3): (i) adding an additive sensor bias to
one of the variables of load bank 1 (IT), (ii) changing the
capacity value of battery 1 (L2E), and (iii) changing the value
of one of the resistances of load bank 1 (TE). The changes in
the parameter values are bounded for all these failures. We
generate 40 signals for each failure mode (20 for training
and 20 for testing). Details on the three failure modes F(G),
the signals used in this case study S, the Python code that
implements Alg. 1 to solve the rTFPG refinement problem for
the case study, and the obtained rTFPG G′ can be found at
https://github.com/sjtugangchen/Error-Propagation-Graph.git.

We run the code on a 64bit Linux computer with a 16 core
CPU at 3.8 GHz and 64GB of RAM. We set |H| = 300 (see
Alg. 2) and set the time limit to Tmax = 1000 secs, i.e., the
algorithm must terminate within at most Tmax (according to
Theorem 2, if it terminates in t < Tmax, a solution has been
found). Fig. 4 shows the rTFPG obtained by Alg. 1 for the
failure mode L2E (the rTFPGs for the other two failure modes

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 27,2020 at 20:22:01 UTC from IEEE Xplore. Restrictions apply.

1054 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 3, JULY 2021

Fig. 4. The rTFPG constructed for the failure mode TE. The initially
provided discrepancy nodes and edges are shown in blue. All the other
discrepancy nodes and edges are synthesized automatically by Alg. 1.

Fig. 5. CPU times and DEs for the three failure modes.

TABLE I
COMPARISON RESULTS WITH METHODS IN [9], [12] (PERFORMANCE

METRICS ARE SHOWN AS DE (%)/ TIME (S)/ρ(S, ϕ))

are omitted). Fig. 5 shows the CPU times and diagnosis errors
(DEs) (see Alg. 3) of the three failure modes, before Alg. 1
terminates (here we run the algorithm for each failure mode
separately). It can be observed that the CPU time is roughly
exponential with respect to the size of D(G), which is mainly
due to the for-loops inside Alg. 2. The figure also shows that
all the failure modes can be diagnosed correctly, since their
DEs are all zeros upon termination.

Second, we demonstrate the generalizability of our proposed
method by applying it to two other existing cases, one is
the naval surveillance case in [9] and the other is the cool-
ing fault diagnosis case of an iron-making factory in [12].
Here we only use one fault for each case study, meaning that
each case study solves a binary classification problem. The
comparison results are shown in Table I. In the table, we
use three metrics to quantify the performance of the three
methods: (i) the robustness degree, defined as ρ(S, ϕ) =

min(minx∈S+(ρ(x, ϕ)), minx∈S−(ρ(x,¬ϕ))), where ρ(S, ϕ) is
the minimum robustness degree of all the signals in S, (ii) the
diagnosis error DE, and (iii) the CPU time to reach a solu-
tion with DE being zero. The results in Table I show that all
three methods are able to obtain a correct classifier (i.e., with
DE being zero). However, the method proposed in this letter
outperforms the other two in the term of the CPU time while
obtaining a comparable robustness degree.

VI. CONCLUSION

This letter introduces a new formalism of TFPGs, called
rTFPGs, that is suitable to model and diagnose failure prop-
agation pertaining to continuous-state systems. Moreover, it
presents a data-driven method to automatically construct such
rTFPGs given a set of labeled signals. Finally, the performance
of our proposed method is validated with three case studies.
Given the popularity of TFPGs in safety critical systems and
the proved performance of our method, we believe our paper
provides a necessary foundation for many future data-driven
TFPG synthesis frameworks.

REFERENCES

[1] W. Xiang, J. Xiao, and M. N. Iqbal, “Robust fault detection for a class of
uncertain switched nonlinear systems via the state updating approach,”
Nonlinear Anal. Hybrid Syst., vol. 12, pp. 132–146, May 2014.

[2] S. Hayden et al., “Diagnostic technology evaluation report for on-board
crew launch vehicle,” NASA, Washington, DC, USA, Rep. TM-2006-
214552, 2006.

[3] C. Priesterjahn, C. Heinzemann, and W. Schäfer, “From timed automata
to timed failure propagation graphs,” in Proc. 16th IEEE Int. Symp.
Object Component Service Orient. Real Time Distrib. Comput. (ISORC),
2013, pp. 1–8.

[4] B. Bittner, M. Bozzano, and A. Cimatti, “Automated synthesis of timed
failure propagation graphs,” in Proc. IJCAI, 2016, pp. 972–978.

[5] M. Bozzano, A. Cimatti, M. Gario, and A. Micheli, “SMT-based vali-
dation of timed failure propagation graphs,” in Proc. 29th AAAI Conf.
Artif. Intell., 2015, pp. 3724–3730.

[6] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C. Ofsthun, “Practical
implementation of diagnosis systems using timed failure propagation
graph models,” IEEE Trans. Instrum. Meas., vol. 58, no. 2, pp. 240–247,
Feb. 2009.

[7] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst.,
2010, pp. 92–106.

[8] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, “Fault
tree handbook,” Nucl. Regul. Commission, Washington, DC, USA,
Rep. NUREG/CR-0400, 1981.

[9] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Trans. Autom. Control, vol. 62,
no. 3, pp. 1210–1222, Mar. 2017.

[10] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and
S. A. Seshia, “Robust online monitoring of signal temporal logic,”
Formal Methods Syst. Design, vol. 51, no. 1, pp. 5–30, 2017.

[11] M. J. Daigle, I. Roychoudhury, G. Biswas, X. D. Koutsoukos,
A. Patterson-Hine, and S. Poll, “A comprehensive diagnosis method-
ology for complex hybrid systems: A case study on spacecraft power
distribution systems,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 40, no. 5, pp. 917–931, Sep. 2010.

[12] G. Chen, M. Liu, and Z. Kong, “Temporal-logic-based seman-
tic fault diagnosis with time-series data from industrial Internet of
Things,” IEEE Trans. Ind. Electron., early access, Apr. 7, 2020,
doi: 10.1109/TIE.2020.2984976.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 27,2020 at 20:22:01 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TIE.2020.2984976

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

