
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Designing Process-Oriented Computational Assistance to Support Self-Regulated 
Learning in Complex Games

Permalink
https://escholarship.org/uc/item/318258kw

Author
Kleinman, Erica Michelle

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/318258kw
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DESIGNING PROCESS-ORIENTED COMPUTATIONAL
ASSISTANCE TO SUPPORT SELF-REGULATED LEARNING IN

COMPLEX GAMES

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTATIONAL MEDIA

by

Erica M. Kleinman

June 2023

The Dissertation of Erica M. Kleinman
is approved:

Dr. Magy Seif El-Nasr, Chair

Dr. Edward Melcer

Dr. Casper Harteveld

Dr. Norman Makoto Su

Peter Biehl
Vice Provost and Dean of Graduate Studies



Copyright © by

Erica M. Kleinman

2023



Table of Contents

List of Figures viii

List of Tables x

Abstract xiii

Dedication xiv

Acknowledgments xv

I Introduction and Background 1

1 Introduction 2
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contribution Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background and Related Work 14
2.1 Complex Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Theories of Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Self-Regulated Learning and The Cyclical Phase Model . . . . . . . . . 19

2.3.1 Self-Regulated Learning . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 The Cyclical Phase Model . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Supporting Self-Regulated Learning and the Cyclical Phase Model

through Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Supporting SRL and CPM Computationally through OLMs . . . 25

2.4 Games and Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Learning Complex Gameplay . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Self-Regulated Learning in Games . . . . . . . . . . . . . . . . . 28

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



II Studies of Self-Regulated Learning in Complex Games 31

3 Learning in Complex Games 33
3.1 Understanding how Players Learn Games . . . . . . . . . . . . . . . . . 33
3.2 Empirical Study of Learning Activities and Challenges in Complex Games 36

3.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Learning, Challenge, and the Cyclical Phase Model . . . . . . . . . . . . 51
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Co-Regulated Learning Among Esports Teams 54
4.1 Co-Regulated Learning and Social Esports . . . . . . . . . . . . . . . . . 54
4.2 An Exploratory Study of Co-Regulated Learning Among Esports Teams 57

4.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Understanding the Social Components of Learning Complex Games . . 70
4.3.1 The Hierarchical Nature of Co-Regulation . . . . . . . . . . . . . 70
4.3.2 The Relationship between Input and Failure . . . . . . . . . . . . 72
4.3.3 The Three Phases of Gameplay and Learning . . . . . . . . . . . 73

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 The Cyclical Phase Model in Complex Games 75
5.1 Why the Cyclical Phase Model of Self-Regulated

Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Empirical Study of Self Regulated Learning Across Skill Levels: A Case

Study of League of Legends . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 League of Legends . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 The connection between Computational Support and Self Regulated Learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

III Supporting Self-Regulated Learning Skills in Complex Games
through Computational Support 95

6 A Taxonomy of Intervention Types for Computational Assistants for
Esports 97
6.1 Computational Support for Esports . . . . . . . . . . . . . . . . . . . . . 97
6.2 A Systematic Review of the State of the Art . . . . . . . . . . . . . . . . 100

6.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 The State of the Art of Computational Support for Esports . . . . . . . 104

iv



6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Deriving Design Requirements for Computational Support for Es-
ports 109
7.1 The Need for a User-Centric Approach to Computational Tool Design for

SRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 A Mixed-Methods Examination of Players’ Support Needs . . . . . . . . 112

7.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.2 Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.3 Interview Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Opportunities to Better Support SRL . . . . . . . . . . . . . . . . . . . 123
7.3.1 Forethought Phase (Before Play): . . . . . . . . . . . . . . . . . . 124
7.3.2 Performance Phase (During Play) . . . . . . . . . . . . . . . . . 126
7.3.3 Self-Reflection Phase (After Play) . . . . . . . . . . . . . . . . . 128

7.4 Summary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

IV Making Sense of Visualizations of Process 131

8 An Interaction Taxonomy for Spatio-Temporal Gameplay Data 133
8.1 Information Visualization and Interaction Taxonomies . . . . . . . . . . 133
8.2 Developing a Taxonomy for Spatio-Temporal Gameplay Data . . . . . . 136

8.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Implications for the Presentation of Gameplay Process . . . . . . . . . . 149
8.3.1 Positioning and Movement . . . . . . . . . . . . . . . . . . . . . 149
8.3.2 Details on Demand vs. Domain Knowledge . . . . . . . . . . . . 150
8.3.3 Pinpointing Events and Forming Hypotheses . . . . . . . . . . . 151
8.3.4 Getting the Big Picture vs. Going Granular . . . . . . . . . . . . 152

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9 An Interaction Model for Process Visualizations 155
9.1 Visualizations of Process in Games and Beyond . . . . . . . . . . . . . . 155
9.2 Making Sense of Process Visualizations for Games . . . . . . . . . . . . 157

9.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2.2 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.3 Guidelines for the use of Process Visualizations in Complex Games . . . 170
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

v



V Reflecting on and Learning through Process Visualizations 174

10 The impact of One’s Own and Others’ Process Data on Self-Reflection176
10.1 Reflection, Adaptation, and Community . . . . . . . . . . . . . . . . . . 176
10.2 A Study of the Impact of Others’ Data on Adaptation . . . . . . . . . . 179

10.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.3 Considerations for Using Community Data to Influence Self-Reflection
and Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

11 The impact of Process Data on Performance in Complex Gameplay 196
11.1 Reflection, Performance, and Visualization for Games . . . . . . . . . . 196
11.2 The Impact of Process on Reflection and

Performance: A User Study . . . . . . . . . . . . . . . . . . . . . . . . . 198
11.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
11.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11.3 Considerations for Using Process Visualizations
to Improve Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
11.3.1 Process Visualizations may prompt Process-Oriented Evaluation 223
11.3.2 Process Visualizations may lead to more Accurate Reflection . . 223
11.3.3 Expert-like Input might be Necessary to reach Accurate Conclusions224
11.3.4 Process-Oriented Reflection may Influence Self-Monitoring Behavior224
11.3.5 Process Visualizations do not necessarily prompt Process Goals . 225

VI Conclusion 226

12 Summary of Contributions 227
12.1 Thrust 1: Studies of Self-Regulated Learning in Complex Games . . . . 227
12.2 Thrust 2: Supporting Self-Regulated Learning Skills in Complex Games

through Computational Support . . . . . . . . . . . . . . . . . . . . . . 229
12.3 Thrust 3: Making Sense of Visualizations of Process . . . . . . . . . . . 230
12.4 Thrust 4: Reflecting on and Learning through Process Visualizations . . 231

13 Limitations and Future Work 234
13.1 Limitations of Self-Regulated Learning and the Cyclical Phase Model . 234

13.1.1 The Scope of the Cyclical Phase Model . . . . . . . . . . . . . . 234
13.1.2 Accounting for Individual Differences and Social Interaction . . . 236

13.2 Limitations of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.3 Additional Considerations for Future Work . . . . . . . . . . . . . . . . 240

vi



14 Conclusion 242
14.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
14.2 Understanding Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
14.3 Understanding Self-Regulated Learning as a Social Activity . . . . . . . 245
14.4 Examining Computational Support . . . . . . . . . . . . . . . . . . . . . 246
14.5 Advancing the Use of Process Visualizations . . . . . . . . . . . . . . . . 248
14.6 Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Bibliography 252

vii



List of Figures

1.1 An overview of the four research thrusts of this dissertation. . . . . . . . 7

2.1 The Cyclical Phase Model of Self Regulated Learning from [756]. . . . . 23

3.1 The years of experience and hours played per week for the participants
for their most played game. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 An overview of demographic data collected during the study. . . . . . . 61
4.2 An overview of event frequency data collected during the study. . . . . . 62

5.1 The League of Legends in-game UI presents information about player
performance including kill counts, gold, experience earned, and creeps
killed while playing the game. . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 The League of Legends post-game UI presents information regarding how
each player performed during the game . . . . . . . . . . . . . . . . . . . 92

5.3 The game client stores and aggregates statistical data to present players
with overviews of their gameplay over time. . . . . . . . . . . . . . . . . 92

8.1 The Stratmapper interface. At the bottom of the interface is the timeline,
where the darker grey highlight is used to determined what data points
are seen on the map (only the points encompassed by the highlight on the
timeline will appear on the map). On the left is a list of heroes involved
in the respective event. Clicking a hero’s name in this list will mute their
data points. On the left side of the timeline are buttons to mute data
points for certain gameplay actions. Above the hero names is a drop
down menu that can be used to change the visualized data set. . . . . . 138

8.2 While studying positioning, participant 7 zoomed in on the middle lane
area of the map, where the players of interest were located. . . . . . . . 142

8.3 An example of participant 6 using a tool-tip to seek details. . . . . . . . 144
8.4 A preliminary process model to describe how users engage the activities in

the taxonomy (see Table 8.1) in order to understand and extract meaning
from spatio-temporal game data. . . . . . . . . . . . . . . . . . . . . . . 148

viii



9.1 A screenshot of the game Parallel. Players need to place semaphores and
signals to direct arrows, which carry packages and move along pre-defined
tracks, to the designated delivery points. The player must coordinate
threads executing in parallel. The level pictured was the subject of the
retrospective interviews. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.2 An example of the process visualization used in the Parallel study. . . . 160

10.1 A play trace depicted in Glyph’s network graph. For readability, I have
enlarged the text in the labels. . . . . . . . . . . . . . . . . . . . . . . . 182

10.2 The division of the level 7 board into sections. . . . . . . . . . . . . . . . 183
10.3 A playtrace with both the node link diagram and the images depicting

the board state at every action. For readability, I have enlarged the text
in the labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10.4 The visualization setup for the self reflection condition depicted the play-
trace for the player’s first and second playthroughs of level 7. . . . . . . 185

10.5 The visualization setup for the peer reflection condition depicted the
playtrace for the player’s first playthrough of level 7 alongside two other
playtraces, one similar and one different. . . . . . . . . . . . . . . . . . . 186

11.1 An example of the process visualization with the key on the right. . . . 204
11.2 An example of the aggregate visualization with the key on the right. . . 204
11.3 Demographic breakdown of participants . . . . . . . . . . . . . . . . . . 211

ix



List of Tables

3.1 The demographic questions used in the interview study. Interviews were
semi-structured and follow up questions were asked as needed. . . . . . 38

3.2 The goals and practices questions used in the interview study. Interviews
were semi-structured and follow up questions were asked as needed. . . . 39

3.3 The design exercise questions used in the interview study. Interviews
were semi-structured and follow up questions were asked as needed. . . . 40

3.4 The 14 games mentioned by the interview participants (top) and the
number of participants who mentioned experience with each game (bot-
tom). Note that participants could mention more than one game when
asked what they had experience playing. . . . . . . . . . . . . . . . . . . 42

3.5 The thematic analysis for RQ 1 revealed four types of activities players
engage when trying to learn and master an esport game. Under the
activity name is the percentage of total code applications for RQ 1 that
were the given activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 The thematic analysis for RQ 2 revealed four general challenges. Under
the challenge name is the percentage of total code applications for RQ 2
that were the given challenge. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 The Questions used in the interviews. Questions 1 and 7 used a Likert
scale where 1 was the least and 5 was the most, participants were informed
of this when asked the question. All other questions were open-answer. . 59

4.2 18 themes were identified regarding how Co-Regulated Learning occurred
among esports teams and these were organized into four categories. # of
obs indicates how many times each theme was observed while # of pls
indicates how many players discussed each theme. . . . . . . . . . . . . 63

5.1 The means and standard deviations for creep score for each group. . . . 84
5.2 The means and standard deviations for the five measures of self-motivation. 85
5.3 An overview of how different types of goals were set across the three skill

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 An overview of how different routines were used across the three skill levels. 86

x



5.5 An overview of how different strategies were used across the three skill
levels at both question times. . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 An overview of how different self-monitoring techniques were used across
the three skill levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 An overview of how self-evaluation occurred across the three skill levels. 87
5.8 An overview of attribution types across the three skill levels. . . . . . . 88
5.9 The number of people in each group who said yes and no for each of the

adaptation questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 The nine intervention types, their definitions, and examples. . . . . . . . 102
6.2 Distribution of interventions per phase for the reviewed tools. . . . . . . 103
6.3 How many of the reviewed tools (all, most (more than half), few (less than

half), or none) offered each intervention during each phase (F=Forethought,
P=Performance, R=Self-Reflection. . . . . . . . . . . . . . . . . . . . . 104

7.1 An overview of demographic data collected by the survey. . . . . . . . . 116
7.2 The games played by the survey respondents and the number of respon-

dents per game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3 The number of survey respondents (out of the total 116) who had expe-

rience with the reviewed tools. . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 The games played by the seven interview participants. . . . . . . . . . . 117
7.5 An overview of what percentage of players preferred a given intervention

during a given phase, according to the survey responses. F=Forethought,
P=Performance, R=Self-Reflection. . . . . . . . . . . . . . . . . . . . . 117

7.6 A summary of what players do and want help with in the Forethought
phase of SRL, what existing tools offer them, and the implications of
these findings on future research and design. . . . . . . . . . . . . . . . . 123

7.7 A summary of what players do and want help with in the Performance
phase of SRL, what existing tools offer them, and the implications of
these findings on future research and design. . . . . . . . . . . . . . . . . 123

7.8 A summary of what players do and want help with in the Self-Reflection
phase of SRL, what existing tools offer them, and the implications of
these findings on future research and design. . . . . . . . . . . . . . . . . 124

8.1 The taxonomy of user interaction for spatio-temporal game data visual-
ization, consisting of seven activities organized across three categories. . 141

9.1 This table showcases all 15 in-game actions used to analyze the players’
gameplay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.2 The six interpretation techniques identified based on analysis of players’
interaction with the community visualizations and brief definitions. . . . 166

10.1 Leijen et al.’s [386] model for measuring the quality of reflections. . . . . 188

xi



10.2 The definitions I derived for how Leijen et al.’s model applies in the
context of Parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.3 Differences in willingness to do something different next time between
self and peer reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.4 Differences in focus of reflection between self and peer. . . . . . . . . . . 190
10.5 Differences in level of reflection between self and peer. . . . . . . . . . . 190

11.1 16 possible actions that players could take during the gold collection task,
modified from the behavioral abstraction presented by Ahmad et al. [14]. 201

11.2 Inter-rater reliability measures for coding for all SRL processes. Calcu-
lated using Cohen’s Kappa [133] . . . . . . . . . . . . . . . . . . . . . . 210

11.3 The average performance score before (B) and after (A) reflection for
both groups, with standard deviation. . . . . . . . . . . . . . . . . . . . 211

11.4 The average creep score before (B) and after (A) reflection for both
groups, with standard deviation. . . . . . . . . . . . . . . . . . . . . . . 212

11.5 The average number of deaths before (B) and after (A) reflection for both
groups, with standard deviation. . . . . . . . . . . . . . . . . . . . . . . 212

11.6 The average number of towers destroyed before (B) and after (A) reflec-
tion for both groups, with standard deviation. . . . . . . . . . . . . . . . 212

11.7 The average number of kills before (B) and after (A) reflection for both
groups, with standard deviation. . . . . . . . . . . . . . . . . . . . . . . 213

11.8 The average degree of behavioral change from before and after reflection
for both groups, with standard deviation. The difference in average de-
gree of behavioral change between the two groups was not significant (p
= .67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

11.9 Code counts for the evaluation process of SRL. These differences were
significant at p = .004. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

11.10Code counts for the attribution process of SRL. These differences were
not significant at p = .67. . . . . . . . . . . . . . . . . . . . . . . . . . . 214

11.11Code counts for the adaptation process of SRL. These differences were
not significant at p = .55. . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.12Code counts for the goal setting process of SRL. These differences were
not significant at p = .58. . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.13Code counts for the strategy use process of SRL. These differences were
not significant at p = .41. . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.14Counts for how many players in each group realized their goals. These
differences were not significant at p = .69. . . . . . . . . . . . . . . . . . 216

11.15Code counts for the self-monitoring process of SRL. These differences
were not significant at p = .17 . . . . . . . . . . . . . . . . . . . . . . . 216

xii



Abstract

Designing Process-Oriented Computational Assistance to Support

Self-Regulated Learning in Complex Games

by

Erica M. Kleinman

Complex games, those with multiple correct strategies and unpredictable outcomes, are

seeing increased popularity and integration into high-impact domains such as health,

education, and training. Further, even in entertainment contexts, these games have

proven benefits for players. The steep learning curves, however, make the games inac-

cessible to many players, resulting in a lack of diversity in professional circles, cutting

people off from the proven benefits of play, and rendering them ineffective in serious

domains.

This work examines, in a user-centric manner and through the lens of the

Cyclical Phase Model of Self-Regulated Learning, how players learn to play and master

complex games and how we can better support these processes through computational

support. These thesis, thus, contributes an advanced understanding of how learning

and mastery occurs in complex gameplay, and empirical insights into how to support

these processes, grounded in theories of learning.

In sum, this work contributes to making complex games more accessible and

effective as high-impact tools and identifies generalizable insights for the design of com-

putational support tools for learning relevant to adjacent domains including explainable

and user experience of Artificial Intelligence.
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Chapter 1

Introduction

1.1 Research Motivation

Complex games, those that have multiple correct strategies or solutions and/or

unpredictable situations or results, are seeing greater use in serious and high-impact do-

mains including health [172], education [321, 382], military [155], and disaster response

[602]. This is because the games themselves are engaging to users, making them a more

interesting and, in many cases, a more hands-on, alternative to traditional education

or training methods. Further, high-skill level play in complex games has demonstrated

proven benefits for the players, even in entertainment focused games. The mechanics of

dynamic, fast-paced complex games have demonstrated an ability to nurture fine motor

skills among players [673, 520, 289] and improve their reaction time [360]. Addition-

ally, while not all complex games are multiplayer, those that are have demonstrated an

ability to improve players’ social-emotional skills, including communication, teamwork,

and emotional regulation [727, 362, 479, 675]. Complex gameplay, especially in esport

games, has also demonstrated the ability to improve younger players’ academic perfor-

mance, by nurturing their critical thinking and problem solving skills [552, 120, 382].

Further, esports have grown into a multi-billion dollar industry with thousands of career

opportunities for players capable of high-skill level play [15].

The problem, however, is that complex games also tend to be notoriously
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difficult to learn, rendering them almost inaccessible to large portions of the population

who do not already belong to communities or have support networks that can help them

improve. While the games themselves offer tutorials that teach players the basics of

interaction, the skills necessary to succeed in complex gameplay situations, where there

may be multiple pathways to success and unexpected outcomes, are rarely taught or

coached by the games themselves. As a result, players must learn and improve at play on

their own, but the path to success is not always clear. It can be easy for players to make

the wrong choices, fail to understand what they are doing wrong, and ultimately become

frustrated and quit playing when they fail to meet their own expectations [88, 196].

This means that the benefits of play, such as fine-motor or communication skill

improvement, may be inaccessible to many players, simply because they are unable to

reach the necessary level of play on their own and do not have a support network that

can help them. Further, those games that are intended for use in serious domains may

be rendered ineffective if the players meant to benefit from them are unable to even play

them. In situations like the esports industry, this can also result in a lack of diversity,

as those players most able to succeed are those who belong to a community or have

a support network that can help them learn through example, coaching, and advice.

Players from different locations or of different demographics from those represented by

existing support networks, however, face a far greater challenge in the pursuit of elite

play [660] and may never be able to reach the highest skill levels as there is little support

available to help them do so.

In order to make high-skill level play in complex games more accessible to more

players, we need to better facilitate players’ ability to learn and improve on their own.

But in order to do that, we require a stronger understanding of how players learn and

improve at complex gameplay on their own. Within the learning sciences, Self-Regulated

Learning (SRL) is a learning theory that specifically formalizes the cognitive, meta-

cognitive, behavioral, motivational, emotional, and affective aspects of learning on one’s

own [497]. In other words, SRL broadly refers to the phenomenon by which students can

self-regulate their learning process without the direct guidance of an educator [497, 757].
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Learning gameplay, specifically learning the skills necessary to move from the basics of

interaction to high-level play, is almost exclusively learned in the absence of a formal

educator, with players dependent on their own goals and reflections [480, 88]. Thus,

SRL, as a learning theory, lends itself well to understanding and formalizing learning in

complex games.

Further, I focus here on Zimmerman’s Cyclical Phase Model of Self-regulated

Learning (CPM) [750]. CPM splits the processes of SRL into three phases: forethought,

performance, and self-reflection [497, 757, 756]. Forethought encompasses skills used to

plan or set goals for a learning activity, performance encompasses skills used to complete

the activity and monitor one’s progress towards goals, and self-reflection encompasses

skills related to evaluating one’s performance and adapting it for future iterations of the

activity. As the model is a cycle, executions of self-reflection inform future executions of

forethought. This model lends itself particularly well to complex games, where players

are often required to undergo the same task in repeated cycles, with opportunities to

plan, monitor, and self-reflect.

For example, role playing games will require players to battle powerful mon-

sters. Players will go into these fights with a plan, and bring certain weapons, characters,

or items to enact that plan. During the fight, players will monitor their performance and

the execution of their chosen plan. After the fight, players will reflect on what worked

and what did not, and adjust their plans, either because they need to try again, or

because they will have to fight another powerful monster later. Esports present an even

more direct application of CPM, with clearly defined pre-game, in-game, and post-game

time-points that correspond to forethought, performance, and self-reflection.

Previous work has explored SRL in games, however, it has focused almost

exclusively on educational games and the impact of SRL on the extent to which players

learn the educational material behind the game [480, 481, 571]. Work that explores the

impact of SRL skills on learning gameplay itself is, in contrast, quite limited [480, 88].

As a result, there is currently a very restricted understanding of how SRL manifests in

the context of learning complex gameplay. This, in turn, means that supporting SRL,
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and specifically SRL in terms of CPM, in complex gameplay remains an open question.

The problem I seek to address in my dissertation then is how to best support

SRL in terms of CPM for players who do not necessarily have a group they may turn to

for aid. In the absence of other humans, data, which has become increasingly available

in recent years with advances in technology [185], has proven itself a promising avenue

for supporting SRL in complex games. Many games have already integrated visualiza-

tions and summaries of gameplay data to help players learn through review, reflection,

and comparison with others [280, 80, 449, 448, 447]. Further, outside of the games

themselves, many computational tools have been developed with the explicit goal of

allowing players to view, interact with, and interpret their data [701, 11, 367, 14, 706].

That being said, to date, there has been little empirical examination of how

data and data-driven tools can be used to enhance learning, with those studies that

do exist taking a game or context specific approach [708, 509]. Instead, much of the

empirical study of player-facing data focuses on design and usability [701, 274, 703,

706]. Further, while supporting SRL through computational assistance is common in

learning sciences [497], there is almost no literature on the topic in the context of games,

especially in the context of learning the gameplay itself.

In this dissertation, I argue that we can support players in learning complex

gameplay, and ultimately improve their experience, by using gameplay data to enhance

the execution of self-regulated learning skills in the context of play. In doing so, we

can make the benefits of play accessible to more players, which will, in turn, increase

diversity in complex gaming domains and make complex games in high-impact areas

more usable and effective. I explore this space through user-centric studies of how

players learn, the execution of SRL within the gameplay learning process, how it is

supported by the current state of the art of data-driven tools, and how we can advance

the design of these tools to enhance that support. In the following subsection, I will

summarize the outcomes of my dissertation work more specifically.
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1.2 Research Questions

The overarching research question I seek to answer is as follows:

• Overarching Research Question (ORQ): How can we facilitate, enhance, and

encourage self-regulated learning in the context of improving at complex game-

play?

In answering this research question, I recognize four research thrusts in this

dissertation. An overview of these thrusts can be seen in Figure 1.1. The first two

research thrusts look broadly at SRL in games as defined by CPM. Through mixed-

methods techniques, including interviews and surveys, I explored how players learn and

improve at play in the context of CPM and how gameplay data can support that process.

These are followed by two thrusts that explore the impact of data, and specifically

process visualizations, on SRL and CPM in complex games, again, through various user

studies. I will briefly introduce these thrusts and their related research questions in the

following subsections.

1.2.0.1 Thrust 1: Studies of Self-Regulated Learning in Complex Games

The first thrust examines learning and SRL in the context of complex games,

specifically esports, and sought to answer the following research question:

• RQ 1: How do players engage Self-Regulated Learning skills in the context of

learning and improving at play?

I explored this question through three studies. The first, an interview study,

asked esports players about their goals, practice routines, and experiences trying to

improve at their respective games. It followed this with a hypothetical design exercise

asking players to design a fictional computational tool that could help them improve

at their game. The results revealed four activities and four challenges that players face

when trying to improve.
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Activities and 
Challenges 

Study

CoRL Study

Thrust 1: Self-Regulated 
Learning in Games

Taxonomy of 
Interventions

User 
Requirements 

Study

Thrust 2: Computational 
Support for SRL

Spatial Vis 
Study

Process Vis 
Study

Thrust 3: Making Meaning 
from Process

Reflection 
Study

Learning 
Study

Thrust 4: Learning through 
Process Visualization

SRL in LoL 
Study

Figure 1.1: An overview of the four research thrusts of this dissertation.

The second study briefly explored the question of social learning in esports

play and leveraged Hadwin et al.’s theory of Co-Regulated Learning [273] to understand

how esports teammates co-regulated each other’s learning processes. This was another

semi-structured interview study, the results of which revealed 18 themes regarding how

players regulate each others’ learning process and considerations for the design of tools

that may aid in this co-regulation process by supporting players the way other players

do. While this dissertation work primarily focuses on solo learning, this study sets the

first stones for future work that explores the question of social learning more thoroughly.

The third study replicated the work of Kitsantas and Zimmerman [343] and

looked at how SRL skills were executed by League of Legends players at various skill

levels. The results revealed statistically significant differences in the forethought phase,

but not in the performance or self-reflection phases, suggesting that players across skill

levels were executing SRL skills evenly in these phases. Based on these results, I con-

cluded that the data visualizations available to players during these phases encourage

SRL skill execution, regardless of skill level.
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In sum, the primary takeaway of thrust 1 was an empirical understanding of

how learning occurs in complex games, both generally, and specifically in terms of CPM.

1.2.0.2 Thrust 2: Supporting Self-Regulated Learning Skills in Complex

Tools through Computational Support

Based on the findings of the first thrust, I concluded that gameplay data, often

made apparent through interface elements, provides players of complex games, especially

esports, with some manner of support for SRL skill execution. Thus, the second thrust

of this work sought to answer the following research question:

• RQ 2: How do data-driven tools support self-regulated learning skills in complex

games?

To answer this question, first, I worked with collaborators to conduct a sys-

tematic review of existing support tools for esport games. This review revealed nine

intervention types offered by the tools and patterns of when during gameplay they are

offered, mapped to the three phases of the Cyclical Phase Model. I present this as a

taxonomy of intervention types for computational assistants for esports.

Following the creation of the taxonomy, I conducted a two-part, mixed methods

survey and interview study that gauged players’ preferences in terms of when during the

gameplay experience they would want to interact with each intervention type. Using an

explanatory sequential method, preferences were first collected using a survey. These

survey results were then expanded on through qualitative interviews with a subset of

respondents. The results revealed usage patterns and preferences from players regarding

how existing features support SRL skills across the three phases for complex games and

opportunities for better support.

In sum, the primary takeaways of thrust 2 are a taxonomy of the types of

interventions offered by computational support tools for esports and an overview of how

existing computational tools support SRL in terms of CPM, and opportunities to improve

that support based on user input collected through a mixed-methods study.
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1.2.0.3 Thrust 3: Making Sense of Visualizations of Process

Based on the findings of the previous two thrusts, I developed a solid under-

standing of how players of complex games leverage SRL skills towards improvement,

and how they use data towards enhancing this process. From these results, I recog-

nize two facts. First, reviewing gameplay, and gameplay data, post-play, during the

self-reflection stage, is one of the most common executions of SRL in the context of

improving at a complex game. The self-reflection phase encompasses meta-cognitive

processes related to evaluating performance, attributing failure, and revising plans and

goals for the future based on reviews of one’s actions after the fact [756, 75, 273].

In the learning literature, reflection has been shown to be critical to effective

self-regulated learning, and many methods and tools have been developed to prompt

and encourage student reflections [497]. Reflection has also been demonstrated as a

key element of gameplay experiences, where it can help players come to new conclu-

sions about the narrative or their own actions [453]. In learning games, previous work

demonstrated how prompting reflection can improve the rate at which players learn

educational material [693, 569]. The results of the previous two thrusts further suggest

that reflection also plays a key role in players learning and improving at the gameplay

itself.

Second, being able to understand the causal relationships between in-game

actions is recognized, by many players, as critical to successful improvement over time.

However, existing data visualization interfaces for self-reflection do not sufficiently pro-

vide enough information to understand causality, as they are primarily presenting ag-

gregate statistics. This makes it difficult for players to understand where their own

gameplay went wrong, and also makes it difficult to learn from the gameplay of others

[625, 112], as it is almost impossible to glean strategic information from aggregate data.

Based on this understanding, process visualizations, those that visualize data

in a granular, action by action manner, may enhance self-regulated learning during the

self-reflection phase by providing more causal information. Process visualizations are
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common in other domains that focus on formalizing human behavior, such as process

mining [684, 551, 718]. These visualizations all follow a similar approach, using node-

link diagrams to display the ordering and progression of human actions as they work

towards completion of a task [514, 718, 687, 581]. This visualization approach makes

them better suited for extracting causal relationships from data, as the progression

of one event to another is clearly depicted. While similar visualizations exist within

the domain of games, they have been used almost exclusively for game user research

rather than as player-facing tools [478, 702, 26]. This is likely due to the, naturally,

more complicated nature of process visualizations, which may render them difficult for

players to make meaning from.

Thus, the third research thrust sought to explore the extent to which players

can extract meaningful insights from gameplay data presented in a process visualization.

Thus, this thrust explores the research question:

• RQ 3: How do players of complex games extract meaningful insights from visual-

izations of process?

This question was explored through two studies. The first was a qualitative

study that examined how players of the esport game DotA 2 made meaning from spatio-

temporal visualizations of others’ gameplay data. The results revealed a preliminary

interaction taxonomy for the domain as well as a process model.

The second study built on the results of the first, but looked instead at a

sequential-process visualization. The results revealed two methods for sense making

using sequential-process visualizations in the context of complex games.

In sum, the primary takeaways of thrust 3 are initial interaction taxonomies

and process models for how players make sense of game data visualized in a process

sensitive manner.
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1.2.0.4 Thrust 4: Learning through Process Visualizations

Thrust 3 demonstrated that players are able to extract meaningful insights

from process visualizations and that comparison with others’ data influenced one’s per-

spective and interpretation of their own data and experience. The final question I sought

to explore in Thrust 4 was thus:

• RQ 4: How do process visualizations of one’s own and others’ gameplay data

impact self-reflection and learning?

To answer this question, I first examined the impact of others’ process data on

one’s reflection on their own data through a mixed methods study. The results revealed

that comparison with peers significantly influenced a given player’s willingness to try

a different approach if they repeated the task, without having any negative impact on

the quality of reflection.

I then conducted a second study examining the impact of process visualization

on SRL processes in the self-reflection phase of CPM, when compared to an aggregate

visualization. The results revealed that players who reflected on a process visualization

had a significant improvement in performance and were significantly more likely to

evaluate their performance based on their use of the correct method or strategy rather

than just their score.

In sum, the primary takeaways of thrust 4 are the empirically derived relation-

ships between process visualizations of one’s own and others’ data and self-reflection and

performance. From these, I derive suggestions for the design of computational assistants

that I discuss further below.

1.3 Contribution Summary

To briefly summarize, the goal of this dissertation is to develop an under-

standing of how players learn in complex games and guidelines for how we can design

computational assistants to better support that learning through the theoretical lens of
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the Cyclical Phase Model of Self Regulated Learning. I pursue this goal for several rea-

sons. First, complex games have proven benefits for players, which become inaccessible

to those who are unable to learn and master gameplay. Second, some complex game

communities, such as esports, have developed a diversity issue due to this inaccessibility.

Third, complex games are seeing increased use in serious domains, where it is critically

important to ensure that players are able to learn and master gameplay in order for the

game to achieve its design goals.

Through this dissertation, I have accomplished the following towards the goals

I discuss above, all of which have been published or are currently under review at major

publication venues:

• Identified common activities and challenges experienced by esports players when

they are attempting to learn to play

• Highlighted similarities and significant differences in how skills from the cyclical

phase model are leveraged across expertise levels in a complex gaming context and

identified the connection between these skills and computational support elements

• Developed a taxonomy of interventions offered by computational assistants for

esports games

• Identified how esport players use computational assistants to support SRL and

opportunities to improve this

• Highlighted players’ reservations towards computational assistance in a complex

gaming context and opportunities to address this through design

• Developed two taxonomies, as well as process models, for interaction with game-

play data, one for spatio-temporal data and one for process visualizations

• Determined that comparison with peers’ process data can increase a player’s desire

to try a different approach in future play while not reducing the quality of their

reflections
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• Determined that reflecting on one’s own process data, as opposed to aggregate

data, has a significant impact on evaluation and performance.
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Chapter 2

Background and Related Work

2.1 Complex Games

Games exist across a wide spectrum in terms of aesthetics, platforms, and

gameplay. Some games are more casual, restricting themselves to a small number of

mechanics, a single way to complete an objective, and predictable outcomes. Other

games, however, are what people would refer to as “complex”. But what does it mean

to say a game is complex? In a vacuum, complexity refers to the presence of many

different and connected parts. In the context of games, however, there exists no single

definition for a “complex” game.

In some cases, the literature measures complexity by the size and number of

objects or interactions present in a game [169, 27]. In other cases, the phrase “complex”

is used with no explicit definition, and simply refers to games that are known to consist

of many “moving parts” [659].

A more comprehensive distinction is provided by Prensky [536], who defines

complex games as those that takes tens of hours to play, demand that the player learn

and master multiple skills, and research and communicate outside the game. Prensky

goes on to say that complex games often require players to make decisions and take

action in real time and contain ethical dilemmas. Prensky ultimately emphasizes the

role that learning and mastering skills, realized as one progresses through game levels
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as the key characteristic of the complex gameplay experience.

In the context of this dissertation, I use the term “complex games to refer

to those games that have multiple correct strategies or solutions that a player may

choose from and unpredictable outcomes or results. An example of a complex game

that illustrates this is The Wolf Among Us, which features a scene in which the player

character enters a bar to speak with the suspect of a crime. The player is able to choose

a friendly approach to the conversation or an adversarial one, both of which are valid

methods to progress the scene (multiple correct strategies or solutions). What the non-

player character (NPC) says or does in response, however, may not reflect the route the

character takes. For example, even if the player takes the friendly route, the scene can

still end in a bar fight (unpredictable outcomes or results).

Another example is the mobile game Disney Twisted-Wonderland where play-

ers put together teams of five characters from a selection pool to fight enemies in turn-

based combat. There is no one right team for any given fight and players can adopt

any team combinations they wish based on what is available to them (multiple correct

strategies or solutions). Enemies have various skills that may be strong or weak against

the player’s team’s skills and on any given turn the player must choose at least one skill

to use without knowing what the enemy will use, meaning the skill they choose could

be very effective or very ineffective (unpredictable outcomes or results).

These factors, however, can make complex games initially difficult to master,

as it is not always clear what the correct course of action is and, when something goes

wrong, it can be difficult to pinpoint the cause. Nevertheless, complex games can be

mastered through practice and continued exposure, as the player becomes familiar with

the space of possible actions and outcomes and builds causal relationships between the

two.

Complex games are not restricted to any one style or genre, and encompass

anything from Tetris to The Legend of Zelda, Breath of the Wild. Notably, complex

games also encompass multiplayer games, which also increase the complexity by adding

interactions with another player, and can range from Final Fantasy XIV to Chess. In
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the former, the other players are typically on the same side and in the latter they are

on the opposing side. There still remain multiple correct strategies and unpredictable

outcomes at any given moment but there now exists a level of unpredictability in not

knowing how the other player or players will behave. Many educational games, such

as May’s Journey [321], also count as complex games under this definition as they are

often designed with multiple possible solutions, to encourage students to think and

experiment for themselves.

That being said, complex games, especially entertainment ones, are, notably,

often meant to be a challenge, as is the case for the Dark Souls series, for example.

Players who choose to play these games are typically doing so to enjoy the challenge.

This thesis work is not meant to remove the challenge from challenging games, but

instead, is meant to help those players who wish to enjoy the game but find the challenge

to be a road-block to their enjoyment. A seemingly insurmountable challenge, or as

Esteves et al. [196] found, perception that one is performing poorly compared to others,

can lead to discontinuation of play. This outcome is undesired, as it will keep players

from experiencing the aforementioned benefits of play and, on the business side, may

prevent them from buying other games from the franchise in the future.

While many have examined dynamic difficulty adjustment as a way to cater

the challenge to the skills of the individual player [309, 762], not all complex games,

especially online ones, may employ such a system. The goal of this work is, thus,

to provide insights into how to develop assistants that may help those players who

find the challenge of learning a game to be insurmountable on their own. Similar to

the customizable auto-chips of Nier: Automata, which allow the game computer to

automatically operate some elements of the combat kit, these assistants are here for

those who wish to use them, and may be ignored by those who enjoy the challenge.

Additionally, computational assistants are about helping the player learn to rise to the

challenge of the game by examining and understanding their own behavior. In doing

so, they help the player adapt to the challenge, rather than remove the challenge from

play.
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2.2 Theories of Learning

In his 2012 book “Learning Theories: An Educational Perspective” [590], Dale

Schunk defines learning as “an enduring change in behavior, or in the capacity to behave

in a given fashion, which results from practice or other forms of experience.” (P. 5). He

goes on to discuss how learning involves changing through experience and that it endures

over time. He clarifies, however, that there is no single definition of what learning is.

That being said, the definition he provides certainly suggests that players are learning

when they are improving at gameplay. Similarly enigmatic are the theories of how

people learn, of which there are many. In this section, I will discuss the four theories of

human learning that Schunk details in his book [590].

An early theory of learning, according to Schunk [590], was conditioning theory,

which understood learning, specifically learning behavior, in terms of environmental

events. This theory argued that learning occurred through the repeated reinforcement

of desirable responses to external stimuli [268] and was built on the idea that humans

learn by building connections between experiences and responses, often through trial

and error [450]. According to this theory, positive reinforcement, i.e. new or continued

stimuli, will lead to prolonged behavioral change, i.e. learning, while extinction of a

behavior can occur if reinforcement is not received [590]. For example, if students who

raise their hands are called on they will continue to do so, but if they are not called

on, they will stop raising their hands. In educational contexts, this theory informed

learning environments with strict progressions from one task to another, and immediate

feedback that would prompt the learner to repeat a task if done incorrectly the first

time [590].

While common in the early half of the 20th Century, conditioning theories

waned in popularity in the 1950’s and 60’s due to increased awareness of the social and

cognitive aspects of learning [590]. This awareness led to the rise of social-cognitive

theory, which argued that people could acquire knowledge, rules, skills, strategies, be-

liefs, and attitudes by simply observing others, and not exclusively by responding to
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stimuli themselves [590]. What specifically sets social cognitive theory apart from its

predecessor is that learning occurs both by performing tasks and by observing others

perform tasks [592, 42]. In addition, according to this theory, through interaction with

others and their environments, humans learn about the appropriateness of actions and

their relative skills, which build cognitive beliefs about their capabilities and expected

outcomes, which, in turn, inform future action [592, 42]. These beliefs, an element of

self-efficacy, are considered an important part of education, and learning environments

that subscribe to this theory will work to build students’ self-efficacy to ensure that

they will take the initiative to perform learning tasks [590]. Unlike conditioning the-

ory, which has seen little discussion in recent literature, social cognitive theory is still

relevant today, with recent work referencing it and combining it with other theories of

learning [709, 485, 9].

Another learning theory that challenged the assertions of conditioning and

behaviorism is information processing theory, which asserts that humans encode new

information, relate it to known information, store it in memory, and retrieve it as

needed [590, 614]. The general idea of this theory, which is actually a collection of

theories, is that information is processed by the learner between receiving a stimulus

and producing a response [590], which is in contrast to conditioning theory, in which

it was argued that humans just responded to stimuli and learned through conditioned

reinforcement. In educational contexts, information processing theories have prompted

educators to connect newly taught information to prior knowledge and articulate explicit

connections between different pieces of knowledge. These theories also relate to theories

of attention [277] and cognitive load [648], in that they formalize the processes by which

human learners take note of, store, and manage incoming information.

There is also the theory of constructivism, which shifts the focus from how

knowledge is acquired to how it is constructed by learners [590]. Constructivism as-

serts that knowledge is built internally, rather than obtained from an external source,

and therefore subjective and unique to individual people [590]. In educational contexts,

constructivist theories have prompted a shift towards student-focused learning, where
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students are actively involved in guiding the learning process, rather than passive lis-

teners [36]. Constructivism also posits that learners are not blank slates and instead

bring pre-existing knowledge with them into a learning environment [474]. A number of

contemporary learning techniques facilitate constructivist learning including discovery

learning, where students obtain their own knowledge through problem solving, inquiry

teaching, in which teachers question students, and discussion and debate-based teaching,

which allow students to share multiple viewpoints on a topic [590].

The above are the four foundational theories of how humans learn as discussed

by Schunk [590]. There exist various teaching and learning techniques which build

upon these theories, such as experiential learning, which exists at the intersection of

behavioral and cognitive theories, claiming that learners learn through a combination

of concrete experiences and abstract conceptualizations of experiences [359]. One of the

most influential techniques, however, is Self-Regulated Learning [590, 750], which details

the processes by which a learner can self-regulate their use of the various experiential,

behavioral, cognitive, and meta-cognitive processes involved in learning in order to drive

their own learning process. What differentiates Self-Regulated Learning is, among other

details, its lack of reliance on an external educator. In the following section, I will discuss

Self-Regulated Learning in more detail.

2.3 Self-Regulated Learning and The Cyclical Phase Model

2.3.1 Self-Regulated Learning

Self-Regulated Learning (SRL) is the active and goal-directed process in which

learners are portrayed as active and intentional regulators of their own cognition, meta-

cognition, motivation, and behavior [416]. In other words, SRL refers to the phenomenon

by which learners can learn on their own, in the absence of an educator. As such, SRL

encompasses the processes and skills related to analyzing tasks, setting goals, developing

strategies to reach those goals, monitoring progress towards those goals, and reviewing

performance and outcomes [497, 540, 369].

19



I choose to focus on SRL, as a learning theory, in this work, due to its rel-

evance to the phenomenon of learning gameplay. Specifically, gameplay, especially in

entertainment games, is typically learned in the absence of a formal educator, such as a

coach. Players are, thus, reliant on their own ability to to set goals, monitor progress,

and review performance in order to identify failures and opportunities for learning and

improvement. In other words, players, by nature, are required to self-regulate their

learning when learning complex gameplay, especially when doing so in the absence of a

formal educational setting.

There are several different theories and models of SRL [497, 540, 369]. The

models vary in how they conceptualize each aspect of SRL and what skills they em-

phasize, but all focus on the same concept of learners leveraging cognitive and meta-

cognitive techniques to analyze tasks, design strategies, and monitor performance. [497].

For example, Boekaerts’s model emphasizes the importance of goals and suggests two

pathways of SRL that students follow when attempting to reach their goals: a learning

or mastery mode and a coping or well-being mode [75]. The first is followed when stu-

dents perceive a task as congruent with their goals, while the second is pursued when

the task is perceived as a threat to their well-being [75, 497]. In contrast, Winne and

Hadwin’s model places a strong emphasis on meta-cognitive skills [723, 497]. In addition

to goal setting and performance monitoring, their model emphasizes processes in which

students plan and adapt for the future by making changes in their motivations, beliefs,

and strategies [723].

Hadwin et al. [273] also present a unique view on SRL through their model for

co-regulated learning. Co-regulated learning is defined by the authors as a transitional

processes in a learner’s acquisition of SRL, during which members of a community share

a common problem-solving plane, and SRL is gradually appropriated by the learner from

a more experienced other. For example, a mother teaching a child to tie a shoelace might

ask questions like “what do you know about how to connect those two laces?” and “How

do you know when you have completed the first step properly?” This allows the child

to focus on task enactment while an external force supports meta-cognitive engagement
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and regulatory control, thus easing the cognitive demands of completing the task. They

emphasize that over time the student will acquire the regulatory skills of the other and

will shift to a self-regulated learning arrangement. This concept of co-regulated learning

is somewhat new, and there is therefore little work exploring it empirically, but I discuss

it here as it is relevant in the context of games, which are sometimes learned in social

situations, with more experienced others aiding newer players.

Literature demonstrated how SRL is directly connected to learning and aca-

demic performance. Zimmerman and Pons [757] found that high-performing students

engaged the self-regulatory strategies of “seeking information”, “keeping records and

monitoring”, “organizing and transforming”, “seeking teacher assistance”, “seeking peer

assistance”, “seeking adult assistance”, “reviewing notes”, and “reviewing text” far more

than their low-performing counterparts. They also found that use of SRL was predic-

tive of standardized test scores [757]. This later led to the development of scales for

assessing SRL skill to better identify students who may need additional support [413].

In another example, Malmberg et al. [416] identified patterns in self, co, and socially-

shared regulation. They discovered patterns in how successful students engaged the

three processes over the course of their learning tasks, with co-regulated planning being

the most frequent event and self-regulated planning being the least. They also found

that groups engaged mostly in co-regulated planning and monitoring at the beginning

of their collaboration, but as their collaboration proceeded from the starting phase to

the intermediate phase, these decreased while task execution and socially-shared plan-

ning increased. At the end of the collaboration, co-regulated planning and monitoring

increased again [416].

SRL has also demonstrated relevance outside of academic contexts. Previous

work found that athletes leverage a variety of SRL processes when engaging with their

sport, including task-understanding and goal setting, and that these can even transfer

to academic contexts [434, 433]. Other work demonstrated the impact of SRL skills on

athletic performance. Zimmerman and Kitsantas specifically investigated the impact of

goal type on performance [754]. They found that those with process goals surpassed
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the dart throwing proficiency of those with outcome goals and that those whose goals

shifted from one to the other further exceeded those with process. They conclude

that beginning with process goals and then shifting to outcome goals at the point of

automaticity is the key to successful skill gain whereas premature shifting to outcome

goals is detrimental [754].

2.3.2 The Cyclical Phase Model

In the context of this dissertation work, I choose, specifically, to examine SRL

in the context of the Cyclical Phase Model of SRL. The Cyclical Phase Model (CPM)

of Self Regulated Learning is a foundational model of SRL proposed by Zimmerman

[750, 756]. Building on Zimmerman’s earlier models of SRL [757, 754, 413], The Cyclical

Phase Model organizes SRL processes into three phases: forethought, performance, and

self-reflection [750, 753]. An overview of this model can be seen in Figure 2.1. The

forethought phase includes processes such as analyzing the task, setting goals, and

planning how to reach them. The performance phase encompasses execution of the task

and progress monitoring along with strategies to maintain engagement and motivation.

The self-reflection phase encompasses the processes by which the learner assesses how

they performed the task [750, 753, 497].

CPM has demonstrated relevance across various domains, including academic

contexts [48, 456, 416, 385] and athletics [752, 755]. In academics, the skills associ-

ated with CPM have demonstrated direct correlations with performance. For example,

Barnard et al. [48] sorted students in an online learning environment into profiles based

on how they invoked SRL skills across the three phases of CPM. They found that stu-

dents who invoked CPM strategies and skills had significantly higher GPAs than those

students who either did not invoke any skills or who invoked them in disorganized and

inconsistent manners [48]. In another example, Min and Foon [456] identified connec-

tions between the three phases of CPM and student engagement in a massive online

open classroom (MOOC). Specifically, they found that emotional engagement mainly

impacted the forethought phase (e.g. interest to learn the MOOC) and the self-reflection
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Figure 2.1: The Cyclical Phase Model of Self Regulated Learning from [756].

phase (e.g. enjoyment of learning). Cognitive engagement focused on setting the goals

for learning and understanding, valuing the learning according to the learning outcome

expectation, monitoring comprehension on the contents, and applying meta-cognitive

strategies.

In athletic contexts, previous work discovered that execution of CPM processes

are directly correlated with skill level and performance. Cleary and Zimmerman found

that expert basketball players set more specific goals and technique-oriented strategies

during the forethought phase and more often attributed failure to faulty technique dur-

ing the self-reflective phase than non-expert or novice players [131]. Similarly, Kitsantas

and Zimmerman [343] used the Cyclical Phase Model to study differences in SRL be-

tween expert, non-expert, and novice volleyball players. The results, again, found that

experts set better goals and had better planning during the forethought phase, better

strategy use and self-monitoring during the performance phase, and better evaluations,

attributions and adaptations during the self-reflection phase than either non-experts or

novices [343].

Other studies have also examined the impact of SRL on athletic performance.

Cleary and Zimmerman used the Cyclical Phase Model in a study that examined the
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impact of the additive effects of self regulation training in forethought, performance,

and self reflection processes on basketball free-throws [132]. They found that those

who practiced all three phases of SRL had a significantly better shooting performance

than those who only practiced one phase or none, indicating that SRL had a significant

impact on overall performance [132].

2.3.3 Supporting Self-Regulated Learning and the Cyclical Phase Model

through Prompts

While SRL skills can be taught through instruction of training, one of the

most common approaches for promoting SRL is actually through prompts [44, 314].

Prompts are different from instruction as they do not teach new information. Instead,

they support recall and execution of knowledge [45, 44].

In some scenarios, these prompts ask students to define goals for themselves

[70, 588], thus supporting the forethought phase of CPM. For example, Graham et al.

[259] found that prompting them to set goals helped students with learning disabilities

write better compositions. More recently, Colthrope et al. [136] found that prompting

pharmacy students to engage in higher-quality goal setting during the forethought phase

could increase their learning outcomes. In relation to these findings, Handoko et al. [275]

also found that goal setting had a direct influence on course completion in MOOCS,

arguing for the increased inclusion of goal setting prompts in learning environments.

In other scenarios, these prompts are designed to trigger self-monitoring skills,

thus supporting the forethought phase of CPM. While less commonly discussed in the

literature in comparison to goal setting and reflection prompts, self-monitoring prompts

have demonstrated the ability to improve learners’ performance [332]. For example,

Kauffman et al. [333] prompted students to take notes and collect information from a

set of online learning materials, but one half of the sample was also prompted to self-

monitor. The self-monitoring prompts were brief statements asking students to review

their notes before moving on to the next activity. Results found that the self-monitoring

prompts had a significant positive impact on note-taking quality and academic achieve-
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ment [333].

There also exist prompts for SRL and CPM meant to trigger reflective pro-

cesses, such as evaluation and adaptation, supporting the self-reflection phase of CPM.

This is well illustrated by the work of Van der Boom et al. [682, 681], who found that

elicited reflections improved students’ performance in an online learning environment,

especially when paired with educator feedback. In another example, Rakovic et al.

[546] found that the quality of students’ evaluations were predictive of adaptations in

their learning process, which were in turn predictive of increased frequencies of desirable

learning behaviors and higher exam scores.

Prompts, especially goal setting prompts, have also been used outside of aca-

demic contexts, in order to promote SRL and CPM processes in sports [714, 188]. For

example, in an early study examining the interaction between goals and athletic perfor-

mance, Wanlin et al. [710] found that prompting athletes, in their case, speed skaters, to

set long and short term goals during practice resulted in improvements in performance.

More recent work has continued to examine the role and impact of goals, such as that

of McCarthy et al. [435], who found that goal setting may have an impact on positive

affect, and therefore performance, in athletes. There is also the work of Blijlevens [66],

who found that goals were critical to directing and orienting the efforts of gymnasts

across skill and experience levels. Some work has also examined reflection support,

such as that of Chow and Luzzeri [122], who developed a tool for reflectively examining

athletic performances.

2.3.4 Supporting SRL and CPM Computationally through OLMs

While prompting is the classic approach to supporting and promoting SRL,

previous work has also demonstrated that SRL can be elicited through interaction with

data, typically made available to learners through Open Learner Models [294]. A learner

model is “a machine’s representation of the learner”. More specifically, learner models,

generally, use data regarding a learner’s observable actions within an educational en-

vironment to generate a representation of that learner’s knowledge. An Open Learner
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Model is one that is revealed or presented, through some means, to the learner [73, 5].

OLMs implement a variety of features that elicit SLR processes across the three phases

of CPM, which are reminiscent of the prompts discussed in the previous section. In the

forethought phase, OLMs aim to help students set realistic goals and plan how they

will achieve those goals. For example, Progressor [299] is an OLM that uses charts to

visualize all of the topics in a course and uses color-coding to indicate which topics have

been covered and how well the learner has grasped those topics. It is also a social OLM

in that it allows students to see the anonymized charts of their classmates, allowing

each student to see their own standing compared to others. The results of an evaluation

found that the social approach helped students plan their learning strategies based on

the information they had of the highest performers’ performance in the course [299].

In the performance phase, OLMs help students monitor their progress on a task while

executing learning strategies [294]. For example, INSPIREus [611] tracks student ac-

tivity within a digital learning environment and presents summary evaluations of their

performance, understanding of topics, and learning gains based on their actions. It also

presents visual representations of learners’ strategies, efforts, and working and learning

styles, inferred from their interaction data. e-KERMIT [276] is an older OLM, that gen-

erates a model of learner knowledge and depicts student progress towards understanding

course topics using progress bars. For both of these OLMs, user evaluations found that

students often had a different impression of how much progress they were making than

what the OLM showed them. Overall, students found that INSPIREus’s interpreta-

tions of their learning strategy improved their self-awareness of their own behavior, and

helped them monitor their actions better. Similarly, students who interacted with e-

KERMIT found it helpful in allowing them to monitor and generally be more aware of

their progress towards learning a topic.

In the self-reflection phase, OLMs aim to support reflection and error identifi-

cation. Many OLMs leverage negotiation with the model to facilitate this. For example,

NDLTutor [647], STyLE-OLM [162], and CALMSystem [334] all feature some form of

negotiation. In the cases of both NDLTutor and STyLE-OLM, the model generates a
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representation of what the student knows based on their performance on assignments

and assessments. Both OLMs also feature a means by which the student’s own un-

derstanding of their knowledge can be input. In the case of NDLTutor, the student is

prompted to provide a self-assessment at set points which will prompt a negotiation if

there is a discrepancy between the self-assessment and the model. In the case of STyLE-

OLM the student can browse the model through a GUI and initiate a discussion if they

see something they disagree with [162, 647]. In both cases, the negotiation is a means by

which the student can either convince the system it is wrong, and prove themselves, or

come to understand that the system is correct. CALMSystem [334] has a similar set-up,

but leverages a chat-bot to make interaction with the model feel more natural, whereas

the previous two use text-based natural language communication. Evaluations of these

systems found that being able to negotiate with the model supported reflection and

resulted in fewer discrepancies between the model and the student’s own understanding

of their knowledge [647, 162, 334].

2.4 Games and Learning

2.4.1 Learning Complex Gameplay

Games literature has long since recognized learning as critical to successful

gameplay and even suggested that games themselves can be vehicles for learning [239].

Perhaps the most influential work on learning gameplay is the work of James Paul Gee

[238, 239, 604], who argued that games were environments for learning based on, among

other things, how they require and encourage problem solving and provide feedback

at appropriate times. The study of learning in games, however, is rather complicated.

Much of the work on learning in games focuses on educational games or leveraging

commercial games in academic contexts and is interested in the extent to which the

game can teach the player the academic content [480]. Learning gameplay itself, in

contrast, is notably under-explored in existing literature.

Despite expertise being recognized as a key component of gameplay [178],
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studies of expertise in complex games are often more interested in the skills possessed by

expert players, rather than how those skills are gained. Nowhere is this more apparent

than esports research, which often discusses and formalizes the skills experts use to

succeed in gameplay [377, 207, 164, 544] but rarely examines how players gain these

skills [508, 521, 287]. Outside of esports, learning gameplay is most often studied in

relation to overcoming failure [71, 312, 313, 311] or in the context of community learning

[487, 472]. In the former, literature discusses how failing to progress in a video game can

lead to learning, as it forces players to problem solve and re-engage with the mechanics

of the game in order to overcome the impasse [71]. In the latter, literature discusses

how interaction with a community can promote learning through explicit guidance and

social motivation [487].

While informative and thought provoking, this work fails to articulate specific,

generalizable processes of learning gameplay that can be facilitated or supported through

external interventions. Further, the work discussed above does not leverage formal

learning theories, and specifically does not consider learning in terms of SRL or CPM.

2.4.2 Self-Regulated Learning in Games

In the context of digital games, SRL is notably under-studied, and much of

the existing work focuses almost entirely on educational games [480, 481]. For example,

[571] generated SRL scores for students who played the educational game Crystal Island

[567] based on their responses to a reflective prompt. They found that SRL scores

were significantly predictive of post-test learning gains and that high-SRL students

appeared to make more use of the in-game curricular resources than low-SRL students

and reported more immersion, interest, and enjoyment [571].

Similar to the work in the learning sciences, the study of SRL in digital games

often evaluates the impact of prompts [480]. For example, [493] added a self-explanation

prompt, which encouraged self-reflection processes, to an educational math game and

found that students who responded to the prompts tended to have higher mean post-test

scores than those who did not. Similarly, [214] found that adding prompts to a game that
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taught electrical circuits significantly increased student performance. Several studies

have also examined the impact of different kinds of goals on performance in game-based

learning. For example, [369] examined the impact of type and specificity of goals in a

game-based learning environment that taught buoyancy concepts. Their results found

that non-specific problem-solving goals yielded substantially more frequent strategy

use from learners, but that this was not the case when the goals were learning goals

[369]. [211] examined a similar question, but in the context of educational game design

through Scratch [556]. Their results demonstrated that students with non-specific goals

outperformed those with more specific goals and that students with structuring scaffolds

demonstrated worse SRL [211].

While all of this work demonstrates the role that SRL can and does play in

games, it focuses entirely on educational games and, in most cases, on the impact SRL

has on players’ learning of the educational content [214, 493, 211, 369]. In contrast, there

is currently little work that examines the role that SRL plays in learning the skills and

mechanics involved in playing a game. [88] provide one of the only examples of work

that examines SRL skills in relation to gameplay performance itself. In their study,

they investigated the impact of unrealistic performance goals on player performance

in a first-person-shooter game [88]. They found that those whose performance fell

short of their goal would perform significantly worse in subsequent levels than those

whose performance more closely matched their goal. Further, they found that this

was significantly more common for those players with high video-game self-efficacy [88].

This suggests that eliciting and supporting SRL skills in the context of learning complex

gameplay can greatly benefit players who are trying to learn and improve at gameplay.

2.5 Summary

In the context of this dissertation work, I explore the potential to support

SRL in the context of learning complex gameplay. While there exist many theories of

learning [590], SRL, and specifically CPM, lends itself especially well to the context of
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complex games, as it formalizes the processes by which a student can learn on their

own [750]. Despite this, SRL and CPM are currently understudied in games, with

most existing work focusing on their relevance in the context of educational games

[480]. This, compounded with the fact that there is little research on how players learn

complex gameplay, means I know little about the role of SRL in learning to play and

excel at complex games.

Further, I explore the potential to support self-regulated learning of complex

gameplay through computational tools. I choose this approach for three reasons. First,

related work demonstrated how computational tools, such as OLMs, can prompt SRL

processes and elicit SRL skills to support learning [294]. Second, computational tools

are already common in domain of complex games, especially esports, where numerous

assistants are commercially available [601, 459, 68]. Third, computational tools can

be interacted with in the absence of an educator or support network, making them

well suited to support players who do not have access to such resources. By better

supporting SRL and CPM in such a manner, we can make complex gameplay and its

proven benefits more accessible to players and more effective in serious domains. In the

following chapters I will discuss each of the research thrusts in this dissertation work in

detail.
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Part II

Studies of Self-Regulated

Learning in Complex Games
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In this first thrust of my work I discuss three formative studies I conducted

that explored learning, self-regulated learning, and co-regulated learning in esports,

recognizing esports as one of the most complex examples of a complex game. This

work sets the stage for my later research on computational assistance by providing a

foundational understanding of how learning occurs upon which I later build with more

detailed explorations of how to better support that learning.
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Chapter 3

Learning in Complex Games

The work discussed in this chapter is based on a paper originally published in

CHI 2022 1 [349].

3.1 Understanding how Players Learn Games

The first research thrust in my dissertation work seeks to answer RQ1: “How

do players engage self-regulated learning skills in the context of learning and improv-

ing at play?” I explored this topic within the domain of esports, complex games that

encourage players to learn and improve so they can succeed in ranked leagues and for-

mal competitions. Further, esports are high-stakes, fast-paced, dynamic environments

where players are forced to make choices with incomplete information and findings de-

rived from such an environment may generalize to other, similar, environments, such as

disaster response.

Expertise, gained through learning, is critically important to success in games,

especially in esport games, as demonstrated by Eaton et al. [178, 177], who found that

a player’s experience in a particular role or with a particular character can have a direct

1Kleinman, E., Shergadwala, M. N., & Seif El-Nasr, M. (2022, April). Kills, deaths, and (computa-
tional) assists: Identifying opportunities for computational support in esport learning. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems (pp. 1-13). This was collabora-
tive research led by me but could not have been possible without the continued support and input of
Murtuza and Magy.
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and significant influence on an esport team’s chances of winning. As such, previous work

sought to formalize the skills [544] and knowledge [207, 164, 377] that expert players

possess and how they manage them in-game. For example, Fanfarelli [207] discussed how

expert-level Overwatch players are able to anticipate what is to come and communicate

openly and effectively with teammates in order to ensure survival and maintain good

in-game awareness.

The work discussed in the previous paragraph presents comprehensive overviews

of what skills are required to play at the expert level, but does not explore the means

by which those skills are gained. Literature that looks more closely at learning and skill

gain is relatively uncommon in comparison. One such example comes from Hesketh et

al. [287], who conducted a grounded theory interview study examining how team-vs-

team esports are learned. Their preliminary results found that players engage several

learning processes including identifying skill gaps and applying existing skills in new

scenarios. This work, however, is still in its preliminary stages. Another example comes

from Pluss et al. [521], who explored the impact of practice quality on tournament

performance. However, this work focuses on practice exclusively and does not seek to

create a more general understanding of all the strategies that players engage in when

pursuing skill gain. Further, neither of the above studies examined learning from the

perspective of SRL. As discussed in the previous chapter, the study of SRL in games

has focused almost exclusively on educational games [480]. As a result of being more

uncommon as a research topic, the details of how players gain skill and move up in

expertise are largely unknown.

In contrast, skill gain, and the methods employed in its pursuit, is a more

popular topic in the literature surrounding traditional sports. One prominent topic in

this literature is the impact of learning processes, such as goal setting, on performance

and improvement in athletics [714, 188]. For example, in an early study examining

the interaction between goals and athletic performance, Wanlin et al. [710] found that

prompting athletes, in their case, speed skaters, to set long and short term goals during

practice resulted in improvements in performance. More recent work has continued to
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examine the role and impact of goals, such as that of McCarthy et al. [435], who found

that goal setting may have an impact on positive affect, and therefore performance, in

athletes. There is also the work of Blijlevens [66], who found that goals were critical to

directing and orienting the efforts of gymnasts across skill and experience levels.

Goals are not the only component of skill gain and improvement discussed in

the sports literature, however. Social interaction, with both teammates and coaches, is

also recognized as critically important. This is well demonstrated by Fahmi et al. [200],

who found that a coach’s leadership can affect teamwork and motivation, both of which

directly impact performance. And of course, a notable amount of work in the sports

literature also looked at the impact of practice itself [409, 283]. In one such example,

Baker et al. [38] examined the correlation between the amount of sport-specific practice

and expert decision-making. Their findings suggested a direct correlation between the

amount of sport-specific practice and expertise, but that less sport-specific practice is

needed to achieve expert-level decision-making if the athlete possesses prior experience

in other sports [38]. This knowledge is valuable to the domain of sports as it allows

coaches and administrators to make informed decisions about recruitment and training

and can also help athletes overcome obstacles through targeted interventions.

This interest in skill gain and learning is, however, still new and largely under-

studied in the domain of esports, and thus, it is relatively unclear the extent to which

existing findings from sports literature transfer across domains. While esports have been

classified as sports [195], there are inherent differences from traditional, non-video-game-

based athletics. Most notably, esports are played on a computer, and the games include

user interfaces that provide players with game-state information that traditional ath-

letes may not have access to, or at least not in the same way. Later in this dissertation,

I will discuss results that suggested that the presence of these user interfaces may result

in significant differences between how esports players and traditional athletes approach

learning and improvement [345]. Further, the definition of esports currently accepted by

the community is, essentially, “gaming that occurs in an organized, professional league”

[221] suggesting that any game has the capacity to be an esport even if it possesses
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no mechanical resemblance to an actual sport. Thus, in the context of designing tar-

geted computational support for learning esports, it is important to conduct a focused

examination of how skill gain and learning occur in esports.

In this study in this first research thrust, I sought to address this gap and

expand our understanding of how learning occurs in esports, specifically focusing on the

role of SRL, specifically CPM, in learning and improvement.

3.2 Empirical Study of Learning Activities and Challenges

in Complex Games

In this first study, I sought to address the gap discussed above, by examin-

ing how players learn and master esports games in order to identify opportunities to

computationally support this process. Specifically, I sought to answer two research

questions:

• What are esports players doing in order to learn and master gameplay?

• What challenges are esports players facing as they attempt to learn and master

gameplay?

The first question specifically asks what players are doing, as in what activities

they are leveraging, in order to learn to play their respective games at the highest levels.

The second question build on the first by asking what challenges they face, which can

help reveal further insights into what they believe to be effective methods for learning

and what, specifically, they feel needs to be addressed. These questions were answered

through an interview study.

3.2.1 Methods

3.2.1.1 Recruitment

I recruited 17 esports players from the UCSC student body and through con-

venience sampling. Based on preliminary reviews of the data, saturation was seen at 15
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participants and recruitment was stopped at 17 after no new information emerged. Par-

ticipants were required to be at least 18 years of age, located in the United States, and

familiar with at least one esport game. For the purposes of this study, any games with

multiplayer, competitive leagues, including fighting games, such as the Smash Brothers

and Street Fighter franchises, and digital card games, such as Hearthstone and Magic

the Gathering Arena, were considered esports. These features are a part of the definition

of esports as presented by Formosa et al. [221].

3.2.1.2 Interview Protocol

One-on-one, semi-structured interviews were conducted between February and

April 2021. The audio was recorded and transcribed manually afterward. All partici-

pants were asked all questions. If a participant’s response was overly succinct, I would

ask a follow-up question to try to get the participant to elaborate more. This was done

twice. If the participant did not add anything after two attempts, I moved on to the

next question. All interview transcriptions were reviewed by two researchers to ensure

that even succinct responses answered the questions. Interviews lasted between 15 and

45 minutes, with longer interviews being due to more verbose participants. The average

interview time was 28 minutes.

After receiving informed consent, I collected demographic data from the partic-

ipant, including games played, years of experience, and hours played per week. Partici-

pants were allowed to discuss more than a single game during the interview, and many

did, however years and hours were only collected for each participant’s most played

game. Age, gender, and ethnicity were not collected to avoid risks of identification and

unintentional biasing of analysis and results.

I then asked a set of open-ended questions about the participant’s goals as

a player, what they do to try and achieve those goals and improve at play, and the

challenges they face in that process. Following these questions, I asked the participant

to think about a fictional computational support tool that could help them improve

at their game (or games) of choice. This second part of the interview was effectively a
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Demographics

1. What esports games do you regularly play or did you play when you were
more active?

2. How many hours a week do/did you play your most played game?
3. How many years of experience do/did you have playing your most played

game?

Table 3.1: The demographic questions used in the interview study. Interviews were
semi-structured and follow up questions were asked as needed.

hypothetical design exercise in which I asked the participant several questions regarding

the functionality of this fictional tool, how they would interact with it, and how it would

improve their experience. Additional insights into players’ practices and the challenges

they faced could be inferred from the types of functionality they required from their

fictional tools and their discussions of why they wished for such functions. Participants

were told that the tool could provide any kind of computational support, be it AI, data

visualization, or something else entirely. They were also told to think about the tool in

a “sky is the limit” manner, not restricted by legal or technical limitations. Participants

were allowed to skip any questions that they did not want to, or felt they could not

answer. The full list of questions asked can be seen in Tables 3.1 through 3.3.

3.2.1.3 Data Analysis

Audio was transcribed into text using Microsoft Word, and the data was then

segmented into lines based on how the text lined up in the editor. Lines with five or

fewer words were combined with the previous line. I then worked with my co-authors

to conduct iterative thematic analysis and line-by-line coding [237, 574] on the data.

We, separately, performed open coding on 30% of the data set [99]. This was done in

an iterative manner, once focusing on RQ 1 and a second time focusing on RQ 2. Each

line was treated as a unit of analysis for coding. Responses that were in the vein of

“yes”, “no”, or “I don’t know” and contained no other insights, i.e. “oh yeah that would

certainly be useful, I didn’t even know if those kinds of things existed” (Participant 1)
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Goals, Practices, and Challenges

4. When you play what are your desired outcomes?
5. What objective do you seek to achieve as you continue to play the game over

time?
6. Can you describe your activities that you engage in to pursue your objectives?
7. What about those activities do you find enjoyable and what do you think could

be improved?
8. What challenges do you face when engaging these activities as far as achieving

your goals?
9. Have you ever used any computational tools, such as spreadsheets, AI assis-

tants, or data visualizations, to engage in these activities?
10. When practicing, training, or just generally trying to get better at the game

have you ever sought the aid of others (friends, coaches, people online, etc. . . )?
11. When during gameplay did you seek help (in the moment, afterwards, etc...),

and what prompted you to do so?
12. For any of the activities that you discussed above, can you imagine any kind of

computational tool, such as spreadsheets, AI assistants, or data visualizations,
that could help you engage in the activity?

Table 3.2: The goals and practices questions used in the interview study. Interviews
were semi-structured and follow up questions were asked as needed.
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Fictional Tool Design

13. Now consider a situation where AI/ML can improve your experience engaging
in the activities mentioned earlier or allow you to pursue your objectives in
other ways. What kind of information does it take in?

14. How does the tool take in information?
15. What information does it provide to you?
16. How much information does it provide you?
17. Is it prescriptive (”you should do this”)?
18. Is it descriptive (”this is what is happening”)?
19. Is it evaluative (”this is how you did”)?
20. When, during gameplay, do you interact with the tool?
21. Is the tool interacting with anyone else or just you?
22. Are you able to give the tool feedback or instructions?
23. How would this tool improve your experience?
24. If such a tool existed, would you have concerns about using it?
25. Wrapping up, can you quickly summarize what the tool does?
26. And can you quickly summarize how you interact with it?
27. And can you quickly restate how it would improve your experience?

Table 3.3: The design exercise questions used in the interview study. Interviews were
semi-structured and follow up questions were asked as needed.
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were ignored. I worked with a collaborator to identify lines during the code derivation

process that did not contain information relevant to one question or the other. These

were discussed and, if we reached a consensus that the line was not relevant to the given

question, not coded. This process resulted in approximately 2400 code-able lines for

each research question.

After initial coding, we reconvened to compare and discuss our separate sets

of themes, identify and collapse overlaps, and resolve disagreements. The final theme

categories can be seen in Tables 3.5 and 3.6. The themes were then converted into

codes and validated through inter-rater reliability using Cohen’s Kappa [133]. The

Kappa value for RQ 1 was .72 and the Kappa value for RQ 2 was .70, both indicating

strong agreement [375]. I then applied the codes for both questions to the entire data

set.

3.2.2 Results

The 17 participants recruited for the study had experience playing 14 different

games. The breakdown of what games were mentioned can be seen in Table 3.4. Years

of experience ranged from half a year to 21 years. Hours of play per week ranged from

two to 60. These can be seen in Table 3.1.
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Figure 3.1: The years of experience and hours played per week for the participants for
their most played game.
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Table 3.4: The 14 games mentioned by the interview participants (top) and the number
of participants who mentioned experience with each game (bottom). Note that partici-
pants could mention more than one game when asked what they had experience playing.

3.2.2.1 Activities

The thematic analysis for RQ 1 resulted in four activities. An overview can be

seen in Table 3.5.
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Activity Definition

Practicing
24%

Improving one’s skills and knowledge of the
game through engagement with play.

Leveraging the Knowledge
of Others

22%

Improving one’s skills by referencing
others’ knowledge,

experience, or presence.

Tracking Performance
29%

Improving one’s skills by tracking one’s
performance over time.

Reflecting on Gameplay and
Setting Goals For the Future

25%

Improving one’s skills by reviewing
past gameplay and

setting goals to work towards

Table 3.5: The thematic analysis for RQ 1 revealed four types of activities players
engage when trying to learn and master an esport game. Under the activity name is
the percentage of total code applications for RQ 1 that were the given activity.

Activity 1: Practicing: Practicing refers to the act of playing the game and

participant responses highlighted the variety of approaches that players engaged when

approaching practice. While some simply mentioned repeatedly or constantly playing

the game, i.e. “I guess mostly just doing matches” (Participant 2), others specifically

mentioned using practice modes, dedicated tools, or AI opponents for more relaxed

training or targeted drills. For example: “to train getting better at, like, sniper shots

from far away, there’s a map that you can download that has a whole bunch of training

bots, so you can train hitting moving targets” (Participant 11) and “when I’m actually

playing with the AIs, it kind of relieves that pressure and kind of just allows me to, like,

practice without having to really think about winning or losing” (Participant 2).

Participants suggested that practice was an opportunity to build a stronger

game sense, also known as a strong understanding of the mechanics and rules of play

[207]. For example, participant 15 described their overall goal for practicing as “I hope,

in Overwatch, to be able to have a better understanding of the Maps and to know where

I’m positioned”. In another example, participant 8 discussed developing game sense at

a more granular, mechanical level: “you’re basically playing soccer with the car and

the manipulation of the car...those small things are actually incredibly important to

winning matches and it’s something I’m not very good at, so as I play I try to just, like,
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try stuff”. The practicing code saw 579 individual applications.

Activity 2: Leveraging the Knowledge of Others: The second activity

captures the role that other players play in an individual’s learning process. Several

participants mentioned playing with training partners, or a specifically selected other

player who is recognized as having the ability and knowledge necessary to help test

skills and guide improvement. In such scenarios, the knowledge of others typically took

the form of personalized advice delivered in real-time. For example “being able to have

conversations with [training partner] about the game, especially while we’re playing,

and figure out what I’m doing wrong or what I don’t understand about a particular

match-up or something has been extremely useful” (Participant 14).

Participants, especially those who played team-based games, also mentioned

getting similar guidance from friends, who were often also teammates, who were at

higher skill levels i.e. “[my teammates] give me some advice for how do I play...because

I’m good at AD Carry 2 in this game, so I uh, they can advise me to do more practice or

to eliminate some minions accurately or to improve my consciousness of the teamwork”

(Participant 4). While participant 15 was the only one to explicitly mention working

with a coach personally: “we have a coach on our team which works really well he’s

great”, other participants did sometimes mention coaches as a resource available to

players i.e. “there are people that you can get to like coach you and sometimes I have

friends who do that and they’ll give you advice, sort of, when you screw up, and that

could help quickly, like, rectify mistakes” (Participant 8).

The knowledge of others could also be accessed in a less direct or personalized

manner. For example, instead of getting personalized advice from a known other, some

participants discussed watching others play, either in person or over streams i.e. “watch-

ing other content and learning almost by osmosis, oh, like, uh ‘good streamer does good

activity, therefore, I do good activity I do good’...looking up specifically informative

videos and then otherwise just casually watching streams, watching professional play,

especially analytical commentators about why certain things are working, why things

2A character class in League of Legends focused on powerful attacks.
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are not, is most of my practice” (Participant 12). Others mentioned reading forums or

guides, for example: “the main thing that I have to keep in mind is my placing and

that’s what, like, every time I read guides and, like, took that information in and actu-

ally placed myself well, that’s when I did well in the game” (Participant 1). Participant

14 even mentioned a preference for guides over videos, citing that the latter typically

goes off-topic: “I love watching people who are much better than you play and getting

to, you know, when they’re giving their thoughts and opinions I’m able to learn...but

when they’re very silent or they’re, you know, talking about something not related to

the game and just doing very strange plays it’s hard for me to learn from that because

I don’t know why they’re making the decisions they are making so kind of...articles are

very nice because they’re articles written and directed about the content.” The code for

this activity saw 520 individual applications making it the least frequent category.

Activity 3: Tracking Performance: The third activity captures all of

the different ways that players are tracking their progress, including level, changes in

performance, and overall score, over time. Some participants discussed examples of how

the games themselves provided metrics or interfaces that they could use to track their

performance. For example: “having the rank, the competitive rank, go up to see that

my skill is reflected in the game” (Participant 6) and “at the end of each match, like,

[it tells] you, like, how many hits you got or how many lives you had left” (Participant

13).

In other instances, participants mentioned using external tools that aggregate

and archive gameplay stats over time. For example: “I used to follow a lot of my stats

in Dotabuff.com. I used to keep an eye on, like, my win rate and which hero am I

playing most of the time, like, frequently, and which hero I haven’t played and I missed

and I need to work on them” (Participant 17) and “There’s a lot of tools online for

league of legends that are essentially spreadsheets but there were, like, guides for the

characters, like, on OP.GG or, like, Mobafire” (Participant 8). Some participants also

discussed how they created their own records or tools to track their performance, for

example: “I’ve kept track of, like, my win streak and stuff like that or if I’m playing in
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tournaments and I’m going up against people that I’ve gone up against before and I’ve

beaten at one point and I have lost to them at other points I tried to keep track of, like,

what character were they using and what character I was using.” (Participant 13).

Some participants also discussed creative approaches to tracking performance,

such as using in-game achievements as a metric when no other way of measuring perfor-

mance was available. For example: “I just use, like, the achievement bars in the game

itself to be, like, OK, like, say I have to win 10 Maps in one specific area in Counter-

strike...to do that I’ll play it 10 times and I’ll try to keep getting better and just try

to unlock the achievements” (Participant 5). The performance code saw 696 individual

applications across, making it the most frequent activity.

Activity 4: Reflecting on Gameplay and Setting Goals for the Fu-

ture: The final activity for RQ 1 is also the one most explicitly related to SRL. Specifi-

cally, this activity revolved around identifying mistakes that can be addressed in future

play through review of and reflection on gameplay, as well as setting goals to work to-

wards. As discussed earlier, under the theory of SRL, learners use both skills to plan

and guide their learning [750]. With regards to reflection on gameplay, participants

discussed that they typically engaged in post-play review with the intention of identi-

fying weak spots to work on in the future. For example: “Uh I, sometimes, I watch

my records, my competitions with others, like I always play my record and find my

weakness and strength” (Participant 4) and “being told after like ’great, so, do you

remember this part? This is where, like, you could have done something better’ and

just like thinking back on it” (Participant 15).

Regarding goal setting for future play, participants often discussed goals that

involved reaching specific, trackable, in-game milestones. For example: “I just started

playing ranked for the first time. I just played very casually for the past year or so that

I’ve been playing and getting something like top 50% of players doesn’t seem like an

unreasonable goal” (Participant 12) and “well I recently hit one of the objectives with

Hearthstone which was to actually hit legend and specifically hit legend with a deck

that I built” (Participant 16). The reflecting code saw 595 individual applications.
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3.2.2.2 Challenges

The thematic analysis for RQ 2 resulted in four general challenges. These can

be seen in Table 3.6.

Challenge Definition

Coordinating and Collaborating
with Teammates

18%

Difficulties players face when trying to work
together with others.

Knowing what to do Next
20%

Difficulties players face when trying to make
the correct decision.

Tracking Game State
22%

Difficulties players face when
attempting to keep track
of the context of the game.

Tracking Skill
and Improvement

40%

Difficulties players face when
attempting to identify errors
and evaluate performance.

Table 3.6: The thematic analysis for RQ 2 revealed four general challenges. Under the
challenge name is the percentage of total code applications for RQ 2 that were the given
challenge.

Challenge 1: Coordinating and Collaborating with Teammates: Par-

ticipants revealed that, in the context of team-based esports, it is rarely easy to work

with other players, and this trend is encompassed by this first theme. Those who played

on teams discussed challenges related to communication and keeping track of teammates.

For example: “I try to use VC [voice chat], like, all the time to try to communicate my

messages across. The thing is that sometimes people don’t respond” (Participant 1) and

“it could suggest, like, which teammate is, like, doing the most damage so I could, like,

maybe, you know, focus on doing a little bit more [healing]” (Participant 9, describing

a computational tool that could tell them which teammate was doing the most damage

in-game). These challenges were sometimes exacerbated due to toxicity in the games’

communities, as demonstrated by participant 12: “it’s certainly unhealthy for the game

when you can look up your current teammates right now and realize ’oh this guy is not

playing his best champion he’s griefing me I’m going to flame him during the game’”.

Even in non-team-based esports, this challenge is a pressing concern, as inter-
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action with others, in some capacity, be they teammates or opponents, is still relatively

normal. Participants who played such games often discussed the challenges of finding

someone to play with. This was especially concerning for those who discussed the im-

portance of working with training partners, a theme discussed further in the previous

section. For example: “my training partner growing up, and even into my adult years,

has been my younger brother; and he’s in a different part of the country than me and

so we only really get to practice together, you know, before the pandemic, like, a couple

of times a year” (Participant 14) and “I’m just playing with my younger siblings...it’s,

like, it’s not very enjoyable just, like, beating them over and over again, you know,

and it’s, like, not fun for them either” (Participant 13). This code saw 435 individual

applications, making it the least applied code for RQ 2.

Challenge 2: Knowing What to do Next: This challenge relates specifi-

cally to decision-making, a critical, and evidently challenging, element of the gameplay

experience. Participants primarily discussed this in the context of real-time decision-

making, articulating how difficult it could be to know what the best course of action

in any given situation was and how, often, there was so much happening so fast that

they did not have enough time to think. For example: “even when you’re playing with

a 5 stack and you’re in [voice chat] with everybody and get to talk to everybody, you

don’t know what to do and, sure you have a player that hit diamond once in his life

and is now vaguely your shot-caller, but do you fight here? Can you win? Do we see

where all their players are on the map? Should we be taking this objective? Should we

be prepping for this objective?” (Participant 12). In some cases, this difficulty arose

due to uncertainty in how to respond to unexpected circumstances, i.e. “’cause I tend

to, if someone appears behind me, I kind of freeze and I’m like ’Oh my gosh what do

I do?’” (Participant 5). These quotes highlight how this challenge relates to one of the

key elements of complex games: multiple correct solutions or strategies, with players

rarely knowing the objectively correct course of action, or if there even is one.

Interestingly, participants also showed a general aversion to a tool that would

explicitly tell players what to do. For example: “I think I would prefer if it just gave me
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the information and then let me figure out what to do next because...or like just the raw

information is better for providing it to, sort of, myself and to the team and having...and

then being able to use that information to then decide what we do next” (Participant

6). In some cases, this was out of concern that too much advice would interfere with

learning to make decisions on their own, resulting in any kind of assistance ultimately

becoming a crutch that the player would be completely reliant on. For example: “I

think that if it gives me too much information, I’ll feel babied, but if it gives me enough

that I can learn on my own, I think that’s best” (Participant 8). Players also suggested

that such an aversion was to preserve the sensation that they were in charge of their

own gameplay, for example: “I don’t like doing that, ’cause it makes it feel like it’s

out of my choice and therefore, like, that doesn’t make me feel good, when I built that

sort of deck so anything that I use or add on is to the extent of something that I could

myself do, it’s just easier with said app, so note taking and such” (Participant 16, while

discussing a deck building assistant for Hearthstone). This category’s code saw 464

individual applications.

Challenge 3: Tracking Game State: The third challenge relates to the

player’s ability to track the larger context of play by keeping track of everything that is

happening in the game, a challenge, given that there are often many things happening

at once and many other players to keep track of. In some cases, participants discussed

difficulties with spatial awareness, related to trouble tracking where other players, ob-

jects, or objectives were located. For example: “It might be difficult to figure out where

opponents and teammates are ’cause they’re not...they’re not always on your screen and

they’re not always marked in any way” (Participant 8) and “I feel like maybe they could

probably add the heal pack locations, ’cause they’re kinda discrete and maybe that is

the point, but, you know, sometimes it’s really hard, finding it when you really need it”

(Participant 2).

In other cases, participants discussed difficulties tracking resources, such as

the number of cards in a deck or one’s own or an enemy’s health. For example: “I

would use an add-on to help keep track of different aspects of the game, so if things
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were added to their hands, you know, things were returned to their hands, what were

they” (Participant 16) and “in terms of CSing, you usually want to, like, last hit the

minion to get the gold, so you want your shot to kill the minion or else you won’t get

the gold and personally, when I was a new player, it was hard to gauge when a shot

from my champion would kill that minion” (Participant 7).

Similar to the previous theme, however, participants also expressed an aversion

to any tool that would give them any information that they would not otherwise have

access to, expressing concerns that such support would constitute cheating. For example:

“so if they see, like, a certain enemy coming around the flank or something happening

that I don’t know is happening and then the computer tells me that it’s happening,

there’s no way that I should have been able to figure that out based off of what I have

on my screen and based off what I know of the game” (Participant 11) and “so aim-bots

could be anything from like bullets hitting the target when it shouldn’t or it could also

be already seeing where the enemies are without having to actually see them, so if you’re

behind a wall they can’t see you but then you see an outline of where they are, so any

of those, like, is cheating because you have an advantage over other players that is just

unfair” (Participant 10). This code saw 516 individual applications.

Challenge 4: Tracking Skill and Improvement: The final challenge en-

compasses difficulties that players face when trying to understand their own talents as

a player and how they compare to those around them. There were two primary ways

that players felt this challenge, the first was in identifying errors in their gameplay and

the second was in evaluating their performance as a whole.

Regarding error identification, participants expressed that it was often difficult

to know that they were doing something wrong, which could lead to repeated failure

without knowing why, i.e. “I guess playing repeatedly didn’t work, ’cause, like, I was

repeating my mistakes, kind of, but I didn’t know I was repeating it” (Participant 3) and

“if I’m in a game and I make like a major mistake, sometimes it’s hard for me to recognize

immediately what I’ve been doing wrong and, like, where I’ve been screwing up and that

can be pretty frustrating for me, ’cause it can feel like I’m losing and I don’t know why”
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(Participant 8). Some participants also discussed troubles identifying mistakes that

occurred at a very granular level, i.e. hitting a button at the wrong moment in the

middle of a combo. For example: “in order to keep my combos going into, you know, at

what point did I lose the string? When did things go wrong? Getting more frame data

from that would be wonderful” (Participant 14). Players often expressed frustration at

experiencing undesirable outcomes but not knowing what was causing them.

Regarding evaluation, players suggested that it was often difficult to know if

someone was playing well, better than they had previously, or at a desired level of

competence. At the same time, however, participants were a bit divided on whether or

not they would want a tool to do this for them. Some participants expressed an interest

in an objective evaluation or grading system that could provide a better understanding

of the quality of their performance. For example: “I love rubrics, I would love if you

were to tell me, like, ’because of your KD [kill/death] ratio, because of how much you

healed and the amount of time that the match was, you get this grade’ it would be so

fun” (Participant 15). Others, however, discussed concerns about receiving inaccurate

evaluations or that an evaluative tool may not know as much about the game as they do.

For example: “my only context for evaluating metrics is stuff like what Riot currently

does...where it’s pretty well known that you can get an S and not do well in the game”

(Participant 12) and “if you are at rank five and, rank one being the best rank the

topmost rank. I remember [an app] telling me that, even though I am rank five, my

game play was, like, rank six level and I was like ’please no don’t tell me how to play

this game’ and I just deleted that bot” (Participant 17). This code saw 956 individual

applications, making it the most frequent challenge by a notable margin.

3.3 Learning, Challenge, and the Cyclical Phase Model

In the context of the original work [349], these eight themes were used to distill

six explicit implications for supporting learning in esports through computational tools.

These were: evaluations provide context for understanding tracked data, explanations
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may be necessary to promote trust, players require practice partners that play like real

people, real-time data tracking can act as an alternative to proper communication, state

tracking can improve situational awareness and game sense, computational tools can

use scaffolding and co-regulated learning to support decision making without becoming a

crutch. Within the flow of this thesis, however, I instead focus on what these findings

mean as far as understanding learning, and understanding SRL, in the context of esports,

one of the most complex genres of complex gaming that exists. If you wish to read more

about the implications for tool development please refer back to the original paper [349].

Almost all of the themes relate to and can be understood as manifestations

of some element of Zimmerman’s model [756], with the fourth activity reported in the

previous section (reflecting on gameplay and setting goals) being the most prominently

related (reflection and goal setting are explicit processes that occur within the model,

as discussed above). The activity of tracking performance over time and the challenge

of tracking skill and improvement both relate to the self-evaluation phase of SRL, as

it is through evaluation, attribution, and adaptation, the three key elements of this

phase [132], that one is able to measure and track performance. Similarly, players face

this challenge when they are not able to execute these processes, in other words, when

it is explicitly difficult to evaluate their performance accurately and choose a correct

attribution (cause of failure) or course of adaptation.

Similarly, the activity of practicing can be understood as related to the perfor-

mance phase. It, essentially, provides players with the opportunity to, not only develop

game sense but to become more comfortable with the skills of monitoring performance

and adjusting strategies appropriately. In relation to this connection, however, the chal-

lenges of knowing what to do next and tracking game state can be seen as roadblocks

to the execution of this phase of SRL. Specifically, knowing what to do next is con-

nected to adjusting strategies by making informed decisions [756, 343], and facing this

challenge suggests that players may be struggling to do so. Similarly, monitoring one’s

performance (a performance phase SRL skill) in-game is a part of monitoring the overall

state of the game, and thus relates to the challenge of tracking game state, in that being
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unable to track the game state would interfere with the execution of this skill.

That players discussed activities and challenges related to elements of SRL and

CPM in this way emphasizes their relevance, as theories, to the context of learning in

complex gameplay and suggests that supporting these activities and addressing these

challenges would, in turn, better facilitate SRL in the domain. Interestingly, however,

one activity “leveraging the knowledge of others” and one challenge “coordinating and

collaborating with teammates” suggest that learning within the domain of esports, and

likely for all complex games, is not, strictly, a solitary experience and that there are, in

fact, social components. These social components suggest the relevance of the related

theory of Co-Regulated Learning (CoRL) [273, 272], which I discuss briefly above and

expand on more in the next chapter.

3.4 Summary

In summary, this work examined and highlighted the general means by which

esports players learn and the challenges they face in that process. By making con-

nections between these practices, challenges, and the three phases of CPM, I suggest

a connection between CPM and esports learning and propose that players of complex

games, especially esports, are, in fact, leveraging SRL and CPM when trying to improve

at play, even if they do not explicitly know what SRL is. With this proposal in mind,

the next study in this thrust aims to build on this work by briefly digging into the social

component of learning that was suggested by two of the resulting themes.
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Chapter 4

Co-Regulated Learning Among Esports

Teams

While the focus of this dissertation is primarily on solo learning via SRL, I

have briefly laid the groundwork for future research on social learning, informed by

the theory of Co-Regulated Learning [273], which I discuss further in this chapter, and

prompted by the suggestion that social components play a part in the learning process,

as implied by the results of the previous study. This work is currently under review at

CHIPlay 2023 1

4.1 Co-Regulated Learning and Social Esports

Co-Regulated Learning (CoRL) is a theory of learning related to SRL. Accord-

ing to the theory of CoRL, SRL skills are appropriated from other more experienced

individuals through a process of giving and receiving input throughout the execution of

a task [273, 272]. Essentially, according to CoRL, a more experienced other can handle

metacognitive aspects of a learning task, such as setting goals or monitoring progress,

while the learner focuses on the actual completion of the task, as in the mechanical

1This research project was led by me but conducted in collaboration with researchers at Abeline
Christian University: Dr. James Prather, Dr. Brent Reeves, Garrett B Powell. Further, this work
would not have been possible without the assistance of Reza Habibi at UCSC and the input of my
advisor, Magy.
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steps needed to perform the task. This setup, CoRL argues, reduces the cognitive load

of the learner as they focus on learning the step-by-step process by which the task is per-

formed. Over time, as they gain skill and the steps needed to complete the task become

more automated, the learner will begin to manage more of the metacognitive processes

themselves, eventually switching to an SRL setup in which the other individual is no

longer needed

To date, CoRL has not been explored in esports, and very little work has ex-

plored the phenomenon or expanded the theory in general. Metacognition, however, has

seen a fair amount of attention in computing education, where self-regulation has long

been seen as an important skill in the context of learning to code [530, 402]. Researchers

originally called attention to this important aspect of computing education prior to

2010 [55, 470], and interest in it has exploded since then [689, 373, 421, 203, 691, 400,

401, 315, 534, 533]. The studies listed here draw from older theories of metacognition

and self-regulation by Bandura [39], Flavell [218], Pintrich [515], and Zimmerman [751].

Application of newer theories, such as CoRL [273, 272] remain nascent.

Although a couple of abstracts proposing studies that utilize CoRL have ap-

peared recently [620, 618], the first in-depth study only appeared in 2022 [531]. In this

study, Prather et al. explored the reflections of students in an introductory program-

ming course (n = 1,000) on their group study behaviors. They found that students

exhibiting higher self-regulation knowledge and behaviors generally performed better,

but higher co-regulation did not correlate with better performance. A qualitative ex-

ploration of the themes from these reflections revealed several that are relevant to the

present study. The most common co-regulation theme was social help-seeking behavior.

These students discussed how they asked their peers for help after attempting the prob-

lem on their own or asked to see solutions from friends after solving the problem to see

how others did it. The second most-common theme related to group learning. Students

indicated that they appreciated being able to bounce ideas off each other while solv-

ing programming problems. The third-most common theme was that of socially-shared

regulation. This theme comprised elements of ensuring everyone in the group is on the
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same page, reminding each other of goals, and holding one another accountable. Finally,

the fourth-most common theme was that of learning through teaching. While informa-

tive, and providing one of the first detailed, empirical explorations of how CoRL occurs

in the wild, this work looks specifically at computing education rather than esports.

While there is work examining questions of teamwork and collaboration in

esports, these rarely focus on learning. Instead, there is an interest in the elements of

teamwork that impact or predict success [486, 4] such as how team members of different

expertise levels work together [178, 177]. One example of such work is that of Musick et

al. [473], who identified three major themes regarding how team cognition is perceived to

be in relation to and an indicator of success in esports. These were: 1) shared awareness

of dynamic game flow (essentially, being on the same page), 2) mutual understanding of

skills and personality (essentially, everyone having the same understanding of everyone

on the team’s skill), and 3) sharing behavior in actual gameplay (essentially, how players

choose who to share information with and what to share) [473].

Other work has similarly looked at the specific detriments to success through

various means. For example, Zhang et al. [742] determined that players who frequently

switched teams and teams that recently gained new players had lower overall perfor-

mance in Counter-Strike: Global Offensive (CS:GO). Similarly, Parshakov et al. [503]

found that CS:GO teams with low cultural diversity increased team performance but

that experience and language diversity decreased it. Poulus et al. [527] found that

players saw building and maintaining team dynamics as a challenge and that this was

a detriment to success in esports, as team dynamics are a core component of successful

team esport play [658]. As a result, Poulus et al.’s participants reported actively try-

ing to prevent interpersonal conflict while also acknowledging that disagreements and

communication breakdowns were inevitable [527].

Another element of teamwork that is studied in esports literature is communi-

cation, due to its importance to success [395, 226, 486, 4]. Tan et al. [656], for example,

studied the connection between team communication, team cohesion, and success in ad

hoc League of Legends (LoL) teams. By looking at correlations between communication
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sequences and team cohesion, Tan et al. [656] found that team cohesion had a connec-

tion to, and was in some ways predictive of, match outcome and team satisfaction. They

also found differences in how low and high-cohesion teams communicated, with more

cohesive teams being more likely to apologize, encourage each other, and agree to a

suggestion [656]. Team cohesion is recognized as critical to success in traditional ath-

letics [471, 107] and thus there is increased interest among practitioners in developing

protocols for increasing cohesion among esports teams [649, 110].

While information about how teams work together to achieve success in one

of the most complex gaming environments, the above work does little to help us un-

derstand how learning occurs as a social activity. Some existing work has discussed

how information is passed among community or team members and how players may

leverage the insights of experienced others to guide their own improvement [287, 225].

However, to my knowledge, there has yet to be a focused, empirical study of how players

regulate each others’ learning in the context of esports.

4.2 An Exploratory Study of Co-Regulated Learning Among

Esports Teams

To develop an initial understanding of how players helped each other learn,

informed by the theory of CoRL [273, 272], I conducted a semi-structured interview

study that sought to answer the following question:

Based on these theories, this work sought to answer two research questions:

• What co-regulated learning themes emerge in the context of esports teams?

This work explored this question alongside questions regarding emotional co-

regulation and revealed a number of prominent themes surrounding how input is given

and received by teammates. For the purposes of this dissertation, I focus on the elements

of this work related to CoRL and refer you to the original paper if you wish to read

more about the study of emotions that occurred in parallel.
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4.2.1 Methods

4.2.1.1 Interview Structure

Interviews were conducted in a one-on-one, in-person, semi-structured manner

between October and December 2022 by a collaborator at ACU. Audio was recorded

and transcribed afterward. After receiving informed consent, the researcher collected

demographic information and then asked the questions seen in Table 4.1. Part one asked

for general information about opinions and habits surrounding social play.

Parts two and three were informed by CoRL [273, 272]. As discussed previ-

ously, CoRL suggests that a learner focuses on mastering the physical skills of a task

while the metacognitive aspects are handled by a more experienced other and eventually

appropriates the metacognitive aspects as the physical skills are mastered, ultimately

transitioning into a self-regulated arrangement. The other’s handling of metacognitive

skills manifests in the form of input given regarding evaluation, planning, monitoring,

etc... To illustrate this, Hadwin and Oshige [272] provide the scenario of a mother

teaching her child to tie shoes as an example. While the child manipulates the laces,

the mother gives input in the form of statements like “what do you do next?” (planning)

or “what did you do wrong?” (evaluation). The child can also take the initiative by

asking, for example, what they should do. Focusing on these constructs, I developed the

questions in sections two and three to target the phenomena of seeking and providing

input. The exact questions were adapted from and built upon those used by Prather

et al.’s study [531], discussed in the previous section, which also explored this facet of

CoRL. The goal of these questions was to determine what metacognitive processes are

co-regulated within the context of esports play.

The full study also contained interview questions targeting emotion that we do

not expand on here as our focus is the question surrounding learning. All participants

were asked all questions. James would ask follow-up questions or for elaboration if

necessary. Participants were allowed to skip any question they did not wish to answer.

University IRB approved the interview protocol. Interviews ranged from 14 minutes to
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Construct Interview Questions

Playing with Others
1. On a scale of 1 to 5 how often do you play, practice
or train with others?
2. Would you like to provide further details regarding how
often you train alone or with others?
3. What is your relationship with the other people you
play with?
4. What do you typically discuss before, during,
and after play?
5. What practice or training techniques do you find most
effective when playing with others?
6. Do you prefer practicing or training with others
or solo and why?

Seeking input
7. On a scale of 1 to 5 how often do you seek others’ input
on your gameplay?
8. What situations or circumstances prompt you to explicitly
seek the input of others?
9. In relation to when you notice a mistake, especially
in-game, when do you specifically seek out others’ input?
10. Whose help do you seek and why?
11. Can you describe how they help you?
12. Can you describe any situations where you would go to
community resources rather than known others?
13. In what situations or circumstances would you not seek
the input of others if any exist?

Providing input
14. On a scale of 1 to 5 how often do you provide
input to others?
15. Who do you provide input to and why?
16. Who initiates the interaction?
17. In what situations or circumstances do you provide
input to others?
19. In what situations or circumstances would you not
provide input to others?

Table 4.1: The Questions used in the interviews. Questions 1 and 7 used a Likert scale
where 1 was the least and 5 was the most, participants were informed of this when asked
the question. All other questions were open-answer.
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41 minutes, with an average duration of 26 minutes.

4.2.1.2 Recruitment

14 participants were recruited via email and word of mouth from ACU. In

order to participate, players had to be (1) at least 18 years old (2) Located in the

United States (3) Able to communicate in spoken English (4) Play at least one esport.

For the purposes of this study, any organized, competitive gaming was considered an

esport, as defined by Formosa et al. [221].

4.2.1.3 Data Analysis

The data were analyzed via iterative thematic analysis by myself and a col-

laborator using a protocol similar to that discussed in the previous study [237, 574]. In

an initial pass, we both, separately, reviewed a representative sub-set containing 30%

of the data [99] and developed initial codes. The unit of analysis was a single utterance

by a participant, which may have been an answer to a question presented in Table 4.1,

a follow-up question, or a continuation of a previous thought interrupted by a comment

from the researcher.

We then reconvened to discuss their independent code lists, collapse overlaps,

and generate a combined code book. For reliability, we then coded a different 30% of

the dataset [99] in order to measure agreement using Cohen’s Kappa for Inter-rater

Reliability (IRR) [133]. The resulting kappa value was .79, indicating strong agreement

[375]. I then coded the entire dataset.

4.2.2 Results

4.2.2.1 Demographics

The demographic data for the participants can be seen in Figure 4.1. All

participants identified as male and reported having friendly relationships with their

teammates.
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(a) (b)

(c) (d)

Figure 4.1: An overview of demographic data collected during the study.
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(a) (b) (c)

Figure 4.2: An overview of event frequency data collected during the study.

4.2.2.2 Frequencies

The numerical data players reported for how often they play with others, give

and receive input, and encounter conflicts are reported in Figure 4.2.

4.2.2.3 Co-Regulated Learning

An overview of the 18 CoRL themes and how often they appeared in the data

set in terms of the number of total observations and the number of players who brought

it up can be seen in Table 4.2.

Category 1: Relationship between Learning and Gameplay This cat-

egory contains five themes related to how players described the relationship between

learning and gameplay in the context of social and co-regulated learning.

Different learning goals warrant different approaches to play: All players dis-

cussed how they would choose to play with a group vs. solo based on what their overall

learning goals were for the gameplay session. In general, playing with a group was bet-

ter for developing team-related skills such as communication and obtaining an overall

better sense of gameplay, while playing on one’s own was better for drilling individual

mechanics or learning new skills. For example: “I think practicing with other people

is better. If you want to get better...playing in the team is better because you need

to be able to communicate well and play well together and solo practice is just about

improving your own mechanics” (Participant 1) and “a big part of Rocket League, espe-

cially, and Valorant, really, is getting in that solo time and getting the technique or the
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# Obs. # Ps. Theme

Relationship between Learning and Gameplay

59 14
Different learning goals warrant different
approaches to play

30 14 Group reflection occurs after gameplay

24 12
In-game communication is focused on maintaining
performance and achieving victory

18 14
Goals and strategies are established through group
discussion pre-gameplay

4 3
The performance of the team is prioritized over the
performance of the individual

Goal Setting

10 8
Those with higher expertise or authority might help
an individual set their personal goals

10 7 Teammates hold each other accountable for realizing goals

Personal vs. Public Resources

19 11
Community resources can provide general information
and instructions

7 5
Known others can provide personalized feedback
and guidance

Giving and Receiving Input

70 14
Input is expected to come from those with higher
authority/skill/knowledge/experience

29 14
Other perspectives are recognized as critically important
to learning

24 14
Recognition of failure, feelings of responsibility, or lack
of knowledge will prompt input seeking

23 11
Input focuses on causes of failure and opportunities to
handle the situation differently

22 13
Identification of a failure or repeated mistake will prompt
input giving even if not sought

18 11
Input is not needed if the player is already aware of
the situation

15 8 Input should be tactful/constructive/clear

9 7
Input requires an established relationship between the
parties involved

5 4 There is an expectation that input will be accepted

Table 4.2: 18 themes were identified regarding how Co-Regulated Learning occurred
among esports teams and these were organized into four categories. # of obs indicates
how many times each theme was observed while # of pls indicates how many players
discussed each theme.

63



different skills down by yourself, maybe improving your aim for Valorant or being able

to do new tricks in Rocket League. But if you don’t practice with your team...you’re not

gonna have the chemistry that you need for when you get into games and play together”

(Participant 11). Notably, despite recognizing the benefits of both, players expressed

a general preference towards group play and reported frequent group play as seen in

Figure 4.2(a).

Goals and strategies are established through group discussion pre-gameplay: All

players reported that, typically, prior to gameplay, the team would sit down together to

discuss goals and strategies for that gameplay session. For example: “Besides winning

and just maybe...‘Hey, we need to try and rotate better’. We’ll just say...not necessarily

like...a number goal or something like that, but just ‘Hey, this is our goal. We need to

try and rotate better in these games’” (Participant 5, discussing goal setting prior to

gameplay) and “sometimes...I’ll bring up stuff like ‘Hey, I just developed a new strategy

for one of the sites we’re playing make sure you take a look at that” (Participant 9,

discussing strategizing before play).

In-game communication is focused on maintaining performance and achieving

victory: 12 players emphasized that in-game conversation should be focused on ensuring

that the game continued to run smoothly and that performance, morale, and chance

of victory could be maintained. This meant that any conversation related to learning

(such as identifying mistakes or giving input) did not occur during gameplay. For

example: “I don’t want to talk while we’re still playing because it’ll mess up the flow of

communication. So generally...we try not to...say anything about mistakes until we’re

not actively communicating” (Participant 3) and “No, no, that’s actually something

that is not ideal, especially in teams...giving advice or correcting something right away

in the middle of the game...phrasing it like ‘Hey, you know, you could have done this’...it

makes it much worse” (Participant 7).

Group reflection occurs after gameplay: In line with the previous two themes,

all players suggested that learning occurred primarily after gameplay, a moment typi-

cally characterized by group reflective practices including evaluation of performance and
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suggestions for improvement, with an emphasis on getting others’ input in the process.

For example: “If we lose, we’ll talk about what happened. We’ll look at the game and

see what we did wrong, what we did right...and if we win we’re kind of happy about

it” (Participant 10) and “There’s a function in the game where we can review matches

we’ve already played. So our team captain will go in on that. And then kind of just

watch what we’ve been doing basically, and what we did do in that previous game. And

then...he’ll use that to tell us, I guess it’s kind of like strategy, but like after the game,

kind of for next time, I guess. But basically just still critiquing what we could have

done better if we did lose or whatever” (Participant 13).

The performance of the team is prioritized over the performance of the individ-

ual: Three players implied that the performance of the team should be prioritized over

the performance of the individual, going so far as to suggest that failure to do so was a

sign of lower skill. For example: “When I was lower ranked, nobody wanted to talk. It

was just like every man for himself and hope that you’ve got either a really good smurf

on your team or somebody just has a really good game” (Participant 4, discussing how

players would forgo proper communication at lower skill levels, preferring to focus on

their own gameplay) and “So there was a very specific situation I was in and I was the

last person alive. And...I think there were two enemies left on the opposing team. And

basically what happened was...I was holding an angle and waiting because there was

only one entry point to the room that they could have gotten in...but then for some

reason, I decided to walk out and try to shoot them and I died because of that, and lost

the match” (Participant 13, discussing how the team lost due to a move he attempted

to make and how this was disliked by his teammates).

Category 2: Goal Setting This category contains two themes related to

players’ discussions of how goals are set and reached in the context of social and co-

regulated learning.

Teammates hold each other accountable for realizing goals: Seven players dis-

cussed how other people would often step in to help them make progress towards and

realize goals. Specifically, these participants reported that, often, they hold their team-

65



mates accountable, and their teammates hold them accountable, for realizing goals.

These may be group goals, for which everyone is expected to do their part, or they may

be individual goals that were shared with the group such that the group can check in

on their progress. For example: “what we do is think of one thing that we each want to

improve on for the session and then we, all three of us as a group, think of something

that we want to improve on as a team” (Participant 1) and “we just try and remind

ourselves on what we work on throughout the practice. And we help try and remind

each other of that during the practice as well” (Participant 5).

Those with higher expertise or authority might help an individual set their

personal goals: Eight players similarly suggested that other players may also help them

set goals, typically someone of higher expertise or authority, such as a coach or more

advanced player. For example: “Recently, [advanced player] has been coaching the B

team with...specific training to follow, I know with [less advanced player] he’s given [him]

a specific set of training packs to go through” (Participant 3) and “One of our players,

he is very new to the competitive scene so he’s still getting used to the pacing and the

intensity of playing at a competitive level. So I just talk to him and like ’Hey you need

to work on your situational awareness and being able to process a lot of information

while under pressure’” (Participant 9).

Category 3: Personal vs. Public Resources This category contains two

themes that emerged from players’ discussions of when they would ask a teammate for

assistance vs. going to a community resource such as a forum or stream.

Community resources can provide general information and instructions: 11

players discussed how they use community resources to gain general information about

play, or instructions about how to learn a new skill, instead of bothering teammates for

this information. For example: “There’s a lot of YouTubers out there that break down

and analyze the game so watching them has helped me a lot so I recommend that”

(Participant 9) and “Sometimes I’ll just be like, ‘okay, I need to fix this aspect of my

game’. So, I’ll go to YouTube and look up a specific mechanic that I messed up and be

like, ‘okay, how can I improve on this mechanic? How can I do it better?’ I especially
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did that before I was in [team name] because I didn’t really have anyone to go to so I

had to go to YouTube. And sometimes when you ask someone for help...they’ll literally

give you a YouTube video” (Participant 11).

Known others can provide personalized feedback and guidance: At the same

time, however, five players explicitly discussed how they would go to their teammates

or coaches for input because it was more personalized and better suited to their specific

problems. For example: “And if I don’t know what to improve on then I seek help

inside [team name]. Usually, they can point me in the right direction” (Participant 1)

and “If I was trying to get specific help on...either a mechanic or a strategy in the game,

I would probably just stick with my teammates and people associated with the team”

(Participant 5).

Category 4: Giving and Receiving Input The largest category, this last

grouping consists of nine themes that emerged from players’ discussions of how they

navigate the intricate process of giving and receiving input.

Other perspectives are recognized as critically important to learning: All players

emphasized that an external perspective on one’s gameplay could reveal new insights and

that it was, therefore, important to get others’ input on your gameplay. For example:

“we’ll watch what the captain sees mainly and we have to ask him like ‘hey go to this

round, check where I was, check who killed me, because I didn’t see it’” (Participant 2,

discussing the value of having his team captain watch his gameplay to help evaluate his

decisions) and “Play styles are being introduced, like, by the community, almost every

year, and...it would be impossible to get to a higher level without seeking out help on

almost every aspect of the game” (Participant 12).

Recognition of failure, feelings of responsibility, or lack of knowledge will prompt

input seeking: All players suggested that they were usually prompted to seek others’ in-

put by either their own recognition of failure or a lack of knowledge about how to handle

a situation, possibly combined with feelings of responsibility. For example: “Mostly in

a loss of a match or series. And especially...if it wasn’t a close game. I’ll definitely say

‘hey, listen...something was up. I don’t know what we were doing wrong.’ Every once
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in a while if it was a close game, and I feel like I cost the loss...specifically, I’ll get their

input as well” (Participant 5) and “When I know I’ve messed up - like Rocket League

I rotate slow - I know that I did something wrong in order to get back or something”

(Participant 11, discussing when he asks his teammates for input).

Identification of a failure or repeated mistake will prompt input giving even if

not sought: 13 players suggested that input does not have to be explicitly sought to

be given and that a player may receive unsolicited advice if their teammates notice a

prominent weakness or repeated mistakes. For example: “If I noticed them making the

same mistake multiple times in a row, and maybe they don’t realize it, like typically

after you make a mistake, that gets you scored on, it will be like, ‘Oh, why did I do

that?’ Or something like that. But if I see them make the same, like small mistake a

few times and they don’t mention it [I’ll bring it up] just to bring it to light and that

kind of thing” (Participant 6) and “Sometimes I need people to point it out because...I

push too aggressively so I need somebody to tell me ’you need to stay back a little bit

more’” (Participant 10).

Input is expected to come from those with higher authority/skill/knowledge/experience:

While discussing how input was given and received, an explicit hierarchical structure

came to light, with all participants discussing how the input should come exclusively

from those recognized as having more skill, knowledge, or experience, or being in a

place of authority, such as a coach or team captain. Some players even went on to

suggest that not adhering to this hierarchy would result in conflicts among teammates.

For example: “Usually [name]...because he’s the captain of our team, so he knows...the

best, like game knowledge of our team. And so he’s the one I usually go to. Or if

there’s someone from like the [higher level] team, there’s one of them there then I’ll ask

them because they know more than either me or [captain’s name]” (Participant 3) and

“Like if someone...like in Rocket League...someone’s like, SSL (supersonic legend) and

I’m like, champ, I’m like, ‘yeah, you’re gonna know better what...what I’m doing right

and what I’m doing wrong.’ So, yes, when they’re better than me. I think sometimes

when, which might be a fault of mine, but when people are on my level, I tend to be
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like, ‘No, I don’t want to get your opinion on this. Like, I know what I’m doing just as

much as you do’” (Participant 11).

Input focuses on causes of failure and opportunities to handle the situation

differently: 11 players specifically discussed how input received and given often focuses

on helping identify and understand mistakes and how to avoid them in the future. For

example: “There were things where I would do something, and I’m like, ‘so this only

works because I’m playing against people who are lower skill level than me’. I check to

see if like, is it something that people are going to do in higher tiers, so I would ask

[coach] some questions that he’d...like ‘No, yeah, what you did was good, and you’re

spot on it only works because you’re playing against a bunch of like, gold and silver

players. Here’s what you actually should have done or like here’s...how it usually goes

in higher tiers’ (Participant 4) and “There are times where they’ll just make a mistake.

Just a simple mistake...missed the ball or something. And they’ll ask, like, ‘What should

I have done there?’” (Participant 12).

Input is not needed if the player is already aware of the situation: 11 players

also suggested that there was no need to seek or give input if the player already knew

what they were doing wrong or what they needed to work on. Some players even

suggested that giving input in a situation like this could cause tension or conflict. For

example: “If it’s something that they, like, clearly, already know what they did wrong.

I don’t think it is really helpful to say that again, because then they might just snap

at me or something” (Participant 3) and “If it’s a recurring mistake that I make, quite

often I would say, you know, ‘I’m working on this. I don’t need any more input. I’m

already very aware of the mistake’” (Participant 5).

Input requires an established relationship between the parties involved: Seven

players suggested that seeking and giving input required an established relationship be-

tween the parties involved, i.e., two teammates, a player and a coach, etc. For example:

“I think if I had a question that, like, no one on the [school] Rocket League team could

answer...I think the thing I would go to is...YouTube videos...I don’t think I would like

ask the question to someone outside of [school] Rocket League” (Participant 3) and
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“Specifically...my two teammates. I wouldn’t necessarily give any input to the other

team, but my two teammates I would” (Participant 5).

There is an expectation that input will be accepted: Four players implied that

there existed an expectation that input given would be accepted, going on to suggest

that refusal to accept the input could lead to tension or conflict. For example: “If I’ve

already talked about it...and then they’re still making the same mistakes like the next

practice? It’s like, okay, why did I even bother saying anything if you’re not going to

apply what I said?” (Participant 4) and “Especially for one player...he does not accept

input very well because he thinks he doesn’t need any” (Participant 7).

Input should be tactful/constructive/clear: In addition to discussing the details

of when input was given and what it was about, eight players specifically emphasized the

importance of tone and clarity when one gives input. For example: “’You suck and you

should do this’...like, okay, is there a constructive way you can tell me that? Because

you’re really making me not want to play right now” (Participant 4) and “Our team

captain...sometimes, and maybe I’m just completely reading this wrong, but sometimes

I feel like he’s a little...He’s a little too aggressive sometimes” (Participant 13).

4.3 Understanding the Social Components of Learning Com-

plex Games

4.3.1 The Hierarchical Nature of Co-Regulation

The most prominent takeaway from the results is the emphasis on how hier-

archical relationships govern the CoRL process and how one’s position in the hierarchy

dictates the role one may play in others’ learning process. Specifically, those higher on

the hierarchy are permitted to co-regulate the learning process of those beneath them,

but not the other way around. Since those perceived to be less skilled are lower on the

hierarchy than those perceived to be more skilled, this means that less skilled players

are often the targets of input from those who are more skilled.
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As discussed earlier, the theory of co-regulated learning dictates how one who

is more skilled may play an active role in a learner’s learning process by handling the

metacognitive elements of the task (i.e. helping them reflect on what they did or deter-

mine their next move) [273]. This system of having those with more experience guide

those with less mirrors this phenomenon, suggesting that this is the most prominent

way in which CoRL manifests among esports teams. This assertion is also supported

by the fact that higher-skilled players may also dictate goals, a metacognitive process,

for the less experienced, and help them monitor their progress toward those goals.

Interestingly, the results also suggest that players are particularly strict in

upholding the hierarchy. Input is expected to come solely from those higher up and it

is expected to be taken without much question by those lower down, with players going

so far as to suggest that failure to accept this input can lead to conflict among team

members. Further, when a player lower on the hierarchy attempts to give input to one

higher, it is often seen as a social infraction, and may also result in conflict. Players seem

to be consciously aware of these rules, as most participants suggested that they would

never even try to give input to those perceived as better than them. Further, while

CoRL suggests that this management from the more experienced is dialed back as the

learner gains skill, our participants did not mention any such phenomenon, suggesting

that the more skilled will always give input to those lower on the hierarchy in this way.

It may be that the strict adherence to a hierarchy prevents players from perceiving those

below them as having gained enough skill to not require their input. It may also be

that players assume that even as they gain skill those above them continue to gain skill

as well, thus remaining above them.

This strict adherence to a hierarchy is of further interest given that participants

suggested that the hierarchy itself was not a constant and that there are contexts in

which one’s status may change. For example, a player who is, overall, lower skill level,

may know how to play a specific character better than another player, giving them a

higher skill level in that specific context, and permitting them to give input, but only

in that context. This flexibility comes at an interesting juxtaposition with the strict
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adherence to a hierarchy as it raises questions regarding how players recognize such

contexts and shifts in the hierarchical relationship. It also raises questions regarding

how mismatched perceptions regarding the nature of the hierarchy at any given moment

may lead to conflict. These questions can be explored further in future work, alongside

questions about how this hierarchy manifests and is negotiated by players of different

demographic groups. Furthermore, while players indicated their own strict adherence

to this hierarchy, many had stories about someone else of a lower rank or status who

had provided unsolicited advice, suggesting that not all players understand or adhere

to the setup. This seems to indicate it may not be as strict as it appears.

4.3.2 The Relationship between Input and Failure

Participants also prominently discussed the relationship between input (sought

or received) and recognition of mistakes or failures. Recognizing a failure or feelings that

a mistake was made will prompt one to seek input while noticing repeated failure will

prompt one to give input. Further, the input given tends to focus on identifying the

specific mistakes, how they can be overcome, and how the player can do better next

time. These findings mirror discussions in previous work about how difficult it can be for

a learning player to recognize their mistakes and identify how to prevent them in future

play [346, 349]. It similarly is reminiscent of work on CoRL in computing education,

which saw a high level of social help-seeking behaviors, especially when the students felt

they were hitting a wall [531].

Here we see that there is a strong social component to identifying and over-

coming mistakes, something only briefly mentioned but not explored in previous work.

This is also something that was prominently discussed as a key learning activity and

a prominent challenge in the results of the previous study. Following Hadwin’s theory,

this demonstrates another way in which CoRL manifests among esports teams in which

the more experienced can help manage a learner’s metacognitive processes [273] since

attribution (the identification of mistakes) and adaptation (how mistakes are overcome)

are recognized as metacognitive elements of learning [756].
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4.3.3 The Three Phases of Gameplay and Learning

Consistent with the results of the previous study, the findings here demonstrate

that learning processes occur differently across the three phases of gameplay (pre-game,

in-game, and post-game), but this time highlight the social component in more detail.

Specifically, while pre-game is dedicated to discussing strategies and setting goals and

post-game is dedicated to reflection and evaluation, no learning occurs in-game, with

players instead focused on maintaining performance. While I have already discussed

how these three gameplay phases mirror the three phases of learning defined by the

Cyclical Phase Model of SRL [756] these results demonstrate that learning in esports

cannot only be explained by individuals regulating their own learning but also through

a complex set of interactions with other team members.

Hadwin’s model proposes four phases: understanding, goal setting, working

toward the goal, and adaptation. It appears that both phases one and two take place

pre-game, while phase three is in-game and phase four is post-game. In phases one and

two, the group negotiates their shared understanding of the task and their strategies for

accomplishing it. In phase three, the group works collaboratively on their goal, collec-

tively utilizing multiple cognitive, metacognitive, and motivational strategies. Finally,

in phase four, the group makes small changes to large-scale pivots in strategies and

goals based on feedback from the task and one another. Players in our study exhibited

activity through all four of these CoRL phases via the role of group communication:

setting goals and deciding on strategies through group discussion or respective hierar-

chies, motivational communication during gameplay, reflecting through group review of

gameplay, and teammates holding each other accountable for setting and reaching goals.

The lack of in-game learning is interesting. It may be that esports players are

not interested in learning in-the-moment, or it may be that learning is occurring and

that they may not be aware of it. Here, our participants more explicitly described that

there is no conversation around learning (i.e. evaluations or reflections) in-game, as

they wish to focus all in-game communication on the gameplay itself and keep negative
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emotions as low as possible to avoid them impacting play. From this, I can, at least,

infer that there is no social learning in game and that any subconscious learning that

may occur happens at the individual level. This question can be explored further in

future work.

4.4 Summary

While this is a mererly a first step towards expanding this work to understand

social learning in complex gameplay, it illustrates how difficult it is for any player to learn

in a vacuum and how much interaction with others, either directly or indirectly, matters

when overcoming obstacles. The reality, however, is that many players are unable to go

to others for aid. It is in these scenarios, then, that the presence of a computational tool

that may support these players in the place of another becomes most beneficial. The

results of this study provide initial insights into how a tool could be designed to support

a player the way a real other person would and motivates the remainder of this work

to focus, in more detail, on how solo learning occurs and interfaces with data-driven

assistance.
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Chapter 5

The Cyclical Phase Model in Complex

Games

The work discussed in this chapter was originally published in Frontiers in

Psychology in 2021 1 [345]

5.1 Why the Cyclical Phase Model of Self-Regulated

Learning?

Given the many models of SRL, I specifically chose, as I have already empha-

sized, to focus on Zimmerman’s Cyclical Phase Model (CPM) [750] as the three-phase

arrangement corresponds exceptionally well to gameplay. Specifically, the forethought

phase, characterized by planning and goal setting, corresponds appropriately to any

pre-game time-point that players may experience. For example, during esports play,

players will, prior to beginning the match, set goals and plan strategies through the se-

lection of specific characters, skills, or equipment. Alternatively, in a role-playing game

(RPG), before engaging a boss monster or embarking on a quest, a player will choose a

1Kleinman, E., Gayle, C., & Seif El-Nasr, M. (2021). “Because I’m Bad at the Game!” A Micro-
analytic Study of Self Regulated Learning in League of Legends. Frontiers in Psychology, 12, 5570.
This research was led by me but would not have been possible without the support of Christian or the
guidance of my advisor Magy.
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strategy and select party members, equipment, and items related to that strategy.

The performance phase, characterized by strategy execution and monitoring

of progress, corresponds to the point in time at which players are “playing the game.”

In the case of the esport example, this would be while the player is in the match itself,

during which time they will enact their chosen strategies and monitor their progress

towards their goals. They may also, if able, adjust their strategy, such as changing what

equipment is used or what character is played. In the case of the RPG example, this

would correspond to the time during which the player is engaging the boss or pursuing

the quest objectives. While doing so, the player would similarly execute strategies and

monitor progress, adapting plans as needed. Notably, most games include interface

elements, such as health or progress bars, that can help players monitor their progress.

Finally, the self-reflection phase, characterized by review and evaluation, corre-

sponds to the point in time at which gameplay has “concluded”. In the esports example,

this would be after the match has ended, during which time most games present play-

ers with statistics regarding their performance. In the case of the RPG example, this

would be after the completion of the boss fight or quest, at which point the player can

evaluate the extent to which their chosen approach succeeded. In both cases, this phase

will inform the next execution of self-reflection. In the case of the esport example, this

would be the next time the player starts a match. In the case of the RPG example, this

would either be the next boss fight or quest they encounter or, if the current task ended

in failure, the next time they attempt it.

Based on this understanding, we can use CPM as a theoretical lens to under-

stand learning, how it occurs, and how it differs across skill levels. Toward this end, I

replicated an old study that investigated differences in the execution of CPM processes

among athletes of different skill levels. Specifically, in 2002, Kitsantas and Zimmerman

[343] used the Cyclical Phase Model to study differences in SRL between expert, non-

expert, and novice volleyball players. They conducted a micro-analytic study in which

players were asked questions about their general practice techniques for learning and

mastering overhand serves. They were then asked to perform before the researchers and
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answer additional questions about how they felt they did and why they may have failed

[343]. The results found that experts set better goals and had better planning during

the forethought phase, better strategy use and self-monitoring during the performance

phase, and better evaluations, attributions and adaptations during the self-reflection

phase than either non-experts or novices [343]. I replicated this study in the context

of League of Legends, replacing overhand serves with last hitting, and adapting the

methods and measures to the context of the game, which I will describe in the following

sub-sections.

5.2 Empirical Study of Self Regulated Learning Across

Skill Levels: A Case Study of League of Legends

5.2.1 Methods

5.2.2 League of Legends

League of Legends is an esport game developed by Riot games and belonging

to the Multiplayer Online Battle Arena (MOBA) genre. The game is played by two

teams of five on a square map where each team has a base in either the lower left (for

the green team) or upper right (for the red team) corner of the map. The bases house a

crystal called a “Nexus” and the goal for each team is to reach and destroy the opposing

team’s nexus. The rest of the map consists of three lanes that extend from base to base

and are referred to as top (for the one that follows the left and top edges of the square

map), middle (for the one that cuts diagonally across the center of the square), and

bottom (for the one that follows the bottom and right edges of the square map). There

are also forested areas between the lanes, referred to as the “jungle”. The three lanes

each house six towers (three for each team) that fire lasers at opposing entities and

must be destroyed in order to reach the enemy base. The jungle, by contrast, is home

to various monsters that can be killed for gold or experience points.

In order to win a match of League of Legends, players must gain experience
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to level up their characters, gold to buy items to make their characters stronger, and

win battles against enemy players in order to destroy the opposing towers and advance

across the map. A key component of this process is a skill called “last hitting”. Lanes

in LoL are populated by small non-player entities called creeps that can be killed for

gold and experience. If the player deals the finishing blow (as opposed to another player

or allied creep doing so) they get more gold and experience. Intentionally attempting

to deal these finishing blows is referred to as “last hitting”.

5.2.2.1 Recruitment

30 League of Legends players were recruited to participate from collegiate

esports teams, social media ads, and convenience sampling. The participants included

10 experts, 10 non-experts, and 10 novices, following the participant breakdown of the

original study. Skill level was self-reported by prospective participants when filling out

an online recruitment form.

5.2.2.2 Study Protocol

Participants joined a study session over zoom. They first provided demographic

information, followed by a description of last-hitting used to assess their knowledge of the

skill. All participants were then shown the same instructional video on how to execute

a last-hit. They were then asked a set of questions regarding their self-efficacy, per-

ceived instrumentality of last hitting, intrinsic interest in last hitting, goal setting, and

planning. Following these questions, participants were instructed to open the League

of Legends practice tool, where they could create a custom game and practice last hit-

ting for ten minutes. Following the practice session, I asked participants about their

strategy use, self-monitoring, self-evaluation, and self-satisfaction during the session.

Participants were then tested for last hitting skill via a second game in the practice tool

with the same arrangement. This time, however, they only last hit until they missed a

last hit. All participants did miss a last hit. At this point they were asked about their

attributions, adaptation processes, and self-efficacy perceptions.
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5.2.2.3 Measures

The specific measures used and questions asked were as follows:

Last Hitting Skill: League of Legends tracks how many last hits a player

has achieved in a user-interface (UI) element in the upper right corner of the screen.

Last hitting skill was evaluated based on this number at the point at which the player

missed the last hit during the second custom game.

Measures of Self Motivation: The questions for the measures of self-

motivation were adapted directly from those used by [343]. All participants were asked

the following questions to measure the respective factors:

• “On a scale from 0–100 with 10 being Not Sure, 40 being Somewhat Sure, 70

being Pretty Sure, and 100 being Very Sure, how sure are you that you are able to

last hit every creep in a given wave?” (Self-Efficacy). This was asked once before

practice and again after missing a last hit during the second custom game.

• “How interesting is last hitting to you on a scale from 0 to 100 with 10 being Not

Interested, 40 being Somewhat Interested, 70 being Pretty Interested , and 100

being Very Interested” (Intrinsic Interest). This was asked once before practice.

• “How important is last hitting skill in attaining your future goals on a scale from

0 to 100 with 10 being Not Important, 40 being Somewhat Important, 70 being

Pretty Important, and 100 being Very Important” (Perceived Instrumentality).

This was asked once before practice.

• “On a scale from 0– 100 with 10 being Not Satisfied, 40 being Somewhat Satisfied,

70 being Pretty Satisfied, and 100 being Very Satisfied, how satisfied are you with

your performance during this practice session?” (Self Satisfaction). This was asked

once after practice.

Forethought Phase:

Goal Setting: Before practice, all participants were asked “Do you set any

specific goals for your sessions when practicing last hitting and if yes, what are they?”
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The researcher recorded the answer verbatim. The goals were then coded independently

by two researchers into one of the following categories: outcome goals, technique of

process goals, other, and no goals, the same scale used by [343]. For the context of

League of Legends, the categories were considered as follows:

• “Outcome goals” referred to statements related to getting a certain number of last

hits or amount of gold.

• “Process goals” referred to statements related to managing opponent presence or

number and positioning of creeps in the lane.

• “Other” referred to any statements that did not discuss either of the above.

These definitions were developed and agreed upon by two researchers with

extensive League of Legends experience. Cohen’s kappa [133] was used to check for

agreement and resulted in a score of .9, indicating very strong agreement [375].

Planning: Also before practice, participants were asked “Do you have a regular

routine that you follow when you practice on your own?” The responses were again

recorded verbatim and coded by two researchers into one of the following categories:

completely structured routine, partially structured routine, or unstructured routine, the

same scale used by [343]. For the context of League of Legends, these were defined as

follows:

• A “completely structured routine” referred to discussions of regular practice using

the practice tools or regularly playing warm up games in less competitive game

modes.

• A “partially structured routine” referred to discussions of staying in practice by

just playing regularly or irregular practice sessions.

• An “unstructured routine” referred to discussions of not practicing.
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These definitions were developed and agreed upon by the same two researchers

with extensive League of Legends experience. There were no disagreements in the code

applications resulting in a kappa value of 1, indicating perfect agreement [375].

Performance Phase:

Strategy Use: Two questions were asked regarding strategy use, echoing Kit-

santas and Zimmerman’s protocol [343]. These were:

• “What do you need to do to accomplish your goals?” (Asked before practice)

• “What do you need to do to successfully execute the last hit next time?” (Asked

after missing a last hit during the second custom game)

These were again recorded verbatim and coded by two researchers into one

of the following categories: specific technique, visualization strategies, concentration

strategies, both, and practice/no strategies, the scale used by [343]. For the context of

League of Legends these were defined as follows:

• “Specific technique” referred to discussions such as getting the timing right, using

the right skill, or targeting the right minion.

• “Visualization strategies” referred to any discussion of visualizing or imagining

oneself doing it correctly.

• “Concentration strategies” referred to any discussion of focusing or concentrating

either in general or on a specific aspect of gameplay.

• “Technique and concentration” referred to responses that included both.

• “Practice/no strategy” referred to answers that just discussed practicing or did

not discuss any strategy.

These definitions were developed and agreed upon by the same two researchers.

Cohen’s kappa resulted in a score of .91 for the first question and .83 for the second,

both indicating very strong agreement [375].
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Self-Monitoring: After the practice session, all participants were asked “How

did you monitor your performance and progress during the practice session?”. These

were again recorded verbatim and coded by two researchers into one of the following

categories: creep score alone (corresponding to Kitsantas and Zimmerman’s ‘service

outcome points alone’), use of technique or form and its outcomes, do not know, or

other, the scale used by [343]. For the context of League of Legends these were defined

as follows:

• “Creep score alone” referred to discussions of tracking the number of last hits

achieved, either in one’s head or using the UI’s CS score board.

• “Use of technique or form and its outcomes” referred to discussions of technical

execution of the skill, such as making sure the minions were in the right spot or

managing their numbers.

• “Do not know” referred to statements indicating that they did not monitor their

performance or were not sure if they did.

• “Other” referred to any self monitoring strategy that did not correspond with the

above.

These definitions were developed and agreed upon by the same two researchers.

There were no disagreements in the code applications resulting in a kappa value of 1,

indicating perfect agreement [375].

Self-Reflection Phase:

Self-Evaluation: Also after the practice session, participants were asked “Did

you evaluate your performance during the practice session? If so, how?” These were

again recorded verbatim and coded by two researchers into one of the following cate-

gories:

• Self-evaluator (if they responded yes and gave a reasonable example of

self-evaluation)
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• Non-self-evaluator (if they responded no or failed to give a reasonable example of

self-evaluation)

These are exactly the categories used by [343] and did not need to be adjusted

to the context of League of Legends due to the general definitions. There were no

disagreements in the code applications resulting in a kappa value of 1, indicating perfect

agreement [375].

Attributions: After missing a last hit, participants were asked “Why do you

think you missed the last hit?”. These were again recorded verbatim and coded by

two researchers into one of the following categories: form or technique, power, ability,

practice, concentration, and do not know, the scale used by [343]. For the context of

League of Legends, these were defined as follows:

• “Form or technique” referred to discussion of strategic failures such as wave or

health management or player positioning.

• “Power” referred to discussion of physical failures such as reaction time or mis-

clicks.

• “Ability” referred to discussion of one’s gameplay skill.

• “Practice” referred to discussions of practice (i.e. needing more).

• “Concentration” referred to discussions of focus.

These definitions were developed and agreed upon by the same two researchers.

Cohen’s kappa resulted in a score of .78, indicating strong agreement [375].

Adaptation: After missing a last hit, all participants were asked the following

three questions, answered with either a “yes” or “no”, following Kitsantas and Zimmer-

man’s protocol [343]:

• “After missing last hits, do you think about why you missed?”

• “When you miss a last hit, do you change anything during your next attempt?”
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• “If you repeatedly miss last hits, do you ask your coach or teammates to give you

feedback or advice?”

5.2.2.4 Data Analysis

Shapiro-Wilk tests were used to check for normal distributions of the numerical

self-motivation data. Test results indicated that the data was not normally distributed,

and thus non-parametric Mann-Whitney tests and Kruskal-Wallis tests were used for

these data. Chi-square tests were used to assess differences for categorical data.

5.2.3 Results

5.2.3.1 Demographics

27 participants identified as male, 2 as female, and 1 as non-binary. Age ranged

from 18 to 39. The average age for experts was 20.1, for non-experts was 21.9, and for

novices was 24.5. On average, expert players had 5.75 years of experience, non-experts

had 4.8, and novices had 4.9. Across the entire sample, 2 players played jungle (both

experts), 8 played top lane (two experts, three non-experts, and three novices), 5 played

mid lane (three non-experts and two novices), 9 played adc (five experts, one non-expert,

and three novices), 5 played support (one expert, two non-experts, and two novices),

and one (a non-expert) played fill (all positions).

5.2.3.2 Last Hitting Skill

Table 5.1: The means and standard deviations for creep score for each group.

Group Mean STDEV Median

Experts 17 12.9 11.5

Non-Experts 15.1 19.1 9

Novices 8.4 12 5

Last hitting skill was determined using the number of creeps last hit by each

player during the second custom game (when they were asked to last hit until they
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missed one). The means and standard deviations for each group are shown in Table

1. Kruskall-Wallis results indicate that the differences between all three groups are not

statistically significant (all p > .05).

5.2.3.3 Measures of Self-Motivation

Table 5.2: The means and standard deviations for the five measures of self-motivation.

Variable Experts Non-Experts Novices

Self-Efficacy (Before Practice)
mean 79 58 58
stdev 14.5 21 15.5

Self-Efficacy (After Missing)
mean 76 55 55
stdev 19 25.5 25.5

Intrinsic Interest
mean 64 43 70
stdev 31 26.3 24.5

Perceived Instrumentality
mean 91 79 82
stdev 14.5 20.2 25.3

Self-Satisfaction
mean 73 73 58
stdev 17 17 25.3

The means and standard deviations for self-efficacy, intrinsic interest, perceived

instrumentality, and self-satisfaction are shown in Table 2. Kruskall-Wallis results indi-

cated that the differences between groups were not significant (P > .05) for all measures

except for the Self-Efficacy (Before Practice) measure (H = 8.35, P = .01, Degrees of

Freedom = 2). Mann-Whitney pair-wise test results with Bonferroni corrections indi-

cate that experts had significantly higher self-efficacy at this point than novices (U =

79, P = .01). Non-experts did not differ significantly from novices or experts at this

point (P > .016).
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5.2.3.4 Forethought Phase

Goal Setting: There were significant differences in goal setting among the

three expertise groups (χ2(6) = 13.1, P = .04). The counts for each goal type for each

skill level can be seen in Table 5.3. Cramer’s V was calculated to determine effect size

and the result (w = .46) indicates a medium to large effect size.

Table 5.3: An overview of how different types of goals were set across the three skill
levels.

Forethought: Goal Setting Experts Non-Experts Novices

Outcome Goals 5 6 0

Process Goals 3 2 7

Other Goals 0 2 1

No Goals 2 0 2

Planning: There were significant differences in planning among the three

expertise groups (χ2(4) = 14, P = .007). The counts for each goal type for each skill

level can be seen in Table 5.4. Cramer’s V was calculated to determine effect size and

the result (w = .48) indicates a medium to large effect size.

Table 5.4: An overview of how different routines were used across the three skill levels.

Forethought: Planning Experts Non-Experts Novices

Completely Structured 5 1 0

Partially Structured 4 5 2

Unstructured 1 4 8

5.2.3.5 Performance Phase

Strategy Use: There were no significant differences for strategy use before

practice (χ2(8) = 6.94, P > .05) or after missing last hits (χ2(4) = 4.26, P > .05). The

counts for each strategy type for each skill level can be seen in Table 5.5. For the second

question, asked after missing last hits, “Visualization Strategies” and “Practice/No

Strategy” were never applied to the participants’ statements by the two researchers.
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Table 5.5: An overview of how different strategies were used across the three skill levels
at both question times.

Performance: Strategy Use Experts Non-Experts Novices

Before Practice

Specific Techniques 2 4 4

Visualization 2 0 0

Concentration 3 3 1

Technique and Concentration 1 1 1

Practice/None 2 2 4

After Missing

Specific Techniques 5 6 6

Concentration 1 3 3

Technique and Concentration 4 1 1

Self-Monitoring: There were no significant differences between the groups

for self-monitoring (χ2(4) = 5.97, P > .05). The counts for each technique for each skill

level can be seen in Table 5.6. “Do Not Know” was never applied to the statements by

the two researchers.

Table 5.6: An overview of how different self-monitoring techniques were used across the
three skill levels.

Performance: Self-Monitoring Experts Non-Experts Novices

Points 9 5 6

Technique 1 5 3

Other 0 0 1

5.2.3.6 Self-Reflection Phase

Self-Evaluation: There were no significant differences between the groups

for self-evaluation (χ2(2) = 2.2, P > .05). The counts for self-evaluation for each skill

level can be seen in Table 5.7.

Table 5.7: An overview of how self-evaluation occurred across the three skill levels.

Reflection: Self-Evaluation Experts Non-Experts Novices

Yes 9 8 10

No 1 2 0

Attributions: There were no significant differences between the groups for
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attribution (χ2(4) = 0.6, P > .05). “Ability”, “Practice”, and “Do Not Know” were

never applied to the attribution statements by the two researchers. The counts for the

remaining attribution types across the skill levels can be seen in Table 5.8.

Table 5.8: An overview of attribution types across the three skill levels.

Reflection: Attributions Experts Non-Experts Novices

Form and Technique 5 5 5

Power 3 3 4

Concentration 2 2 1

Adaptation: The responses for the three adaptation questions can be seen in

Table 5.9. Chi square tests indicated no significant differences between groups (all P >

.05).

Table 5.9: The number of people in each group who said yes and no for each of the
adaptation questions.

Reflection: Adaptation Experts Non-Experts Novices

Do you think about it?
Yes 6 5 5
No 4 5 5

Do you change anything?
Yes 4 7 7
No 6 3 3

Do you ask for help?
Yes 3 4 4
No 7 6 6

5.3 The connection between Computational Support and

Self Regulated Learning

In the study I just described, I observed that novices discussed process goals

significantly more than non-experts and experts. This is in line with previous work that

found that players seemed to shift from process to outcome goals as they obtained more

skill [754]. That being said, expert players also placed a fair amount of emphasis on

process when discussing their gameplay goals. For example “I’m not that focused on
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last hitting to get the minions because I find that somewhat easy, like it comes second

nature to me now, there’s other stuff I take into more account when I play and try to

secure my farm. So like uh wave management, mainly, that’s more important to me

than last hitting to secure minions, and obviously just like not screwing up the lane

and dying randomly” (Participant 16, Expert) and “[I will] see if I can get all of the

CS when the wave is sitting in the middle, when I’m pushing, freezing, when I’m under

tower. There’s so many scenarios for where the minion wave is at and I want to make

sure I can adjust and reach goals in every situation.” (Participant 4, expert). This

may suggest that, as players gain skill, they may start to shift back towards focusing

on process over outcome. This may be because the desired outcome for last hitting is

generally understood to be about 10 creeps per minute (for a total of 100 at 10 minutes).

It may be that high-level players understand this as their desired outcome and revert

to focusing on process in order to identify execution errors that may hinder it. While

exploration of this phenomenon was beyond the scope of this work, it is still a trend

worth noting.

Regarding planning, as a construct, Advanced players had significantly more

structured practice routines than novice players. This is likely due to novice players

being less likely to play on teams, which, as the previous study highlighted, have a

notable impact on one’s approach to gameplay and preparation for gameplay. This

may also be because novice players are less interested in competitive play, and, as

such, likely less interested in a formal or structured practice, instead choosing to play

games for leisure. This is well articulated by Participant 22 (novice): “No, usually I

just jump right into a game and go from there”. These findings are consistent with

those discussed by [343], suggesting that this is an area where esports and traditional

sports share common ground. In other words, the results indicate that novice League

of Legends players, like novice volleyball players, are more often engaged in casual play

than structured training or learning.

There were, however, no significant differences in SRL processes for any other

phase of SRL, which is in sharp contrast to the findings of [343], which indicated sig-
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Figure 5.1: The League of Legends in-game UI presents information about player per-
formance including kill counts, gold, experience earned, and creeps killed while playing
the game.

nificant differences across all phases. A possible explanation for the overall similarity

in SRL across skill levels in the performance and self-reflection phases may be found in

the design of League of Legends itself. During play, the game tracks all participating

players’ progress information across a variety of metrics including gold amounts, level,

enemy players killed, and, of course, creeps killed. This information is visible to any

player in the game either in small menus on the border of the screen or through a

dashboard that can be accessed with the press of a button, see Figure 5.1. Participant

responses to the self-monitoring and self-evaluation questions indicated that they were

using these interface elements to monitor their progress during play during the study

and that they also do so on a regular basis when they play in their own environment.

For example: “biggest thing is just looking at my CS vs. time elapsed” (Participant 19,

non-expert) and “Mainly I just check the scoreboard, check my CS and stuff” (Partic-

ipant 29, novice). Thus, it is possible that the design of the game itself is encouraging

players to engage in self-monitoring practices whenever they play.

This may also be the reason for the lack of significant differences in the self-
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reflection phase. When a match of League of Legends ends, all players are brought to

a post-game screen that depicts how much each player in the game contributed and

offers an assessment of their performance based on a similar set of metrics as the in-

game dashboard, see Figure 5.2. The game client also features a descriptive statistics

interface that stores players’ performance data over time and presents it to the player in

aggregate graphs that depict, among other ways of evaluating, how the player performs

in comparison to other players, see Figure 5.3. There also exist a number of third-

party tools that present players with similar information, outside of the game client

[601, 68, 459]. It is likely that the presence of such interfaces encourages players to reflect

on their performance, especially the post-game screen, which is automatically shown to

all players upon completion of a match. It is further possible that the community psyche

encourages the use of such reflective practices when pursuing improvement. Players who

are particularly motivated to improve at the game likely spend a fair amount of time

interacting with these screens in order to extract actionable insights. In other words,

these screens likely encourage players to engage in self-reflection processes. That being

said, participant responses did not explicitly mention these screens or tools in the context

of the study.

This assertion resonates with existing theoretical discussions on the role of vi-

sualized data within the player experience [280, 80, 449, 447] and personal informatics

and quantified self in the context of games [361, 548]. Previous work has discussed how

presenting players with data on their gameplay performance over time, motivates contin-

uous play and facilitates improvement [80, 447]. The findings I present here suggest that

the improvement that comes about as a result of interaction with this visualized data

may be because the visualizations encourage the execution of self-regulated learning

processes, although the players themselves may not be aware that they are leveraging

such skills. This suggests further opportunities to support players seeking to improve

gameplay through the development of visualizations of their gameplay data.

To summarize, based on the results I present here, I argue that players are

engaging SRL processes in the performance and self-reflection phases because they have
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Figure 5.2: The League of Legends post-game UI presents information regarding how
each player performed during the game

Figure 5.3: The game client stores and aggregates statistical data to present players
with overviews of their gameplay over time.
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effectively been trained or influenced to do so through interaction with the game’s

interface or third-party tools. Because all players at all skill levels interact with the

same interface, there are few significant differences. With this in mind, the significant

differences in planning and goal setting (forethought phase) are likely the result of the

game lacking any interface or interaction that supports SRL at that point in gameplay.

This means that League of Legends itself provides little guidance on how to practice

effectively, meaning that players must turn to external resources. Additionally, most of

the third-party tools that exist for League of Legends do not aim to help players with

goal setting or training routines. Existing literature acknowledges this phenomenon

of players seeking out external resources [137, 661], but it may be that most novice

players have not sought these resources, or not located the right resources, and therefore

have not developed the same SRL skills for the forethought phase as their more skilled

counterparts. Coaches ultimately emerge as the best resource for forethought phase

skills, but non-expert and novice players are less likely to have access to coaches than

expert players, resulting in significant differences in their knowledge and execution of

these skills.

The differences between the results of this study and the results of [343]’s study

are likely also influenced by the nature of the game examined and what it means to be

a novice of that game. League of Legends requires players to complete a tutorial before

beginning play, meaning that complete beginners, and certainly novices, possess some

basic knowledge of gameplay and terminology. They also need to have taken the bare

minimum initiative necessary to download the game and create an account. By contrast,

volleyball novices recruited from a public court, such as those in [343]’s study, may or

may not have ever looked at any formal documentation on how to play. While this

does not necessarily make one game easier than the other, it does suggest an inherent

difference in the knowledge level of novice players, which may explain why there was

no statistical difference in knowledge of last hitting when there was one in knowledge

of overhand serves.
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5.4 Summary

Through this study, I ultimately propose that SRL occurs very differently in

League of Legends, and likely in all esports and complex games that contain the relevant

UI elements, compared to a traditional sport, due to the presence of computational

support within the game’s interface. Based on this understanding, I enforce the idea

that computational support tools meant to support SRL can support players’ learning

and performance in complex games, making high-skill-level play and its benefits more

accessible. This is the ultimate conclusion of this first thrust of my dissertation: an

understanding of how learning works in complex games in terms of SRL, and how it

is supported computationally. Based on this, I am able to move on to the second

thrust, where I examine the existing state of the art of computational support from the

perspective of SRL, and identify opportunities to improve it.
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Part III

Supporting Self-Regulated

Learning Skills in Complex

Games through Computational

Support
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Following the work discussed in the previous part, I arrived at the conclusion

that computational support tools, ranging from AI assistants to visualization systems,

can, and already do, support SRL in complex gameplay environments, especially esports.

Based on this conclusion, my next goal was to better understand how that support works

and how it can be improved. In order to accomplish this goal, I embarked on the second

thrust of my dissertation work, in which I mapped the state of the art of computational

support for SRL in esports and explored gaps that, if addressed, could improve SRL

support and, in turn, player performance.
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Chapter 6

A Taxonomy of Intervention Types for

Computational Assistants for Esports

The work discussed in this chapter and the next chapter was originally pub-

lished at CHIPlay 2022 1 [346]

6.1 Computational Support for Esports

Following the work described in the previous section, I came to the conclusion

that gameplay interfaces that present players with data-driven, computational support

often facilitate the execution of SRL skills in complex games, especially esports. This

led to the derivation of RQ2: “How do computational tools support self-regulated learn-

ing skills in complex games?” However, existing literature had little discussion of this

concept, as few had explored the intersection of computational support in learning.

Instead, computational tools meant to support learning in games are often developed

based on one of three high-level understandings of the gameplay experience: players

require decision-making support, players analyze their gameplay afterward, and players

1Kleinman, E., Habibi, R., Yao, Y., Gayle, C., & Seif El-Nasr, M. (2022). ” A Time and Phase for
Everything”-Towards A Self-Regulated Learning Perspective on Computational Support for Esports.
Proceedings of the ACM on Human-Computer Interaction, 6(CHI PLAY), 1-27. This research was led
by me but would not have been possible without the assistance of Reza, Yichen, and Christian and the
input and guidance of my advisor Magy.
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use others’ gameplay to learn [367, 11, 701, 319]. These assumptions inform the design

of tools in the absence of a formal, empirical exploration of learning within the domain.

Regarding the first assumption, there exist a number of tools that attempt

to provide statistically or algorithmically informed decision-support, typically in the

form of recommendations or predictions [116, 115, 123, 184]. For example, Eger and

Sauma [184] developed a system that leverages machine learning techniques to identify

Hearthstone decks based on the first few cards they see, in order to help players quickly

adjust their own gameplay based on their opponent’s strategy. Their system examines

the first few cards and provides players with a deck archetype that it believes the deck

to be, effectively allowing players to strategize for what is to come [184]. In another

example, Chen et al. [116] used Monte Carlo Tree Search to develop a recommendation

system that could give players pre-game suggestions on who to play in multiplayer

online battle arena games like DotA2. In many of these games, characters explicitly

counter one another and choosing the right character or team of characters based on

what your opponents have or could choose is a challenge. Through their system, Chen

et al. relieve the cognitive load players face when attempting to make informed decisions

in this context.

Regarding the second assumption, many tools leverage visualization towards

helping players perform retrospective analyses of gameplay, such that they can identify

mistakes and learn from their own gameplay or others’ [701, 11, 319, 706, 708, 367].

One example of such a tool is Afonso et al.’s Visualeague [11]. This tool is designed

to help League of Legends players review and reflect on gameplay. It does so through

interactive maps and timelines that allow users to view how positioning, skill level, and

item possession changes over the course of a match. By reviewing this information post-

gameplay, players can develop a stronger understanding of what they did well or poorly

during the game. Wallner and Kriglstein also emphasized the retrospective analysis of

movement through spatio-temporal visualization in their user study on World of Tanks

[701]. They developed and compared visualizations that showed each team on their

own map with enemies only visible when they were within vision range, that combined
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the two teams into a single map, and that showed troop movement, major combat

sites, and long-distance attacks using icons similar to what would be seen on a military

map [701]. Their results found that readability, level of detail, and graphical design

were most important to users and that the battle map visualization was rated most

favorably overall [700, 701].

Regarding the third assumption, visualizations have also been leveraged to-

wards helping spectators track the state of the game to support this process better

[356, 113, 683, 351]. This work is based on an understanding that players can, and

frequently do, learn by watching others play [625]. One prominent example of such

work is that of Charleer et al. [112]. They designed spectator dashboards for League of

Legends and Counter-strike Global Offensive based on spectator needs collected from

a survey. To illustrate how their designs were informed by spectator needs: League

of Legends spectators felt that gold was an important indicator of victory, and thus,

the designed dashboard presented how much gold each player had at all times [112].

Their evaluations of their dashboards found that they improved spectators’ experience

of learning the game through spectatorship [112].

The primary drawback of all of the above work, however, is that, as discussed

previously, computational tools for complex games are rarely designed or evaluated with

learning, and especially CPM, in mind. Instead, much of the existing work focuses on

usability [701, 706]. While the usability and design guidelines produced by this work

are certainly valuable, we do not know if, or to what extent, the existing tools actually

support learning. Learning, as we know, is a complex process composed of numerous

low-level processes, including goal setting, planning, progress monitoring, and reflection

[294]. Failure to support such processes at the right time may result in no support for

learning or, in the worst case, could hinder it. For example, prompting reflection at

the wrong moment could disrupt the overall progression of the learning process, break

a player’s focus in-game, and result in failure both for learning and gameplay. Further,

having a comprehensive understanding of how existing tools support SRL is necessary

to identify opportunities to enhance that process through the design of new or improved
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features.

I sought to address this gap through investigations of existing computational

tools for gameplay learning. Again, I explored this question in the context of esports, for

the same reasons discussed above, and because of the abundance of computational tools

designed to support esports learning. Through this work, I aim to provide an overview

of the ways in which existing tools support CPM processes, players’ preferences and

needs for support in the context of CPM, and opportunities to more effectively support

learning in the context of CPM.

6.2 A Systematic Review of the State of the Art

My initial goal in this thrust was to provide an overview of the state of the

art of existing tools from the perspective of CPM. Thus, I first conducted a systematic

review of existing computational assistants for esports in order to develop a taxonomy

of intervention types. Specifically, this review sought to answer the following question:

• What kinds of interventions do existing assistants for esports offer to support

learning during each phase of learning according to the Cyclical Phase Model of

Self-Regulated Learning?

This review occurred in two parts. In the first part, commercially available,

third-party tools were reviewed to define and validate the types of interventions that

they offered. In the second part, the tools were re-reviewed to determine when, before,

during, or after gameplay, each tool offered each intervention type.

6.2.1 Methods

To be included in the analysis, the tool had to be commercially available, free

to use, and offer support beyond just stat tracking. These criteria were selected to

capture the state of the art of computational support for esports as it is experienced

by the majority of players. Tools that are not commercially available, such as those
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exclusive to the research literature, are more difficult, if not impossible, to acquire and

access. Similarly, while many paid tools, or the subscription variants of otherwise free-

to-use tools, offer more features, many esports players may be unable or unwilling to

pay. Further, while many tools exist that simply track and display stats over time, I

was interested in tools that offered more advanced or explicit assistance. I additionally

excluded any tools or systems that exist within the game client itself. These tools,

especially those interacted with during gameplay, face different design considerations

and restraints than the development of external tools, as they need to interface with the

game and its mechanics. For the purposes of this work, I thus focused on third-party

tools that the player interacts with outside of the game itself.

Tools were identified through a search procedure leveraging combinations of

the following keywords: “computational assistant(s)”, “assistant(s)”, “AI assistant(s)”

and “esports”. Searches also combined the aforementioned keywords with the titles of

popular esports games. To determine which game titles should be included, I searched

Google for “top 10 esport games” and included the titles that appeared on more than

one list on the first page of the search results. Once a set of keywords was inserted, I

opened the web page for every assistant that appeared on the first page of the results.

These were checked to ensure they met the aforementioned inclusion criteria and added

to the sample if they did. Tool identification stopped when the searches produced no

new tools.

Based on these inclusion criteria and search methods, I identified seven tools:

Senpai [601], Mobalytics [459], Fridai [228], Blitz [68], GOSU [256], OP Desktop App

[489], and Porofessor Desktop App [525].

I installed and used each tool, in the context of League of Legends, taking note

of all features, and referencing online resources to note any features not apparent through

my own use. Through an iterative process similar to thematic analysis, I combined and

collapsed these features into nine distinct intervention types. From this initial analysis,

conducted with the versions that were public for these tools in May 2021, I generated a

nine (intervention types) by seven (tools) matrix identifying the features offered by each
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tool. For validity, a collaborator generated another matrix independently, which was

then compared against mine. There were 9 disagreements out of 63 marks, indicating a

percent agreement of 86%. The disagreements were all resolved through a discussion.

I then added the relevant time points, before, during, or after play, to the

matrix. Following the same process as above, two collaborators developed two matrices

independently, and I then compared them to measure the level of agreement. There

were 27 disagreements out of 216 total marks (3 time points x 9 intervention types x

7 tools), indicating a percent agreement of 88%. I led iterative discussions with both

collaborators to resolve disagreements and generate the final matrix.

6.2.2 Results

I identified nine intervention types shown in Table 6.1. Table 6.3 summarizes

the findings by showing how many (with a qualitative value of most, all, few, or none)

tools offer each intervention during each CPM phase.

Intervention Definition

Predictions Offer a guess as to what is to come

Recommendations Offer a suggestion as to what you should do

Updates Inform the player when something new has happened

Reminders Persistently display game information or state details

Reflections
Present an overview of gameplay

and performance stats right after the match

Retrospections Aggregate gameplay stats from multiple past matches

Instructions Present step-by-step information on how to complete tasks

Sharing Facilitates easy sharing of data or gameplay in some way

Evaluations Present a judgement of performance quality

Table 6.1: The nine intervention types, their definitions, and examples.
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Pred. Rec. Upd. Rem. Ref. Retro. Inst. Shar. Eval.

Blitz
Forethought
(Before)

Performance
(During)

Self-Reflection
(After)

Fridai
Forethought
(Before)

Performance
(During)

Self-Reflection
(After)

GOSU
Forethought
(Before)

Performance
(During)

Self-Reflection
(After)

Mobalytics
Forethought
(Before)

Performance
(During)

Self-Reflection
(After)

OP
Forethought
(Before)

Performance
(During)

Self-Reflection
(After)

Porofessor
Forethought
(Before)

Performance
(During)

Self-Reflection
(After)

Senpai
Forethought
(Before)

Performance
(During)

Self-Reflection
(After)

Table 6.2: Distribution of interventions per phase for the reviewed tools.

103



Pred. Rec. Upd. Rem. Ref. Retro. Inst. Shar. Eval.

F Most Most None Few None Few Few None Few

P Most All Most All None Few Few None Few

R None Few None None Most Most None Most Most

Table 6.3: How many of the reviewed tools (all, most (more than half), few (less
than half), or none) offered each intervention during each phase (F=Forethought,
P=Performance, R=Self-Reflection.

6.3 The State of the Art of Computational Support for

Esports

In this section, I describe the state of the art based on the results of the study,

which highlighted how each of the interventions in the taxonomy is implemented in

existing tools.

6.3.0.1 Predictions:

During the forethought phase, most tools featured predictions of what posi-

tions or characters enemy players will select and of the chance of a character on the

player’s team winning against another character on the enemy team. Therefore, these

interventions inform planning, e.g., if a player sees that character A is unlikely to beat

character B, they can pick character C instead.

Most of the tools offered predictions during performance that showed the

chances of a given character beating an opposing character. Notably, however, these

were primarily static, and do not update as the game plays out. The only tool that

offered dynamic predictions was GOSU [256], which offered in-game predictions of what

the opponents may do next, such as ganking mid-lane. Notably, GOSU has shut down

since the time of this analysis.

None of the tools offered predictions during self-reflection.
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6.3.0.2 Recommendations:

During the forethought phase, most tools offered recommendations consisting

of either bans, specifically which characters should be rendered unplayable, or load-outs,

including characters, stats, and abilities. In most cases, the recommendations at this

point were based on community trends.

All tools offered recommendations during the performance phase. In most

cases, these were recommendations to level certain skills or build certain items. In some

cases, tools recommended when to perform a certain strategic maneuver, such as placing

a ward. Notably, however, like predictions, recommendations were primarily static.

Only a few tools offered recommendations during the self-reflection phase,

which were mostly connected to evaluations, and would couple the identification of a

player’s weaknesses with suggestions for how to address them in future play.

6.3.0.3 Updates:

No tools offered updates during forethought or reflection. Most offered them

during the performance phase, typically in the form of notifications, on the player’s

screen or via audio, that a certain objective had been met. For example, Mobalytics

[459] informed players when any given player in a game of LoL had reached level 6.

6.3.0.4 Reminders:

Mobalytics was the only tool that offered reminders during the forethought

phase. It tracked and made the player aware of which characters were banned, chosen,

or still available.

All of the reviewed tools offered reminders during the performance phase. Here,

reminders tracked the status of the players in the game (e.g., their health, level, and

resources), and the status of NPCs. They displayed this information to the player either

via an overlay or another, typically an internet browser, window.

No tools offered reminders during self-reflection.
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6.3.0.5 Reflections:

Unsurprisingly, reflections were only offered during the self-reflection phase,

with only Fridai not offering them. Reflections typically presented aggregated stats for

all players on both teams. These included basic kill and death counts, the amount of

damage done, resources obtained, objectives met, and any kinds of unique achievements.

6.3.0.6 Retrospections:

A few tools offered this information during the forethought phase, where play-

ers would be presented with their win rates in certain roles, on certain maps, or with

or against certain characters. Typically this came in the form of a single percentage

value, and, in some cases, players could see more detailed information about their past

gameplay on a different window.

One tool, Porofessor, offered retrospections during the performance phase.

Similar to the forethought phase, it showed players a single indicator of their past win

rate with or against a given character.

Unsurprisingly, most tools offered retrospections during the self-reflection phase,

giving players the ability to compare recent and past gameplay. Retrospections in this

phase typically offered more detail, such as charts and graphs depicting statistical in-

formation such as resources obtained or the number of kills and deaths with a given

character across past matches.

6.3.0.7 Instructions:

The OP.GG desktop app was the only reviewed tool to offer instructions during

the forethought phase. Specifically, when a player selected a certain character, the tool

would present step-by-step instructions for how to use that character’s skills to execute

strategic maneuvers.

A few tools offered instructions during the performance phase, where they

offered step-by-step guidance for the execution of maneuvers. They functioned like an
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instruction manual.

None of the reviewed tools offered instructions during self-reflection.

6.3.0.8 Sharing:

Sharing was only offered during the self-reflection phase. In almost all cases,

sharing occurred in an indirect manner, by uploading a player’s gameplay data for a

recent match to either a public database or by giving them the means to share it on

social media. Through this, players were provided with a way to show their gameplay

to others.

6.3.0.9 Evaluations:

A few tools offered evaluations during the forethought phase. These typically

were present in the form of a brief, one-sentence description of the player’s known

strengths and weaknesses based on their past gameplay, often the game they had just

played most recently.

Similarly, a few tools presented evaluations during the performance phase,

Typically, these were alike to those presented during the forethought phase. During

both the forethought and performance phases, there were a couple of tools that offered

evaluations for other players, including opposing players.

Evaluations were offered during self-reflection by most tools, in the form of a

judgment or grade. Typically, these evaluations were focused on finding the player’s

notable weaknesses in the just-played match, for example, poor vision. Often, these

would be coupled with a recommendation for addressing these weaknesses.

6.4 Summary

To my knowledge, this work was the first to map the state of the art of computa-

tional support for esports and the first to examine this support through an SRL lens. In

the context of this dissertation work, this taxonomy provides us with a means by which

107



the features of computational support tools can be described and the tools themselves

can be compared against one another. In doing so, we are better able to understand the

range of support offered by existing tools and, once we collect the information, better

able to compare it against players’ needs and identify areas for improvement, which will

be the topic of the next chapter.
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Chapter 7

Deriving Design Requirements for

Computational Support for Esports

The work discussed in this chapter and the previous chapter was originally

published at CHIPlay 2022 1 [346]

7.1 The Need for a User-Centric Approach to Computa-

tional Tool Design for SRL

While a great deal of work exists that examines or proposes new systems for

computational support for complex games and esports, very little work takes a truly

user-centric approach. In the cases of some tools, players, the intended end-users of

the systems, play no role in the development process. This is often the case for purely

algorithmic systems, such as SENSEI [319], described as an intelligent advisory system

intended to help esports players improve their gameplay through advanced analytics and

ML. There is also the work of Christiansen et al. [123] who developed a novel approach

for measuring the causal effects of game features or player performance on chances of

1Kleinman, E., Habibi, R., Yao, Y., Gayle, C., & Seif El-Nasr, M. (2022). ” A Time and Phase for
Everything”-Towards A Self-Regulated Learning Perspective on Computational Support for Esports.
Proceedings of the ACM on Human-Computer Interaction, 6(CHI PLAY), 1-27. This research was led
by me but would not have been possible without the assistance of Reza, Yichen, and Christian and the
input and guidance of my advisor Magy.
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winning, motivated by a desire to help players and developers better understand the

connection between a given set of statistics and victory. This also applies in the case of

the work of Chen et al. [116, 115], discussed previously. All of these examples involve

systems designed, specifically, to help players improve at play, either by tracking their

performance, helping the understand the outcomes of their choices, or recommending

the best approach. However, none of these works evaluate their systems with players or

perform any explicit design requirements gathering.

Systems that include visualization tend to be developed in slightly more user-

centric manners. Van den Broek et al. [683] explored the value of including tangible

elements in a data visualization system for esports, and found that most potential users

saw value in the approach. Additionally, Wallner et al. [703, 704, 707, 701, 706],

Kriglstein et al. [366], afonso et al. [11, 10] and Halabi et al. [274], who all developed

a number of different visualizations for gameplay data [703, 707, 274, 701, 366, 706],

have evaluated their various systems with users as a part of the design and development

processes.

There are even those works that did seek to develop more explicit design re-

quirements, to better understand what players need. For example, Kuan et al. [367]

began the development of their visualization system for Starcraft data with a require-

ments analysis with experienced players. They determined several user needs that their

system had to address (such as identifying important events) and were able to use these

to inform the design of the system. Their requirements, however, are specific to the

context of Starcraft and may not generalize to other games. On a more general note,

Wallner et al. [708] conducted a large-scale interview and survey study with players of

first-person shooter, MOBA, and strategy games to better identify players’ wants and

needs from post-play game data visualization systems. These results generalize better

across game genres but are specific to the use case of post-game data analysis.

In contrast to the gaming literature, the benefits of taking a more rigorous,

user-centric approach to learner-facing computational support tool design are well docu-

mented in the domain of learning analytics dashboards, where tools are often designed to
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support students in classroom environments. For example, before creating “StepUp!”,

Santos et al. [578, 579] conducted a requirements analysis study with students enrolled

in three university-level engineering courses. This study comprised of three brainstorm-

ing sessions, one with the students enrolled in each course, during which students were

asked to identify issues they experienced. They were then asked to rate the issues in

terms of how important it was to address them through a LAD. These sessions resulted

in 34 issues. From these, the authors selected those that were rated the highest and,

more specifically, that could be addressed by the StepUp! System (i.e. lack of a good

learning environment was not something they could address). Issues they did select

include such decision-making elements as “how I distribute my time” and “being aware

of which resources and tools everyone is using”.

Park et al. [501] followed a similar method for their requirements analysis

but conducted one on one interviews instead of group brainstorming sessions. Their

results found that students wanted to be able to see information regarding their learning

patterns as this would help them make decisions around planning their learning schedule,

managing their learning process, and setting their learning goals. Further, they wanted

to be able to see accurate and trustworthy information, which they acknowledged might

be more accurate than what they themselves perceived. Additionally, students were not

keen on a tool that would analyze their learning pattern or disclose it to their teacher,

indicating that, while they were open to using the tool to inform decision-making, they

felt an aversion to evaluation. They were also in favor of seeing statistics about their

scores and liked the idea of comparing themselves with other students.

Both StepUp! and LAPA were designed to meet these needs and support

student decision-making [578, 579, 501]. Here, I argue that advancing the state of

the art of computational support for learning in complex gameplay, especially esports,

requires a similar, user-centric approach to requirements analysis. Currently, there is no

concrete understanding of players’ requirements for computational support for SRL in

this context. Without such an understanding, it is difficult if not impossible to identify

opportunities to improve existing design conventions or evaluate the extent to which the
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tools meet players’ needs. Therefore, in this chapter, I detail a study I conducted that

sought to derive user requirements for the design of computational support tools for

SRL. By comparing the resulting requirements to the results of the taxonomy, I hoped

to identify concrete opportunities to improve the state of the art.

7.2 A Mixed-Methods Examination of Players’ Support

Needs

To address this point, I built on the work discussed in the previous chapter

and conducted a mixed methods study that sought to answer the following question:

• What kinds of interventions do players desire during each phase of learning ac-

cording to the Cyclical Phase Model of Self-Regulated Learning?

The ultimate goal of this work, as stated above, was to gather user require-

ments for computational support systems meant to support learning in complex games,

specifically esports, and to do so through the lens of CPM. In order to reach this goal, I

first distributed an online survey to collect players’ preferences in terms of when, before,

during, or after gameplay, they wished to interact with each of the intervention types

identified in the taxonomy discussed in the previous chapter. As with the systematic

review discussed above, here, we understand that before gameplay corresponds to fore-

thought, during to performance, and after to self-reflection. I followed this survey with

data-driven retrospective interviews to gain deeper insights into how players leveraged

computational assistance to support SRL, how they understood such assistance did or

could help them, and what their preferences and needs were in this context.

7.2.1 Methods

7.2.1.1 Survey Design

The online survey first collected demographic data, then asked players about

their preferences regarding each intervention type. For each intervention type, the
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participant was first provided with the definition as such:

• Predictions: Predictions offer a guess as to what is to come. For example, a

tool may predict your chances of winning, the odds that a given character will be

played in a given position, or the odds that the opponents are about to execute a

certain move.

• Recommendations: Recommendations offer a suggestion as to what you should

do. For example, a tool may recommend that you play a certain character or

position, build a certain item, execute a certain move during play, or practice

certain skills in future games.

• Updates: Updates inform the player when something new has happened or a

milestone has been reached. For example, an update may inform you that an

enemy player has reached a certain level.

• Reminders: Reminders persistently present game information or state details so

that players can be aware of them. For example, a reminder may tell you which

characters have been chosen and what their win rates or positions are, how many

cards have been removed from a deck, or your own score as a player.

• Reflections: Reflections present an overview of gameplay and performance stats

in a recently played match, typically right after the match completes. For example,

a reflection may present an overview of how much damage each player did in the

match.

• Retrospections: Retrospections present past gameplay information to prompt

players to track or think about their performance in older games. For example, a

tool may track gameplay over time and present an overview of how well a player

performs in a given role or as a given character.

• Instructions: Instructions present what to do and how to do it. For example,

a tool may provide a player with the locations of items that need to be acquired
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to complete a quest or instructions on what is needed to build an item, or the

step-by-step maneuvers needed to execute a move.

• Sharing: Sharing specifically refers to whether or not the AI assistance facilitates

easy sharing of data or gameplay in some form. For example, an AI assistant may

automatically upload data to a database where other players can see it or may

make it easy to record gameplay to share with others.

• Evaluations: Evaluations present a judgment of performance in some way and

are meant to tell a player where they performed well or poorly. For example, a

tool may tell a player that they were under-warding or did not get enough gold.

They were then asked the following question:

• When, during the gameplay experience, have, or would, you use [intervention

type]? Circle all that apply (Before, During, and After Gameplay)

7.2.1.2 Survey Distribution

The survey took 15 - 20 minutes to complete. Participants were compensated

20$ for their time. The survey was distributed to the Senpai.GG community via a

banner advertisement embedded in the application and was also shared via social media

and word of mouth. Respondents from Senpai.GG were also able to share the survey

with friends who were not a part of the Senpai.GG user-base. Participants needed

to be 12 years or older, with those under 17 asked to provide parental consent, to

participate. Though we hoped to recruit as many participants who had experience with

computational tools as possible, this was not a requirement to participate. Participants

were allowed to be located anywhere in the world, but the survey was only offered in

English.
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7.2.1.3 Interview Protocol

To augment the survey results, I conducted qualitative interviews with survey

respondents. I recruited seven participants via email from the survey participant pool.

Only respondents 18 years of age or older could participate. Interviews were conducted

using Data-Driven Retrospective Interviewing [186], a method in which the participant

is shown data about their own or others’ actions or performance and asked to elaborate

on what they think it means or how they interpret it.

During the interview, each participant was first shown their own survey re-

sponses compiled in a Google Sheets spreadsheet and asked:

• “Can you elaborate on why you prefer these interventions during the forethought

phase and how you would use them?”

• “Can you elaborate on why you prefer these interventions during the performance

phase and how you would use them?”

• “Can you elaborate on why you prefer these interventions during the self-reflection

phase and how you would use them?”

The participant was then shown the data seen in Table 7.5 and asked:

• “Can you say a bit about why you think players prefer these interventions during

the forethought phase and how you, or players like you, would use them?”

• “Can you say a bit about why you think players prefer these interventions during

the performance phase and how you, or players like you, would use them?”

• “Can you say a bit about why you think players prefer these interventions during

the self-reflection phase and how you, or players like you, would use them?”

7.2.1.4 Interview Analysis

Similar to earlier studies, the interviews were transcribed using a text editor.

The data was segmented into lines based on how the text lined up in the editor with
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lines with five or fewer words combined with the previous line. Each line was treated as

a unit of analysis. Interview data were analyzed using iterative thematic analysis and

line-by-line coding [237, 574]. I performed open coding [574] on a representative sample

consisting of 30% of the data, defining a set of themes regarding participants’ use of each

intervention type during each phase. I then worked with a collaborator to, separately,

apply the themes to a different 30% of the data set in order to measure validity through

Cohen’s Kappa [133]. The resulting IRR was .74, indicating strong agreement [375]. I

then coded the entire dataset.

7.2.2 Survey Results

The survey received 116 complete responses. An overview of the demographics

can be seen in Table 7.1. Gender, race, and nationality, were not collected in order

to prevent biasing of the results and to mitigate the risk of identification. The games

respondents played can be seen in Table 7.2 and their experience with the seven reviewed

tools can be seen in Table 7.3. Survey respondent preferences for which interventions

they wanted during each phase can be seen in Table 7.5. Additionally, the games played

by the seven interview participants can be seen in Table 7.4.

Age Under 20 20-30 Over 30

# 62 46 8

Years of Experience ¡ 5 5 - 10 ¿ 10

# 80 32 4

Expertise (self-reported) Novice Intermediate Expert

# 19 76 21

Table 7.1: An overview of demographic data collected by the survey.
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Table 7.2: The games played by the survey respondents and the number of respondents
per game.
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Table 7.3: The number of survey respondents (out of the total 116) who had experience
with the reviewed tools.

Participant 1 2 3 4 5 6 7

Game Starcraft Dota2 Auto Chess LoL LoL Fighting Games LoL

Table 7.4: The games played by the seven interview participants.

Pred. Rec. Upd. Rem. Ref. Retro. Inst. Shar. Eval.

F 60% 59% 34% 43% 28% 37% 39% 27% 28%

P 45% 50% 37% 47% 28% 34% 47% 24% 28%

R 53% 52% 35% 38% 67% 61% 32% 45% 59%

Table 7.5: An overview of what percentage of players preferred a given intervention dur-
ing a given phase, according to the survey responses. F=Forethought, P=Performance,
R=Self-Reflection.
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7.2.3 Interview Results

The following results dictate, specifically, what users want in terms of compu-

tational support in terms of each intervention identified in the previous chapter during

each phase of CPM. In other words, these results present a thorough set of design

requirements that can help inform and guide the development of new and innovative

tools.

Predictions: Participants indicated that, during forethought, they specifi-

cally preferred predictions regarding their opponents’ strategies, so they could start

planning their response. For example, Participant 6 stated: “[predictions] would come

more as what you should expect from a certain kind of character and a certain kind of

archetype that you’re playing against. So in those terms, you’re going to start predict-

ing what a character, what an opponent, is going to do to you, and planning how to

respond.”

Participants wanted help predicting the actions of an opponent during the

performance phase so that they could adapt their strategy to respond earlier. For

example, Participant 5 stated: “If I knew what towers, for example, would be destroyed

or aimed at or if I knew that the enemy players would be aiming at that tower I would

either have our team protect it or go take another tower.”

Participants indicated that there were two ways that predictions could aid

them during self-reflection. The first was when predictions could give players an idea of

what the opponents might do in the next match. Participant 4 explained: “predictions

after make sense if you play a couple games in a row, Valorant or CS GO play that

way, where you play best of five, so maybe what weapons they’re going to buy or which

station they’re going to go to.” The second was seeing predictions while reviewing a

replay of the match, which could allow them to see how their odds of winning changed

as they made decisions. This is discussed by Participant 2: “if I was getting predictions

on the match while I was reviewing the match, and seeing throughout how the match

may swing based on the events that occurred, that could be useful.”
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Recommendations: Participants indicated that recommendations could help

them choose a specific plan or strategy. Participant 4 discusses this in terms of LoL’s

character selection phase, stating: “recommendations would be, for example, to counter-

pick someone. Especially if I don’t know the character the enemy picked, to be able to

play against them.”

Participants indicated that recommendations, during performance, would pro-

vide similar aid to that which they provided during the forethought phase. For example,

Participant 7 stated: “It would be nice, during the game, just a recommendation to the

player, specifically when they’re new, “hey, look, you’re playing against 17% magical

damage, so stop buying armor” for example.”

Participants indicated that, during self-reflection, recommendations would be

connected to evaluations of their gameplay. For example, Participant 6 explained: “an

AI that can evaluate that and see how many times you’ve fallen for that and be like “you

can totally just block here and do a light quick punch and block this combo stream”.

That’d be amazing...”

Updates: Updates were preferred by 34% of respondents during the fore-

thought phase. Unfortunately, however, no interview participant discussed updates

during the forethought phase.

Participants indicated that updates, especially updates regarding the status of

opposing players, could help them adapt their plans during performance. For example,

Participant 3 said: “so like “x player just hit their big whatever alert alert” and that’s

helpful because it’s hard to track seven people’s boards at once.”

35% of respondents preferred updates during the self-reflection phase. How-

ever, interview participants did not discuss updates during this phase.

Reminders: Participants indicated that forethought reminders could help

them keep track of information, and reduce the cognitive load needed to do so, while

making plans during this phase. For example, Participant 2 said “to maybe be reminded

that certain characters are still in the selection pool or whatnot, just so you don’t pick

something incorrectly, forgetting about that one other character that might counteract
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your whole strategy.”

Participants similarly discussed performance-phase reminders in terms of keep-

ing track of game state information and reducing cognitive. For example, Participant

4 stated: “for example, if you would play hearthstone...sometimes you don’t remember

all the cards you have, so it’s hard to keep track of what you can still use and what is

out of the game.”

38% of respondents preferred reminders during the self-reflection phase. Un-

fortunately, however, none of the interview participants discussed reminders during this

phase.

Reflections: Participants acknowledged that being able to review a recent

game during forethought could be helpful in deriving plans for a new game, as it could

help them identify gameplay habits they should be attentive of. For example, Partici-

pant 5 said: “they could see what they did bad or good in the previous game if they’re

playing the same champion in the next game.”

28% of respondents preferred reflections during the performance phase. While

not discussed extensively by interview participants, Participant 5 did suggest in-game

reflections related to a specific moment: “you don’t really need them during the game,

unless you want to get reflections or retrospections right away after you either die or

make a mistake.”

Participants discussed how reflections during the self-reflection phase were crit-

ical to their ability to build causal relationships between what they did and the ultimate

outcome of the game. For example, Participant 7 said: “After the game...you have to

know if you helped your team, if you healed your team at the right time, how much,

your presence with your team or if you’re a split pusher if you helped your team get the

objectives, if you did things alone because you’re a tank and you can do it yourself.”

Retrospections: Participants saw potential for players, during forethought,

to be able to use retrospections to inform their planning. For example, Participant 1

said: “So if you’re playing Protoss it’ll be like “you win 50% of the time against Zerg”

or something and I think it’s useful because you can be like “oh I’m fighting against
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this it’ll be an uphill match”.”

Only one interview participant, Participant 5, discussed using retrospections

during the performance phase, discussing how retrospections could make them aware of

their past mistakes during gameplay: “retrospections during the game, might remind

us of our past mistakes or something like, if we die because of a mistake we did, and

we did that also in the past, it could remind us that we had bad position or did little

damage because we were in the middle of the fight, or because we didn’t use our ult in

time.”

Participants discussed how retrospections during self-reflection could be used

to track progress towards improvement or identify negative habits. Participant 1 dis-

cussed this, stating “a tool that shows you how fast you expand how fast you get your

next base just seeing how...theoretically if you’re getting better and you want to take

that next base earlier you’d want to see that time-point go down so being able to see

that would be useful.”

Instructions: Only Participant 6 discussed instructions during the forethought

phase, where they described how a system could provide the player with instructions

outlining what a chosen character could do: “instructions that would basically be learn-

ing what you’re inputs are and what you’re character is capable of.” Participant 6 did

not, however, expand on how they would use these instructions.

Participants discussed performance phase instructions in terms of plan execu-

tion. For example, Participant 2 said: “especially for newer players, taking on a game

or a new position in a game you may not know it very well, having instructions to guide

you on basics could be very useful to a player, especially in training.”

Only Participant 6 discussed instructions during the self-reflection phase, where

they discussed them being offered in tandem with recommendations: “you’re reflecting

on what happened and you saw that the player was doing a specific thing and you didn’t

know what to do during the match. Yeah, that’s the moment when you start getting

instructions and recommendations.”

Sharing: Only Participant 5 discussed sharing during the forethought phase,
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in terms of obtaining information from others, either teammates or opponents, that

could inform planning: “I get stats and also items, what the other team built, from

another game, and how many kills, deaths, and assists they got in the last game...”

24% of respondents preferred sharing during the performance phase. Unfortu-

nately, none of the interview participants discussed sharing during this phase.

Participants discussed the benefits of sharing during self-reflection as a way to

gain deeper insights into their gameplay through communal review and reflection. For

example, Participant 4 stated: “if there was a misplay, you and your ADC, for example,

can look over the data and be like “why did you go there?” and I would like that because

I have this crazy ADC who goes in, and I’m slow, and he dies, and then I’m sad. So

that would be really good to improve as a team rather than as just a single player.”

Evaluations: Participants indicated that having pre-game evaluations, based

on past gameplay, could help with planning for the upcoming match. For example,

Participant 1 said: “Like you could evaluate and be like “oh maybe you’ve got Protoss

vs. Zerg” and “the Zerg is probably going to rush you” and then the evaluation could

be like “you suck at responding to rush” and then you’d be like “ok I better be ready”.”

Participant 5 discussed how in-game evaluations could provide information on

a single moment, immediately afterwards: “after you die, after making a mistake, it

could be good to get an evaluation of what you could have done better.”

Participants indicated that self-reflection phase evaluations were beneficial as

a source of guidance, for example, Participant 5 said “without them (evaluations), I

would have to find those mistakes on my own, but the thing is for a long time I got

stuck with a champion in mastery five because I didn’t know what I did wrong...My

mistake was that I didn’t get a lot of farm. And that I also didn’t ward a lot. That was

what helped. It would’ve helped if I’d known that before.”
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7.3 Opportunities to Better Support SRL

Forethought

What Players
Do/Want Help With
During this Phase

What Existing Tools
Offer

Implications and
Opportunities for
Future Research

and Design

Determining
Opponents’ Strategies,

How to Respond,
Tracking Information,

Making Informed Decisions
while not Dwelling
on Past Mistakes

Predictions of
Load-out or Victory,
Recommendations and

Instructions for
Executing Strategies,
Information Tracking,

Overviews of
Past Performance

Detailed Strategic
Predictions,

Goal Oriented
Support,

De-Emphasized
Review

Table 7.6: A summary of what players do and want help with in the Forethought phase
of SRL, what existing tools offer them, and the implications of these findings on future
research and design.

Performance

What Players
Do/Want Help With
During this Phase

What Existing Tools
Offer

Implications and
Opportunities for
Future Research

and Design

Determining an
Opponent’s Next Move,

How to Respond,
Information Tracking,

How to Execute
High-Level Skills,

Non-Disruptive Aid,
Beginner-Focused Aid

Predictions of
Load-out or Victory,
Recommendations and

Instructions for
Executing Strategies,

Updates and Reminders
for Tracking Information,

Overviews of
Past Performance

Dynamic In-Game
Assistance,
Emphasized
Instructions,

Monitoring Support,
Non-Disruptive
Assistance,

Scaffolded Assistance

Table 7.7: A summary of what players do and want help with in the Performance phase
of SRL, what existing tools offer them, and the implications of these findings on future
research and design.
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Self-Reflection

What Players
Do/Want Help With
During this Phase

What Existing Tools
Offer

Implications and
Opportunities for
Future Research

and Design

Identifying Mistakes,
Building Causal
Relationships,

Determining how
to Adapt their
Gameplay,

Tracking Performance
over Time,

Obtaining input
From Others,

Avoiding Toxicity

Detailed Statistical
Reflections,

Retrospections depicting
Gameplay Trends

Over Time,
Objective Evaluations

to ID mistakes,
Recommendations of
Different Strategies,
Online Databases
for Easy Sharing

Safe Co-Regulated
Learning,

Emphasized Causal
Understanding,
Cyclical SRL

through Forethought

Table 7.8: A summary of what players do and want help with in the Self-Reflection
phase of SRL, what existing tools offer them, and the implications of these findings on
future research and design.

Based on a comparison of the user requirements detailed within the interview

and survey results against the taxonomy of existing interventions discussed in the pre-

vious chapter, I identified a number of explicit opportunities to improve computational

support for SRL through research and design. These are summarized in Tables 7.6

through 7.8 and detailed below.

7.3.1 Forethought Phase (Before Play):

Detailed Strategic Predictions: Existing tools, during the forethought

phase, offer predictions of what load-outs an opponent may select, including characters,

positions, equipment, or skills. However, interview participants indicated that they

would like predictions that go further, and offer information about what strategies an

opponent may use. For example, players wanted more than just “the opponent is using

character B they will probably be in X position” they wanted to know “because the

opposing team has picked characters A and B they are likely going to use strategy X,

which is characterized by maneuvers 1, 2, and 3, and time-points D, E, and F.” This
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detailed strategic information would help players derive more detailed plans themselves,

as knowing more about what the opponent may do will allow them to better determine

what they will do in preparation or response. For example, if they know the opponents

are going to use strategy X, then they can plan to use a counter strategy. However,

existing tools are far from offering this level of detail. While there exists research

on strategic prediction [184], accurate, detailed predictions are still an open problem,

making this an opportunity for future work.

Goal-Oriented Support: Goal setting and goal orientation processes are

not only a critical part of the forethought phase of CPM and SRL, but also a central

component of learning in general. In the context of games, previous work demonstrated

the importance of goal setting to success [88] and found that setting and failing to

reach inappropriate goals could lead to discontinuation of play. Further, the work I

discussed in the previous part of this dissertation demonstrated that goal setting is

a differentiating factor between expert and novice players [345]. Despite this, there

was little emphasis on goal setting or orientation among the reviewed tools discussed

in the previous chapter, and the interview participants did not explicitly discuss it

either. E-learning tools designed to support SRL often emphasize goal setting during

the forethought phase and have demonstrated that such an approach is beneficial to

students [379, 299, 113]. As such, I recognize this as an opportunity for future work to

explore, wherein it would likely be beneficial to players to include more explicit support

for setting and monitoring progress toward gameplay goals.

De-Emphasized Review: We saw from the survey data and interview results

that, while players saw benefits to reviewing past gameplay during the forethought

phase, they were concerned about the potential negative effects of doing so. Specifically,

participants suggested that being overtly reminded of what they had done wrong could

leave them discouraged or in an otherwise negative state of mind, which would have

an undesirable impact on their gameplay in the new game. Based on this finding, I

suggest that future tool development consider ways to de-emphasize the review of past

play during the forethought stage. However, I additionally recommend not removing it
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completely but investigating how to offer it in a way to help players without negatively

affecting them. This may, perhaps, require more connection between the self-reflection

phase and the forethought phase in existing tools, such that evaluations of gameplay

can be brought into forethought but not necessarily happen there. This concept also

better matches the processes of the cyclical phase model of SRL [756], which does not

include reflective processes during the forethought phase.

7.3.2 Performance Phase (During Play)

Dynamic In-Game Assistance: Similar to the pre-game desire for more

detailed predictions, players indicated a desire for predictions and recommendations

that, during performance, updated to reflect the state of the game and give them relevant

information on how to handle the current situation. Existing tools, however, rarely

offered this level of support. Instead, existing predictions and recommendations were

primarily static, based on known community trends, and not the state of the current

game. As a result, players may receive a recommendation that does not actually make

sense given the current state of play. For example, based on community trends, it might

make sense to build a certain offensive item, and the tool may, thus, suggest the player

do so. But if the enemy has a particularly powerful offensive character, it might make

more sense to build a defensive item instead. Some research began to pursue dynamic

in-game support [123], however, the topic is still under-explored. Thus, I recognize this

as an opportunity for future work.

Emphasized Instructions: Players expressed an interest in instructions dur-

ing the performance phase as a way to, especially for novice players, learn advanced

skills. However, while instructions were present in existing tools, they were offered by

only four tools, and each only offered them at one point in gameplay. This makes them

the least utilized intervention out of the entire set discussed in the previous chapter.

This is in spite of the fact that instructions are, perhaps, one of the best ways to help

players learn to perform more advanced skills or maneuvers beyond what is presented to

them by the tutorial itself. For those who may not belong to an established community
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that could help, such assistance is of particular interest and could be of great benefit. I

thus recognize an opportunity for future work to improve players’ experiences learning

esports through a greater emphasis on instructional support.

Monitoring Support: Interview results indicated that players were not in-

terested in using interventions to self-monitor during the performance phase, instead

focusing almost entirely on strategy execution. The work I discuss in the previous part

of this dissertation suggested that in-game interfaces are sufficient in supporting play-

ers’ monitoring needs [345], and it may be that the current tools do not sufficiently

provide anything new. Alternatively, previous work found that learners often do not

self-monitor unless prompted to do so [333], and the same phenomenon may be occur-

ring here. As such, I recognize this as an opportunity for future work. As performance

monitoring has been recognized as critical to SRL [294, 756], it is exceedingly impor-

tant to ensure that players are not only able to monitor but prompted to do so in ways

that will improve their gameplay. Future design research can explore interventions to

support performance monitoring in a way that the games themselves do not and that

can prompt players to adopt this SRL process more extensively.

Non-Disruptive Assistance: E-learning tools designed to support SRL in

the performance phase often give learners access to information about where they stand

next to classmates or in relation to their goals, to help them make informed decisions

about what to do next [294]. Esports, and many other complex games, however, are

fast-paced, high-stakes environments, and, as the interview results illustrated, it can

be difficult to implement assistance in a non-disruptive manner. Most existing tools

either overlay assistive windows on the gameplay screen or require the player to look

at a different screen, taking their eyes off the game in the process. That being said,

interview participants were still interested in performance phase interventions. With

this in mind, I recognize the design challenge of creating non-disruptive, performance-

phase interventions as a potential direction for future research. Something to keep in

mind while pursuing this goal, however, is accessibility. Some designers I have spoken

with have discussed the implementation of audio-based assistance in order to reduce the
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amount of visual clutter on the screen. Such an approach, however, would be inaccessible

to deaf or hard-of-hearing players.

Scaffolded Assistance: Interview participants suggested that in-game sup-

port can be of greater assistance to less experienced players but echoed the concerns of

earlier participants who feared that they would be detrimental to skill development or

more advanced play, effectively becoming a crutch that prevents the player from being

able to play unaided. Previous work in learning has found that instructional techniques

that are valuable to less experienced learners could very well be detrimental to the more

experienced [325], lending credibility to these fears. With this in mind, I suggest that

future design for esports assistants take inspiration from the scaffolding approach in

learning [446, 67]. Under such a design philosophy, the assistant could dial back the

level of support it offers as players master gameplay skills and gain expertise. Customiz-

able configurations, in which players can manually indicate what they still do or do not

wish to see, and when or how they wish to see it, would also make in-game support

more palatable to advanced players. In doing so, future systems would evade providing

unwanted input to skilled players, or building negative dependencies, while still being

able to aid beginners.

7.3.3 Self-Reflection Phase (After Play)

Safe Co-Regulated Learning: I noted that the reviewed tools facilitated

gameplay data sharing and its use for co-regulated learning [273]. However, survey

respondents and interview participants indicated that, while sharing was beneficial,

there were several dangers involved, namely the toxicity within the player bases [675,

676] and concerns that special strategies or unique maneuvers could be stolen. However,

the advantages of learning from, and with the aid of, others are also well documented

in the research literature [625, 273] suggesting that this type of support should not

just be removed. Thus, I suggest that future systems explore ways to support co-

regulated learning and cooperative learning through sharing of one’s gameplay data

while protecting the learner from negative interactions with other players. This may
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be realized through either anonymous sharing, sharing of only selected information, or

through systems that allow players to share their data with only trusted others. While

existing work on open community modeling is exploring this question [746, 599], this

is still a new space with room for further investigation, especially as concerns over the

ethical use of data become more apparent.

Emphasized Causal Understanding: The results indicated the importance

of causality during self-reflection. Specifically, players indicated that it was crucial

to identify how their in-game choices impacted their gameplay outcomes. While it

seemed that players could glean this information from reflections, many emphasized

that it was difficult to develop causal relationships given the design of existing reflection

support systems. In other words, players often indicated that they knew when they did

something wrong but rarely knew exactly what they did wrong. Further, even if they

could identify their mistake, they struggled to know how to prevent it next time, out

of an inability to know exactly what caused it this time. Based on this, I recognize

an opportunity for future work to explore better ways to present causal relationships.

One way to do this may be through the implementation and emphasized use of process-

visualizations, such as those used in process mining, which present human processes

in terms of state-action diagrams [686, 684]. I will expand on this idea further in the

remaining parts of this dissertation.

Cyclical SRL through Forethought: The key to CPM is that the phases

are executed repeatedly in a cyclical manner [750, 756]. This means that self-reflection

and forethought should be connected to each other such that the results of evaluations

and the chosen adaptive strategies that arise during self-reflection should directly inform

new goals and plans during forethought. While a few tools offered recommendations

during the self-reflection phase, which had the potential to link evaluations to future

goals and plans, it seemed that there was a greater emphasis on the review of past game-

play during forethought, with many tools incorporating evaluations during the pre-game

phase. As discussed above, many players felt that this could discourage them or cause

them to dwell on their mistakes, effectively distracting them from performing better
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this time. Thus, I suggest that future work feature predictions or recommendations for

future play during the self-reflection phase, as I believe it better emulates the processes

inherent to SRL and better aligns with players’ interests.

7.4 Summary:

In the context of this dissertation work, there are two primary takeaways.

First, results indicated that review and evaluation-oriented processes engaged during

the self-reflection phase were among the most common occurrences of CPM SRL among

esports players and were among the most supported among esports tools. Second,

results indicated that players are particularly interested in causality and being able to

build relationships between their actions and the experienced outcomes. Further, results

indicated that existing post-play visualizations are not sufficient for this. Based on this

understanding, I arrived at the third thrust in my dissertation research, which looked

into the potential of process-visualizations as a way to improve players’ understanding

of causality and elevate their self-reflection processes.
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Part IV

Making Sense of Visualizations of

Process
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A prominent theme that emerged from the work described in the previous two

chapters was the significant role that post-game visualizations of gameplay data played

in helping players learn through self-reflection. The significance of reflection as a part of

the gameplay experience is well documented [693] and many existing computational tools

for complex games, especially those that emphasize data-visualization, acknowledge it

as a critical element of learning [11, 701, 367].

However, the work in the previous two thrusts also illustrated how important

it is to understand process and causality when trying to learn and improve at complex

gameplay. Most existing tools [601, 459, 68] present data through aggregate visualiza-

tions. While effective at collating large amounts of data and making trends apparent

at-a-glance, such visualizations are rarely able to preserve context or action-by-action

information, which are necessary for understanding process and building causal rela-

tionships.

In this third thrust of my thesis, I explore visualization styles that present

gameplay in a granular, action-by-action manner, thus preserving the gameplay process.

These visualizations of process, which are primarily spatio-temporal [701, 11, 367], are

prominent in the research literature. However, there is limited understanding of how

players make sense of the, often dense, data they present. Thus, in this thrust, I explore

meaning-making in the context of visualizations of process, looking specifically at two

styles: spatio-temporal, and timeline-like process visualizations.
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Chapter 8

An Interaction Taxonomy for

Spatio-Temporal Gameplay Data

The work presented in this chapter was originally published in CHIPlay 2021

1 [347]

8.1 Information Visualization and Interaction Taxonomies

Spatio-temporal visualization has grown notably prominent in games, as it

allows human analysts to understand player processes by extracting them from telemetry

data presented in low-level, granular, and context-sensitive ways [14, 705, 704, 232, 467,

706, 344]. User evaluations of spatio-temporal game data visualization systems, built

both for players and developers, have demonstrated positive reactions from users, who

find them aesthetically pleasing, easy enough to use, and sources of valuable information

[683, 703, 274, 701, 706, 11, 367]. However, most existing evaluations focus on judging

usability in order to identify design best practices. There exist few discussions of how

users interact with and extract meaning from a visualization or use it to complete

1Kleinman, E., Preetham, N., Teng, Z., Bryant, A., & Seif El-Nasr, M. (2021). ” What Happened
Here!?” A Taxonomy for User Interaction with Spatio-Temporal Game Data Visualization. Proceedings
of the ACM on Human-Computer Interaction, 5(CHI PLAY), 1-27. This research was led by me but
would not have been possible without the assistance of Nikitha, Zhaoqing, and Andy and the guidance
and insight of my advisor, Magy.
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cognitive tasks. Further, those examples that do exist discuss these phenomena at a

higher, abstract level, and often include this discussion as a supplement to other, higher

priority results [366, 707]. As a result, detailed discussions of how users use, interact

with, and make meaning from game data visualizations, especially in the context of

learning, exist almost solely as theoretical frameworks [280, 80].

In contrast, the field of information visualization (infovis) has dedicated a

great deal of time and effort to understanding the intricacies of how users perceive,

make meaning from, and understand data. This knowledge of human understanding

is formalized in what the field refers to as “taxonomies”, or collections of behaviors

and processes that users engage that should be considered when designing a new visu-

alization. To date, many taxonomies and frameworks have been proposed, with new

ones emerging each year [576, 736, 213, 576]. One of the most foundational exam-

ples, however, is Shneiderman’s [613] “Task by Data Type” taxonomy, which identified

seven behavioral tasks that users engage in when exploring visualized data. These were:

overview (gain an overview of the entire collection), zoom (zoom in on items of inter-

est), filter (filter out uninteresting items), details on demand (select an item or group

and get details when needed), relate (view relationships among items), history (keep

a history of actions to support undo, replay, and progressive refinement), and extract

(allow extraction of sub-collections and the query parameters) [613]. Many visualization

systems and more recent taxonomies explicitly or implicitly referenced Shneiderman’s

taxonomy in their development.

Although numerous taxonomies exist in the field of infovis to formalize interac-

tion with data, the research area suffers from two notable weaknesses. First, very little

work looks at the cognitive processes involved in making meaning through interaction

with data, with most taxonomies focusing instead on the physical actions that users

take to make sense of the data by making it readable or user friendly [598, 553]. This

is a notable gap in the literature, as these cognitive processes are key to understand-

ing how users turn what they can see in the visualization into actionable knowledge.

Examples of the few taxonomies that do include cognitive elements include Yi et al.
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[737], Yalcin et al. [731], Patterson et al. [506], and Valiati et al. [679] who focused

their taxonomies specifically on these cognitive processes and included activities such

as planning interaction and analysis [731], inferring [679], and managing mental mod-

els [737]. That being said, while Valiati et al.’s work validated the framework with a

user study [679], these taxonomies are based primarily on literature reviews of existing

taxonomies, rather than observation of users. This brings into question the extent to

which they represent cognition in a comprehensive manner.

By taking a more human-centric approach, several visual analytics frameworks

have been able to more prominently account for the cognitive side of sense-making and

data interaction [191, 519]. Essentially, this domain proposes a “human is the loop”

approach to visual analytics that aims to go beyond the interactive visualization of

information, to better understand how human analysts make sense of data. A concrete

example of work within this particular domain is the Knowledge Generation Model for

Visual Analytics presented by Sacha et al. [572]. While not presented explicitly as an

interaction taxonomy, this model includes cognitive elements, such as the formation of

hypotheses and confirmation of those hypotheses through insights [572].

The second weakness of existing interaction taxonomy work is, similar to game

data work, a notable lack of user studies, with the field instead favoring systematic

reviews of existing visualizations and taxonomies. Notable examples of interaction tax-

onomies that are based on user studies include the work of Ziemkiewicz et al. [747],

who studied how immunologists used data visualization in their lab work, and identified

two main strategies (within graphs and between graphs), and Lee et al. [384], who

derived the model of novice’s information visualization sense-making (NOVIS) from a

user study examining how people made sense of unfamiliar visualizations. However, the

application areas for these studies are specific to the domain and population, and are

therefore not easily generalizable.

As a result of the shortcomings described above, there is little consensus within

the InfoVis literature regarding what elements a taxonomy should include. As a result,

it is difficult to identify a single taxonomy that is appropriate to adapt to the domain
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of spatio-temporal game data. Further, most existing work focuses on visualizations

of aggregate data, which may be applicable to aggregate game data visualizations,

but not necessarily transferable to the granularity of spatio-temporal visualizations.

As Rodrigues and Figueiras [563] demonstrated, applying the existing taxonomies to

spatio-temporal visualizations can present a challenge, as it requires constructs to be

reconfigured to account for the more granular data. Further, game data is exceedingly

complex and existing taxonomies may not be able to account for this complexity. This

suggests that the best approach would be for the domain of spatio-temporal game data

to develop its own taxonomy, which is exactly what I set out to do in the first study

within this thrust.

8.2 Developing a Taxonomy for Spatio-Temporal Game-

play Data

This first study sought to generate an interaction taxonomy for spatio-temporal

gameplay data. Specifically, this study sought to answer the question “What are the

interactive activities and cognitive processes that players engage in when they are ana-

lyzing spatio-temporal gameplay data?”

8.2.1 Methods

8.2.1.1 Defense of the Ancients 2

Similar to League of Legends (and arguably the game that inspired LoL) game

of DotA 2 consists of two teams, the “Radiant” and the “Dire”, both consisting of 5

players, who compete against each other in the same capture-the-flag style competition

as LoL. Instead of a “nexus” the players seek to destroy the enemy “Ancient”. The

game map is similarly organized into three lanes, which house towers that fire at enemy

players, with jungle areas between them. Both the lanes and the jungles are populated

by various non-player characters that can be slain for experience and gold. Unlike LoL,
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however, players in a game of DotA 2 can also kill their own creeps, a move called

“denial” as it prevents the enemy from getting last-hit gold bonuses.

8.2.1.2 Recruitment

Seven DotA 2 players (whose experience ranged from 3 to 8 years) were re-

cruited via email, social media, and word of mouth from collegiate esports clubs and

through snowball sampling. Participants were required to be (1) 18 years of age or older,

(2) able to communicate in written and spoken English, (3) able to join a Google Meet

call, and (4) in possession of enough experience with DotA 2 to identify and describe

basic strategic behaviors.

8.2.1.3 Visualization Setup

Data from two DotA 2 games from a professional league were uploaded to the

spatio-temporal visualization system Stratmapper [14], seen in Figure 8.1 (Please see

the original paper for details of Stratmapper’s functionality [14, 347]. I chose to use

the data of others for three reasons. First, I wanted to observe cognitive processes of

extracting meaning from the data, and felt this would be more apparent if the user

did not already know the gameplay context behind the data. Second, I wanted all

participants to observe the same set of events, which would not be possible with their

own gameplay data. Third, interaction with game data often includes interaction with

the data of others’ with the goal of learning from their play.
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Figure 8.1: The Stratmapper interface. At the bottom of the interface is the timeline,
where the darker grey highlight is used to determined what data points are seen on the
map (only the points encompassed by the highlight on the timeline will appear on the
map). On the left is a list of heroes involved in the respective event. Clicking a hero’s
name in this list will mute their data points. On the left side of the timeline are buttons
to mute data points for certain gameplay actions. Above the hero names is a drop down
menu that can be used to change the visualized data set.

8.2.1.4 Think-Aloud Protocol

I created two types of tasks for this study. In one type, the participant was

presented with a small, localized event and asked to recognize what was happening. I

refer to this as a recognition task. In the other type, the participant was presented with

a larger event and asked to identify three to five localized moments. I refer to this as

an identification task. Each think-aloud session consisted of five tasks as follows:

• TASK 1 - IDENTIFICATION TASK: The participant was presented with a longer

event that involved five heroes (three from one team and two from the other).

The participant was prompted to find three to five gameplay maneuvers of their

choosing in the visualization and describe them in terms of the actions, behaviors,

and goals involved.
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• TASK 2 - RECOGNITION TASK: The participant was presented with a short,

localized event that involved three heroes (two from one team and one from the

other). The participant was prompted to describe what event the data was de-

picting, again, in terms of the actions, behaviors, and goals involved.

• TASK 3 - RECOGNITION TASK: The participant was presented with a different

short, localized event that again involved three heroes (two from one team and one

from the other). The participant was again prompted to describe what event the

data was depicting, again, in terms of the actions, behaviors, and goals involved.

• TASK 4 - RECOGNITION TASK: The participant was presented with a third

short, localized event that again involved three heroes (two from one team and one

from the other). The participant was again prompted to describe what event the

data was depicting, again, in terms of the actions, behaviors, and goals involved.

• TASK 5 - IDENTIFICATION TASK: The participant was presented with a second

longer event, this time involving all ten heroes on both teams. The participant

was again prompted to find three to five gameplay maneuvers of their choosing in

the visualization and describe them in terms of the actions, behaviors, and goals

involved. This time, however, they were also asked to use Stratmapper’s labeling

system to apply labels to three to five gameplay events in the data. The purpose

of this was to observe participants as they identified events , but with a persistent

indication of what they had found so far (in the form of the labels).

Upon giving informed consent, every participant was shown the same Stratmap-

per instructional video and was given a chance to ask questions. Before beginning the

think-aloud tasks described above, each participant was given an opportunity to prac-

tice using the tool and ask any clarifying questions regarding the visualization or the

interface. Participants were then given instructions on how to think aloud and then

prompted to begin the tasks. Each session lasted from 30 minutes to one hour and

screen and audio were recorded.
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8.2.1.5 Data Analysis

I worked with a collaborator and used ELAN [482], a tool for labeling videos,

to analyze and code the recordings of the think-aloud sessions. We followed a thematic

analysis protocol [237, 574], specifically focusing on how participants were interacting

with the data, as observed from the videos, and the types of cognitive processes that the

participants engaged in, as inferred from what they stated aloud. First we, separately,

reviewed a subset of the data to develop initial lists of behavioral labels. We then

reconvened and synthesized a combined list of labels through discussion and comparison.

We then separated again and individually applied labels from the combined list to 30%

of the data set [99], for an inter-rater reliability check. The resulting score, calculated

using Cohen’s kappa [133] was .82, indicating very strong agreement [375]. We then

labeled the remaining dataset using the final list.

8.2.2 Results

8.2.2.1 Taxonomy

The taxonomy is organized into three categories: Data Interaction, Sense Mak-

ing, and Validation. An overview of the taxonomy can be seen in Table 8.1.
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Data Interaction

Study Positioning to
Construct Context

User studies the positioning of the players
to construct an understanding of

the setting for the data.

Study Movement to
Infer Decisions

User examines movement over time and
infers decisions based on their movement.

Seek Details to
Support Sense-Making

User examines low level actions
to obtain more context to explain data-points

and make sense of observations.

Sense Making

Leverage Domain Knowledge
to Fill Gaps

User uses knowledge of the game
to fill in gaps in the data.

Pinpoint Events to
Frame Understanding

User identifies events of interest in order to
build a frame for their understanding of gameplay.

Form a Hypothesis based on
Context and Behavior
that Evolves over Time

User provides or updates an explanation for
what they believe is happening during gameplay.

Validation

Review Events to
Confirm Hypotheses

User ensures that pinpointed events
conform with the chosen hypothesis.

Table 8.1: The taxonomy of user interaction for spatio-temporal game data visualization,
consisting of seven activities organized across three categories.

Data Interaction: The three activities in this category relate to how users

would use the tool to read the data. In other words, this category encapsulates ob-

servable interactions meant to facilitate the extraction of information and synthesis of

meaning.

Study Positioning to Construct Context refers to the process in which a user

constructs a mental model of gameplay context by examining and noting the locations

of all of the players on the map. This activity specifically entailed the examination

of stationary data points, representing gameplay actions, in terms of where they were

located on the map, which indicated where a player was when they took the action

represented by the point. These details, which indicated where players were and what

they were doing, could be used to infer information about the context of play, i.e.

which team was performing better or what point in gameplay the data was drawn from.
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Figure 8.2: While studying positioning, participant 7 zoomed in on the middle lane area
of the map, where the players of interest were located.

Participants would often make statements illustrating this. For example: “my guess is

that both the Silencer and the Juggernaut here were pushing the creep wave here to

attempt to break the tier three towers” (Participant 2) This demonstrates a moment

during analysis in which the participant noticed that two Radiant side heroes were deep

into the Dire side of the map and was able to make a judgment regarding the context of

the game based on this positioning. Participants would also comment on the positioning

of players in relation to actions, sometimes pointing out how these were odd or defied

their understanding of context. For example: “it doesn’t make sense why Batrider is

taking so much damage since he’s closer to his side of the map” (Participant 4). This

demonstrates a moment during analysis in which the participant was confused about

the greater gameplay context because they thought the presence of certain actions in

relation to a player’s apparent position did not make sense. While studying positioning,

participants would sometimes zoom in on an area of interest on the map for a closer

and more granular analysis of the players’ positions. An example of this can be seen in

Figure 8.2.

Study Movement to Infer Decisions refers to the process in which a user would

infer players’ decisions based on their movement over time. Specifically, they would use

Stratmapper’s interactive timeline feature to “scrub” backward and forwards in time,
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which would cause the data points on the map to shift position based on what actions

were taken at the selected time and where, almost as if the data were animated. This,

effectively, allowed the user to see the players’ movement, from which they could make

inferences about their decisions. Movement was sometimes studied in a holistic manner,

with movement across the entire moment examined in one scrub-through from beginning

to end. Sometimes it was also analyzed in a group manner, with multiple players visible

simultaneously. Participant 7 is an illustrative example of this, who zoomed out enough

to see the entire map and scrubbed through the entire moment, verbalizing their intent

as: “I’m just going to look at an overview just to get an idea of what’s happening.” At

other times, movement was examined more granularly, focusing either on smaller events

within a moment or on a single player with other players being ignored or filtered out.

This seemed to allow users to better understand the moment-to-moment decisions that

were made by the player of interest. Examples of what participants would say regarding

player decisions when studying movement are “...he rotates to the top lane through the

river, turns back around for a second, but he keeps going” (Participant 1) and “you can

see over here the Templar is chasing and hoping to dive the tower” (Participant 4).

Seek Details to Support Sense-Making refers to the process in which a user

would support and facilitate the process of making sense of the data by intentionally

seeking out more information regarding the state of the game. Specifically, seeking

details is the act of seeking out low-level information that was not immediately visible

from the tool, but which provided information regarding the state of the game. In the

case of Stratmapper, detail-seeking manifested through interaction with the system’s

tooltips. Participants would trigger tool tips by hovering over icons in order to read

detailed information regarding health, damage dealt, or who the target of an attack

was. An example of a participant interacting with the tooltips to seek details can be

seen in Figure 8.3.

I observed two patterns regarding how detail-seeking was used to help build

a mental model of play. In the first pattern, details were sought to answer a question

and detail seeking came after the other activities in this category, discussed above.
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Figure 8.3: An example of participant 6 using a tool-tip to seek details.

For example, after engaging in activities in the data interaction category, participant

6 noticed that one hero was healing and brought up the tooltip to examine the hero’s

held items. When they found the answer they were looking for, they stated it out loud,

saying “tranquil boots [a held item that heals over time], ok”. In the second pattern,

details were sought to support the construction of context and detail seeking often came

before other interaction activities. For example, before engaging in data interaction

activities in earnest, participant 5 wanted to know when during the game the data

points occurred and brought up the tooltip to see the time stamp. They stated this

goal out loud, saying “let’s see, just to get a memory on the time stamp here...ok so

a little bit later in the game”. In both cases, seeking details supported the ongoing

process of making sense of the data.

Sense-Making: The three activities in this category relate to the cognitive

activities that users would engage in while interacting with the data in order to extract

meaning and develop an understanding of gameplay.

Leverage Domain Knowledge to Fill Gaps refers to the process by which par-

ticipants would use their own, pre-existing knowledge of the game to fill in gaps in the

information provided to them by the visualization. There were two kinds of scenarios

identified. In the first scenario, there was data missing regarding some aspects of the

players’ behavior, however, participants were able to use domain knowledge to fill in the
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missing information. For example, Stratmapper does not show ability usage, however,

participants were able to leverage domain knowledge to infer ability usage based on

observable information, i.e. “it looks like he surges [ability] away because he’s running

really fast” (Participant 3).

In the second scenario, information was included (usually within a tooltip),

however, participants did not need to look at it to understand what was happening. For

example, participant 1 was able to recognize that a player was farming a jungle camp

based on their movement and did not need to look at who the targets of the player’s

attacks were, which was included within a tooltip. Participant 1 vocalized this during

their think-aloud, stating: “when Oracle is pulling this creep camp here, you would have

to read into it and you would see that that is what’s happening because he’s delivering

damage to neutral camps, but I did not do that, I just assumed he was pulling based

on his movements”. Similarly, participant 5 recognized that a teleport was going to

happen based on the positioning of a player and without having to check the items for

a teleport scroll. They stated: “I already know that this is a pretty common, even in

the modern updates of DotA 2, this is a pretty common spot to want to get away from

someone, there’s not a lot of vision in this area.”

Players also levered domain knowledge to explain why certain patterns or de-

tails existed in the data. For example, participant 6 noticed, while examining tooltips,

that a hero’s health was increasing. After looking at the items the hero held, they were

able to explain this pattern by using their own domain knowledge to supplement what

was present in the data, stating: “tranquil boots [an item held by the hero in question]

gives heal over time”. At a higher level, all participants noticed a pattern in which data

points for one hero, Legion Commander, were predominantly located in the jungles. All

participants commented that farming the jungle was a common strategy for the hero,

effectively leveraging their domain knowledge of popular gameplay strategies to explain

an observable pattern in the data.

Pinpoint Events to Frame Understanding refers to a process by which partic-

ipants frame their understanding of gameplay based on one or more easily identifiable
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or distinguishable events. These events were often pinpointed with the aid of Stratmap-

per’s action icons. In some cases, these events were identified from a single action. For

example, participant 7 pinpointed an event from a single death action, stating “and

then there’s a death on the Shredder”. In other cases, these events were inferred from

a collection of actions, often facilitated by an activity from the information interaction

category. For example, participant 4 examined a set of stationary action icons at a

given map location (studied positioning) and pinpointed a camp pull, stating “Oracle

here, being the good support that he is, is pulling a neutral camp”. There were also

moments where an event could be pinpointed based on player positioning alone, without

any action icons present. For example, participant 5 saw Juggernaut’s location, during

a point in time when the hero was taking no actions and pinpointed a setup for a gank,

stating “Juggernaut is setting up [a gank] in the trees right here”. In some cases, a

pinpointed event would be the first thing a participant would analyze within a moment.

For example, Participant 3 began their analysis of one moment with the following pin-

point: “it looks like Timber is going to die at the end, and no towers go down, and it

looks like everyone else is going to be scuffling with some heals thrown in”.

Form a Hypothesis of Context and Behavior that Evolves over Time refers to

the process by which participants would provide theories for what was happening within

the game, in terms of gameplay context or player reasoning or goals, based on what they

could observe from the data. Three kinds of hypotheses were observed: hypotheses for

what had already happened before the moment began, i.e. “just from the start of it, it

looks like they may have already taken the tier two [referring to a tower]” (Participant 5),

hypotheses for what had not yet happened but was about to, i.e. “it looks like Batrider

is positioning, potentially, to jump that Slark” (Participant 3), and hypotheses for what

was currently happening, i.e. “Juggernaut and Silencer, they might be pushing over

here” (Participant 6). Hypotheses were also not entirely static, and participants would

also form a hypothesis and then sometimes update it later as they discovered more

information.

As can be noted from the three examples, a hypothesis was defined as a guess
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regarding game context, player goals, or player reasoning. In other words, it was an

inference on the part of the user regarding information they could not observe, typically

because it either was not included or because it was heavily dependent on information

within the minds of the players, which could only be inferred. The formation of a

hypothesis was facilitated by interaction with the data as well as leveraged domain

knowledge, and a hypothesis could then be validated or invalidated by a pinpointed

event. For example, participant 5 hypothesized that the hero Juggernaut “just flies

over and snags him, I don’t think there was a blink dagger”, which was concluded by

studying movement and leveraging domain knowledge. Specifically, they leveraged the

knowledge that Juggernaut is able to jump to a target without the aid of an item and

that an item called a blink dagger, which facilitates such movement, exists. However,

participant 5 later pinpoints an event that overturns this hypothesis: “yep, ok, so he

did blink in.” Specifically, participant 5 was seeking details to confirm their hypothesis,

saw the blink dagger in Juggernaut’s items list, and was then able to pinpoint an event

(the use of the dagger) that overturned their previous hypothesis.

Validation: This category consists of a single activity, which is categorized

separately as it encompasses the act of checking rather than interacting with data or

making sense of it.

Review Events to Confirm Hypotheses refers to the process by which partici-

pants were observed to validate their understanding of events at the conclusion of the

analysis. Participants were observed to play through the entire scenario again, typically

either stating or narrating what they were observing and how this supported their hy-

potheses. If everything they observed during this process supported their hypotheses,

they would synthesize them into a single hypothesis for the entire moment and declare

their analysis complete. Examples of this can be seen in: “so they gank him from both

sides and he seems to die” (Participant 1) and “just a classical jump in and kill the

carry” (Participant 5). If they observed data that contradicted one or more of their

hypotheses, they would cease the review and re-engage in the other activities until they

had satisfactorily updated their hypothesis. They would then review again.

147



Figure 8.4: A preliminary process model to describe how users engage the activities in
the taxonomy (see Table 8.1) in order to understand and extract meaning from spatio-
temporal game data.

8.2.2.2 Process Model

By examining patterns in how the labels for the different action categories

were applied to the recorded data in ELAN, discussed above, I identified a preliminary

process model, seen in Figure 8.4, for how users make meaning from spatio-temporal

game data. Specifically, users will engage in the data interaction activities of studying

positioning to construct context, studying movement to infer decisions, and seeking

details to support sense-making interchangeably with the sense-making activities of

leveraging domain knowledge to fill gaps and pinpointing events to frame understanding.

These activities are part of a larger process of building an understanding of gameplay

context and player behavior from the data. That understanding is then used to form a

hypothesis regarding context and behavior, which may evolve over time, and may trigger

additional executions of the five previously mentioned activities. If the user believes they
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have enough accurate hypotheses to satisfactorily explain and understand the data, they

will proceed to validation and review the events to confirm their hypotheses. If they

find a discrepancy, they will then return to the process of building an understanding of

context and behavior in order to form a more accurate hypothesis. This entire process

is part of a larger process of constructing a mental model of gameplay, which is the

ultimate result of interacting with the data, which allows players to understand why

decisions were made and outcomes were experienced, and, ultimately, learn from the

visualized gameplay data.

8.3 Implications for the Presentation of Gameplay Process

8.3.1 Positioning and Movement

Unsurprisingly, these results illustrated that users of a spatio-temporal visu-

alization system spend the bulk of their time examining the positioning of data points

and how that positioning changes over time (movement). However, it is the significance

of that movement piece that is of interest here. Many existing spatio-temporal visual-

ization systems do not include interactive features and therefore do not facilitate user

control over the presentation of movement. Instead, movement is presented in a static

manner, with arrows and paths drawn atop the map [701, 703].

The results of this study highlighted that movement and being able to observe

movement, was critical to the overall process of interpreting spatio-temporal gameplay

data and, further, demonstrated value in allowing users to control and interact with

the presentation of that movement. All participants, at least once, studied movement

by manipulating the timeline selection feature to see how the positioning of each player

and their actions changed over time. This suggests that future spatio-temporal systems

should consider including interactive features that allow users to examine movement in

an animated manner. Further, users did not always go over the entire time frame of the

moment, instead focusing on smaller events, going forwards and backward over them in

an iterative manner. This result suggests that providing users with finite control, rather
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than a play/pause feature would better serve their needs.

8.3.2 Details on Demand vs. Domain Knowledge

One of the more prevalent elements of classic information visualization tax-

onomies, details on demand refers to the inclusion of granular, detailed information

such that it can be accessed when needed [613, 576, 736, 731, 213] but also ensuring

that it is only present when needed so as not to trigger cognitive load. During this

study, we saw a variant of this concept manifest in the “seek details” activity, which

was engaged by all users at some point, typically to confirm their hypotheses. This

suggests the continued relevance of the concept and implies that future systems should

continue to adhere to the practice, ensuring that all details are available within the

interface and able to be accessed as needed.

However, a notable result of this study was the significance of domain knowl-

edge, and the extent to which possessing domain knowledge meant that users did not

need to seek details because they already knew what they were looking at. This em-

phasizes the importance of the “on demand” part of “details on demand” and implies

that future systems may be able to reduce the risk of cognitive load or mental strain

by hiding granular details from the main view on the assumption that the user may

already know this information or be able to infer it unaided. This does, however, de-

pend on the audience for the tool. While players are likely to be satisfied using their

domain knowledge to interpret events, developers analyzing data in order to make game

adjustments would likely want more information upfront. Further, those newer to the

game, and with less domain knowledge, may require more details upfront as well as

they will possess less domain knowledge. This suggests that variable arrangements of

detailed information should be considered in future system design, depending on the

skills, knowledge, and needs of the audience.

This also has implications for the abstraction of data. While abstraction is

a promising avenue for increasing the readability of game data visualization [320], it

may interfere with users’ ability to trigger domain knowledge by removing too much
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information from what is immediately visible. Specifically, Stratmapper features no ab-

straction of data, instead presenting each data point as what it is, where, and when

it occurred. This granular information was recognizable to the participants and trig-

gered their domain knowledge, allowing them to generate an understanding of gameplay

events. Abstraction may obscure too much information, and could possibly interfere

with this process. Thus, future systems should be cautious of the extent to which data

is abstracted, and may want to consider interfaces that include as much contextual

detail as possible to facilitate the use of domain knowledge.

8.3.3 Pinpointing Events and Forming Hypotheses

Although the participants in this study were experienced DotA 2 players, they

were examining data from gameplay that they were not a part of. Thus, a great deal

of their ability to extract information from the data hinged on their ability to form a

comprehensive hypothesis, which in turn, hinged on their ability to pinpoint events.

These activities were at the core of mental model construction, the overall process that

all of the activities in the taxonomy build into.

It is interesting to note that in infovis literature, mental models are often

discussed in terms of how users perceive data or understand the functions of the visu-

alization [337, 736, 731, 432, 398]. Here, however, the emphasis is on users building a

mental model of the gameplay context, based on hypotheses of what occurred during

gameplay formulated from the events they can pinpoint in the data. The iterative ac-

tivities of forming and updating hypotheses are reminiscent of activities included within

the NOVIS model proposed by Lee et al. [384]. Specifically describing how people make

sense of unfamiliar visualization, the model includes “constructing a frame” to make

sense of a visualization and “questioning the frame” when they doubt or need to verify

it. I saw a similar pattern in how users generated a hypothesis and then sought veri-

fication through details and pinpointed events, especially if they came to doubt their

hypothesis. However, in this case, the hypotheses were related to understanding the

gameplay events depicted in the visualization, rather than the visualization itself.
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It may be that the context-sensitive nature of gameplay data, and the need

to be able to understand the context to make meaning of that data, prompted this

behavior. It should be noted, however, that the gameplay events used in this study

were unfamiliar, just as the visualizations in Lee et al.’s study were unfamiliar [384].

Thus, it may be that the iterative acts of creating, validating, and updating hypotheses

are driven more by a need to understand unfamiliar artifacts than any specific domain

context, and future research may want to explore this further.

For future systems, the key roles pinpointing events and forming hypotheses

play in building a mental model of gameplay suggests opportunities for models or AI

assistants that can aid users by automating the processes, perhaps by automatically

identifying key events and drawing the user’s attention to them or by proposing a

hypothesis for the user to edit if necessary. Given that user’s hypotheses were often

updated after being first proposed, the results also emphasize that accurate identification

will not be an easy task, and that human users should always be able to change, update,

or correct any machine-driven identification. Further, the emphasis of these activities

also implies the value of tools such as Stratmapper’s labeling system, which can allow

users to track what they have identified as they continue their analysis, and allow them

to better remember their hypotheses when they review.

8.3.4 Getting the Big Picture vs. Going Granular

From the results, both the taxonomy and the process model, it is apparent

that interacting with spatio-temporal gameplay data involves both holistic and granular

perspectives of the data. Specifically, as discussed in the results, participants would often

begin by examining the positioning and movement of everyone across the map, to get an

overview of events. Then, they would get into the details of specific maneuvers, zooming

in and focusing on specific players. This resonates with what is discussed in existing

taxonomies, which discuss gaining an overview first [737, 576, 613], then exploring data

more granularly by zooming and filtering [213, 731]. For future systems, this suggests

that they should ensure that users have the ability to see data in both a holistic manner,
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in which they can see everything at once, and a focused manner, in which they can zoom

into an area or player of interest.

When discussing these insights though, it is noteworthy that participants did

not always engage in filtering, despite this being an action described extensively in

previous work [613, 576, 736] and a feature supported by the Stratmapper interface [14].

It was because of its inconsistent, and not predominant, use that it was not included as

a unique activity within the taxonomy. Those participants who did use Stratmapper’s

filtering mechanism would only filter players out temporarily, usually to facilitate a more

granular study of a given player’s movement patterns, and would always bring their data

back to the visualization afterward. Further, no participant ever filtered out any type

of event, despite this being a functionality of the tool. This aversion to filtering, and

tendency to restore the unfiltered data, suggests that participants were reliant on the

additional data to make sense of what they were seeing. It may be that the additional

data points played a key role in building contextual inferences and hypotheses and that

users were, therefore, hesitant to remove them our of concern that they would miss

events critical to comprehending gameplay. This may be particularly relevant in the

context of team based, multiplayer games, as it is often the actions of one player that

influence the actions of another. Future work may want to examine this phenomenon in

further detail, to examine the extent to which filtered vs. holistic data is able to impact

users’ understanding of events.

The act of undoing filtering and restoring the previous view within the visual-

ization brings to mind the concept of “history”, or the ability to return the visualization

to a previous state, discussed in existing taxonomies [613, 213, 576]. However, while

previous work discusses this in the context of retracing one’s steps or undoing a mistake,

here it appears to be more of a case of restoring the big picture when one has completed

granular analysis. For future systems, this suggests that, although the ability to go

granular with analysis must be supported, it must not be done in a way that removes

data from the user’s view permanently. Any filtering that is facilitated must be able

to be removed, such that the context of the game at large, as inferred from the extra
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data, can be restored. This need to restore the big picture is further supported by the

“review” activity, which was always enacted with no player filtered out. Thus, it would

appear that it requires the presence of all of the data such that the user is able to check

their theories and ground the findings of their granular analysis within the context of

the gameplay as a whole.

8.4 Summary

Based on these results, I obtained valuable insight into the ways players will

leverage process information towards making sense of gameplay. Specifically, there is

a strong emphasis on understanding decision-making and reasoning. However, this

work looked at spatio-temporal visualizations, which are not applicable to every type

of complex game, as they are dependent on the inclusion of a spatial environment that

can be navigated. Thus, in the context of this dissertation, I can build on this work

by turning our attention to what I call process visualizations, which do not require

the game to have a spatial component and are therefore a viable option for presenting

players with granular process information across multiple genres and game types.
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Chapter 9

An Interaction Model for Process

Visualizations

The work presented in this chapter was originally published in ICEC 2022 1

[350].

9.1 Visualizations of Process in Games and Beyond

Recognizing that complex games need a process-oriented way to present data

to players, such that they may learn from it, that does not require the game to have

a spatial component, I turn to other domains that have emphasized the depiction of

process for inspiration. Specifically, I turn to process mining. The domain of process

mining has, for years, been focused on capturing and understanding human processes,

or sequences of decisions and actions, such that systems and workspaces can be better

designed to support them [686, 685]. Within the domain, processes are mined from

event logs of interaction with a system in order to better understand humans and better

1Kleinman, E., Villareale, J., Shergadwala, M., Teng, Z., Bryant, A., Zhu, J., & El-Nasr, M. S. (2022,
October). Towards an Understanding of How Players Make Meaning from Post-Play Process Visual-
izations. In Entertainment Computing–ICEC 2022: 21st IFIP TC 14 International Conference, ICEC
2022, Bremen, Germany, November 1–3, 2022, Proceedings (pp. 47-58). Cham: Springer International
Publishing. This research was part of an NSF-funded project conducted collaboratively with the PXL
lab at Drexel University and ITU Copenhagen. It would not have been possible without the assistance
of Jen, Murtuza, Zhaoqing, and Andy and the guidance and input of Jichen and Magy.
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design systems to facilitate and support them [685]. Understanding the mined processes,

however, is dependent on being able to read the output in a detailed, comprehensive,

and interpretable manner.

In order to do this, process mining, as a field, has developed a series of vi-

sualizations to help managers, analysts, and designers glean processes from event logs

[551, 718, 687]. These visualizations all follow a similar approach, using node-link dia-

grams to display the ordering and progression of human actions as they work towards

the completion of a task [514, 718, 687, 581]. The differences exist in how each visu-

alization style depicts complexity in the process. For example, Petri Nets emphasize

state information in addition to actions taken [514, 551], while Causal Nets depict the

existence of two potential actions that can be taken at the same point in the process

through “or” nodes [687].

In games, graph-based process-visualizations exist almost exclusively in the

context of game analytics and user experience research [187, 344, 297]. Glyph [478]

is an example of one such process visualization, which uses a node-link diagram to

display player processes in terms of state-action transitions, where the state is the state

of the game and the action is what the player did that moved them to the next state

[478]. Glyph has been used to extract strategic trends from educational puzzle games

[322, 478], esports [14], and even an augmented reality game [320]. Other tools for

analysts and researchers have also leveraged the node-link diagram approach, including

Playtracer, [26] and Play-graph [702].

In the context of player-facing tools, process-visualizations are typically de-

signed as timelines depicting the ordering of actions taken over the course of a game

[347, 367, 11]. For example, Kuan et al.’s system for Starcraft 2 includes a timeline,

a process visualization, of the order that structures were built in [367]. Visualeague, a

system for League of Legends, similarly uses a timeline to present the order in which the

player leveled up their skills [11]. Even Stratmapper, discussed in the previous chapter,

featured a process-visualization in the form of a timeline [14, 347].

However, these timelines are often secondary features attached to a spatio-
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temporal, map-based visualization system, as they are in all of the above examples

[367, 11, 14]. In fact, more recent iterations of Visualeague have de-emphasized the

process visualization and focused more on the spatio-temporal data and aggregated

stats over time [10]. Being relegated to a supplementary visualization means that player-

facing process-visualizations are not often the focus of research. As such, there has been

little work exploring ways to expand these visualizations to present more comprehensive

gameplay information or exist as stand-alone tools.

This is a gap worth exploring, given that the work I discussed previously em-

phasizes the significance that being able to understand process has on SRL, specifically

on self-reflection, in the context of complex games. While spatio-temporal visualiza-

tions are able to address this, process-visualizations may offer a viable alternative that

better generalizes to all types of games. Thus, in this next project, I sought to develop

a stronger understanding of how meaning is made from data presented in a process

visualization of gameplay, in order to better inform future exploration of the design.

9.2 Making Sense of Process Visualizations for Games

This study sought to expand on the previous one by looking at meaning-making

in the context of the aforementioned process visualizations and answering the question

“What interpretation techniques do players use to extract meaning from sequential-

process visualizations of others’ gameplay?”

9.2.1 Methods

For this study, I used the game Parallel [745], an educational game that teaches

parallel programming. While not an esport, it still qualifies as a complex game due to

having multiple correct solutions and unpredictable outcomes.
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Figure 9.1: A screenshot of the game Parallel. Players need to place semaphores and
signals to direct arrows, which carry packages and move along pre-defined tracks, to the
designated delivery points. The player must coordinate threads executing in parallel.
The level pictured was the subject of the retrospective interviews.

9.2.2 Parallel

Parallel is a single-player, 2D puzzle game designed to teach concurrent and

parallel programming concepts [745]. The game introduces students to concepts such

as non-determinism, synchronization, and efficiency using visual representations (see

Figure 9.1).

The player’s goal is to coordinate the arrows, which represent parallel pro-

gramming threads and move at random speeds, to move packages from their pick-up

points to their designated delivery points. To accomplish this, players must place sig-

nals and semaphores on the track and link them to control each thread’s movement.

Semaphores, represented by the circle with an X in the upper right corner in Figure 9.1,

will block the movement of an arrow unless opened by a signal, represented by the other

circle in Figure 9.1. When a player thinks they have a correct solution they can test or

submit it. A test will check the solution with one possible speed of arrow movement,

while submission will test them all.
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Action Definition

Place Semaphore The player places a semaphore on the board

Place Signal The player places a signal on the board

Link Signal and Semaphore The player links a signal and a semaphore

Test Passed The player runs a test and it passes

Test Failed The player runs a test and it fails

Stop Test The player stops a test simulation before it completes

Stop Submission The player stops a submission simulation before it completes

Toggle Semaphore The player locks or unlocks a semaphore

Move Semaphore The player moves a semaphore to another spot

Move Signal The player moves a signal to another spot

Destroyed Semaphore The player destroys a semaphore

Destroyed Signal The player destroys a signal

Submission Passed The player submits a solution and it passes

Submission Failed The player submits a solution and it fails

View Help The player views the help menu

Table 9.1: This table showcases all 15 in-game actions used to analyze the players’
gameplay.

9.2.2.1 Recruitment

13 undergraduate computer science students were recruited. Participants were

required to be (1) 18 years of age or older, (2) located in the United States, (3) able

to communicate in written and spoken English, and (4) able to play on a Windows

machine. Participants did not have to have prior knowledge of parallel programming.

Study participants played four levels of Parallel including the one shown in Figure 9.1.

9.2.2.2 Visualization Setup

To generate the process-visualizations, I worked with collaborators who helped

design the game and identified a set of gameplay actions necessary for recognizing strate-

gic processes (see Table 9.1). A Python script was prepared to filter and format the log

files into sequences of these actions. Gameplay actions were abstracted from lower-level

logged events by the script. For example, “place semaphore” (a gameplay action) was

abstracted from a pair of logged events: “mouse click down” (over semaphore icon in the
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Figure 9.2: An example of the process visualization used in the Parallel study.

menu) and “mouse click up” (over a track). Any logged events that did not correspond

to one of the selected gameplay actions were filtered out.

Using the visualization tool Glyph [478], I generated process-visualizations for

each player using the 15 key actions, an example of which can be seen in Figure 9.2. I

chose this tool as Glyph’s network graph resembles other prominent types of process-

visualizations, such as dependency graphs [759], those used to visualize process mining

results [686, 684], and customer journey maps [663, 566], making it a representative

example of such a visualization. At the same time, previous work has demonstrated its

generalizability, scalability, and usability with game data [14, 478, 322]. Please see the

original paper for further details on Glyph’s functionality [478].

Glyph’s network graph uses a node-link diagram to represent player behavior

as a process visualization. Each node represents a different in-game action and a link

between two nodes indicates that at least one player transitioned between those two

actions. As a player repeats actions during gameplay, their trajectory will loop back to

already visited action nodes. In other words, if a player [placed a semaphore], [placed a

signal], and then [placed a semaphore] again, their trajectory through the visualization

would go from the [place semaphore] node to the [place signal] node and then back to
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the same [place semaphore] node. The thickness of a link indicates how many players

made that transition (with thin being less and thick being more). Individual player

trajectories within this visualization can be highlighted as seen in Figure 9.2. Each

action node, combined with the varying thicknesses of links and the ability to highlight

specific players, allows the visualization to scale to community data while maintaining

both process information and readability [478, 14, 322].

9.2.2.3 Interview Protocol

Based on previous work, I recognized that interpretation techniques tend to

fall into two categories: interaction techniques used to extract information from the

visualization and cognitive techniques used to make sense out of that information. In

order to ensure that I elicited techniques in both groups, I developed two prompts:

1. Could you describe what you understand about this player’s actions from this

visualization?

2. Can you say a bit about why you think the other player played the way they did?

I refer to the first prompt as the “interaction prompt”, as the primary goal of this

prompt was to elicit interaction with the data and the extraction of information. I refer

to the second prompt as the “cognitive prompt”, as the primary goal of this prompt

was to encourage cognitive processes and sense-making by asking participants to think

about the other player’s reasoning behind their actions.

To focus the data collection on how participants read the data and ensure

that interaction affordances, such as zooming, would not become confounding variables,

a slide deck was prepared to present to each participant during the interview. One

researcher led the interview, screen-sharing the slide deck, while two others remained

silent and recorded, in text, what the participant said.

The first slide contained a visualization of the participant’s own data. On

this slide, the lead researcher gave the participant basic instructions on how to read

the visualization. The next slide contained a visualization of another participant, who
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played similarly to the interviewee. The last slide contained a visualization of another

participant, who played differently than the interviewee. While displaying the second

and third slides, the lead researcher asked the prompts described above. Interviews

lasted about 30 minutes and participants received a 50$ gift card.

9.2.2.4 Data Analysis

Interview data were analyzed using a two-step, iterative thematic analysis pro-

tocol [237, 574]. The first step of the analysis sought to identify the specific, individual

interpretation techniques that players used when making sense of the data. To do this,

myself and a collaborator, separately, analyzed 30% of the interview responses. This

generated a combined code book containing six interpretation strategies. We then sep-

arated and performed an inter-rater reliability validation using Cohen’s Kappa [133]

on 30% of the data. The codes achieved an IRR score of .87, indicating very strong

agreement [375].

The second step sought to identify the overall process of making sense of the

data. Here, we separated again to analyze 30% of the data. Again, the unit of analysis

was an entire response to a prompt. We analyzed each prompt response and marked

what techniques were apparent in the response and in what order they were used by

the participant. We then reconvened and discussed and identified two unique methods

for engaging the interpretation techniques across the data set. We then separated again

and performed a second inter-rater reliability validation for the two methods, again on

30% of the data. The method codes achieved an IRR score of .74, indicated strong

agreement [375]. I then labeled the remainder of the data set with the method codes.

9.2.3 Results

9.2.3.1 Interpretation Techniques

The types of interpretation techniques and their definitions can be seen in

Table 9.2.
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Reading the Visualization to Collect Information refers to the user

reading the presented data but not offering any insight or meaning behind it. It appeared

as though participants would engage this technique when they were trying to collect

information from the visualized data as a precursor to making connections between

data points. For example, Participant 9 reads the trajectory of another player, stating

“They do start, test passed, sub failed, they place the semaphore, then maybe they

toggle it, they place the signal, they link, maybe they move it around.”

Notably, reading the visualization would often encompass a read-through of

the entire sequence, suggesting that participants were engaging this method to gain a

holistic overview of the data. This is illustrated by Participant 0 who said “it looks

like they placed and moved semaphores and placed signals, linked some together, ran a

submission, stopped the submission, placed another semaphore, maybe moved it again,

toggled it, and then maybe toggled a different one, ran it, a test passed, and then

the submission passed.” This is reminiscent of an interaction paradigm often discussed

in information visualization taxonomy literature, where users will begin with the big

picture, then zoom in on areas of interest or look for connections between data-points

[576, 613]. This leads into the next technique we describe, in which participants, armed

with the big picture, would begin looking for connections between data-points.

Participants did not always read the visualization, with many jumping right to

identifying patterns. This is likely the result of individual differences, with some people

adapting more quickly to the visualization style and being able to more quickly extract

points of interest.

Identifying Patterns to Inform Inferences refers to the user would iden-

tifying and extracting a pattern from the data. Participants would make general state-

ments about the characteristics of the data or extrapolate on the visible information

in some way. It was through this particular technique that we saw participants begin

to make connections between data points. Further, we saw participants use pattern

identification as a way to begin forming inferences about the players who produced the

data. We saw two types of patterns that participants would identify in our study:
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• Sequential Pattern: Refers to the participant identifying patterns in the order-

ing of actions. For example, Participant 3 noticed that “[the other player] repeats

that process of toggling then placing then linking” (Participant 3). Recognition

of these patterns is facilitated by the sequential nature of the visualization and it

would likely be harder to recognize such patterns without them. We also noted

that being able to identify sequential patterns helped participants derive infer-

ences about the thought processes of the players who produced the data. For

example, Participant 8 described “They seem to jump back and forth a lot. They

were probably thinking through a lot of their placement and movement.” The

first part of this statement, in which they recognize a pattern in ordering in which

the other player often jumped between toggling and movement, goes on to inform

an inference about the player’s reasoning, that they were thinking through their

solution.

• Frequency Pattern: Refers to the participant identifying a pattern regarding the

number of actions taken. For example, Participant 0 said: “They move a limited

number of times, but they ran the submission a lot because it looks like they

stopped it a lot.” The emergence of this technique may be informed by the nature

of the visualization, as it indicated how many times an action was taken. Further,

it is unlikely that this pattern is unique to process visualizations, as aggregate

visualizations also display frequency information, and often more clearly. This is

in contrast to the sequential pattern identification technique, which is likely better

facilitated, as well as encouraged, by a process visualization. We also observed that

recognition of frequency patterns would lead to inferences regarding the player who

generated the data. For example, Participant 7 said: “It looks like they placed

a lot so they probably deleted them instead of moving them”. We can see from

this example that recognition of the frequency pattern, that elements were placed

a lot, resulted in an inference about the player who produced the data and how

they approached gameplay.
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Pattern recognition is a critical part of the process of making sense of visualized

information, and is frequently discussed in previous work [576]. Of interest, however,

is that the patterns informed and were accompanied by inferences about the player

who produced the data. This is similar to the phenomenon observed by Kleinman et

al. in their study on spatio-temporal visualization [347]. We discuss inferences, as an

interpretation technique, in more detail below.

Making a Comparison to Guide Pattern Identification refers to the

user comparing the highlighted player’s data and their own experience. Comparison did

not always occur, but when it did, it was typically connected to identified patterns. For

example, Participant 0 said “They use the stop submission button, that’s interesting,

I don’t think I used it at all.” Often, participants would use comparison as a way to

guide the identification of additional patterns. This is well illustrated by Participant 1

“Once they laid down a solution they would test it and see if it failed or not. Whereas

I don’t remember doing as much testing.” Here, the participant has identified a pattern

in which the subject would lay down a solution then test it. They compare this to their

own gameplay, in which they did not test as much. This understanding that the other

player took a different approach can act as a preliminary guide to help them identify

more patterns (what else did the other player do differently?) and begin to generate a

more formal inference.
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Technique Definition

Reading
the Visualization

to Collect Information

The participant read the data that appeared in
the visualization but did not extrapolate on it

Identifying Patterns
to inform Inferences:
Sequential Pattern

The participant identified a pattern
related to the ordering of data-points

Identifying Patterns
to inform Inferences:
Frequency Pattern

The participant identified a pattern
related to the amount of data-points

Making a Comparison
to Guide Pattern Identification

The participant compares the data
of the other player

to their own experience
to better make sense and extract patterns

Making an Inference
to Understand the Other Player:

Approach or Strategy

The participant makes an inference
regarding the subject’s intentions
behind the actions they took

Making an Inference
to Understand the Other Player:

Understanding or Expertise

The participant makes an inference
regarding the subject’s knowledge
or comprehension of the gameplay

Table 9.2: The six interpretation techniques identified based on analysis of players’
interaction with the community visualizations and brief definitions.

Making an Inference to Understand the Other Player refers to the user

making an inference about the subject who produced the data. As discussed above, in-

ferences were informed by identified patterns within the data, which were sometimes

guided by comparison. While inferences are known to occur in infovis interaction [576],

Kleinman et al. [347] illustrated how game data visualization varied in that the infer-

ences are about the intentions of the players rather than the data itself. Here, however,

we noticed a difference from Kleinman et al.’s work. They observed participants often

making inferences about game contexts. In contrast, we observed inferences to be fo-

cused primarily on the player and their own decision making processes. This is likely

informed by the visualization. Whereas Kleinman et al. used spatio-temporal visualiza-

tion, therefore displaying more context and likely encouraging participants to focus on

it, the process visualizations we used displayed only the player’s actions, encouraging
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participants to focus solely on the player and their reasoning. We observed two types

of inferences from our participants:

• Approach or Strategy: Refers to the participant making an inference about

what the subject was planning and how they were executing that plan. For ex-

ample, Participant 7 said: “It looks like they were checking their work a lot as

they went. So this would help them see how the changes they made would impact

the final result, visually”. Through these inferences, subjects attempted to make

sense of the data, and more specifically the patterns they had identified, by un-

derstanding the reasoning and intentions of the other player. Another example of

this comes from Participant 10, who said “They saw that the test passed so their

aim was to try and generalize the solution.” Here, participant 10 infers a strategic

decision that the player made (trying to generalize their solution) as a way of

explaining an observed pattern in the data (that the player did not immediately

submit after their test passed and instead took other actions). In doing so, the

participant develops an understanding of the other player that allows them to

make sense of the data.

• Understanding or Expertise: Refers to the participant making an inference

about what the subject knows about the task or subject. For example, Participant

4 said “It looks like they weren’t so sure how to lay everything out since they

kept moving around”. By suggesting a level of knowledge, these inferences gave

participants an understanding of the data based on an image of the other player,

specifically focused on what they understood. For example, Participant 11 said

“I would say they probably came in with a good idea about how they were going

to do the level before they started playing [since] they’re very calculated, they

rarely jump back and forth between states.” Here, the participant has developed

an image in their mind regarding the expertise of the other player (that they had a

good idea of what they were going to do) that can be used to explain an observed

pattern in their data (that they rarely go back to previously visited states).
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It is likely that the emphasis on making inferences to understand the other

player were encouraged by the emphasis on a single player’s trajectory within the vi-

sualization. However, being able to single out and understand the decisions of a single

player is a key element of learning. Open learner models [294] demonstrated that pro-

viding users with access to someone else’s data, can motivate them to spend more time

in the system and help them locate relevant material. Other work has supported using

OCMs to help users to gauge their relative progress towards a shared goal [86], effec-

tively seek collaborators [90], and even follow in the footprints of other, more successful,

users [85].

9.2.3.2 Sense-Making Methods

The interpretation techniques connect to one another to form a process for

making sense of the data. We refer to this process as a sense-making method. How-

ever, while the results discussed above illustrate how reading the visualization informed

pattern identification and comparison, which in turn informed inference making, we

observed, in our analysis, that there were times in which participants would begin their

sense-making by making an inference, often informed by the surface-level details of

the visualization (such as the length of the highlighted trajectory). Thus, we identify

two general methods for sense-making for retrospective process-visualizations for games,

described in detail below:

9.2.3.3 Induction Method

: This method represents an approach in which the players were observed to

begin their sense-making process by reading the visualization. They would then identify

patterns in the data, either sequential or frequency, and use comparison if necessary to

generate an understanding of the gameplay events represented by the data and guide

their analysis. This would culminate in an inference about the other player, either

about their approach or their expertise. In more general terms, participants who used

this method would begin by collecting information and generate an inference about the
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player that could explain what they saw in the data.

An example of this method is demonstrated by Participant 7: first, they read

the visualization, stating “Ran a test and it passed then worked to place the items in

one sequence, and then the test failed, and then in another they stopped it again.”

They follow this with recognition of a frequency pattern, stating “It looks like they

placed a lot”. Finally, they offer an inference of the player’s strategy, meant to explain

the information they have collected, stating “they probably deleted [the signals and

semaphores] instead of moving them.”

An example of comparison being used in this technique is provided by Partic-

ipant 11. First, the participant noted a frequency pattern, stating “It seems like they

move their semaphore a lot,” which they followed with a comparison, stating “Which is

something I didn’t do.” They then arrived at an inference of the other player’s approach,

stating “I think they didn’t form their idea before placing things and needed to change

it.” Participants who used this method ended their analysis when they had collected

enough information to make an inference, and thus the method had a clearly defined

endpoint.

9.2.3.4 Framing Method

: In this method, participants begin with an inference, before proceeding to

information collection. When participants used this method, they would first make one

or more inferences about the other player’s approach or understanding, often based on

visually apparent details such as the length of the trajectory, which were then used as

a framing device for making sense of the data. They would then switch to collecting

information, first reading the visualization, then using one or both pattern identifica-

tion techniques and comparison, if necessary, to generate hypotheses that justified and

supported their initial inference.

An example of this method is demonstrated by Participant 12: they begin

with an inference of the other player’s strategy (or lack thereof), stating “I would think

that this player kind of did stuff at random, I’m not sure if there was a process that
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they used.” They follow this by reading the visualization to collect information, stating

“It seems like [they’re] going from start and then placing a semaphore [then] going

from test passed to stopping submission and moving a signal”. They follow this with

identification of a sequential pattern (or lack thereof), stating “It doesn’t look like this

graph had a lot of iterative processes...It’s a little jumbled up.”

An example of comparison being used with the framing method is demon-

strated by Participant 11: they begin with an inference of the other player’s under-

standing, based on their shorter trajectory, stating “They had a clearer sense in their

mind of what they wanted to do.” This is followed with observations of patterns in the

visualization, where they state “the nodes aren’t overlapping too much, the thickness

stays about the same.” Their understanding of these patterns are framed by a compar-

ison to their own experience, stating “it also seems like they took a different approach

from me where they placed the semaphore then the signal and linked those whereas

I put two at the same time.” Participants who used this method seemed to end their

analysis when they felt they had collected enough information to sufficiently support

their inference. While making an inference and then seeking out data to support it has

been observed before in information visualization [384], it is noteworthy here that we

observed no instances of a participant changing their initial inference.

9.3 Guidelines for the use of Process Visualizations in

Complex Games

It is apparent from these results as well as those discussed in the previous

chapter that inferences facilitate players’ ability to extract actionable insights from

data. As I said before, this finding is similar to what has been discussed in InfoVis work

regarding mental models of data [736, 737, 384]. Unlike InfoVis work, the inferences

here inform a mental model of the individual who produced the data rather than the

data itself, similar to what I saw in the previous study [347] but different in that there

it was more focused on the context of the game where here it is more focused on the
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player themselves. Further, in this work we see the presence of a sense-making method

that begins with the inference and then collects data to enforce it. This may have been

encouraged by the nature of the visualization, from which surface-level information,

such as length of trajectory, could be quickly extracted and used to reach a preemptive

conclusion, whereas in the previous chapter, it was more difficult to extract such quick

judgments from the spatio-temporal data.

This suggests that process-visualizations, which present data in a holistic man-

ner, may encourage players to make assumptions about the data upfront. However,

there is a very real possibility that these up-front assumptions can lead to inaccurate

inferences. A possibility of particular concern given that, unlike the with the previous

chapter, participants in this study were not seen to update or adjust their inferences.

Thus, process-visualizations for post-play analysis should consider incorpo-

rating design elements that can inform players’ up-front assumptions and

guide them towards correct initial inferences. One way to accomplish this could

be grouping or labeling actions inside a visualization to indicate what they mean.

As I stated above, participants in the study who used the framing method

were not observed to make adjustments. It seemed that they rarely uncovered infor-

mation that they recognized as contradictory to their inference, a sharp contrast to the

participants of the previous study. Based on these results, I hypothesize two explana-

tions. The first is related to the participant’s familiarity with the game. In this study,

participants had no prior experience with Parallel, as opposed to the previous study

where they were experienced DotA 2 players. As a result, they may lack the domain

knowledge necessary to recognize gameplay strategies in the data that would contradict

their hypotheses. Thus, process-visualizations may aid players best if they are

not displayed until the player has become more familiar with the game.

The second explanation is related to the abstraction of the data. The presenta-

tion of the gameplay data as a trajectory of actions may have been too abstract. Includ-

ing game state information, which was present in the spatio-temporal visualization used

in the last chapter’s study, in the process visualization could have helped players better
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understand what they were observing. Thus, retrospective process-visualizations

should consider incorporating game state information, to ensure that players

are able to correctly interpret the context behind each action. This implica-

tion, along with the previous one, can help ensure that the player is equipped to correct

misunderstandings about the data.

Additionally, the inclusion of comparison, as shown in the results, did not

emerge from the previous study, where players were not shown their own data. This

suggests that the inclusion of a player’s own data is likely to spark comparison between

themselves and others. Using comparison between self and others has been explored in

the domain of personal informatics, though usually within the context of a user under-

standing their own data through the comparison [539, 192]. Here the comparison was

used to understand the other player, as finding the differences in how the other player

behaved compared to oneself gave participants an anchor point to begin understanding

the rest of their experience.

This suggests that process-visualizations can leverage comparison to help play-

ers more quickly identify connected patterns and reach inferences in a space where ex-

cessive data is not available. Thus, process-visualizations in post-play contexts

should consider highlighting how the player’s own data compares to and dif-

fers from the data of the subject of analysis. This does, however, raise questions

about the potential risks of prompting comparison among players, as previous work has

demonstrated that players who under-perform can become discouraged when prompted

to compare themselves to high-performing players [196]. Thus, process-visualizations

may wish to only permit comparison against other players with similar skill levels or

quality of performance.

9.4 Summary

This study built on the previous work by adjusting our understanding of how

players make sense of process data and revealing guidelines for the presentation of
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said data via process-visualizations, which, like spatio-temporal visualizations, present

granular, action by action, data but do not require the game to include a spatial compo-

nent, thus proving more generally applicable. These highly generalizable visualizations,

I argue, are a prime option for addressing players’ concerns regarding building causal

relationships during self-reflection. Thus, in the fourth and final thrust of this disserta-

tion, I explore the use of process-visualizations as retrospective gameplay visualizations

and the impact that they have on self-reflection, learning, and performance.
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Part V

Reflecting on and Learning

through Process Visualizations
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Following the work discussed in the previous part, I arrived at the conclusion

that process-visualizations can provide players with a better understanding of cause and

effect, improve self-reflection, and, as a result, lead to better learning and performance

improvement. Building upon this argument, in this final thrust of my work, I explore

the extent to which this is the case. First, I examine an open question regarding

what data should be included in such presentations, specifically looking at whether or

not community data should be included as a way to improve self-reflection. Finally,

I test whether or not data presented in a process-oriented manner actually improves

self-reflection and performance compared to data presented in an aggregate manner.
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Chapter 10

The impact of One’s Own and Others’

Process Data on Self-Reflection

The work presented in this chapter was originally published at CHI 2023 1

10.1 Reflection, Adaptation, and Community

As seen from the discussion of Self-Regulated Learning, one of the most impor-

tant elements of the learning process is reflection. Even outside of SRL, many learning

theories formalize reflection as a central component within the learning process [590,

584]. There are even specific theories of reflection and how it occurs, including frame-

works that quantify reflection across various levels [455, 680, 529, 721, 278, 32, 386, 219].

An example of such a framework is that of Leijen et al. [386] who quantify reflection

across four levels (description, justification, critique, discussion), which describe how

the student is reflecting, and three foci (technical, practical, sensitizing), which describe

what the student is reflecting on.

1Kleinman, E., Villareale, J., Shergadwala, M., Teng, Z., Bryant, A., Zhu, J., & Seif El-Nasr, M.
(2023). ”What else can I do?” Examining the Impact of Community Data on Adaptation and Quality
of Reflection in an Educational Game. Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 20
pages. This research was part of an NSF-funded project conducted collaboratively with the PXL lab
at Drexel University and ITU Copenhagen. It would not have been possible without the assistance of
Jen, Murtuza, Zhaoqing, and Andy and the guidance and input of Jichen and Magy.
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According to the theory of SRL, one key aspect of reflection is adaptation or

the ability to change one’s approach to a task or problem [756], and this construct is

included in other frameworks as well, sometimes as a part of reflection and sometimes

as a result. Using Leijen et al.’s framework as an example again, the highest level of

reflection, according to the framework, is discussion, defined as “Moving beyond the

evaluation and explanation of what is, and why they think that is, and pointed out

what could be done to initiate changes, and why changes are needed in the first place”

[386]. In other words, when one reflects at the highest level, they put cognitive effort

into considering how to adapt their behavior. Many learning theories also discuss how

high-quality reflection is a mechanism for change, which ultimately results in learning

progress, as change is the means by which one is able to recognize and overcome mistakes

and, effectively, learn.

Prompting change through reflection can, however, be exceedingly difficult,

especially if the learner struggles to identify what they did wrong or what alternative

strategies they could employ. This is especially the case, as illustrated in the previous

chapters, in complex gaming environments where there are numerous correct solutions

and many unpredictable outcomes. Within learning sciences, there is a movement that

seeks to explore reflection in the context of the community, meaning reflection prompted

and aided by other learners, who may be on the same level as the learner or at a higher

level of expertise, and how this social reflection may improve adaptation. This movement

brings to mind the theories of co and socially shared regulated learning, discussed in

earlier chapters, which argue that learning incorporates the input of others, through

feedback or cognitive guidance, to aid in the adaptation of one’s techniques through

reflection [273]. This suggests that having others present in the reflection process to

help a learner perceive alternative paths can prompt and improve adaptive practices.

Having others perform this role, however, is not always a viable option. Thus,

there is a need to explore alternative ways of bringing others into one’s reflection pro-

cess. One possibility, which I explore here, is presenting community performance data

to the learner during reflection as a way to prompt adaptation. Existing work in the
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learning sciences has demonstrated benefits to having learners view the data of their

peers while reflecting on their performance [74, 501, 291, 229]. Using community data to

elicit reflection and adaptation is a focus of student-facing learning analytics dashboards

(LADs), which are data-driven visual displays that “aggregate multiple visualizations

of different indicators about learners, learning processes, and/or learning contexts” [73].

Student-facing LADs aim to help students make strategic decisions in learning environ-

ments related to resource (time and energy) management considerations such as what

assignments to focus on, how long to study for an exam, or how often to interact with a

course management system, such as Blackboard [578, 501]. In this context, being able

to view the behavior of classmates and where they stand against their peers in terms of

accomplishments is valuable in helping students adjust where they are spending their

time and what they are prioritizing as the course progresses [578, 579, 113].

Certain gaming contexts have also adopted this approach, presenting commu-

nity data through retrospective visualizations, such as those discussed earlier, to elicit

reflection and motivate adaptation and more efficient learning. [80, 280, 447]. Many of

the commercially available assistants discussed in earlier chapters integrate community

data and comparison with that data to some degree [601, 459, 525, 68]. The benefits of

learning from others in gameplay contexts, especially esports, are apparent in the work

of Wallner et al., who conducted an interview and survey study examining how players

use retrospective visualizations in esports [708]. Their results include themes focused

entirely on what information players want or need about their opponents and illustrate

how players use retrospective visualizations to learn from others. Looking at the do-

main of educational games, Villareale et al. [693] used existing frameworks to conduct

a review of 12 programming games and identified four features used to elicit reflection.

Among these is “social discourse” or “a space in the interface for community-based

discussion where students can examine multiple perspectives and receive feedback on

their process that can then be used for reflection” [693]. The authors go on to discuss

how, through social discourse, players in programming games are exposed to different

perspectives on the same problem and become more aware of alternative approaches,
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encouraging adaptation.

The use of community data to elicit reflection and adaptation in games is,

however, under-studied, and, to my knowledge, there is no work that explicitly demon-

strates that exposure to community data, especially presented in the form of a process

visualization, does result in a willingness to try a different approach. Further, work

on games at large has uncovered some drawbacks surrounding the use of community

data. In one example, Esteves et al [196] found that social comparison in games could

lead to disengagement if the player felt that they were under-performing compared to

their peers. Even if disengagement does not occur, feelings of inadequacy, such as those

observed by Esteves et al. [196], could result in lower quality reflection, which may

impact, not only adaptation but learning as a whole. Thus, in this first study in my

final research thrust, I explore the value of including community data in a retrospective

process visualization, in order to provide actionable insights into whether or not the

inclusion of such information is of value or a detriment to players.

10.2 A Study of the Impact of Others’ Data on Adaptation

In this study, I conducted a within-subjects experiment examining the impact

that comparison with peers within a retrospective process visualization had on a player’s

willingness to adapt one’s strategy and on their quality of reflection. Specifically, this

study asked the following questions:

• How does comparison with peer data impact a player’s willingness to consider a

different approach?

• How does comparison with peer data impact a player’s quality of reflection?

I answered these questions once again using Parallel, described above. The

insights from this work can not only help future designers make informed decisions, but

also provide a flag for future research to further expand our understanding of adaptation
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in complex games, its relationship with visualization and reflection, and how we can

prompt it.

10.2.1 Methods

For this study, Parallel was hosted on a web domain (playparallel.com). The

game was instrumented to collect and save information about all of a player’s actions

during level seven in log files. Level seven was chosen for this study because it was a

complex enough level to be a reasonable challenge to participants and could be solved in

several ways of varying correctness. As such, it warranted some manner of reflection and

adaptation, but not so much of a challenge that participants may become overwhelmed

or fail to complete the level.

10.2.1.1 Recruitment

36 undergraduate computer science students, the intended user group for Par-

allel, were recruited from programs at UCSC, Northeastern, and Drexel University.

Participants were required to be 18 years of age or older, located in the United States,

able to communicate in written and spoken English, and able to access the playparal-

lel website, but were not required to have prior experience with parallel programming.

That being said, 17 did.

10.2.1.2 Protocol

Upon giving informed consent, participants proceeded through the following

steps:

• Account Creation and Tutorial: Participants were provided with instructions

for how to access playparallel.com, create an account, and complete the Parallel

tutorial. They were given five days to complete this step.

• Level 7 (First Playthrough): The day after the deadline to complete the

tutorial, participants were sent instructions to play level 7 of Parallel. They were
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given three days to complete this step.

• Level 7 (Second Playthrough): The day after the deadline to play Level 7 the

first time, participants were asked to play level 7 a second time. They were given

three days to complete this step.

• Reflection 1: The day after the deadline to play Level 7 the second time, par-

ticipants were randomly assigned to a reflection condition and provided with a

visualization setup, either self or peer (see below), and responded to a set of

reflection prompts (see below). They were given three days to complete this step.

• Reflection 2: The day after the deadline to complete the first reflection step,

participants were provided with a second visualization setup for whichever reflec-

tion condition they did not do the first time (see below), and responded to a set of

reflection prompts (see below). They were given three days to complete this step.

This protocol was run remotely and asynchronously. Participants were com-

pensated twice during the protocol. They received 20$ after completing Reflection 1 and

30$ after completing Reflection 2. University IRB reviewed and approved the protocol.

10.2.1.3 Visualization Setup

For the reflection steps, I created a process-visualization for each player using

a variation of the network graph from Glyph [478] to visualize players’ gameplay as a

sequence of actions. This is the same system that was used in the previous study with

Parallel, and the same set of key actions was used to generate the visualizations in this

study.

In addition to the action name, for this study, each node, in the node title,

also indicated where, on the game board, the respective action was taken. To facilitate

this, the game board was split into sections based on the shape of the track and the

location of pick-up and drop-off spots, as seen in Figure 10.2. Based on this game board

abstraction, each node in the process-visualization would contain, after the action name,
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Figure 10.1: A play trace depicted in Glyph’s network graph. For readability, I have
enlarged the text in the labels.

an indicator of which section of the board the action occurred in along with the exact

coordinates, which could be used to differentiate between the same elements in the same

sections (i.e. two semaphores in section g could be differentiated by their coordinates).

For example, a node may say “place semaphore on H:[9,7]” to indicate that that action

was the placing of a semaphore at the coordinates 9,7 in board section H. Additionally,

each node label would also display which board sections had elements in them already.

For example, a node may say “F:[sem2,sig1]” indicating that the second semaphore

placed in this playthrough and first signal placed in this playthrough are in section

F. How these labels looked in the visualization can be seen in Figure 10.1. To better

convey location and board state information, each visualization was augmented with

images of the board state at every action taken, as seen in Figure 10.3. Visualizations

also included the key image seen in Figure 10.2 so that players knew what the sections

of the board were. I created each visualization manually by combining screenshots of

the Glyph output with the board images in Miro.

10.2.1.4 Reflection Prompts

The repeated measures study featured two reflection steps, which I refer to

as “self” and “peer” reflection. During self-reflection, a participant was shown a
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Figure 10.2: The division of the level 7 board into sections.

Figure 10.3: A playtrace with both the node link diagram and the images depicting the
board state at every action. For readability, I have enlarged the text in the labels.

183



visualization of their own gameplay for their first playthrough of level 7 alongside their

own gameplay for their second playthrough. An example of this visualization setup can

be seen in Figure 10.4. During peer-reflection, a participant was shown a visualization

of their own gameplay for their first playthrough of level 7 alongside two other players’

gameplay for level 7, one that was similar to theirs and one that was different. The

similarity was determined using Glyph’s sequence graph feature [478]. Participants were

told which trace was similar or different. The other players’ traces could have been a

first or second playthrough, but participants were not informed of this. An example of

this visualization setup can be seen in Figure 10.5.

During a reflection step, a participant was directed to their respective Miro

board and provided with a short video on how to interpret the visualization. They were

then asked to respond to a set of questions in a google form. For the peer reflection

step, these were as follows:

• Please look at your gameplay sequence for your first attempt. Based on your

sequence, can you describe how you approached the level?

• Please look at P1’s gameplay sequence. Based on their sequence, can you describe

how they approached the level?

• Please look at P2’s gameplay sequence. Based on their sequence, can you describe

how they approached the level?

• Compared to the other players, what went well in your playthrough and why?

• Compared to the other players, what went poorly in your playthrough and why?

• If you were to play this level again, would you do anything differently?

For the self-reflection step, these were as follows:

• Please look at your gameplay sequence for your first attempt. Based on your

sequence, can you describe how you approached the level?
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Figure 10.4: The visualization setup for the self reflection condition depicted the play-
trace for the player’s first and second playthroughs of level 7.
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Figure 10.5: The visualization setup for the peer reflection condition depicted the play-
trace for the player’s first playthrough of level 7 alongside two other playtraces, one
similar and one different.
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• Please look at your gameplay sequence for your second attempt. Based on your

sequence, can you describe how you approached the level?

• Compared to your second attempt, what went well in your first playthrough and

why?

• Compared to your second attempt, what went poorly in your first playthrough

and why?

• If you were to play this level again, would you do anything differently?

In both conditions, only the last three questions were meant to elicit reflection,

with only the very last question being related to adaptation. The first batch of questions

in both conditions existed to ensure that the participant looked at all the playtraces

in enough detail to be able to reflect on them. These reflection questions were derived

based on similar questions and prompts used in previous work [364, 454, 58, 186]. The

order of reflection was randomized with half the group doing peer-reflection first and

the other half doing self-reflection first, but all participants reflected in both conditions.

The last question was answered with a yes or no while all others were open-response.

10.2.1.5 Data Analysis

Open-answer responses to the “what went well?” and “what went poorly?”

prompts were analyzed qualitatively using Leijen et al.’s reflection model to measure

the quality of reflection [386]. As discussed earlier, the model quantifies reflection based

on focus and level as seen in Table 10.1. I worked with a collaborator to define what

these concepts mean within the context of Parallel and concluded on the definitions

seen in Table 10.2.

I then worked with the same collaborator to, separately, apply the codes to

half of the data set. The unit of analysis was a single response and one code for focus

and one code for level was applied to each unit. Inter-rater reliability was measured
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Label Definition

Focus

Technical
Concerned with the efficiency of
means for reaching certain goals

Practical
Involves an open examination, not only of means but also of goals,

the assumptions goals are
based on and the actual outcomes

Sensitizing Concerned with social, moral, ethical, or political aspects

Level

Description Mere descriptions of actions and thoughts

Justification A rationale or logic for an action or viewpoint

Critique
An evaluation for an aspect and explained

why this explanation was given

Discussion

Moving beyond the evaluation and explanation of what is,
and why they think that is,

and pointed out what could be done to initiate changes,
and why changes are needed in the first place

Table 10.1: Leijen et al.’s [386] model for measuring the quality of reflections.

Label Definition

Focus

Technical
Discussing efficiency in terms of what the player did,

does not include discussion of goals,
but may include statement of a goal.

Practical
Discussion of goals, what they were, how they changed,

if they were good or bad, etc...

Sensitizing
Discussion of more than just goals and actions taken,

thoughts about the player’s status
as a learner or a player, etc...

Level

Description Simply describing what the player did or were thinking

Justification
Providing some kind of explanation or defense or justification

for why the player did what they did

Critique
Discussions of how well the player did or any kind

of evaluation of their process

Discussion
Any discussion of doing things differently, next steps,

what would be done if the step was
repeated or done differently next time

Table 10.2: The definitions I derived for how Leijen et al.’s model applies in the context
of Parallel.
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Condition Yes No

Would you do anything differently?

Self 2 34
Peer 12 24

Table 10.3: Differences in willingness to do something different next time between self
and peer reflection.

using Cohen’s kappa [133] and an agreement of .85 was reached for focus and .88 for

level, both indicating very strong agreement [375]. I then coded the entire dataset.

Once the codes were applied, McNemar-Bowker tests [368] were used to deter-

mine if there were any significant differences in how often each level and focus code for

reflection was applied to responses in each condition (peer and self). McNemar-Bowker

tests were also applied to the “yes/no” responses to the last question, which was used to

determine if exposure to community data and reflection through comparison with that

data impacted willingness to consider a different approach.

10.2.2 Results

The counts for how many participants said they would consider a different

approach next time after completing each reflection step can be seen in table 10.3.

These results indicate a notable increase in the number of participants who indicated

that they would try something else if they played again after reflecting on peer data.

McNemar-Bowker tests revealed that this difference was significant (p=.004),

with players being significantly more willing to consider an alternate approach (adapt)

when reflecting on their own data in the context of others’. Effect size, calculated using

Cramer’s V, resulted in an effect size value of .5, indicating a large effect.

The counts for the focus and level codes in both conditions can be seen in

Tables 10.4 and 10.5, respectively. Technical reflection was most common by a large

margin in both conditions and sensitizing reflection was the least common. Similarly,

description and justification were far more common across conditions than critique or

discussion. The tables also indicate that there was a slight increase in higher quality
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Condition Technical Practical Sensitizing

What went well?

Self 27 5 4
Peer 29 5 2

What went poorly?

Self 28 7 1
Peer 24 9 3

Table 10.4: Differences in focus of reflection between self and peer.

Condition Description Justification Critique Discussion

What went well?

Self 20 11 4 1
Peer 21 10 3 2

What went poorly?

Self 18 12 4 2
Peer 16 11 2 7

Table 10.5: Differences in level of reflection between self and peer.

reflections (those of the sensitizing focus or discussion level) during peer reflection when

players were asked to reflect on what went poorly. McNemar-Bowker tests, however,

revealed no significant changes between conditions (all p ¿ .05).

10.3 Considerations for Using Community Data to Influ-

ence Self-Reflection and Adaptation

While previous work in the learning sciences has demonstrated the value of re-

flecting on community data as a way to encourage adaptation in learning [578, 294], com-

munity data and retrospective visualizations are under-explored in educational games.

As a result, the impact of community data on adaptation within the domain has not

been empirically examined and, further, previous work in other game genres has sug-

gested that exposing players to peer data may have a negative impact [196]. Based

on this, my goal was to determine whether or not comparison with community data,

specifically presented via process visualization, in a complex game had a significant
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impact on players’ willingness to consider alternative approaches and, alongside this,

whether or not it had a significant impact on the quality of reflection. I pursued this

goal in order to provide researchers with foundational knowledge upon which additional

research may be conducted and to arm developers with insights that would allow them

to make informed decisions with regard to when to leverage peer data.

The results indicate that reflection on one’s own data in the context of peers’

data does, at least partially, motivate adaptation, suggesting that including community

data in process-visualizations will have a positive impact as far as supporting SRL. This

is highlighted by 1/3rd of the participants in this study demonstrating a significantly

higher willingness to consider a different approach if they were to play the level again

after peer reflection. This is an important finding, as previous work in Learning Ana-

lytics Dashboards has alluded to a willingness to try a different approach as a benefit

of community data [229, 579, 501] but has not empirically explored the topic. This has

also not been explored extensively, to date, in the context of complex games, although it

has been alluded to [80]. It is further valuable to identify this relationship in the context

of the concerns surrounding the use of community data in games, which could lead to

discouragement and disengagement [196]. Effectively, these results provide empirical

evidence that there is a benefit to including community data in process-visualizations

meant for self-reflection in complex games. It can help players, especially those who

may be struggling, entertain alternative approaches they may not otherwise consider

or perceive and more efficiently arrive at a correct solution, meaning they can move on

more quickly and continue to advance and improve.

Notably, however, only about 1/3rd of participants said they would do things

differently after reflecting in the peer condition. This suggests that, while the presence

of community data has a significant effect, it is not an all-encompassing way to prompt

adaptation. It is likely that there are other ways to prompt adaptation both in the

context of retrospective visualization and as a part of reflection in general that may

result in a greater number of people deciding to try a different approach. Further,

there may be individual characteristics, such as confidence or stubbornness, that may
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impact an individual’s willingness to adapt based on comparison to peer data alone,

similar to how competitive preferences impact self-monitoring and learning in Riemer

and Schrader’s work [558]. As such, these results should not be taken to mean that

including community data is the single, best way to prompt adaptation in complex

games.

Instead, I present these results as a foundational understanding of the impact

of peer data on adaptation. Specifically, I suggest that peer data encourages adapta-

tion, but not for everyone, and may be one of many possible techniques for prompting

change among learners, and may be impacted by individual characteristics. As such,

I suggest that developers of retrospective visualizations for complex games

consider leveraging comparison with peer data as a way to motivate adapta-

tion, but remain open to alternative techniques as well, as peer comparison

alone will not prompt the entire population. Additionally, I recognize an op-

portunity for future work to explore the alternative ways that adaptation can

be prompted, either as an alternative to peer comparison, or in combination

with it, and the ways in which player characteristics influence willingness to

change.

Given these implications, it is important to note that I also did not observe a

significant change in the focus or level of reflection when peer data was introduced. Re-

flection for both groups favored the technical focus and the description and justification

levels, which reflects the findings of previous work that found that reflection in games

often does not rise to the highest levels [453]. This, however, does not conclusively

mean that there is no effect of peer data on the quality of reflection. While I controlled

for individual differences through a within-subjects design, it is possible that a larger

sample size or different context could lead to a different outcome or significant change.

Given the inherent risks of peer data impairing reflection or learning quality, such as

by prompting a player to merely copy what they saw without thinking about it or,

as demonstrated by previous work [196], to completely disengage with a game, further

exploration of this question remains relevant. As such, I recognize these findings as
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motivation for the further exploration of the topic in future work.

These results also raise additional questions about when to expose the commu-

nity data in order to elicit change. Schon [584] describes two types of reflection in terms

of when they occur: reflection in action and on action, with the former referring to re-

flection occurring during an event and the latter occurring after the fact. In this study,

I specifically examined reflection on-action, as my interest is in retrospective process-

visualizations and how the presentation of process information impacts self-reflection.

It may be that reflection in action, which would be a performance phase activity within

the structure of SRL, produces different results. For example, more participants may

be willing to consider an alternative strategy if they have not yet completed the task. It

is also possible that the quality of reflection could be impacted by peer data when the

reflection occurs in the midst of the activity. Such a suggestion also aligns with LAD

work that found that students liked seeing other students’ approaches so that they could

evaluate their standing and adjust their approaches before completion of a course [579].

Reflection in action, however, involves short cycles of thinking and doing, and there

may not be enough time in such a structure for a player in a complex game, especially

a fast-paced one, to make meaning of community data, which, as the previous chapters

illustrated, is a complicated cognitive process. This drawback could potentially prompt

the above-mentioned negative behavior of copying without thinking. As such, I recog-

nize an opportunity for future work to explore the open question of when,

in relation to the progress and completion of a task within an educational

game, reflection on community data should be presented to, not only elicit

change but, lead to success.

In relation to these considerations, previous work has also found that exposing

users to the best approach, in situations where there is a single best approach, may

result in conformity among a population [326]. In other words, making the players of

any given complex game aware of what the best solution is, if one exists, could result

in all players following that same solution. In some circumstances, this may be ideal,

such as in the contexts of Learning Analytics Dashboards or Open Learner Models
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where students are encouraged to “follow in the footprints” of other more successful

students [300] or when the goal of the game is to help students arrive at and understand

a single correct solution. In circumstances where there are multiple correct pathways,

or no “right” answer, which is often the case in complex gaming environments, as I

discussed earlier, however, sharing community data that could lead to conformity may

not benefit the players as much as it could reduce creativity or variety. This illustrates

open questions regarding how to best present community data to players of a complex

game, especially in contexts where there is not a single correct answer or conformity

is otherwise not desired. Thus, I recognize an opportunity for future work to

explore how to present community data such that the “best” or “correct”

solution is not exposed in such a way that inhibits players’ ability to explore

and learn naturally. Further, I see opportunities for future work to explore

how this presentation should differ depending on the academic context and

design of the game.

Finally, I acknowledge that there exist a number of additional open problems

surrounding the fair use of community data. For example, Zhu and El-Nasr [746] discuss

how public player data raises concerns about privacy and ethics in open player models.

These concerns resonate with considerations that players brought up in the studies dis-

cussed in the earlier chapters of this thesis, suggesting that publicly available data could

result in toxic behavior or foul play. The findings from these earlier studies mirror what

was found by Park et al. when they conducted a requirements analysis before designing

their learning analytics dashboard [501], suggesting generalizable concerns. While the

work presented in this chapter does not address these questions of privacy, fair use, and

fair play, I argue that, by demonstrating the value of community data within the domain

of educational games, this work motivates the exploration, and hopefully resolution, of

these open problems. Thus, I recognize an opportunity for future work to use

these results as motivation to explore open problems surrounding the social

and safety concerns inherent in the use of community data.
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10.4 Summary

In this chapter, I discussed a study that explored the value of including com-

munity or peer data in a post-play process visualization meant to support self-reflection.

While I hypothesized that the inclusion of community data would prompt adaptation,

a key element of self-reflection, and found that it did do so, to an extent, the results

ultimately suggested that this was not a single, sure-fire way to promote adaptation

or improve SRL. Given these results, I move forward in this thesis work to my final

study, in which I explore the impact of a process visualization on self-reflection when

compared to an aggregate visualization. Based on the results discussed in this chapter,

I further choose to explore this question by looking only at visualizations of the player’s

own data.

195



Chapter 11

The impact of Process Data on

Performance in Complex Gameplay

The work presented in this chapter is currently under review at CHIPlay 2023

1.

11.1 Reflection, Performance, and Visualization for Games

While the previous study explored the impact of community data on adapta-

tion, it did not look at the bigger picture of whether or not a process-visualization, in

and of itself, had an impact on SRL and performance in a complex game. As such, this

final study in this thesis sought to explore this question and provide foundational and

valuable insights into the connection between the presentation of gameplay data, SRL,

reflection, and performance in complex games.

As discussed earlier, previous work has barely investigated the impact of visu-

alized data on learning in games, instead focusing predominantly on design and usability

[274], despite using learning as a motivator for the creation of new tools [701, 11, 367].

Similarly, previous work on reflection in games has not examined its impact on learning

gameplay itself, instead, focusing on reflection on narrative experiences [453, 119] or an

1I led this research but it would not have been possible without the assistance of Jason Xu and the
guidance of my advisor Magy.
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educational topic [72, 569]. In addition to this, little work has explored the connection

between reflection and data visualization in games, with the previously discussed work

of Villareale et al. on reflection prompts in educational games [693] being one of the

only examples. But even here, the types of visualizations they examine in the games

they review vary dramatically from process-visualizations as they are defined within the

context of this thesis.

Beyond games, there has been a more extensive investigation of the impact

of data on learning and reflection. Student-facing Learning analytics dashboards [73]

(LADs) have been used to help students use data visualizations to compare their per-

formance against their peers [501] and track progress towards learning outcomes [113].

User study results have found that data visualized through an LAD can support stu-

dents’ reflection and strategy planning [138], help them get a better idea of how their

activity with course material may impact their performance [229], and help them make

more informed decisions about how they spent their resources [579].

While LAD research has not looked extensively at reflection, as a process and

as a part of SRL, Open Learner Models (OLMs), which are often informed by SRL,

have. OLM research has demonstrated, through user studies, that presenting learners

with their model, which is a representation of their performance data, can help them

better identify gaps in their knowledge [276, 380, 121]. OLMs, however, do not often

support reflection through basic data visualization. Instead, as discussed in Chapter 2,

many have taken the negotiation approach, in which the student is prompted to debate

the accuracy of their model with the system, a process that prompts reflection [647, 162].

In summary, the connection between data visualization, reflection, and learn-

ing is under-explored in complex games, making it difficult to know how to design

computational tools to support SRL and improve learning and performance within the

domain. While explored more extensively in learning sciences, the findings of this liter-

ature are not necessarily applicable in the context of learning gameplay. This is because

game data is inherently more complex, resulting in unique interpretation techniques

and user requirements, as demonstrated by the results of the previous thrust. Further,
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previous work, in both games and learning sciences, examines learning and reflection in

the context of academic content, not gameplay performance itself. Additionally, none of

the previous work looks at process-visualizations as I define them in the context of this

dissertation. As such, in this final study, I propose to explore, specifically, the impact

of process-visualizations of one’s own gameplay data on reflection and learning.

11.2 The Impact of Process on Reflection and

Performance: A User Study

To address this gap, I conducted a between-subjects user study examining

whether or not reflection on a process visualization, versus an aggregate one, had an

impact on reflection or performance in the context of League of Legends. Specifically,

this study asked the following two questions:

• How does a process visualization impact performance in an esport game compared

to an aggregate visualization?

• How does a process visualization impact self-reflection on gameplay in an esport

game compared to an aggregate visualization?

I once again returned to the domain of esports for this final study. As stated

previously, esports offer one of the most complicated complex gaming experiences. Fur-

ther, the results of the studies with Parallel revealed to me that players will often

reflect harder and better when engaging with data from a game they are familiar with

and passionate about.

11.2.1 Methods

11.2.1.1 Recruitment

28 intermediate (self-identified) League of Legends (LoL) players were recruited

through an online community, word of mouth, and snowball sampling. Recruitment
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information was initially posted in the Discord server for Mobalytics [459] and was

spread by individual participants through their personal social circles. Similar to the

earlier LoL study discussed in part 1 of this thesis, intermediate refers to someone

who currently played (or had played in the past) in a recreational, and occasionally

competitive manner, either solo or on a team, but did not, and had not, regularly play

at the competitive level. Demographic information was collected on the recruitment

form after the participant gave informed consent.

11.2.1.2 Gameplay Task

Like most esports, LoL is a large, dynamic, multiplayer game, meaning that

the normal online gameplay mode contains numerous external variables that cannot be

controlled. As such, to accurately measure changes in performance, participants were

asked to complete a specific exercise in the game’s training mode. LoL’s training mode

allows players to create custom games with as many human or AI opponents as they

would like. For the purposes of this study, the player would be on the green team, and

an AI of the champion Zyra, set at intermediate difficulty, would be on the red team. I

chose Zyra for the opponent after reviewing community materials and determining that

she was generally considered to be the most difficult AI to play against. This meant that

she posed a substantial enough challenge for the purposes of the task. To ensure that

familiarity with a champion would not be a confounding variable, participants were

allowed to select any champion they were comfortable with for the task. They were

also allowed to use any summoner spells, special abilities that are not tied to a specific

champion, and runes, a kind of stats page, they desired.

The gameplay task gave participants 10 minutes to earn as much gold as they

could. They were allowed to do anything they wanted to achieve this goal, though,

technically speaking, there are only four ways to earn gold within the confines of the

task: kill creeps, kill creatures in the jungle, kill the enemy champion, and destroy the

enemy towers. Players were allowed to return to their base and shop whenever they

wanted. The only requirement was that players had to begin the task in the bottom

199



lane, as that was the lane that the Zyra AI would always begin in. Participants were

additionally informed that they would be deducted 100 gold from their final score for

every death or lost tower.

The task was designed to permit variety in what players could do to complete

it. They could focus on farming, killing Zyra, killing jungle NPCs, taking towers, etc...

It also afforded them the opportunity to change their strategy when they repeated the

task, which I discuss further in the next section. A performance score for each player was

calculated based on the total amount of gold earned by the player, minus the deductions

for deaths or lost towers. However, no participant ever lost a tower, so points were only

ever deducted for deaths.

11.2.1.3 Protocol

Upon giving informed consent, each participant was randomly assigned to ei-

ther the “process” or “aggregate” group, which would determine how their data would

be visualized. I then contacted them to schedule two zoom sessions, one day apart. In

the first session, I asked the player to complete the task while I recorded the screen

and audio. The player was given the opportunity before, during, and after the task

to ask any questions. This first session ranged from 15 to 30 minutes and participants

were not required to think aloud during gameplay. At the end of the session, I recorded

the total amount of gold earned, the number of deaths, towers lost, creeps killed, and

enemy champion kills. I then calculated the performance score by subtracting 100 gold

for each death (no towers were ever lost) from the total amount of gold earned.

After the completion of the first session, I reviewed the gameplay recording

and, leveraging my approximately 10 years of experience with LoL, labeled the actions

taken by the player using the action labels presented in table 11.1. These labels are

adapted from the coding scheme presented by Ahmad et al. [14]. The result of the

labeling process was a sequence of actions taken by the player. This would then be

converted into either a process visualization or an aggregate visualization, depending

on the player’s group, as seen in Figures 11.1 and 11.2. More details on how the

200



Action Definition

Farm
An uninterrupted period of actively last-hitting minions
to obtain gold

Harass
An uninterrupted period of actively attacking
the enemy champion

Return Teleport back to the base using the return hot-key
Shop Purchase or sell items at the base shop

Roam [Location] Move across the map to the specified destination

Teleport [Location]
Use the teleport summoners spell to move to the
specified destination

Jungle
An uninterrupted period of attacking and Killing
jungle creatures

Dragon Killing the dragon
Push Tower An uninterrupted period of actively hitting a tower

Push Lane
An uninterrupted period of actively hitting, but not
last hitting, creeps

Kill Kill the enemy champion
Die Get killed by the enemy champion

Destroy Tower Destroy an enemy tower
Lose Tower Lose an allied tower

Turtle
An uninterrupted period of positioning oneself within the
firing range of an allied tower

Level [Skill] Level up the specified skill

Table 11.1: 16 possible actions that players could take during the gold collection task,
modified from the behavioral abstraction presented by Ahmad et al. [14].

visualizations were set up are provided below.

In the second session, which would occur one day after the first, I would first

conduct a Data-Driven Retrospective Interview [186], where I showed the participant the

visualization of their gameplay data and asked them three questions meant to prompt

self-reflective processes. The questions were adapted from Cleary et al.’s study of Self-

Regulated Learning in basketball players [132] and each prompted one of the three

main processes of self-reflection according to Zimmerman’s model [756]: evaluation

(how learners decide if they did well or not), attribution (identification of the causes of

failures), and adaptation (identification of what to change):

• Please evaluate your performance during this game and elaborate on how you are
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reaching your conclusions (Evaluation)

• Please identify something during this game that you think you did not do par-

ticularly well, please elaborate on what you think caused your poor performance

(Attribution)

• What do you think you need to do to perform better in your next game (Adapta-

tion)

The zoom call for the second session was also recorded to capture participant

responses.

Immediately following this interview, the participant repeated the task from

the first session. They were required to use the same champion, runes, and summoner

spells as the first session (they were informed of this when they picked these for the first

session), but once they proceeded to the bottom lane within the game itself they were

allowed to change what they did.

Following the completion of the second gameplay task, I asked each participant

four additional questions. With the exception of the third question, these questions were

adapted from Kitsantas and Zimmerman [343] and my earlier study with LoL players

from part 1 of this dissertation [345]. The questions examined three processes related

to Self-Regulated Learning: Goal Setting, Strategy Use, and Self-Monitoring. While

not explicitly a part of self-reflection, these processes are still critical elements of SRL

under the CPM model, and the goal of this section of the protocol was to examine if the

style of visualization had an impact on any other parts of SRL beyond self-reflection.

The questions were as follows:

• Did you set any specific goals for the match and if yes, what were they and what

prompted them? (Goal Setting)

• What did you need to do to accomplish your goals? (Strategy Use)

• Were you able to do so? (Goal Realization)
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• Did you monitor your progress during gameplay? (Self-Monitoring)

Following the completion of the second set of interview questions, participants

were given the chance to provide any additional input and ask any questions. The

second session took between 30 - 45 minutes. Participants received a 25$ gift card for

completing each session. The two sessions were scheduled one day apart to facilitate

the creation of the process-visualizations for each player and to ensure enough time had

passed that the player would not be relying entirely on their memory of their gameplay

when reflecting, encouraging them to interact with the visualization, but not so much

that they could not remember anything. University IRB approved the protocol.

11.2.1.4 Visualization Setup

I manually created visualizations for players in both groups using Miro, in

order to create something that players could easily access, understand, and interact

with on their own computers, regardless of technical specifications or prior experience

with visualization. Examples of visualizations for both groups can be seen in Figures

11.1 and 11.2. For actions such as “farm”, “harass”, or “jungle”, each node indicated an

uninterrupted period of taking that action, as opposed to a single strike. Action nodes

were assigned a unique color for readability, the colors were the same for both groups

and both groups were provided with a key for what each action was, seen on the right

side of each visualization in both figures.

For the process group, the visualization displayed a timeline-like sequence of

the actions they took, in the order they took them, seen in Figure 11.1. For readability,

this timeline would double back on itself in a zig-zag manner so that the entire sequence

could be seen without needing to scroll. The point at which it doubled back had

no significance and participants were informed as such. For the aggregate group, the

visualization displayed the aggregate count for how many times they took each action,

seen in Figure 11.2.

Existing in-game and third-party visualizations typically aggregate data such
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Figure 11.1: An example of the process visualization with the key on the right.

Figure 11.2: An example of the aggregate visualization with the key on the right.
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as gold earned, damage dealt, and the number of kills or deaths [601, 459, 68, 525].

However, to ensure that the information available to both groups was as similar as

possible, the aggregate group here was shown the number of times they took each

action, as the same information could also be gleaned from the process-visualization.

This meant that the only difference between the two visualizations was that the process

group could see the order of actions, such that I could determine if this information

impacted self-reflection. Participants were provided with explanations for how to read

these visualizations and how the nodes should be understood and given the opportunity

to ask questions before the interview began.

11.2.1.5 Data Analysis

Quantitative Analysis To answer RQ1 “How does a process visualization

impact performance in an esport game compared to an aggregate visualization?” statis-

tical tests were run to check for significant differences in gameplay metrics from before

to after reflection. Specifically:

• overall performance score

• number of kills

• number of creeps killed (Creep Score)

• number of towers taken

• number of deaths

To answer RQ2 “How does a process visualization impact self-reflection on

gameplay in an esport game compared to an aggregate visualization?” various qualitative

analyses, described below, were conducted on the players’ responses to the interview

questions. Additionally, the amount of behavioral change from before to after reflection

for each group was analyzed using the method described below, in order to determine

the extent to which adaptation did or did not occur.
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Shapiro-Wilk tests were used to check for normal distributions of the numer-

ical performance data and parametric or non-parametric tests were used to test for

significance based on the results as follows:

• Paired T-Tests were used on performance scores and the number of kills to check

for significant changes from before to after reflection.

• Wilcoxon Signed Rank Tests were used on the number of creeps killed, number of

towers taken, and number of deaths to check for significant changes in performance

from before to after reflection. Sign tests were used for any data for which the

Wilcoxon Signed Rank test could not produce a value.

• A Wilcoxon Rank Sum Test was used to check for significant differences in the

amount of behavioral change from before to after reflection (discussed below)

between groups.

The Dynamic Time Warping (DTW) Algorithm presented in [348] was used

to determine how much players in both groups changed their behavior between their

two attempts at the task. DTW calculates differences between sequences of actions as

follows: “A distance value d is created for every sequence pair (S1,S2). At every given

step sa in sequence S1 the value at step sa is compared to the value at every given step

sb in sequence S2 and a weight w is calculated and added to d.” [348]. For the purposes

of this work, w was determined as follows:

• If sa and sb were the same action in the same location (top, mid, bot lane, or

jungle) then w = 0

• If sa and sb were different actions in the same location (top, mid, bot lane, or

jungle) then w = 1

• If sa and sb were the same action in different locations (top, mid, bot lane, or

jungle) then w = 2
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• If sa and sb were different actions in different locations (top, mid, bot lane, or

jungle) then w = 3

In order to run this calculation, after each attempt at the task by each player was con-

verted into a sequence of actions as discussed above I applied a location tag (indicating

if the action was taken in the bottom, middle, or top lane or the jungle) to each action.

Actions taken in the base (shop, return) were not tagged. The “river” location tag was

only applied to the “roam” and “go” actions, as these were the only actions ever taken

in relation to the river.

Qualitative Analysis The qualitative data collected while reflecting on the

visualization was coded using the coding scheme used by Cleary et al. [132] that ex-

amined the self-reflective constructs of evaluation, attribution, and adaptation. For the

purposes of this study, the definitions for the codes were adapted by myself and a col-

laborator who was also an experienced League of Legends player. For the SRL process

of evaluation, codes capture what the player based their evaluation on, and were defined

for this work as follows:

• The performance of others: They base their evaluation on comparison to

community standards such as how much CS you should have per minute, how

much gold you should have at ten minutes, when you should go back to shop,

any type of community or meta level ideas of how the game should be played or

assumptions of how other participants did.

• Their scores: They base their evaluation on the number of times they took an

action or they reference their in-game scores (kda/cs/gold/etc...)

• Their use of the correct method or strategy: They base their evaluation on

the execution of skills, such as timing or ordering of skills, how use of skills related

to their goals, etc... May reference scores, but goes beyond just counts.

• Their improvement during gameplay: They base their evaluation on percep-

tions of improvement over the course of the task i.e. ”It was rough at the start
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but then things got better”

• Other factors: Anything else they discuss not covered

• They don’t know: They did not elaborate on how they’re evaluating themselves

For the SRL processes of attribution and adaptation, the codes captured what

players considered to be the source of their failure and the element they needed to

improve, respectively. The same codes were used for both processes, however, for adap-

tation, the “confidence/ability” code was not applied, as discussed by Cleary et al. [132].

The codes were defined for this work as follows:

• Specific technique: Discussions of failure to execute or need to change/improve

specific strategic or technical maneuvers

• General technique: Discussions of failure to execute or need to change/improve

general strategies or techniques

• Confidence/Ability: Discussions of lack of confidence or ability to perform the

task (only applied to attribution)

• Focus/Concentration: Discussions of inability to or need to change/improve

ability to remain focused, concentrate on the task, or prioritize objectives

• Effort: Discussions of not trying hard enough or needing to try harder

• Practice: Discussions of lack of practice or familiarity or needing to practice

more

• Rhythm: Discussions of issues with or need to change/improve patience or timing

of execution

• Distractions: Discussions of external stimuli that interfered or needing to ignore

these

• Other: Anything not covered by the other codes
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• They don’t know: If they do not have an answer

The qualitative data collected during the final interview was coded using the

coding scheme used in the earlier LoL study from part 1 of this dissertation [345], which

was, in turn, adapted from Kitsantas and Zimmerman [343]. These codes examine the

SRL processes of goal setting, strategy use, and self-monitoring. For goal setting, the

codes were defined for this work as follows:

• Outcome goals: Statements related to reaching objectives or checkpoints.

• Process goals: Statements related to strategic gameplay maneuvers.

• Other: Statements that did not discuss either of the above.

For strategy use, the codes were defined for this work as follows:

• Specific technique: Discussions of technical execution such as using the right

skill, but in relation to them actually doing it, not just thinking about doing it

• Visualization strategies: Discussions of visualizing or imagining oneself doing

something

• Concentration strategies: Discussions of focusing or concentrating either in

general, on a specific aspect of gameplay, or on an objective.

• Technique and concentration: Responses that included both.

• Practice/no strategy: Answers that just discussed practicing or did not discuss

any strategy.

For self-monitoring, the codes were defined for this work as follows:

• Score Alone: Discussions of tracking the number of last hits, amount of gold,

KDA, etc. either in one’s head or using the in-game score board

• Use of technique or form and its outcomes: Discussions of technical execu-

tion of a skill or strategy
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SRL Process Resulting IRR

Evaluation .72
Attribution .80
Adaptation .78
Goal Setting .86
Strategy Use .74

Self Monitoring .85
Goal Realization .81

Table 11.2: Inter-rater reliability measures for coding for all SRL processes. Calculated
using Cohen’s Kappa [133]

• Do not know: Statements indicating that they did not monitor their performance

or were not sure if they did.

• Other: Any self monitoring strategy that did not correspond with the above.

The goal realization responses were coded with “yes”, “no”, and “partially”.

The unit of analysis for coding was an entire response. All codes were only applied to

the responses to their corresponding questions and thus no single response was coded

with codes from more than one category.

For all of the coding, Cohen’s Kappa [133], was used to measure inter-rater

reliability (IRR). For this purpose, I and the previously mentioned collaborator both

coded all of the responses to each question. IRR was then calculated and disagreements

were discussed and resolved by the two coders. During the process, statements that were

coded differently were discussed to determine differences in the coders’ interpretations

and code definitions were updated as needed. If necessary, the data-set was re-coded

after discussion. The resulting Kappa values, all indicating strong to very strong agree-

ment, for each SRL process can be seen in Table 11.2. I then coded the entire set of

qualitative data, after which Chi-Square was used to check for significant differences

between groups for each SRL construct.
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Greater than 10
21.4%

1 - 5
32.1%

6 - 10
25.0%

Less than 1
21.4%

Years of Experience

(c)

Figure 11.3: Demographic breakdown of participants

Avg (B) StDev (B) Avg (A) StDev (A) Significance

Process 3780.93 1176.65 4478.71 1203.42 p = .03
Aggregate 3826.21 1215.87 3928.43 951.14 p = .63

Table 11.3: The average performance score before (B) and after (A) reflection for both
groups, with standard deviation.

11.2.2 Results

11.2.2.1 Demographics

Demographic data collected included age, gender, and years of experience.

This information can be seen in Figure 11.3.

11.2.2.2 Performance

The average scores for overall performance (based on the amount of gold earned

with reductions for deaths) can be seen in Table 11.3. While both groups improved their

performance, only the group that reflected on the process visualization experienced a

significant improvement according to paired T-Tests (t(13) = 2.52, p = .03). The effect

size, calculated using Cohen’s d, was .67, indicating a moderate effect.

To better understand how performance changed, I analyzed each of the indi-

vidual gameplay metrics that could impact the performance score, with the exception

of lost towers, as no participant ever lost a tower. The average creep score (CS), which

measures how many creeps and jungle camps a player killed (two of the four ways a

player could earn gold within the confines of the task) for both groups for both attempts
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Avg (B) StDev (B) Avg (A) StDev (A) Significance

Process 60.36 15.71 65.79 14.05 p = .12
Aggregate 60.36 19.67 63.43 15.59 p = .35

Table 11.4: The average creep score before (B) and after (A) reflection for both groups,
with standard deviation.

Avg (B) StDev (B) Avg (A) StDev (A) Significance

Process .86 1.29 .07 .27 p = .01
Aggregate .43 1.09 .5 .52 p = .41

Table 11.5: The average number of deaths before (B) and after (A) reflection for both
groups, with standard deviation.

can be seen in Table 11.4. While both groups exhibited an improvement, neither change

was significant (all p¿.05).

The average number of deaths, which would result in a deduction from the

overall score, for both groups for both attempts can be seen in Table 11.5. While

the aggregate visualization group experienced a non-significant (p¿.05) increase in the

number of deaths, the process visualization group experienced a significant decrease in

the number of deaths according to a Wilcoxon Signed Rank Test (Z=2.44, p=.01). The

effect size, calculated via Z statistic divided by the square root of the sample size, is

.65, indicating a large effect.

The average number of destroyed towers, which was one of the four ways that

players could earn gold within the confines of the task, for both groups for both attempts

can be seen in Table 11.6. While the process visualization group saw a slight increase and

the aggregate visualization group saw a slight decrease, neither result was statistically

significant (all p¿.05).

Avg (B) StDev (B) Avg (A) StDev (A) Significance

Process .07 .27 .36 .63 p = .07
Aggregate .14 .36 .07 .27 p .34

Table 11.6: The average number of towers destroyed before (B) and after (A) reflection
for both groups, with standard deviation.
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Avg (B) StDev (B) Avg (A) StDev (A) Significance

Process 1.79 1.37 2.29 1.54 p = .4
Aggregate 2.29 1.98 2 1.71 p = .62

Table 11.7: The average number of kills before (B) and after (A) reflection for both
groups, with standard deviation.

Avg StDev

Process Group 48 29.09
Aggregate Group 45 25.76

Table 11.8: The average degree of behavioral change from before and after reflection for
both groups, with standard deviation. The difference in average degree of behavioral
change between the two groups was not significant (p = .67).

Finally, the average number of kills, which was one of the four ways that players

could earn gold within the confines of the task, for both groups for both attempts can

be seen in Table 11.7. While the process group saw a slight increase and the aggregate

group saw a slight decrease, these changes were not statistically significant (all p¿.05).

11.2.2.3 Change

The average measure of change, calculated using DTW as discussed previously,

can be seen in Table 11.8. The averages indicate that players in both groups changed

their behavior between attempts to a similar degree, but the difference between groups

was not significant (p¿.05) meaning that neither group experienced a significantly greater

change of strategy than the other.

11.2.2.4 Self-Regulated Learning

The counts for how many times each “Evaluation” code was applied across the

data set can be seen in table 11.9. Chi-Square indicated significant differences between

the two groups (χ2(4) = 15.36, p = .004). The effect size, calculated via Cramer’s V,

was .74, indicating a large effect.

The counts for how many times each “Attribution” code was applied across
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Code Process Group Aggregate Group

Performance of Other 0 1
Their Scores 1 10

Correct Method or Strategy 9 3
Improvement During Gameplay 3 0

They Don’t Know 1 0

Table 11.9: Code counts for the evaluation process of SRL. These differences were
significant at p = .004.

Code Process Group Aggregate Group

Specific Technique 5 6
General Technique 3 5
Confidence/Ability 1 0
Focus/Concentration 2 1

Practice 1 0
Rhythm 1 1

Distractions 1 0
Other 0 1

Table 11.10: Code counts for the attribution process of SRL. These differences were not
significant at p = .67.

the data set can be seen in table 11.10. “Effort” and “They Don’t Know” were never

applied by either coder. Chi-Square indicated that these differences were not significant

(p¿.05).

The counts for how many times each “Adaptation” code was applied across the

data collected before the players’ second attempt can be seen in Table 11.11. “Effort”,

“Distractions”, “Other”, and “They Don’t Know” were never applied by either coder

and “Confidence/Ability” was omitted as discussed above. Chi-Square indicated that

these differences were not significant (p¿.05).

The counts for how many times each “Goal Setting” code was applied across

the data can be seen in Table 11.12. Chi-Square indicated that these differences were

not significant (p¿.05).

The counts for how many times each “Strategy Use” code was applied across

the data can be seen in Table 11.13. Chi-Square indicated that these differences were
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Code Process Group Aggregate Group

Specific Technique 3 6
General Technique 8 5

Focus/Concentration 1 1
Practice 0 1
Rhythm 2 1

Table 11.11: Code counts for the adaptation process of SRL. These differences were not
significant at p = .55.

Code Process Group Aggregate Group

Outcome Goals 8 8
Process Goals 5 6

Other 1 0

Table 11.12: Code counts for the goal setting process of SRL. These differences were
not significant at p = .58.

not significant (p¿.05).

The counts for how many times each “Goal Realization” code was applied

across the data can be seen in Table 11.14. Chi-Square indicated that these differences

were not significant (p¿.05).

The counts for how many times each “Self-Monitoring” code was applied across

the data can be seen in Table 11.15. Chi-Square indicated that these differences were

not significant (p¿.05).

Code Process Group Aggregate Group

Specific Technique 8 5
Visualization Strategy 1 0
Concentration Strategy 2 5

Technique and Concentration 3 3
Practice/No Strategy 0 1

Table 11.13: Code counts for the strategy use process of SRL. These differences were
not significant at p = .41.
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Code Process Group Aggregate Group

Yes 9 7
Partially 3 5

No 2 2

Table 11.14: Counts for how many players in each group realized their goals. These
differences were not significant at p = .69.

Code Process Group Aggregate Group

Score 5 4
Technique 6 3

Do Not Know 1 6
Other 2 1

Table 11.15: Code counts for the self-monitoring process of SRL. These differences were
not significant at p = .17

11.2.2.5 Trends Apparent in Qualitative Data

Further qualitative analysis beyond what is discussed previously is beyond the

scope of this work. However, some relevant trends did emerge that I discuss here, as

they help with understanding the significant impacts seen in the quantitative data.

First and foremost, players’ reflection responses (across both groups) often focused on

deaths, and how those deaths impacted their performance. For example: “I would say,

just by looking at the 5 deaths, that I did not collect as much gold as possible because

of the time down for those deaths” (Participant 5, Process), and “I died 4 times [which

was] a negative impact on my ability to get more gold” (Participant 21, Aggregate).

Reflection responses also indicate that, while reflecting, players were often trying to

identify what caused their deaths. For example: “So if I’d been focusing on the tower

aggro while pushing, even though there was no enemy around, I could have not died

and pushed more” (Participant 1, Process), and “I think I focused more on that than

on the actual farming itself, which caused me to overextend and get that death in the

lane” (Participant 12, Aggregate). When discussing what they would do differently,

players in both groups often discussed changes related to what they thought had caused

their death. For example: “obviously, at one point I died by overstaying, so in terms
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of things I could adjust or change I would definitely be more cautious about when to

back or to know my limits basically” (Participant 7, Process), and “I didn’t die, but I

came close a couple of times, so I should probably look for better trades” (Participant

18, Aggregate). Overall this highlights that many players focus on identifying mistakes,

what caused them, and how to avoid them, with deaths being the most apparent and

detrimental mistake available to players within the confines of this task.

Players did also discuss the other gameplay elements in their reflections. For

example, creep score: “because my champ, Garen, has that spinning E, [last hitting

creeps] is pretty easy once that levels up” (Participant 4, Process), and “I moved to the

middle lane early, because I could get some uninterrupted [creep score], without having

to worry about Zyra” (Participant 12, Aggregate). The number of kills, or failure to

secure a kill, was also commonly discussed, for example: “getting myself to level faster

would’ve given me better control over being able to actually succeed in getting at least

one kill on the Zyra” (Participant 2, Aggregate), and “goal was to just execute more

as far as better harass and just killing. Last time I almost got kills twice which kept

me from snowballing” (Participant 22, Process). In many cases, these discussions of

gameplay elements (including deaths) emerged in relation to goals set for the second

execution of the task, i.e.: “Honestly, I just wanted to not die” (Participant 9, Process),

and “Mentally, in my head, I knew that I’d gotten 86 cs last time and I was trying to

get that same cs or something better” (Participant 18, Aggregate). This illustrates that

while mistakes were at the forefront of players’ minds, thinking about their goals and

considering their progress towards those goals, often in numerical ways, was also a part

of their reflection processes.

There were also some trends that only emerged or were more apparent in one

group than in the other. Among the aggregate group, after the second attempt at

the task, there was a readily apparent sentiment that players’ reflections after the first

attempt led them down the wrong path. For example: “I think I accomplished those

goals of being more aggressive because I changed the play-style and went for a more

offensive build, but I don’t know if it was to better effect” (Participant 8, Aggregate),
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and “I think it was even worse...I had some ideas that I thought would help but I couldn’t

apply them” (Participant 23, Aggregate). A trend more apparent among players in the

process group was an awareness of the timing of certain events, often involving criticism

that important events had occurred later than they should have. For example: “I think

my performance was...delayed...because my first kill wasn’t until a little more than

halfway through” (Participant 20, Process), and “the timing of when I backed for items

could’ve been more ideal. Thinking about how much gold I had and I probably could’ve

had an earlier item” (Participant 7, Process). This is not entirely surprising given the

timeline-like format of the process visualization, but still a trend worth noting. Overall

this suggests that there were some differences in how the presentation of data impacted

reflection beyond what is presented in the quantitative data. In the next sections, I

discuss the primary takeaways from all of these findings.

11.2.3 Discussion

11.2.3.1 Performance

As can be seen from the results, the group that reflected on the process visu-

alization significantly improved their performance from before to after reflection while

the group that reflected on the aggregate visualization did not experience a signifi-

cant improvement. The apparent suggestion from these results is that reflecting on

the process-visualization did, to some degree, benefit players and help them improve

their gameplay. To better understand how it may have benefited them, I examined the

changes in gameplay metrics from their first to second attempts presented in Tables 11.4

through 11.7. As stated earlier, there were four metrics that could impact performance

in terms of gold earned: deaths, kills, destroyed towers, and creep score, where only

deaths were a mistake that would detract from one’s performance score (lost towers

would have detracted as well but, as stated earlier, no one ever lost a tower). Play-

ers were informed of the subtraction for deaths upfront. Of these four elements, only

the number of deaths saw a significant change, where the process group significantly
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reduced the number of times they died in their second attempt, after reflecting on their

first attempt.

In the previous section, when discussing the qualitative trends, I demonstrated

how players often focused on the number of times they died, what caused those deaths,

and what they could do differently to not die again. These statements illustrate that

players recognized death as a detrimental mistake and that much of their reflection

process was focused on avoiding that mistake. Although players also discussed other

elements of gameplay including creep score, suggesting that players were also thinking

about these elements, only the number of deaths saw a significant change. Further,

despite both groups being similarly focused on reducing the number of deaths and

determining what caused their deaths, only the process group succeeded in significantly

reducing the number of times they died. In fact, while it was not significant, the

aggregate group slightly increased the average number of deaths.

This implies that reflecting on a process visualization may help a player better

recognize and avoid mistakes, perhaps by allowing them to better identify the cause

of those mistakes. The earlier work in this dissertation, presented in parts 1 and 2,

highlighted that identifying one’s mistakes is one of the hardest parts of reflecting on

(and improving through said reflection) complex gameplay [349, 346], and thus, this

finding may prove valuable for helping computational support tools better meet players’

needs. While this theory cannot be confirmed by the work I present here, I present this

as an opportunity to be explored further in future work.

11.2.3.2 Self-Reflection

I also saw a significant difference in how participants evaluated their gameplay

during the reflection step. Specifically, those participants in the process group more

often evaluated their performance based on their use of the correct method or strategy

whereas those in the aggregate group more often evaluated based on score alone, as

can be seen in Table 11.9. This implies that being able to see process information will

prompt players to think more about their strategic decisions. While this may seem
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obvious, it is valuable to know that players are at least somewhat less likely to engage

in this behavior if they do not see process information.

Cleary et al. [132], in their study of basketball players, defined an evalua-

tion category they called “process” which contained evaluation based on technique or

strategy and evaluation based on improvement over time, which was also slightly more

common among our participants who reflected on the process visualization. Cleary et

al.’s results showed that those who were better trained to self-regulate their learning,

who, in turn, performed better, used evaluation techniques from the process category

significantly more often. Based on the understanding that process-based evaluation

results in higher performance, knowing that exposure to a process visualization may

prompt it is a valuable finding for the design of future tools.

It should be noted, however, that there were no other significant differences

in self-reflective processes, specifically in adaptation and attribution, which is unlike

previous work [132, 343]. One interesting possibility is that, while the visualization of

the data does not have a direct impact on how players reflect beyond evaluation, it

may impact whether or not they are able to come to the right conclusions from that

reflection. Specifically, attribution is about determining the cause of a mistake and

adaptation is about deciding on a new strategy to pursue. In both cases, there is an

element of accuracy, whether or not the right cause has been identified and if the right

new strategy has been selected. For example, two people might attribute their separate

mistakes to the fact that they got distracted during the task, but only one of them may

be correct, and the other one may have actually failed due to their own skill level or

another factor. As illustrated by this example, it is possible, that while both groups

tended to attribute the same types of causes and adjust their gameplay in the same

ways, only the process group was accurate in their judgments and that the aggregate

group, ultimately, made the wrong choice. This theory is supported by the quotes from

players we present in the previous section, where aggregate players suggested that their

reflections led them down the wrong paths.

This suggests that players, regardless of visualization style, will think similarly
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about what they can do differently and how they can change their gameplay, a theory

supported by the lack of significant differences in adaptation or the degree of change

measured through DTW. However, as discussed earlier in this thesis, being aware of

a mistake and being aware of what caused a mistake or how to overcome it are two

very different challenges [349, 346]. Thus, it is possible that process-visualizations may

have an impact on players’ ability to come to correct conclusions from their reflective

processes regarding the causes of their mistakes and how to overcome them, possibly by

prompting process-oriented evaluation, even if how the attribute or adapt their mistakes

does not change. In other words, a process visualization may help players come to more

correct conclusions about the causes of their mistakes and how to avoid them in the

future.

Future work is, however, needed to explore this further and confirm this theory,

as the work in the previous part highlighted concerns regarding how players draw accu-

rate conclusions from process-visualizations [350] and because evaluating the accuracy

of players’ attributions and adaptive strategies is beyond the scope of this work.

11.2.3.3 Other Elements of Self-Regulated Learning

Before moving on, it is worth noting that there was no significant difference

in goal setting between the groups, as can be seen in Table 11.12. It seems somewhat

surprising that, even after looking at a process visualization, the process group did not

display a stronger tendency towards process goals. I acknowledge here that individual

differences or a small sample size may be factors. Additionally, goal setting is not a self-

reflection process but rather a part of forethought [756], thus it is possible that reflective

visualizations would not directly impact it, which connects to an earlier discussion about

how reflection phase computational support does not do a good job of connecting to

the next forethought phase. However, it is additionally possible that players have a

pre-disposition towards outcome goals due to community standards. Among esports

communities, performance is often measured based on outcomes and milestones (number

of kills, creep score, amount of gold, etc...). As members of these communities, our
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participants may have it ingrained within them to think about their gameplay in terms

of these outcomes, leading to a tendency to set outcome goals, even when presented

with process information. This may be a limitation that process-visualizations are not

equipped to overcome.

I acknowledge, in relation to this, that players were prompted with the goal of

earning as much gold as possible, which is ultimately an outcome goal, but I illustrated

in the previous section that the goals players vocalized rarely directly mentioned gold.

Previous work has suggested that process goals are correlated with skill and performance

[132, 131, 343] and my earlier work highlighted how existing support for esports players

is insufficient in supporting goal setting [345, 346]. This finding may support this claim,

but future work is ultimately needed to explore this further.

Similarly, although not significant, there were some signs that there may be

differences in self-monitoring after a player reflects on a process visualization. Self-

monitoring, a performance phase process [756], is understudied in the existing literature

on gaming, but my earlier work, discussed in part 1, found that players tended towards

monitoring scoring metrics [345]. Here, I saw that those who reflected on the aggregate

visualization had a tendency towards not self-monitoring or not knowing if they had,

as can be seen from Table 11.15. As such, it is worth exploring further, in future work,

whether or not process-visualizations during self-reflection can impact self-monitoring

practices during future iterations of a task as this particular process is correlated with

skill and performance [343].

11.3 Considerations for Using Process Visualizations

to Improve Performance

Based on the discussion in the previous section, here I summarize the notable

implications and key takeaways for future research and the development of process-

visualizations for self-reflection.
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11.3.1 Process Visualizations may prompt Process-Oriented Evalua-

tion

The results suggest that exposure to a process visualization during self-reflection

may prompt process-oriented evaluation techniques that focus on strategy usage or im-

provement over time. This is almost certainly because they give the players access

to this information, whereas an aggregate visualization presents them with only score-

oriented information. This highlights a potential benefit of process-visualizations as a

tool for self-reflection, as process-oriented evaluation has demonstrated a strong correla-

tion with high performance [132]. This process-oriented evaluation may have also been

what led to participants’ ability to identify the causes of their mistakes and the best

ways to address them more accurately. While future work should explore this further,

this makes a good argument for the inclusion of process-visualizations in retrospective

visualization systems for esports.

11.3.2 Process Visualizations may lead to more Accurate Reflection

The results indicate that exposure to either a process or aggregate visualization

will result in similar self-reflective processes, suggesting that, ultimately the presentation

of data may not matter so much for the kinds of reflection that occur. However, the

results also suggest that reflection alone is not enough and that the conclusions that

the player comes to from the reflection must be accurate. Specifically, with regards to

attributions and adaptations, simply attributing the cause of a failure may not matter

as much in the grand scheme of things as whether or not that cause was correctly

attributed. Similarly for adaptation, a new strategy may matter less than the correct

new strategy. While future work is needed to confirm this theory, the findings suggest

that, by reflecting on a process visualization, players were able to come to more accurate

conclusions about the causes of their mistakes and how they could avoid them when

they repeated the task, leading to an improvement in performance. This suggests that

process-visualizations may, in fact, help players form more accurate causal relationships
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about their gameplay, addressing the shortcoming discussed in part 2 and supporting

their future use.

11.3.3 Expert-like Input might be Necessary to reach Accurate Con-

clusions

Given the implication that reflection alone is not enough to improve perfor-

mance, and that accurate conclusions matter, future retrospective visualization systems,

whether they use process-visualizations or not, will need to explore ways to guide players

to accurate conclusions. In the earlier parts of this dissertation, I illustrated how play-

ers often go to more experienced friends of teammates to seek input on how to improve

[346], and thus, it may be possible to address this by incorporating intelligent input

that helps players reflect on their performance the way a real expert would help them.

As such, future research should develop a better understanding of how players seek ex-

pert input and ways to incorporate such co-regulated learning [273] into retrospective

visualization systems. While I took a first step at exploring this topic (discussed in part

1 of this dissertation) there is a great deal of room for future work.

11.3.4 Process-Oriented Reflection may Influence Self-Monitoring Be-

havior

Previous work has highlighted that self-monitoring is a critical element of the

performance phase of SRL [343, 132] that is often not performed unless prompted [333]

and, as illustrated by the studies in the earlier parts of this thesis, not well understood

or perceived by complex game players [345, 346]. Though not significant, the results

did show a slight difference in self-monitoring between the two groups after reflection,

where those who reflected on the process visualization demonstrated a higher tendency

to engage in the behavior. While I can make no claims based on these results alone, this

does suggest that future work should explore this topic further to determine whether or

not there is a connection. This is especially worth exploring given that previous work

has demonstrated a connection between self-monitoring and performance [132].
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11.3.5 Process Visualizations do not necessarily prompt Process Goals

In part 1 of this thesis I discussed how goal setting was one of the only SRL

processes that were engaged significantly differently across expertise levels in League of

Legends [345] and in part 2 I illustrated how goal setting support is largely non-existent

among existing computational support tools [346]. The results here, further suggest that

reflecting on a process visualization will not necessarily prompt players to set process

goals, which are associated with higher performance [132]. As such, goal setting, and

supporting the setting of appropriate goals, which is necessary to prevent frustration

[88], remains an open problem within the complex gaming domain and something that

future work should focus on more closely.
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Part VI

Conclusion
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Chapter 12

Summary of Contributions

In this dissertation, I leveraged the theory of Self-Regulated Learning, which

describes ways in which people can self-direct their own learning process in the absence

of an educator, to understand how players learn to play games. Building upon this

understanding, I explored ways we could design computational assistants to support

Self-Regulated Learning in complex games, such that more players may succeed at high-

level play, even in the absence of access to social learning opportunities. Specifically, by

leveraging the Cyclical Phase Model, as its three phase understanding of learning maps

well to gameplay cycles, in this thesis, I have explored, through user centric research,

a number of topics related to how players learn, the state of the art of computational

support for learning, and how we can improve it. In this conclusion, I summarize the

contributions of each thrust of this work.

12.1 Thrust 1: Studies of Self-Regulated Learning in Com-

plex Games

The goal of this thrust was to develop a stronger understanding of how players

learn to play complex games. While there exist plenty of knowledge on the types of skills

possessed by experienced players, how those skills are gained, and how that skill gain

process can be supported, are under-studied. This thrust, thus, consisted of three studies
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aimed at answering the question “How do players engage Self-Regulated Learning skills

in the context of learning and improving at play?” Two studies explored this in solo

contexts and the third in a group context, aiming to understand the extent to which

SRL is relevant to learning to play complex games and to highlight how important the

role of others is in this process, to better motivate the development of tools that could

fill that role given an absence of or lack of access to a community.

The results of these three studies provide the following contributions:

• An empirical understanding of the activities engaged by players attempting to

learn and improve in the domain of esports and the challenges they face in that

process. These are expected to generalize to other, similar types of complex games.

• A mapping of each activity and challenge to the SRL skills encompassed by the

Cyclical Phase Model or to skills that are interrupted by the challenge at hand,

indicating that players do leverage SRL when learning gameplay, even when not

consciously aware of the theory.

• Implications for the design of computational assistants that could support learning

and address challenges, informed by those results.

• An empirical, first exploration of social learning in the context of esports using

the theory of Co-Regulated Learning as a lens that highlights key themes in how

esports players interact with each others’ learning processes. These are expected

to generalize to other, similar types of complex games and gaming contexts.

• An empirical understanding of the significant role that others play in an indi-

vidual’s learning process, based on those results, motivating the need for work on

systems that can fill that role when a community is neither available nor accessible.

• Concrete evidence of the differences in how self-regulated learning behaviors are

engaged across different skill levels in League of Legends, which likely generalize

to other esport games and complex games of similar design.
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• Empirically illustrated differences in how self-regulated learning manifests across

skill levels in esports when compared to traditional sports.

• A theory of the role of computational UI elements and support tools in teaching,

supporting, and facilitating self-regulatory behaviors in the context of esports

games.

12.2 Thrust 2: Supporting Self-Regulated Learning Skills

in Complex Games through Computational Support

Informed by the results of the first thrust, this second thrust was built on the

understanding that computational support tools played a key role in supporting and

facilitating self-regulated learning behaviors in complex games. However, existing work

had yet to develop any understanding of the state of the art of computational support for

complex games or develop concrete design requirements from the perspective of SRL,

necessary to know how said support could be improved and what direction research

should move in next. Thus, the goal of this thrust was to develop a more informed

understanding of how computational support tools supported self-regulated learning in

Complex Games and how this could be improved by better understanding what it was

that players wanted from these tools. This thrust consisted of two studies aimed at

exploring the question “How do data-driven tools support self-regulated learning skills

in complex games?”

The results of these studies provide the following contributions:

• A theoretical mapping of the Cyclical Phase Model to esports gameplay such that

pre-game is understood to be the forethought phase, in-game is understood to be

the performance phase, and post-game is understood to be the reflection phase.

• A taxonomy of nine interventions provided by existing computational assistants

for esport games.
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• A map of the state of the art of computational assistance for SRL (based on CPM)

in esports that details how the nine interventions are leveraged by existing tools

in terms of when, before, during, or after gameplay, they are offered to players.

• User-derived design requirements for computational assistants for esports.

• Explicit gaps in existing support and concrete opportunities for addressing them

through future research and improved design considerations derived through the

comparison of the design requirements to the map.

12.3 Thrust 3: Making Sense of Visualizations of Process

Informed by the results of the previous thrust, thrust 3 understood that play-

ers needed more causal information during self-reflection to better evaluate their per-

formance and make accurate attributions of failure. Specifically, players articulated

that it was typically very difficult to understand why they were not advancing of why

they had experienced a certain undesirable outcome and that, often, this was where

they would need to seek the aid of others in order to progress in their learning process.

Thus I identified this as an opportunity to improve computational support for SRL in

complex games. Based on the review of existing tools, I discovered that existing tools

used primarily aggregate data visualization, which was helpful in that it could be easily

understood, but did not provide players with the causal information they desired. Thus,

I proposed the use of process visualizations as a way to improve SRL support in compu-

tational tools. Process visualizations are, however, much more complicated in terms of

their visual appearance. Thus, in this thrust, I sought to develop an understanding of

how players made meaning of such visualizations of their own and others’ performance

data in order to better inform the design of human-readable process visualizations that

could be shown to players. Thus, this thrust consisted of two studies exploring the ques-

tion: “How do players of complex games extract meaningful insights from visualizations

of process?”
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The results of these studies provide the following contributions:

• An interaction taxonomy for spatio-temporal gameplay data that highlights the

information that players rely on when making sense of gameplay data.

• A process model for how the interactive activities in the taxonomy and information

gleaned are leveraged by players extracting meaning from others’ spatio-temporal

gameplay data.

• An understanding of how the extraction of meaning from gameplay data, and

especially process-oriented visualizations of gameplay data varies from traditional

meaning-making in information visualization.

• A concrete approach to visualizing gameplay data as a process visualization based

on abstractions of gameplay actions.

• An interaction taxonomy for process visualizations of gameplay data that presents

distinct activities that players engage in when making sense of the visualization

and highlights what information is most important to them.

• Two process models representing two sense-making methods for how the interac-

tive activities in the taxonomy are leveraged by players extracting meaning from

process visualizations of gameplay data.

• Considerations for when and how to design and implement process visualizations

to support players in complex games.

12.4 Thrust 4: Reflecting on and Learning through Pro-

cess Visualizations

The results of the previous thrust demonstrated the versatility of process vi-

sualizations, which generalize across numerous types of games regardless of genre or
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presence of a spatial component. Therefore, in this final thrust, I argued for their inclu-

sion in computational support tools as a way to better support self-regulated learning

processes during the self-reflection phase, discovered in earlier thrusts as a critical el-

ement of learning in complex games. However, earlier thrusts had not highlighted the

benefits of process visualizations beyond theoretical claims. Thus, the goal of this thrust

was to examine, empirically, whether or not, and in what ways, a process visualization

impacted player reflection and performance. As such, armed with an understanding of

how meaning is made from process visualizations, this final thrust consisted of two stud-

ies that explored the question “How do process visualizations of one’s own and others’

gameplay data impact self-reflection and learning?”

The results of these studies provide the following contributions:

• An empirical demonstration of the impact of reflecting on others’ process infor-

mation on willingness to adapt and quality of reflection when compared to only

one’s own.

• Design considerations for the inclusion and presentation of others’ data in a process

visualization based on these empirical results.

• An empirical demonstration of the impact of reflecting on process visualizations

on self-reflection processes when compared to an aggregate visualization.

• An empirical demonstration of the impact of reflecting on process visualizations

on performance when compared to an aggregate visualization.

• An understanding that process visualizations may better support the derivation

of accurate conclusions from a reflective process, thus laying the foundation for

their future study and use in commercial tools.

• Design considerations for the inclusion of process visualizations in computational

support tools.
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• Concrete opportunities to explore the utility of process visualizations for complex

games further in future work.
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Chapter 13

Limitations and Future Work

In this chapter I discuss the limitations of this work in terms of the theoret-

ical limitations of Self-Regulated Learning and the Cyclical Phase Model as well as

the methodological limitations of this work itself. I additionally discuss what these

limitations mean for future work

13.1 Limitations of Self-Regulated Learning and the Cycli-

cal Phase Model

13.1.1 The Scope of the Cyclical Phase Model

While SRL is a long-standing, well-tested, and empirically proven theory of

learning that lends itself well to gaming contexts, here I acknowledge its limitations and

how they relate to this work. In their 2011 meta-analysis of SRL literature, Sitzmann

and Ely [624] highlighted a series of areas where SRL research had room to improve its

understanding of learning. One such limitation they discuss is the focus on pre, mid,

and post-training and the need to understand how self-regulation evolves and changes

over time in a more fluid manner. I acknowledge here that this work, which relies on

the Cyclical Phase Model and its understanding of the three phases, falls within the

restraints of this limitation.
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As discussed in a previous section, the three phases of CPM map explicitly

to the well-established phases of gameplay: pre, mid, and post-game. However, these

are likely not the only moments in which the cycle of planning, taking action, and

evaluating the outcome can be experienced within a game. On a more granular level,

before taking any action, a player devises a plan, and after the action is complete, reflects

on the outcome. This information will inform the next decision they make, and this is

likely to occur repeatedly over the course of gameplay, suggesting that the three cycles

happen repeatedly in a nested manner within the larger cycle of pre, mid, and post-

game. While defining and examining the nature of this phenomenon, and developing a

concrete framework for Self-Regulated Learning is beyond the scope of this thesis, this

is a topic I aim to explore further in future work.

Building on this discussion of the scope of the CPM cycle and the timing of

behavior, CPM, as a model for SRL, does not account for the existence of reflection dur-

ing the completion of a task, which would be considered the performance phase within

the confines of the model. As a part of his 1984 book “The reflective practitioner: How

professionals think in action” [584], Schon describes two types of reflection: in action

and on action. While the work detailed in this dissertation focused on reflection on

action (occurring after an event has completed), reflection in action (occurring during

the event) is not properly accounted for by the Cyclical Phase Model itself. The model

does allude to reflection occurring during performance with reference to behaviors such

as monitoring progress towards goals and adjusting strategies [756], but does not ex-

plicitly discuss reflective behaviors (such as evaluation or adaptation) occurring during

this phase.

Within the context of this work, study participants alluded to the existence

of performance phase, in-the-moment, reflective practices, and thus, future work may

benefit from further developing our understanding of the performance phase CPM and

how the behaviors it encompasses occur within games, specifically focusing on those

meta-cognitive behaviors related to reflection during the activity. It is, however, known

that observing and measuring meta-cognitive behavior during the performance phase is
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a difficult task partially due to the risk of disrupting the activity and partially due to

learners often not being aware of their meta-cognition during this phase unless explicitly

prompted about it [333]. Thus there also remains a methodological challenge for how

best to address these questions in future work.

13.1.2 Accounting for Individual Differences and Social Interaction

Another consideration in the SRL literature is its connection with other factors

or traits and the extent to which the external traits impact the execution of SRL skills

and, in turn, learning. For example, Wolters and Hussain [725] found a connection

between grit and the execution of SRL skills and Reddy et al. [550] discuss how those

with attention-deficit hyperactivity disorder (ADHD) struggle with self-regulation. This

suggests that SRL, as a learning theory, is not applicable to every learner or, in the

case of this work, every player and suggests that computational support tools that

support players based on SRL theories or that are designed to support SRL may not be

applicable to everyone. Even within the studies presented in this dissertation there were

participants who did not express the same desires from an assistant, with some wanting

explicit grades that they would be immediately willing to accept and use as a basis for

adaptation and others distrusting any conclusion they did not come to themselves.

Further, cultural differences may also impact how players learn and the ac-

tivities that they engage when doing so. While this applies to geographical cultural

differences, considering that players around the world may not all learn or accept as-

sistance in that learning in the same way, it also applies to cultural differences among

player communities. Within this context, the theory of communities of practice becomes

relevant. According to the theory, people who share a passion or interest will learn to

engage with or perform it and learn to do so better over time through continued inter-

action with one another [378, 717]. This concept applies to this work not only in the

context of the exploration of Co-Regulated Learning discussed in Part 1 but also to the

ways in which participants discussed SRL or were observed to engage it in solo learning

contexts throughout the dissertation.
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As is illustrated in Part 1, primarily in Chapter 4, learning in complex games

rarely occurs in a vacuum and players will often leverage the insights and expertise of

others in order to learn, progress, and improve. In Chapter 4, this is explored empir-

ically in the context of esports teams, which, by definition, become a community of

practice as they are a group of individuals with a shared interest who develop through

continued interaction with each other around that interest. Further, within this struc-

ture, members of the community, the esports team, often lower the learning curve for

newcomers, as illustrated by the themes discussed in Chapter 4, meaning that esports

teams fulfill one of the ways that the literature recognizes that communities of practice

improve performance [390].

This connection links to the aforementioned limitation of SRL in terms of how

it connects to individual differences. Learning may not only occur differently among

individual players of complex games but among communities of practice as a whole,

where players who belong to a team or club or guild and play together frequently may

exhibit certain SRL skills but not others and this may be different from those skills

exhibited by a different community. These differences may or may not coincide with

culture, age, gender, or geographic location among other demographic characteristics.

It is also likely that these communities extend into online spaces, where influencers,

streamers, and forum writers form communities of practice around themselves and in-

fluence the learning of their followers, as online communities of practice are already

heavily discussed in existing literature [632, 30, 266, 565]. The possibility that SRL and

learning in general function differently in different communities, thus needing different

support considerations, also poses an interesting juxtaposition to the tendency for the

introduction of computational coaching tools to motivate players to play similarly to

one another [326].

A full examination of individual differences, communities of practice, and how

they influence once another and individual players’ execution of SRL skills is, ultimately,

beyond the scope of this thesis. However, in future work, I hope to explore differences

in SRL in the context of complex games across different groups, with care taken to
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understand how these differences intersect with communities of practice both in per-

son and online. Especially in the case of esports, which have achieved global appeal,

understanding how learning occurs across different groups, and how individual differ-

ences may impact acceptance of a computational assistant, is critical to the long-term

applicability of the results of this thesis.

13.2 Limitations of this Work

Here, I acknowledge several methodological limitations of this work. First, the

work in thrusts 1 and 2 looked exclusively at esports games. This decision was motivated

by a number of factors: an abundance of data within the domain, the presence of many

existing computational assistants within the domain due to the previous point, the

abundance of user experiences with computational assistants within the domain due to

the previous two points, esports global popularity and increased use in serious and high-

impact domains, and personal interest. While this means that the results derived in

these first two thrusts illustrate SRL and how it intersects with computational support

in the context of one of the most complicated complex gaming contexts, I acknowledge

that there are questions of generalizability.

While CPM, as illustrated earlier, is applicable to games across genres, the

details of how players engage with the learning processes it encompasses and how these

are influenced by computational assistance may vary by genre. These questions of

generalizability are especially of interest when looking at solo gaming contexts and the

context of games that do not have large communities surrounding them (as is the case

for many serious games) where players may view external support differently. Future

work is necessary to ensure that the findings of these two thrusts generalize properly to

these other types of complex games. Players’ responses during the studies conducted in

these two thrusts, however, suggested some degree of generalizability, which is promising

for future work.

Second, I acknowledge that, in thrust 3, I only looked at two types of visu-
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alizations of process, one of which was carried forward into thrust 4. There certainly

exist other ways to visualize gameplay data in a process oriented manner that are not

accounted for within the scope of this dissertation work. Thus, here, I acknowledge that

this work is limited in this capacity and that the approach chosen may not be the single

most effective one. That being said, establishing that a process visualization of one type

has an impact on self-reflection and performance in at least one type of complex game

sets the foundation for future work to explore this further.

Additionally, given the similarities between the two taxonomies developed in

the two studies in thrust 3, it seems promising that sense-making, and the impact that

the insights extracted from that sense-making process, may generalize across visualiza-

tion styles. This is promising as far as assuming, therefore, that the insights derived

within this thesis regarding the impact of these visualizations on reflection and gameplay

performance may generalize beyond just the visualizations seen within this thesis.

Connected to this consideration, I acknowledge that, in thrust 4, I leveraged a

specific approach to the design and presentation of the process data. Previous work [274,

703] has found that aesthetics can have an impact on how data is viewed and interpreted

by users and thus it is possible that the presentation of the information and the design

of the visualization itself had an impact on how players reflected and, ultimately, on the

results. While an exploration of all possible designs of process visualizations is beyond

the scope of this work, future work can examine the extent to which aesthetics impact

self-reflection, adaptation, and learning when reflecting on a process visualization.

Finally, I additionally acknowledge that the quantitative data collected in

thrust 4 was collected from relatively small samples and that there are chances that

the results presented here may change when the studies are repeated on larger sample

sizes. I emphasize here that these sample sizes are consistent with previous work on

SRL [343] as well as the ACM CHI standard [96]. Thus, in the context of this thesis,

the sample sizes for both studies are enough to accept the results as valid. Nevertheless,

future work is needed to confirm this and these results are thus presented as a stepping

stone upon which this future work may build.
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13.3 Additional Considerations for Future Work

Here I discuss additional considerations for future work that are not necessarily

connected to a concrete limitation but are informed by trends that emerged throughout

this work.

Over the course of this dissertation work, a number of considerations have

emerged regarding the fair and ethical existence of computational assistance for complex

games. In general, there are increasing concerns regarding the handling and sharing of

player data [746, 599] that have yet to be properly addressed and resolved. During

this thesis work, players often expressed concerns over the competitive fairness of the

tools being studied and whether or not they would negatively impact their performance

or expose them to toxicity within the community. Additionally, the concept of data

literacy [106] raises questions about the equity of these tools and whether or not they

could support all players in a fair manner or if a bare minimum amount of data literacy

is required for the support to be effective. While exploring these questions of ethics was

beyond the scope of this thesis work, this is something I hope to look into further in

future work.

Additionally, as I have said multiple times throughout this thesis, games are

an appropriate proxy for testing and deriving early requirements for UX of AI and

computational support systems for similarly complex high-impact domains, such as

disaster response. While exploring generalizability in this direction was beyond the

scope of this thesis, in future work, I plan to build collaborations that allow me to take

the findings of this work outside of games and examine how they may be adapted and

applied in high-impact domains. Based on the findings of such work, my goal is to build

better AI assistants for supporting learning and performance in complex tasks.

Finally, I acknowledge here that these tools are not meant for everyone and

using them should not be a requirement. Many players enjoy the sensation of overcoming

difficult challenges on their own and it varies from game to game and genre to genre.

These tools are meant to be an option to players who feel they need them or simply
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want to use them, but games should not be designed to require their use as third party

support. The desires of game designers should also be considered when developing these

tools and their opinions as to whether or not they should be used with their games should

be accounted for. As such, there are contexts in which other methods of supporting

learning will be necessary and future work should explore these alternatives.
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Chapter 14

Conclusion

In this chapter I will return to the problem I set out to address at the beginning

of this dissertation and discuss how the work here addresses it and what new questions

have emerged as a result of this work.

14.1 The Problem

Complex games have proven benefits for players and are seeing increased in-

dustry success as well as integration into serious, high-impact domains. In some cases,

existing games developed for entertainment are being leveraged towards real world de-

velopment and benefit, such as with esports being integrated into schools to help stu-

dents learn teamwork, problem solving, and emotional regulation skills that transfer to

academic contexts [727, 673, 479]. In other cases, gamified learning and training are

seeing success as engaging ways to teach people new skills in both academic and work

environments [321, 567].

The use of these games is, however, limited in that they are notoriously difficult

to learn and master, making high-level complex gameplay inaccessible to many people.

For many players, the means of overcoming this hurdle is to leverage the knowledge, aid,

and guidance of others. However, communities do not exist for every game, especially

for many serious games, and are not welcoming or accessible to every player, especially
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within domains such as esports. This results in situations where the benefits of complex

gameplay are not available to all players, where games developed for serious purposes

may be completely ineffective at their intended use, and diversity issues where those

most capable of succeeding as high-skill-level players are those already welcomed by the

community, if one exists.

14.2 Understanding Learning

As a first step to addressing this problem, I sought to understand how players

in complex games learn to play. This was done initially through the two qualitative

interview studies that, specifically, aimed at creating a formative theoretical under-

standing of learning in esports, a gaming context that encompasses some of the most

complicated complex games. The outcomes of these two studies were a comprehensive

taxonomy of the activities and challenges engaged and faced by esports players when

trying to move up the ranks and a detailed set of themes surrounding social learning

within the context and how players help each other learn and improve. The third study

took a mixed-methods approach to understanding the use of SRL skill by players more

specifically and, when combined with the results of the first study, provide an interesting

insight into how SRL skills are prompted and potentially supported by esport games

and their design elements.

From the first study we can see that SRL practices such as evaluating perfor-

mance, setting goals, and executing plans are commonly leveraged by players when they

are learning. Of interest here is that many of the players themselves did not explicitly

use this terminology or suggest any awareness of the concept of SRL during the inter-

views. From the third study, we further see that players of across skill levels tend to

leverage SRL skills to equivalent degrees. Combining these two sets of results, I propose

that players who engage in esports play may be learning SRL skills simply through their

interactions with the games. I further propose that the computational support systems

within the games themselves, i.e. the scoreboards or post-play statistics, are further
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prompting and supporting the adoption and use of these skills.

Going beyond this work, for the future development and use of complex games,

this suggests that SRL, as a learning theory, can be used as a foundation upon which

learning and support systems may be structured. These do not necessarily have to be

computational systems, but could be training regimens or written guides that focus on

getting new players comfortable with the cycle of SRL that is apparently common in

complex games. Further, it suggests that when developing complex games for serious

and high-impact domains, the inclusion of computational systems with information sim-

ilar to what is provided by those present in esports games may aid players in progressing

through skill levels and thus enhance the success of the game. There are also implica-

tions for the gamification of learning technology systems that may be able to leverage

design insights from esports systems, though further discussion of this point is beyond

the scope of this work. Finally, these findings also suggest that complex games, espe-

cially esports, may be leveraged as a means for teaching SRL skills that could transfer

to other domains.

The results of the third study from Thrust 1, however, also leave an open

question not addressed by this work. It was found that more advanced players exhibited

better SRL skill usage in the forethought phase and I hypothesized that this was due to

this phase having no apparent support systems for SRL within the game itself. I then

suggested that advanced players are likely learning the skills they use from teammates

and coaches whereas novice players are less likely to have such contacts. Combined with

the results of the second study, looking at social learning, this emphasizes the significant

role of others on learning and how important it is for players to have access to some form

of guide or input, motivating the need for computational assistants pursued in the rest

of the thesis. This thesis did not, however, explore ways of developing better support for

the forethought phase of SRL in complex games, instead focusing on the self-reflection

phase. Thus, there is an opening that can be filled by future work in addressing how to

best support and teach forethought phase SRL skills to complex game players and how

these impact overall performance.
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14.3 Understanding Self-Regulated Learning as a Social

Activity

Before moving on to the next section, I follow the discussion of learning and

understanding SRL in games with a bit more discussion of the social components of

SRL, specifically the Cyclical Phase Model. While the model, as it is proposed and

often discussed in previous work, does not account for social interaction, the results of

this thesis suggest that, at least in the context of games, interaction with others plays

a significant role. Specifically, participants throughout would explicitly or implicitly

refer to coaches, teammates, friends, communities, and instructors who knew more and

could aid them by identifying errors, suggesting changes, evaluating performance, and

tracking improvement for the player. While the theory of Co-Regulated Learning was

leveraged to better understand these phenomena, it remained clear that three phases of

learning were fundamental to learning in, at least, esports games. These three phases,

before, in, and post game which players understand as playing different roles in their

learning process, even if they do not know what CPM is, are not discussed prominently

within the existing work on CoRL. Thus, there are two theories relevant to learning in

complex games that, at this time, do not intersect sufficiently.

Overall, this suggests that, in the future, for work in this area to advance, a

new model of SRL may need to be proposed, one which combines the Cyclical Phase

Model with Co-Regulated Learning to account for an captures how social interaction

occurs across the three phases of learning. Such a model would certainly be of great

benefit to the domain of complex games, where, as this thesis demonstrates, learning is

understood to be both a social activity and one that maps across three phases in relation

to when the learning task, the gameplay itself, occurs. In the process of generating such

a novel understanding would come the need to further, and in more detail, examine the

role of a mentor or instructor within game learning contexts. Such an individual may

be a coach, teacher, or tutor and their actions may play a critical role in how learning is

Co-Regulated. Understanding how this occurs better in gaming contexts and updating
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the models of SRL accordingly can lead to the development of, not only better tools,

but better implementation of gamified learning.

It may be possible, additionally, that such an advanced model would be of

benefit to learning sciences more broadly, as students in other context likely also rely on

social interaction when adopting a new task. Social SRL is largely understudied overall,

with only Hadwin et al.’s [497] work being prominently cited on the topic. In this

regard, do I hope that the work presented in this thesis may advance our understanding

of social learning within and beyond games.

One additional consideration of social learning that may need to be added to

such a model of Social, Cyclical, Self-Regulated Learning is that of emotion. While the

work in this thesis focused on the regulation of learning, how emotions and emotional

regulation intersect with learning and especially social learning must be considered.

To date, most theories and models of SRL feature little consideration for emotions,

with Boekaerts’ [75] “coping or well-being mode” being one of few acknowledgements

of the role and potential setbacks of emotions in the learning process. This model,

and most others, however, do not account for the social component, where both the

learner and others may experience emotional states that can impact their learning.

Especially in emotionally charged contexts, as complex games often are, expanding SRL

theory to account for emotions, and especially social emotions, may further advance our

understanding of the phenomenon.

14.4 Examining Computational Support

Following the earlier discussion, I argue that if we are to make complex game-

play, and its proven benefits, more accessible to more players and more effective in

high-impact domains, we must better support players’ ability to learn on their own.

While there are many ways that we may support players in this capacity, the main

take-aways discussed in the previous section suggest that computational assistants are

a promising avenue that have already seen commercial success within some domains.
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Computational assistants can, in a sense, act as an alternative to the aid of another, pro-

viding players with valuable input and guidance that can help them overcome obstacles

in their learning journey.

Prior to this work, however, there was no comprehensive understanding of

what computational assistants for complex games looked like, offered players, how they

interfaced with SRL, or how well they aligned with what players desired from them.

Thus was I motivated to examine these tools more closely in the hopes of discovering

gaps in their support that may be filled to better address the needs and desires of

players. Through a systematic review of existing tools I aimed to address the first issue,

of not understanding how computational assistants aid players, and through data-driven

retrospective interviews I aimed to address the second, of needing to know what players

wanted or needed from these tools. The result is a taxonomy of interventions and

concrete design requirements for the development of future tools.

Within the context of this dissertation, I identified the lack of causal informa-

tion in existing tools as a means of improving computational support for SRL. Players

felt that they often knew they had made a mistake, due to experiencing an unsatisfac-

tory outcome, but were unsure what the mistake was. In the earlier work on learning,

players articulated how one of the greatest advantages of having another person to talk

to was having another set of eyes examine their performance and pinpoint what they

could do better or what they explicitly did wrong. Here, players suggested that they

wanted computational support to do the same, but unlike a real person, the tools, in

their existing forms, were mostly only able to tell players that something was wrong,

but not what. At the very least, players felt like the tools could do more to help them

understand cause and effect. I identified this as an opportunity to advance the design of

computational support tools for complex games to better meet players needs and better

fulfill the role of supporting players in the absence of a community. Going forward,

future tools developed both within and outside of complex games can aim to address

this need for causal information as a way to set themselves apart from competitors and

better aid players. In the context of serious domains, the inclusion of support systems
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that specifically focus on causal information may make the games used in these domains

more effective.

Another prominent take-away from this work was the prominent lack of com-

prehensive support for the performance phase (i.e. during gameplay). Previous work

has suggested that performance phase processes are often not engaged unless prompted

[333] suggesting that this may be a detriment to players. As such, this is an opportunity

for future work to explore performance phase support and develop more comprehensive

systems for it. However, a prominent theme in the earlier work on social learning was

that learning was meant to be performed before and after play but not during it and

during play the player should be focused on winning. Combining this with the theme

that players desired non-disruptive aid during the performance phase gleaned from the

interviews around existing tools suggests that providing performance phase support is

an intricate design challenge that must balance the need to support learning with play-

ers’ desires to be able to focus on their in-game performance and chance of victory.

Explicitly addressing this challenge is beyond the scope of this thesis, and as such I

present this as an opportunity for future work that may further improve the design of

computational support tools beyond what is presented in this work.

14.5 Advancing the Use of Process Visualizations

The culmination of the work discussed previously was the identification of pro-

cess visualizations as an avenue to better support players learning process by presenting

them with more causal information. This, of course, raised questions regarding how

meaning is made from visualizations of process, which were explored in the third thrust

of this work through think-aloud studies prompting players to extract insights from vi-

sualizations of gameplay. Following this, to understand the impact of process visualiza-

tions on players’ self-reflection and performance, I conducted two experimental studies

examining first adaptation and the impact of community data and then the impact of

process more holistically when compared to an aggregate visualization. The outcomes
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of this work were two taxonomies of how meaning is made from spatio-temporal and

process visualizations of gameplay data, respectively, and empirical results regarding

the impact of process visualizations on SRL and performance.

More generally, from the taxonomies, I found that there were a number of

differences in how players made meaning from game data compared to how other users

made sense of visualized data in other domains. One of the most prominent differences

was the importance of the context of the game from which the data was drawn, with

players more reliant on understanding how that context influenced the visualized ac-

tions than users in other domains are reported to be. This reliance often resulted in

assumptions about the reasoning of the player who took the action, and this general-

ized to process visualizations as well, where study participants often made assumptions

regarding the skills and strategies of the player who took the visualized actions.

For the future use of process visualizations in complex games, this means that

preserving context may be key to successful implementation but also, especially in the

case of process-only visualizations, suggests limitations to their successful deployment.

Specifically, familiarity with the game context may be critical to their success. In the

study where players knew less about the game (Parallel) they were observed to be more

likely to make relatively baseless assumptions and do less work to confirm whether or

not they were true. This, of course, raises questions about the equitable use of these

tools, discussed earlier, in that it suggests that they would only be of use to those players

who are already very familiar with the games. As such, while I presented a set of design

considerations for addressing these concerns here, beyond this dissertation their is an

opportunity for future work to determine ways to effectively scaffold players in deriving

accurate understandings of visualized data in process visualizations even if they are less

familiar with the gaming context. This work may also generalize beyond games and

apply to behavioral data visualization at large.

Beyond the taxonomies, the two experiments provide empirical evidence to

support the proposed use of process visualizations to enhance learning by showing that

they prompt adaptation through the inclusion of community data and improve per-
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formance through more accurate reflections. For the future design of computational

support tools for complex games, these results suggest that the inclusion of process vi-

sualizations, which would arguably be more work to design, are a worthwhile endeavor.

For future research, these findings lay the foundation for future work to examine more

complicated scenarios, such as full multi-player gameplay, and to explore the impact of

accurate reflection more fully. The study on adaptation, additionally, found that while

the inclusion of community data did prompt adaptation, it only did so in one third of

the group, suggesting the potential for a more effective method of getting learners to

adopt the skill. These results are applicable to complex games but likely also generalize

to learning technology at large that may similarly benefit from the causal information

provided by a process visualization.

14.6 Wrapping Up

In summary, the goal of this work was to find a way to support players’ learn-

ing processes in complex games such that they may better access the benefits of play,

to make the games more effective in serious domains, and to hopefully address diver-

sity issues brought about by the lack of accessibility to experienced others who may

help someone learn. Through mixed-methods, user-centric research, I identified SRL,

and specifically the Cyclical Phase Model, as a practice central to the learning pro-

cess in games and found that the presence of other people had a notable impact on

an individual’s ability to learn and adopt SRL skills. In the absence of those people,

computational support systems, including data visualizations, can fill the gap, but there

is room for improvement, especially with regards to providing players with the causal

information necessary to understand their mistakes and how to fix them. Process visu-

alizations are one promising method to providing players with this causal information,

which demonstrate promise as far as guiding accurate reflective and adaptive processes.

Further, when combined with community data, they may further prompt adaptation in

a complex gaming task.
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Based on these findings, my overarching research question “How can we fa-

cilitate, enhance, and encourage self-regulated learning in the context of improving at

complex game-play?” is answered largely via the statement “we can use computational

assistants to encourage SRL in complex gameplay and can further facilitate and enhance

the processes therein via the design and implementation of process visualizations within

the tools.” In doing so, I argue that complex games can be more accessible to more

people and better leveraged in serious domains.

While one may wonder why visualizations are necessary for self-reflection when

players can easily review recordings of their gameplay, I emphasize that reviewing record-

ings is a time consuming process that not everyone always has the time or patience for.

A single visualization depicting action-by-action gameplay in a holistic manner can

provide an at-a-glance overview of performance for reflective purposes that may occur

quickly enough to fit comfortably in between adjacent games. As such the work herein

is not meant to replace existing methods of review and reflection via video or simply

memory, but to complement and enhance it.

Regarding the future design, development, and research of these tools, this

dissertation provides user requirements, taxonomies, theoretical insights, design recom-

mendations, and empirical results to inform and guide. Potential directions for future

work include the examination of the forethought and performance phases and ways to

enhance SRL support and computational assistant design for these phases, neither of

which were the focus of this work, opportunities to explore social learning and commu-

nities of practice within complex gaming further in terms of how learning activities vary,

and the need to understand the fairness, ethics, and equity of computationally assistive

tools for gaming in terms of intersecting concepts such as data literacy, privacy, and

accessibility. The empirical results presented in this thesis further lay the foundation

for additional research into reflection in gaming and its impact on performance.
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[101] Mickaël Campo, Xavier Sanchez, Claude Ferrand, Elisabeth Rosnet, Andrew

Friesen, and Andrew M. Lane. Interpersonal emotion regulation in team sport:

Mechanisms and reasons to regulate teammates’ emotions examined. International

Journal of Sport and Exercise Psychology, 15(4):379–394, Aug 2017.

[102] Yingjun Cao, Leo Porter, Soohyun Nam Liao, and Rick Ord. Paper or Online?

In Proceedings of the 2019 ACM Conference on Innovation and Technology in

Computer Science Education - ITiCSE ’19, pages 99–104, New York, New York,

USA, 2019. ACM Press.

[103] Angela Carbone, John Hurst, Ian Mitchell, and Dick Gunstone. Principles for de-

signing programming exercises to minimise poor learning behaviours in students.

In Proceedings of the Australasian conference on Computing education - ACSE

’00, pages 26–33, New York, New York, USA, 2000. ACM Press.

[104] Angela Carbone and Judy Sheard. A studio-based teaching and learning model in

IT. In Proceedings of the 7th annual conference on Innovation and technology in

computer science education - ITiCSE’02, page 213, New York, New York, USA,

2002. ACM Press.

[105] Andy Carle, Michael Clancy, and John Canny. Working with pedagogical patterns

in PACT. In Proceedinds of the 38th SIGCSE technical symposium on Computer

science education - SIGCSE ’07, page 238, New York, New York, USA, 2007.

ACM Press.

265



[106] Jake Carlson and Lisa Johnston. Data information literacy: Librarians, data, and

the education of a new generation of researchers. Purdue University Press, 2015.

[107] Albert V Carron, Steven R Bray, and Mark A Eys. Team cohesion and team

success in sport. Journal of sports sciences, 20(2):119–126, 2002.

[108] Adam S. Carter and Christopher D. Hundhausen. With a little help from my

friends: An empirical study of the interplay of students’ social activities, pro-

gramming activities, and course success. In ICER 2016 - Proceedings of the 2016

ACM Conference on International Computing Education Research, pages 201–209.

ACM, Inc, Aug 2016.

[109] Janet Carter, Jian Shi, Su White, Dennis Bouvier, Rachel Cardell-Oliver, Mar-

garet Hamilton, Stanislav Kurkovsky, Stefanie Markham, O. William McClung,

Roger McDermott, and Charles Riedesel. Motivating all our students? In Pro-

ceedings of the 16th annual conference reports on Innovation and technology in

computer science education - working group reports - ITiCSE-WGR ’11, page 1,

New York, New York, USA, 2011. ACM Press.

[110] Milly Casey-Campbell and Martin L Martens. Sticking it all together: A critical

assessment of the group cohesion–performance literature. International Journal

of Management Reviews, 11(2):223–246, 2009.

[111] Michael E. Caspersen and Jens Bennedsen. Instructional design of a programming

course. In Proceedings of the third international workshop on Computing education

research - ICER ’07, page 111, New York, New York, USA, 2007. ACM Press.

[112] Sven Charleer, Kathrin Gerling, Francisco Gutiérrez, Hans Cauwenbergh, Bram

Luycx, and Katrien Verbert. Real-time dashboards to support esports spectating.

In Proceedings of the 2018 Annual Symposium on Computer-Human Interaction

in Play, pages 59–71, 2018.

266



[113] Sven Charleer, Joris Klerkx, Jose Luis Santos, and Erik Duval. Improving aware-

ness and reflection through collaborative, interactive visualizations of badges. AR-

TEL@ EC-TEL, 1103:69–81, 2013.

[114] Hui Chen and Kostadin Damevski. A teaching model for development of sensor-

driven mobile applications. ITICSE 2014 - Proceedings of the 2014 Innovation

and Technology in Computer Science Education Conference, pages 147–152, 2014.

[115] Zhengxing Chen, Christopher Amato, Truong-Huy D Nguyen, Seth Cooper,

Yizhou Sun, and Magy Seif El-Nasr. Q-deckrec: A fast deck recommendation

system for collectible card games. In 2018 IEEE Conference on Computational

Intelligence and Games (CIG), pages 1–8. IEEE, 2018.

[116] Zhengxing Chen, Truong-Huy D Nguyen, Yuyu Xu, Christopher Amato, Seth

Cooper, Yizhou Sun, and Magy Seif El-Nasr. The art of drafting: a team-oriented

hero recommendation system for multiplayer online battle arena games. In Pro-

ceedings of the 12th ACM Conference on Recommender Systems, pages 200–208.

ACM, 2018.

[117] Yuk Fai Cheong, Frank Pajares, and Paul S. Oberman. Motivation and aca-

demic help-seeking in high school computer science. Computer Science Education,

14(1):3–19, 2004.

[118] Donald Chinn and Tammy VanDeGrift. Gender and diversity in hiring software

professionals. In Proceeding of the fourth international workshop on Computing

education research - ICER ’08, pages 39–50, New York, New York, USA, 2008.

ACM Press.

[119] Luca Chittaro and Riccardo Sioni. Existential video games: Proposal and evalua-

tion of an interactive reflection about death. Entertainment computing, 26:59–77,

2018.

[120] Alexander Cho, AM Tsaasan, and Constance Steinkuehler. The building blocks

267



of an educational esports league: lessons from year one in orange county high

schools. In Proceedings of the 14th International Conference on the Foundations

of Digital Games, pages 1–11, 2019.

[121] Chih-Yueh Chou, K Robert Lai, Po-Yao Chao, Chung Hsien Lan, and Tsung-Hsin

Chen. Negotiation based adaptive learning sequences: Combining adaptivity and

adaptability. Computers & Education, 88:215–226, 2015.

[122] Graig M Chow and Matteo Luzzeri. Post-event reflection: a tool to facilitate

self-awareness, self-monitoring, and self-regulation in athletes. Journal of Sport

Psychology in Action, 10(2):106–118, 2019.

[123] Anders Harboell Christiansen, Emil Gensby, and Bryan S Weber. Resolving si-

multaneity bias: Using features to estimate causal effects in competitive games.

In 2019 IEEE Conference on Games (CoG), pages 1–8. IEEE, 2019.

[124] Cheng-Yu Chung and I-Han Hsiao. Investigating patterns of study persistence on

self-assessment platform of programming problem-solving. In Proceedings of the

51st ACM Technical Symposium on Computer Science Education, SIGCSE ’20,

page 162–168, New York, NY, USA, 2020. Association for Computing Machinery.
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[431] Susana Masapanta-Carrión and J. Ángel Velázquez-Iturbide. Evaluating instruc-

tors’ classification of programming exercises using the revised Bloom’s taxonomy.

In Annual Conference on Innovation and Technology in Computer Science Edu-

cation, ITiCSE, pages 541–547. ACM, Jul 2019.

[432] Eva Mayr, Günther Schreder, Michael Smuc, and Florian Windhager. Looking at

the representations in our mind: Measuring mental models of information visual-

izations. In Proceedings of the Sixth Workshop on Beyond Time and Errors on

Novel Evaluation Methods for Visualization, pages 96–103, 2016.

[433] Lindsay McCardle. Self-regulated learning in and across sport and academic do-

mains. PhD thesis, 2015.

[434] Lindsay McCardle. Similarities and differences in self-regulated learning processes

in sport and academics: A case study. Journal for the Study of Sports and Athletes

in Education, 9(3):190–213, 2015.

310



[435] Paul J McCarthy, Marc V Jones, Chris G Harwood, and Laura Davenport. Using

goal setting to enhance positive affect among junior multievent athletes. Journal

of Clinical Sport Psychology, 4(1):53–68, 2010.

[436] Mary McCaslin and Ruby Inez Vega. Peer co-regulation of learning, emotion, and

coping in small-group learning. In Constructing Educational Achievement, pages

118–135. Routledge, 2014.

[437] Renee McCauley, Tracy Camp, Paul Tymon, J. D. Dougherty, Kris Nagel, and

ACM. Special Interest Group on Computer Science Education. SIGCSE’13 : Pro-

ceedings of the 44th ACM Technical Symposium on Computer Science Education

: March 6-9, 2013, Denver, Colorado, USA.

[438] Michael McCracken and Robert Waters. Why? When an otherwise successful

intervention fails. SIGCSE Bulletin (ACM, Special Interest Group on Computer

Science Education), 31(3):9–12, 1999.

[439] Roger McDermott, Mats Daniels, and Åsa Cajander. Perseverance Measures and
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