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ABSTRACT OF THE DISSERTATION 

 

Computational deep learning microscopy 

 

by 

Kevin de Haan 

Doctor of Philosophy in Electrical & Computer Engineering 

University of California, Los Angeles, 2022 

Professor Aydogan Ozcan, Chair 

 

Over the past decade, deep learning has become one of the leading techniques used in the field 

of image processing. Beyond popular tasks in computer vision such as classification and 

segmentation, it has proven to be revolutionary in its applications for image enhancement and 

transformations. It has significantly changed the field of computational optics – and neural 

networks can now be used to accurately and rapidly solve a wide variety of inverse problems in 

microscopy. 

This dissertation discusses a few major classes of inverse imaging problems that can be solved 

using deep learning. The dissertation first presents, a framework that can be used to enhance 

microscopy images using single image super-resolution . This framework has been proven to be 

effective at super-resolving images captured with a holographic microscope that are resolution 

limited both by the number of pixels used for imaging, as well as by the numerical aperture (NA) 

of the microscope. The effectiveness of this same general framework beyond optical microscopy,  

will be further demonstrated by super resolving electron microscopy images. 
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Next, the dissertation will show that a similar super-resolution framework can be extended to 

perform a transformation between two imaging modalities and improve the overall quality of 

images  by using it to enhance images of thin blood smears captured by a cost-effective mobile-

phone microscope. By enhancing mobile phone microscopy images to match the quality of a top-

of-the-line benchtop microscope, the images are standardized, have their resolution improved and 

have aberrations removed, allowing the images to be used for screening of sickle cell disease.  

Using a deep learning based classification framework, 98% accuracy was achieved during blind 

tested of 96 human blood smear slides. Furthermore, by enhancing the images, the image quality 

is brought to a level which can be used by clinicians for further analysis if required. 

Finally, this same framework will be used to transform microscopy images and generate 

images from that are equivalent to those which have undergone chemical labeling and show some 

of the many applications of this technology.  The technique was applied to virtual staining of label-

free thin histological tissue sections which were used to generate multiple stains from a single 

tissue section, enabling different stains to be performed at the microscopic level, as well as 

blending of stains together – creating entirely new digital stains.  This dissertation shows how 

multiple virtual stains can be used to generate synthetic datasets of perfectly matched stains, 

allowing downstream networks be trained to perform transformations between stains. The efficacy 

of three of these stain transformation networks – generating the Masson’s trichrome, Jones silver 

stain, and periodic acid-Schiff stains from hematoxylin and eosin-stained kidney tissue are 

demonstrated in a diagnostic study, with the results showing the improvement that such technology 

can bring to patient care. 
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Chapter 1 Solving inverse problems in microscopy using deep 

learning 

Deep learning is a machine learning technique that involves the use of many layers of neural 

networks to perform automatic computation on a set of data. Deep learning has been used for a 

variety of computer vision tasks, such as image classification [1–3] and segmentation [4]. While 

neural networks were first proposed in the 1940s [5], and began to be used for processing 

documents in the 80s and 90s [6], there has been a significant revolution in both the quality and 

quantity of their use over the past decade. These improvements have been enabled by both software 

and hardware improvements, allowing deep learning to be used for many tasks for which it had 

not previously been feasible.  

 Deep learning has also been used to solve classical inverse problems in optics (i.e. super 

resolution [7,8] and image reconstruction [9]), and has gone beyond to perform tasks such as 

image-to-image translation [10].  In this dissertation I will demonstrate several applications of how 

deep learning can be used to solve both classical inverse problems in microscopy, as well as those 

which, while not traditionally considered inverse problems, can be constructed as one. Deep neural 

networks have a unique potential to solve these problems, as they do not rely upon an analytical 

model made by a user, but rather a set of data which can be experimentally generated. Therefore, 

many normally intractable problems can be solved, and models which rely upon simplifying 

assumptions can be improved upon. 

In order to train a deep neural network to perform an image-to-image translation task, a large 

set of data is required.  In this dissertation, I will mainly focus upon tasks where this data consists 

of a set of images which are used as the input and ground truth for the neural networks. Typically 

this data consists of matched, pairs of images, allowing the network to learn a direct transformation 
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between the pair of images (this is known as supervised training). However, in some cases 

synthetic or unmatched data can be used as well (the latter is often referred to as unsupervised 

training). 

A significant amount of research continues to be performed to improve the performance of 

neural networks by changing architectures and other parameters. The majority of the networks 

shown in this dissertation are conditional generative adversarial networks (GANs) [11] and use 

variants of the U-net architecture as the generator [4]. As each application of the neural networks 

is different, the exact implementation of these networks will vary. Furthermore, tuning of 

parameters such as the number of layers and the number of channels in each layer in the network 

is necessary to ensure that the network is the correct size for a given dataset. 

In this dissertation, I will apply these techniques to a broad spectrum of microscopy 

modalities. These include brightfield microscope, where white light is used to illuminate the 

sample, and after passing through the microscope is collected by an objective lens.  I will also 

discuss digital holographic microscopy, which typically is performed by passing coherent light 

through a sample to create an interference pattern, which can be processed to reconstruct the image 

and extract the amplitude and phase of the light passing through the sample. Third, I will use 

scanning electron microscopy, which measures the intensity of an electron beam as a raster scan 

of the sample is performed.  Electron microscopy is able to achieve much higher resolutions than 

optical microscopy techniques due to the low wavelength of the electrons within the beam. Finally, 

I will use fluorescence microscopy, which uses high energy photons to excite molecules within a 

given sample. These molecules re-emit the light at a higher wavelength (Stokes shift), which can 

be separated from the lower wavelength illuminating source by a filter, and measured. 
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Chapter 2 Super resolution for coherent imaging systems using deep 

learning 

Super resolution has been one of the most commonly studied classical inverse problem for 

microscopy [12]. There are two main ways that microscopy images can be limited in resolution. 

They can be either pixel size-limited, where the pixel sampling frequency is the limiting factor for 

the resolution, or diffraction-limited, where the resolution is limited by the numerical aperture 

(NA) of the system. While deep learning and computer vision literature is concentrated on pixel-

limited super-resolution, both are highly relevant in the field of microscopy. In this chapter, I 

present a deep learning-based framework that performs single-image super-resolution, focusing 

on coherent imaging systems. I will demonstrate that this framework can enhance the resolution 

of images captured by both pixel size-limited and diffraction-limited coherent imaging systems. 

The capabilities of this approach are experimentally validated by first super-resolving complex-

valued images acquired using a lensfree on-chip holographic microscope, the resolution of which 

was pixel size-limited. I will also show that the same framework can be used to increase the 

resolution of a lens-based holographic imaging system that was limited in resolution by the 

numerical aperture of its objective lens. While in this chapter, the focus is on coherent imaging 

systems, similar frameworks can be applied to other microscope modalities such as scanning 

electron microscopes (discussed in Chapter 3) and brightfield microscopy (discussed in Chapter 

4). 

Parts of this chapter have been published in: 

 T. Liu, K. de Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, “Deep learning-

based super-resolution in coherent imaging systems,” Scientific Reports DOI: 

10.1038/s41598- 019-40554-1 (2019). 
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This was reused from ref. [13] under the Creative Commons Attribution 4.0 International License. 

2.1 Introduction 

Coherent imaging systems have many advantages for applications where the specimen’s 

complex field information is of interest [14]. Since Gabor’s seminal work, various optical and 

numerical techniques have been suggested [15] to acquire the complex field of a coherently 

illuminated specimen. This has allowed for the characterization of absorption and scattering 

properties of a sample, as well as enabling numerical refocusing at different depths within that 

sample volume. In order to infer an object’s complex field in a coherent optical imaging system, 

the “missing phase” needs be retrieved. A classical solution to this missing phase problem is given 

by off-axis holography [16,17], which in general results in a reduction of the space-bandwidth 

product of the imaging system. In-line holographic imaging, which can be used to design compact 

microscopes [18], has utilized measurement diversity to generate a set of physical constraints for 

iterative phase retrieval [19–23]. Recently, deep-learning based holographic image reconstruction 

techniques have also been demonstrated to create a high-fidelity reconstruction from a single in-

line hologram [9,24,25], and are capable of further extending the depth-of-field of the 

reconstructed image [26].   

Several approaches have been demonstrated to improve the resolution of coherent imaging 

systems [27–32]. Most of these techniques require sequential measurements and assume that the 

object is quasi-static while a diverse set of measurements are performed on it. These measurements 

often require the use of additional hardware or sacrifice a degree of freedom such as the sample 

field-of-view [33]. In recent years, sparsity-based holographic reconstruction methods have also 

demonstrated that they are capable of increasing the resolution of coherent imaging systems 

without the need for additional measurements or hardware [34–37]. Sparse signal recovery 
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methods employed in coherent imaging are based on iterative optimization algorithms. These 

methods usually involve a comprehensive search over a parameter space to obtain the optimal 

object image and generally result in longer reconstruction times.  

Deep learning-based approaches for super-resolution of incoherent microscopy modalities 

such as brightfield and fluorescence microscopy have also recently emerged [8,38–41]. These 

data-driven super-resolution approaches produce a trained deep convolutional neural network that 

learns to transform low-resolution images into high-resolution images in a single feed-forward 

(i.e., non-iterative) step. Generative adversarial networks (GANs) [11] are a form of deep neural 

network training framework that can be used to ensure that the generated image is sharp and 

realistic. A GAN is made up of two separate networks. A generator network is used to generate an 

image that has the same features as the label (ground truth) image, and a discriminator network 

tries to distinguish between the generated and label (ground truth) images.  

In this chapter I apply deep learning to enhance the resolution of coherent imaging systems 

and demonstrate a conditional GAN that is trained to super-resolve both pixel-limited and 

diffraction-limited images. Furthermore, the success of this framework is demonstrated on 

biomedical samples such as thin sections of lung tissue and Papanicolaou (Pap) smear samples. 

These results are also quantified using the structural similarity index (SSIM) [42] and spatial 

frequency content of the network’s output images in comparison to the higher resolution images 

(which constitute the ground truth). This data-driven image super-resolution framework is 

applicable to enhance the performance of various coherent imaging systems. 

2.2 Methods 
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Here, I will briefly summarize the methods that are presented in this chapter; sub-sequent 

subsections will provide more information on specific methods employed in the work. The 

presented deep learning-based super-resolution approach was applied to two separate in-line 

holographic imaging geometries to demonstrate the efficacy of the technique. As illustrated in 

Figure 2.1a and Figure 2.1b, the two implemented configurations were a pixel size-limited system 

(to be referred to as System A) and a diffraction-limited coherent microscopy system (to be 

referred to as System B). Despite using different methods to create the super-resolved images, as 

a result of the different image formation models, both of these systems followed similar general 

hologram reconstruction steps, i.e., 1. Raw holograms were collected at different sample to sensor 

distances, 2. Autofocus was used to determine the accurate sample to sensor distances, 3. Phase 

was recovered using a multi-height phase recovery algorithm. These steps will be detailed in the 

following subsections of the Methods [18,20,43–46].  
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Figure 2.1  Schematic of the coherent imaging systems. (a) A Lens-free on-chip holographic microscope. The sample 

is placed at a short distance (z2 < 2 mm) above the image sensor chip. The resolution of this lensless on-chip imaging 

modality (without the use of additional degrees of freedom) is pixel size-limited due to its unit magnification. (b) A 

lens-based in-line holographic microscope, implemented by removing the condenser and switching the illumination 

to a partially-coherent light source on a conventional bright-field microscope. The resolution in this case is limited by 

the NA of the objective lens. 

For the pixel-super-resolution network (System A), the network training process is 

demonstrated in Figure 2.2, which summarizes both the hologram reconstruction procedure as 

well as the image super-resolving technique with and without using the network. The real and 

imaginary components of the phase recovered image pairs were used to train the network.  
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Figure 2.2 Schematic of the training process for deep-learning based pixel super-resolution. An outline of the data 

required to generate the network input and ground truth images is shown, together with an overview of how both the 

traditional super-resolution is performed and how the deep learning super-resolution network is trained. 

 

Figure 2.3 Schematic of the training process for deep learning-based optical super-resolution for an NA-limited 

coherent imaging system. An outline of the data required to generate the network input and ground truth images is 

shown, together with an overview of how the deep learning super-resolution network is trained. 
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For the diffraction-limited super-resolution network (System B), the network training process 

was demonstrated in Figure 2.3. In this case only the phase channel was used to train the network.  

Generation of network input and ground truth super-resolved image labels. 

For the pixel size-limited coherent imaging system (System A), the super-resolved images 

were created by collecting multiple low-resolution holograms at different lateral positions, where 

the CMOS image sensor was sub-pixel shifted by a mechanical stage to create a shift table. Once 

an accurate shift table was estimated, a shift-and-add based pixel super-resolution algorithm [43] 

was applied. The set-up used an illumination wavelength of 550 nm with a bandwidth (Δλ) of ~2 

nm (WhiteLase Micro with acousto-optic tunable filter, NKT Photonics), a single mode fiber 

(QPMJ-3S2.5A-488-3.5/125-1-0.3-1) with a core diameter of ~3.5 μm and a source-to-sample 

distance (z1) of ~5 cm. As a result, the effective spatial coherence diameter at the sensor plane was 

larger than the width of the CMOS imager chip used in the on-chip imaging system. Therefore, 

the achievable resolution is limited by the temporal coherence length of the illumination [47], 

which is defined as: 

𝛥𝐿௖ ≈ ඨ
2 𝑙𝑛 2

𝜋
⋅

𝜆ଶ

𝑛𝛥𝜆
= 100.47 μm (2.1) 

where n=1 is the refractive index. Assuming a sample-to-sensor distance (z2) of ~300 μm, the 

effective NA of the set-up was limited by the temporal coherence of the source, and is estimated 

to be: 

𝑁𝐴 = 𝑛 𝑠𝑖𝑛 𝜃 = 𝑛ඥ1 − 𝑐𝑜𝑠ଶ 𝜃 = 𝑛ඨ1 − ൬
𝑧ଶ

𝑧ଶ + 𝛥𝐿௖
൰

ଶ

≈ 0.6624 (2.2) 
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Based on this effective numerical aperture and ignoring the pixel size at the hologram plane, 

the achievable coherence-limited resolution of the on-chip microscope is approximated as [17]: 

𝑑 ∝
𝜆

𝑁𝐴
=

0.55

0.6624
= 0.8303 μm (2.3) 

At the hologram/detector plane, however, the effective pixel pitch of the CMOS image sensor 

(IMX 081, Sony RGB sensor, pixel size of 1.12 μm) using only one color channel is 2.24 μm. 

Based on this, the effective pixel size for each super-resolved image after the application of the 

pixel super-resolution algorithm to 4 raw holograms (2×2 lateral positions), 9 raw holograms (3×3 

lateral positions), and 36 raw holograms (6×6 lateral positions) are 1.12 μm, 0.7467 μm and 0.3733 

μm, respectively. Based on Equation (2.3), the effective pixel size achieved by pixel super-

resolution using 6×6 lateral positions can adequately sample the specimen’s holographic 

diffraction pattern and is limited by temporal coherence. All of the other images (using 1×1, 2×2 

and 3×3 raw holograms) remain pixel-limited in their achievable spatial resolution. This pixel-

limited resolution of an on-chip holographic microscope is a result of its unit magnification. This 

allows the imaging system to have a large imaging field-of-view (FOV) that is only limited by the 

active area of the opto-electronic image sensor chip. This can easily reach 20-30 mm2 and >10 cm2 

using state-of-the-art CMOS and CCD imagers, respectively [18]. 

For the second set-up (System B), which used lens-based holographic imaging for diffraction-

limited coherent microscopy, the low- and high-resolution images were acquired with different 

objective lenses. For this set-up, the illumination was performed using a fiber coupled laser diode 

with an illumination wavelength of 532 nm. A 4×/0.13NA objective lens was used to acquire lower 

resolution images, achieving a diffraction limited resolution of ~4.09 µm and an effective pixel 
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size of ~1.625 µm. A 10×/0.30NA objective lens was used to acquire the higher resolution images 

(ground truth labels), achieving a resolution of 1.773 µm and an effective pixel size of ~0.65 µm.  

Autofocusing and singular value decomposition-based background subtraction.  

For both types of coherent imaging systems, holograms at 8 different sample-to-sensor 

distances were collected to perform the multi-height phase recovery [18,20,43–46]. This algorithm 

requires accurate knowledge of the sample-to-sensor distances used. These were estimated using 

an autofocusing algorithm. This algorithm assigned zero phase to the raw holograms collected by 

the image sensor and propagated them to different sample to sensor heights using the free space 

angular spectrum approach [17]. The Tamura of the gradient (ToG) edge sparsity-based criterion 

was computed [48] for each hologram and used to calculate the corresponding refocusing distance.  

   For the lens-based diffraction-limited coherent imaging system (System B), the 

autofocusing algorithm required an additional background subtraction step. For undesired particles 

or dust associated with the objective lens or other parts of the optical microscope, the diffraction 

pattern that is formed is independent of the sample and its position. Using this information, a 

singular value decomposition (SVD)-based background subtraction was performed [49], after 

which the ToG-based autofocusing algorithm was successfully applied.  

Multi-height phase recovery.  

The iterative multi-height phase recovery technique [44] was applied to eliminate the 

holographic image artifacts (twin image and self-interference terms [17]) in both of the coherent 

imaging systems that were used in this chapter. To perform this, an initial zero-phase was assigned 

to the intensity/amplitude measurement at the 1st hologram height. Next, the iterative algorithm 

begins by propagating the complex field to each hologram height until the 8th height is reached, 
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and then backpropagates the resulting fields until the 1st height is reached. While the phase was 

retained at each hologram height, the amplitude was updated by averaging current amplitude and 

the square root of the measured intensity at each height.  

Registration between lower resolution and higher resolution (ground truth) images. 

Image registration plays a key role in generating the training and testing image pairs for the 

network in both the pixel size-limited and diffraction-limited coherent imaging systems. A pixel-

wise registration must be performed to ensure the success of the network in learning the 

transformation to perform super-resolution. 

For both super resolution methods, the low-resolution input images were initially bicubically 

up-sampled. Following this, a correlation-based registration, which corrected any rotational 

misalignments or shifts between the images was performed. This registration process correlated 

the spatial patterns of the phase images and used the correlation to establish an affine transform 

matrix. This was in turn be applied to the high-resolution images to ensure proper matching of the 

corresponding fields-of-view between the low-resolution images and their corresponding ground 

truth labels. Finally, each image was cropped by 50 pixels to each side to accommodate for any 

relative shift that may have occurred. 

For the diffraction-limited coherent imaging system (System B), an additional rough FOV 

matching step was required before the registration above. For this step, the higher resolution phase 

images were first stitched together, by calculating the overlap between neighboring images, and 

then fusing them together into a larger image. The corresponding lower resolution phase images 

are then matched to this larger image. This is done by creating a correlation score matrix between 

the large image and each smaller patch. Whichever portion of the matrix has the highest correlation 
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score is used to determine which portion of the fused image is cropped out and is used as the input 

for the network. 

GAN architecture and training process. 

 

Figure 2.4 Diagram of the GAN structure. (a) Structure of the generator portion of the network. (b) Structure of the 

discriminator portion of the network. 

Once the high and low resolution image pairs were accurately registered, they were cropped 

into smaller image patches (128×128 pixels), which were used to train the network. The 

architectures of the generator (G) and the discriminator (D) that make up the GAN can be seen in 
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Figure 2.4. For both the pixel-size limited and the diffraction-limited coherent imaging systems, 

the discriminator loss function is defined as: 

𝑙ௗ௜௦௖௥௜௠௜௡௔௧௢௥ = 𝐷 ቀ𝐺൫𝑥௜௡௣௨௧൯ቁ
ଶ

+ ൫1 − 𝐷(𝑧௟௔௕௘௟)൯
ଶ

(2.4) 

where D(.) and G(.) refer to the discriminator and generator network operators, respectively, 

xinput is the lower resolution input to the generator, and zlabel is the higher resolution label image. 

For the lensfree holographic imaging system (System A), the generator loss function was defined 

by: 

𝑙௚௘௡௘௥௔௧௢௥ = 𝐿ଵ൛𝑧௟௔௕௘௟, 𝐺൫𝑥௜௡௣௨௧൯ൟ + 𝛾 × 𝑇𝑉൛𝐺൫𝑥௜௡௣௨௧൯ൟ + 𝛼 × ൬1 − 𝐷 ቀ𝐺൫𝑥௜௡௣௨௧൯ቁ൰
ଶ

(2.5) 

The L1{zlabel,G(xinput)} term is calculated using: 

𝐿ଵ൛𝑧label, 𝐺൫𝑥input൯ൟ= En_pixels ቀ𝐸n_channels൫ห𝐺൫𝑥input൯ − 𝑧labelห൯ቁ (2.6) 

This finds the absolute difference between each pixel of the generator output image and its 

corresponding label. En_pixels(.) and En_channels(.) are the expectation values for the pixels within each 

image and the channels of each image, respectively. TV{G(xinput)} represents the total variation 

loss, which acts as a regularization term, applied to the generator output. Total variation (TV) is 

defined as:  

𝑇𝑉 = 𝐸n_channels ቌ෍ ቚ𝐺൫𝑥input൯௜ାଵ,௝
− 𝐺൫𝑥input൯௜,௝

ቚ + ቚ𝐺൫𝑥input൯௜,௝ାଵ
− 𝐺൫𝑥input൯௜,௝

ቚ

௜,௝

ቍ (2.7) 

where the i and j indices represent the location of the pixels within each channel of the image.  
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The last term in Equation (2.5) (i.e., α×(1-D(G(xinput)))2) is a function of how well the output 

image of the generator network can be predicted by the discriminator network. α and γ are 

regularization parameters which were set to 0.00275 and 0.015 respectively. As a result of these 

parameters, the L1 loss term, L1{zlabel,G(xinput)}, made up 60% of the overall loss, while the total 

variation term, γ×TV{G(xinput)}, was approximately 0.25% of the total loss. The discriminator loss 

term, ×(1-D(G(xinput)))2, made up the remainder of the overall generator loss. Once the networks 

were successfully trained, they reach a state of equilibrium where the discriminator network cannot 

successfully discriminate between the output and label images, and D(G(xinput)) converged to 

approximately 0.5. 

The loss function for the lens-based coherent microscope images (System B) incorporated an 

additional structural similarity index (SSIM) [42] term in addition to the terms included for the 

lensfree on-chip imaging system, i.e.,: 

         
  

2

generator 1 label input input input

input label

, 1

SSIM ,

l L z G x TV G x D G x

G x z

 



     

 
                  (2.8) 

Where β is a regularization parameter set to 0.01, and SSIM{x, z} is defined as [42]: 

 

SSIM(𝑥, 𝑧) =
(ଶఓೣఓ೥ା௖భ)൫ଶఙೣ,೥ା௖మ൯

൫ఓೣ
మାఓ೥

మା௖భ൯൫ఙೣ
మାఙ೥

మା௖మ൯
(2.9) 

where μx, μz are the averages of x, z; 2 2,x z  are the variances of x, z, respectively; ,x z  is the 

covariance of x and z; and c1, c2 are dummy variables used to stabilize the division with a small 

denominator. The term β×SSIM{G(xinput),zlabel} was set to make up ~15% of the total generator 

loss, with the rest of the regularization weights reduced in value accordingly. 
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The generator network used an adapted U-net architecture [4]. The network began with a 

convolutional layer that increased the number of channels to 32 and a leaky rectified linear 

(LReLU) unit, defined as: 

 
for 0

LReLU
0.1 otherwise

x x
x

x


 


      (1) 

Following this layer, there was a down-sampling and an up-sampling section. Each section 

consists of three distinct layers, each made up of separate convolution blocks (see Figure 2.4a). 

For the down-sampling section, these residual blocks consisted of two convolution layers with 

LReLU units acting upon them. At the output of the second convolution of each block the number 

of channels was doubled. The down-sampling blocks were connected by an average-pooling layer 

of stride two that down-samples the output of the previous block by a factor of two in both lateral 

dimensions (see Figure 2.4a). 

The up-sampling section of the network used a reverse structure to reduce the number of 

channels and return each channel to its original size. Similar to the down sampling section, each 

block contained two convolutional layers, each activated by a LReLU layer. At the input of each 

block, the previous output was up-sampled using a bilinear interpolation and concatenated with 

the output of the down-sampling path at the same level (see Figure 2.4a). Between the two paths, 

convolutional layer was added to maintain the number of the feature maps from the output of the 

last residual block to the beginning of the down-sampling path (Figure 2.4a). Finally, a 

convolutional layer was used to reduce the number of output channels to match the size of the 

label. 

The discriminator portion of the network was made up of a convolutional layer, followed by 

five discriminator blocks, an average pooling layer and two fully connected layers which reduced 
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the output to a single value (see Figure 2.4b). Both the label images and the output of the generator 

network were input into the initial convolutional layer discriminator network. This layer was used 

to increase the number of channels to 32 and was followed by five discriminator blocks all 

containing two convolutional layers activated upon by LReLU functions. The first convolution 

was used to maintain the size of the output, and the second doubled the number of channels while 

halving the size of the output in each lateral dimension. Next, the average pooling layer was used 

to find the mean of each channel, reducing the dimensionality to a vector of length 1024 for each 

patch. Each of these vectors were subsequently fed into two fully connected layers and LReLU 

activation layers in series. While the first fully connected layer did not change the dimensionality, 

the second reduced the output of each patch to a single number which was in turn input into a 

sigmoid function. The output of the sigmoid function represents the probability of the input being 

either real or fake and was used as part of the generator’s loss function.  

The filter size for each convolution was set to be 3×3. The trainable parameters are updated 

using an adaptive moment estimation (Adam) [50] optimizer with a learning rate 1×10-4 for the 

generator network and 1×10-5 for the discriminator network. The image data were augmented by 

randomly flipping 50% of the images, and randomly choosing a rotation angle (0, 90, 180, 270 

degrees). For each iteration that the discriminator is updated, the generator network is updated four 

times, which helps the discriminator avoid overfitting to the target images. The convolutional layer 

weights are initialized using a truncated normal distribution while the network bias terms are 

initialized to zero. A batch size of 10 is used for the training, and a batch size of 25 is used for 

validation. The networks chosen for blind testing were those with the lowest validation loss. The 

number of training steps as well as the training time for each network are reported in Table 2.1, 

and the testing times are reported in Table 2.2. 
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Table 2.1 Training details for the deep neural networks. All the networks were trained with a batch size of 10 using 

128×128 pixel patches. 

Resolution 

limiting factor 
Tissue type 

Low resolution 

input type 

Training dataset size 

(number of patches 

before augmentation) 

Training 

time (s) 

Number of 

iterations 

Pixel size-limited 

(System A) 

Pap smear  1×1 raw hologram 56250 9,078 17,000 

Lung 1×1 raw hologram 83700 17,052 28,000 

Lung 2×2 raw holograms 83700 9,363 15,000 

Lung  3×3 raw holograms 83700 30,480 52,500 

Diffraction-limited 

(System B) 
Pap smear 

4×/0.13 NA 

objective lens 
65475 46,411 100,000 

 

Table 2.2  Time for each network to output a 1940×1940 pixel image. Each measurement is the average time, 

calculated using 150 test images. 

Resolution 

limiting factor 
Tissue type 

Low resolution input 

type 

Testing Time 

(s/image) 

Pixel size-limited 

(System A) 

Pap smear  1×1 raw hologram 1.42 

Lung 1×1 raw hologram 1.37 

Lung 2×2 raw holograms 1.38 

Lung  3×3 raw holograms 1.38 

Diffraction-limited 

(System B) 
Pap smear 

4×/0.13 NA 

objective lens 
1.26 

 

Software implementation details.  
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The network was developed using a desktop computer running the Windows 10 operating 

system. The desktop uses an Nvidia GTX 1080 Ti GPU, a Core i7-7900K CPU running at 3.3 

GHz, and 64 GB of RAM. The network was programmed using Python (version 3.6.0) with the 

TensorFlow library (version 1.7.0). 

Sample preparation.  

De-identified Pap smear slides were provided by the UCLA Department of Pathology 

(Institutional Review Board no. 11–003335) using ThinPrep® and SurePathTM preparation. De-

identified Hematoxylin and Eosin (H&E) stained human lung tissue slides were acquired from the 

UCLA Translational Pathology Core Laboratory. Only existing and anonymous specimen, where 

no subject related information was linked or can be retrieved were used. 

2.3 Super-resolution of a pixel size-limited coherent imaging system (System A).  

Here I first report the performance of the network when applied to the pixel size-limited 

coherent imaging system using a Pap smear sample and a Masson’s trichrome stained lung tissue 

section (connected tissue sample). For the Pap smear, two samples from different patients were 

used for training. For the lung tissue samples, three tissue sections from different patients were 

used for training. The networks were blindly tested on additional tissue sections from other 

patients. The FOV of each tissue image was ~20 mm2 (corresponding to the sensor active area).  
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Figure 2.5 Visualized result for the pixel size-limited system. Deep learning-based pixel super-resolution imaging of 

a Pap smear slide under 550 nm illumination. (a) Whole FOV of the lensfree imaging system. (b) Amplitude and phase 

channels of the network output. (c) Further zoom-in of (b) for two regions of interest. The marked region in the first 

column demonstrates the network’s ability to process the artifacts caused by out-of-focus particles within the sample. 
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Figure 2.5 illustrates the network’s super-resolved output images along with pixel-size 

limited lower resolution input images and the higher resolution ground truth images of a Pap smear 

sample. The input images have a pixel pitch of 2.24 µm, and the label images have an effective 

pixel size of 0.37 µm (see the Methods section). For lung tissue sections, the efficacy of the super-

resolution technique (2.6) was proven using three different deep networks, where the input images 

for each network used a different pixel size (2.24 µm, 1.12 µm, and 0.7467 µm, corresponding to 

1×1, 2×2 and 3×3 lateral shifts, respectively, as detailed in the Methods section). Unlike the less 

densely connected Pap smear sample results, the network output is missing some of the spatial 

details that are seen by the high-resolution images of the lung tissue imaging when the input pixel 

size is at its coarsest level (2.24 µm pixel size). These spatial features are recovered by the two 

networks that use smaller input pixels as shown in 2.6.  
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Figure 2.6 Visualized result for the pixel size-limited system. Comparison of the performances for the deep-learning-

based pixel super-resolution methods using different input images. The sample is a Masson’s trichrome stained lung 

tissue slide, imaged at an illumination wavelength of 550 nm. SSIM values are also shown for the network input and 

output images for each case. The ground truth (target) image for each SSIM value is acquired using 6×6 lensfree 

holograms per height. 

I also report the SSIM values with respect to the reference label images in order to further 

evaluate the performance of the network output when applied to a pixel size-limited coherent 

imaging system. The average SSIM values for the entire image FOV (~20 mm2) are listed in Table 
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2.3, where the input SSIM values were calculated between the bicubic interpolated lower 

resolution input images and the ground truth images. The results clearly demonstrate the improved 

structural similarity of the network output images. 

Table 2.3 Average SSIM values for the lung and Pap smear samples for the deep neural network output (also see Figs. 

5 and 6 for sample images in each category). 

Resolution 

limiting factor 
Tissue type 

Low resolution input 

type 

Input SSIM Output SSIM 

Imaginary Real Imaginary Real 

Pixel size-

limited 

Pap smear  1×1 raw hologram 0.9097 0.9135 0.9392 0.9442 

Lung 1×1 raw hologram 0.6213 0.5404 0.6587 0.7135 

Lung 2×2 raw holograms 0.8069 0.8205 0.8405 0.8438 

Lung  3×3 raw holograms 0.9185 0.9184 0.9422 0.9347 
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Figure 2.7 Spatial frequency analysis for the pixel size-limited system. Radially-averaged spatial frequency spectra 

of the network input, network output and target images, corresponding to a lensfree on-chip coherent imaging system. 
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In addition to SSIM, I also report the improved performance of the network output using 

spatial frequency analysis. Figure 2.7 reports the 2-D spatial frequency spectra and the associated 

radially-averaged frequency intensity of the network input, network output and the ground truth 

images corresponding to the lensfree on-chip imaging system. Another indication that the super-

resolution is successful is that the higher spatial frequency components in the output of the network 

are very close to the spatial frequencies of the ground truth image. 

2.4 Super-resolution of a diffraction-limited coherent imaging system (System B).  

To demonstrate that this super-resolution framework can also be applied to a diffraction-

limited coherent imaging system, another network was trained using the same architecture (see the 

Methods section) with images taken from a Pap smear sample. As in the pixel super-resolution 

case reported earlier, two samples were obtained from two different patients, and the trained 

network was blindly tested on a third sample obtained from a third patient. The input images were 

obtained using a 4×/0.13 NA objective lens and the reference ground truth images were obtained 

by using a 10×/0.30 NA objective lens. Figure 2.8 illustrates a visual comparison of the network 

input, output and label images, providing the same conclusions as in Figure 2.5 and 2.6. Similar 

to the pixel size-limited coherent imaging system, the performance of the network was analyzed 

using spatial frequency analysis, the results of which are reported in Figure 2.9. As in Fig.7, the 

higher spatial frequencies of the network output image approach the spatial frequencies observed 

in the ground truth images.  
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Figure 2.8 Visualized result for the diffraction-limited system. Deep learning-based super-resolution imaging of a 

Pap smear slide under 532 nm illumination using a lens-based holographic microscope. (a) Phase channel of the 

network output image. (b) Zoomed-in images of (a). 
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Figure 2.9 Spatial frequency analysis for the diffraction-limited system. Radially-averaged spatial frequency spectra 

of the network input, network output and target images, corresponding to a lens-based coherent imaging system. 

The SSIM values for this system do not reveal as large of a trend as was observed for the 

lensfree on-chip microscopy system reported earlier. They only show a very small increase from 

a value of 0.876 for the input image to 0.879 for the network output. This is mainly due to increased 

coherence related artifacts and noise, compared to the lensfree on-chip imaging set-up. The lens-

based design has several optical components and surfaces within the optical beam path, making it 
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susceptible to coherence induced background noise and related image artifacts, which can affect 

the SSIM calculations.  

2.5 Conclusion 

I have presented a GAN-based framework that can super-resolve images taken using both 

pixel size limited and diffraction limited coherent imaging systems. The framework was 

demonstrated on biologically connected thin tissue sections (lung and Pap smear samples) and the 

results were quantified using structural similarity index and spatial frequency spectra analysis. The 

proposed framework provides a highly optimized, non-iterative reconstruction engine that rapidly 

performs resolution enhancement, without the need for any additional parameter optimization. 

The proposed approach is not restricted to a specific coherent imaging modality and is broadly 

applicable to various coherent image formation techniques. The starting point for the super-

resolution technique begins after the phase recovery step, which can be obtained by means of e.g., 

in-line, off-axis, phase-shifting holography, among other approaches. Since it has been proven to 

work for both pixel size-limited and diffraction-limited imaging systems, it will be applicable to 

other coherent systems with similar resolution limitations. One of the techniques that will highly 

benefit from the proposed framework is off-axis holography. The proposed technique might be 

used to bridge the space-bandwidth-product gap between off-axis and in-line coherent imaging 

systems, while retaining the single-shot and high sensitivity advantages of off-axis image 

acquisition systems.  
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Chapter 3 Super resolution of scanning electron microscope images 

In this chapter I will demonstrate how a framework similar to the one in Chapter 2 can be 

used to enhance images coming from a scanning electron microscope. Electron microscopes are 

not limited in resolution by their wavelength, but rather the scanning pixel size and aberrations. 

Therefore, this chapter will only focus on pixel-limited super resolution.  In this chapter I will 

show that this technique can be used to perform a 2× super resolution of electron microscope 

images and infer unresolved features that are visible only in high-resolution images coming from 

the same sample.  Furthermore, I will also show that the method infers features which match the 

spatial frequency of those same high-resolution images. 

Parts of this chapter have been published in: 

 K. de Haan, Z.S. Ballard, Y. Rivenson, Y. Wu, and A. Ozcan, “Resolution enhancement in 

scanning electron microscopy using deep learning,” Scientific Reports DOI: 10.1038/s41598- 

019-48444-2 (2019).  

This was reused from ref. [51] under the Creative Commons Attribution 4.0 International License. 

3.1 Introduction 

Scanning electron microscopy (SEM) is an important tool for characterization of materials at 

the nanoscale. By using electrons instead of photons for imaging samples, SEM can achieve sub-

nanometer spatial resolution [52], revealing topological and compositional features invisible to 

traditional light microscopy. Therefore, SEM is frequently employed in a wide range of fields such 

as material science, biomedicine, chemistry, physics, nanofabrication, and forensics, among 

others [53–55]. For example, new applications such as nanocutting, where a silicon wafer can be 

cut at m/s speeds using a diamond blade have been demonstrated [56–59]. Applications such as 
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these require SEM characterization and therefore, as new tools to process or investigate the 

properties of silicon and other materials are developed, there will be an expanding need for 

improved electron microscopy tools. 

However, when compared to light microscopy, the focused electron beam utilized by SEM is 

inherently more destructive to samples, especially soft and/or dielectric materials, resulting in 

electron charge build-up as well as deformation from absorption-based heating [60]. 

Consequently, these practical barriers prohibit many important samples such as biological 

specimens, polymers, and hydrogel-structures from being reliably characterized by SEM. There 

are, however, several approaches to mitigate the destructive effects of the electron beam. For 

example, it is common practice to coat the samples in e.g., gold, palladium, or iridium prior to 

imaging [61]. Additionally, shorter dwell times can be used during the electron beam scan to 

reduce the exposure to the sample. Though helpful, these approaches pose a performance trade-

off: to reduce charging effects and sample deformation from heat one must alter the sample from 

its native state and/or incur increased noise in the acquired image [62]. 

Although computational approaches for super resolution in electron microscopy have been 

previously demonstrated [63,64], they require that a portion of the image be taken in high 

resolution or that the images have similar characteristics and contain sparse unique structures 

outside of a periodic topology. Other computational enhancements that have been applied to SEM 

images include denoising as well as deconvolution to reduce the spatial blur in the image caused 

by the finite beam size [65,66]. Alternative imaging techniques such as ptychography can also be 

used to increase the resolution in SEM, but these approaches require modification of the imaging 

set-up [67,68]. 
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Here, I present a deep learning-based approach to improve the lateral resolution of SEM 

images using a neural network. By training a convolutional neural network (CNN) with a set of 

co-registered high- and low-resolution SEM images of the same set of samples, the network blindly 

super resolves individual SEM images, reducing sample charging and beam damage without losing 

image quality or adding extra sample preparation steps. In contrast to previous classical image 

enhancement methods, the approach can be implemented over a wide range of sample types, and 

only requires a single SEM image as input. Furthermore, by using deep learning to perform super-

resolution, the need for prior knowledge of the image and approximated models that estimate the 

forward imaging operator is eliminated. Super-resolution using a single input is also advantageous 

as it simplifies image acquisition and therefore improves the speed and broadens the number of 

possible applications. Additionally, by using a co-registered and experimentally acquired training 

image dataset, the network can partially account for possible aberrations and noise in the imaging 

system. This data-driven approach has the added benefit of reducing the scanning time of the 

electron beam, and thus increasing the imaging throughput by enabling the use of a lower 

magnification scan over a larger field-of-view without sacrificing image quality. 

Deep neural networks have emerged as an effective method for statistical processing of 

images and have been shown to improve image quality and achieve super resolution of camera 

images [7] and across several modalities of optical microscopy [8,41]. Once trained, the network 

can quickly process input SEM images in a feed-forward and non-iterative manner to blindly infer 

images with improved quality and resolution, thus making it an attractive and practical tool for 

rapid SEM image enhancement. Additionally, deep-learning based super-resolution has been 

proven to be more effective than other classical image enhancement techniques [7]. 

3.2 Imaging 
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The efficacy of this deep-learning based technique was demonstrated using a gold-on-carbon 

resolution test specimen [Ted Pella 617-a]. This test specimen has a random assortment of gold 

nanoparticles of varying sizes ranging from 5 nm to 150 nm immobilized on carbon, and is 

commonly employed to measure the resolution of SEM systems at different scales using the gaps 

between various gold nanoparticles. The network’s effectiveness when applied to a hydrogel 

coated with a thin layer of gold is also demonstrated. 

The image dataset employed to train the CNN was made up of unique high- and low-

resolution pairs of the test specimen, each taken from the same region of interest where there is a 

distribution of nanoparticles. The low-resolution images were taken at a magnification of 10000× 

(14.2 nm pixel size), while the high resolution images were taken at 20000× magnification (7.1 

nm pixel size). Higher magnification ground truth images (>20000×) were empirically found to 

lead to inaccurate inference results, and therefore the ratio of the label image magnification to the 

input image magnification was limited to 2. The training SEM image pairs were taken by first 

capturing the high resolution images, and then lowering the magnification and imaging the same 

field of view. In both cases the image resolution is limited by the number of pixels and therefore 

the lower magnification images can be modeled as aliased versions of the higher resolution images. 

A Nova 600 DualBeam-SEM (FEI Company) was used with a 10 kV accelerating voltage, 0.54 

nA beam current, and a monopole magnetic immersion lens for high resolution imaging. All 

images were acquired with 30 µs pixel dwell time. 

For the hydrogel imaging experiments, the low-resolution images were taken at a 

magnification of 2500× (56.8 nm pixel size), and the corresponding high resolution images were 

taken at 10000× magnification and binned to give an effective magnification of 5000× (28.4 nm 

pixel size). These images were acquired using a 10 µs pixel dwell time. 
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3.3 Methods 

Co-registration 

Once the high- and low-resolution image pairs were taken, they were co-registered before 

being inputted to the neural network for the training phase. These training images were first 

roughly matched to each other by cropping the center of each of the low-resolution images and 

using a Lanczos filter to up-sample the images. After this rough alignment, additional steps were 

taken to register the images with higher accuracy. First, image rotation and size misalignment were 

corrected by using the correlation between the two images to define an affine matrix which was 

then applied to the high resolution images. Next, local registration was performed using a pyramid 

elastic registration algorithm [38,69]. This algorithm breaks the images into iteratively smaller 

blocks, registering the local features within the blocks each time, achieving sub-pixel level 

agreement between the lower and higher resolution SEM images. The images were taken using 

automatic brightness and contrast adjustment. In order to account for possible fluctuations in the 

settings, both the high- and low-resolution images were normalized for use in the network training 

using the mean and standard deviation of the pixel values. 

Network Training 

For the gold nanoparticles, 40 pairs of accurately registered images (924×780 pixels) were 

split into 1920 non-overlapping patches (128×128 pixels) which were then used to train the 

network. The hydrogel image dataset was made up of 131 pairs of 492×418 pixel images, which 

were cropped into 4542 overlapping 128×128 pixel patches. 372 of these patches were 

automatically removed from the training dataset using an experimentally determined correlation 

threshold due to beam damage creating severe dissimilarities between the images. The sizes of the 
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training datasets were further increased by randomly rotating and flipping each image patch, and 

an identical network model was used for each dataset. The network model utilized in this chapter 

was a Generative Adversarial Network (GAN) which uses a generator network to create the 

enhanced images, and a discriminator network (D) that helps the generator network (G) to learn 

how to create realistic high-resolution images [11]. In addition to the standard discriminator loss, 

an L1 loss term was also added to ensure that the generated images are structurally close to the 

target, high-resolution images; the anisotropic total variation loss (TV) was also used to increase 

the sparsity of the output images and reduce noise. Based on this, the overall loss function for the 

generator network can be written as: 

𝑙௚௘௡௘௥௔௧௢௥ = 𝐿ଵ{𝐺(𝑥), 𝑧} + 𝛼 × 𝑇𝑉{𝐺(𝑥)} + 𝛽 × ൣ1 − 𝐷൫𝐺(𝑥)൯൧
ଶ

 (3.1) 

where 𝑥 is the low resolution input image to the generator network and 𝑧 is the matching high 

resolution ground truth image corresponding to the same field-of-view. α and  𝛽 are tunable 

parameters to account for the relative importance of the different loss terms. The L1 loss is the 

mean pixel difference between the generator’s output and the ground truth image, defined 

as [70]: 

𝐿ଵ{𝐺(𝑥), 𝑧} =
1

𝑀 × 𝑁
෍ ෍ห𝑧௜,௝ − 𝐺(𝑥)௜,௝ห

௝௜

(3.2) 

 

where 𝑖 and 𝑗 are the pixel indices in an M×N pixel image. The anisotropic total variation loss is 

defined as [71]: 

𝑇𝑉{𝐺(𝑥)} = ∑ ∑ ൫ห𝐺(𝑥)௜ାଵ,௝ − 𝐺(𝑥)௜,௝ห + ห𝐺(𝑥)௜,௝ାଵ − 𝐺(𝑥)௜,௝ห൯௝௜ (3.3)   
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The discriminator loss, on the other hand, penalizes the discriminator when it is unable to 

discriminate between the generated and the ground truth images, and is defined as [11]: 

𝑙ௗ௜௦௖௥௜௠௜௡௔௧௢௥ = 𝐷൫𝐺(𝑥)൯
ଶ

+ ൫1 − 𝐷(𝑧)൯
ଶ

(3.4)    

The discriminator loss, L1 loss, and the total variation loss make up 84%, 14%, and 2% of the 

total loss for the generator, respectively. The generator uses an adapted U-net structure [4], while 

the discriminator uses a modified Visual Geometry Group (VGG) type network structure [2]. 

Details of these network architectures are shown in Figure 3.1.  

 

Figure 3.1 Diagram of the network structure. Every convolutional block is made up of two convolutional layers, each 

followed by a leaky rectified linear unit (ReLU) activation function. The second convolutional layer in each block 

changes the number of channels. a) The structure of the generator portion of the network. b) The structure of the 

discriminator portion of the network. 

The network was implemented in Python (version 3.6.2) using the TensorFlow library 

(version 1.8.0). For both samples, the generator was trained for 48,000 iterations with the 

discriminator updating every fourth iteration to avoid overfitting. This took the network one hour 

and twenty minutes to train using a single Nvidia GTX 1080 Ti graphics processing unit (GPU) 
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and an Intel Core i9-7900 processor. The same computer is able to infer 3.66 images per second, 

for an image size of 780×780 pixels. This inference time is 16 times faster than the low-resolution 

SEM imaging of the corresponding sample field-of-view; stated differently, real-time visualization 

of the super-resolved images, immediately after a low-resolution image is taken or while a new 

scan is ongoing, is feasible. 

3.4 Results 

This super resolution technique allows us computationally to enhance the resolution of lower 

magnification SEM images such that the network’s output accurately matches the resolution given 

by the higher resolution SEM images of the same samples. A demonstration of this can be seen in 

Figure 3.2, which reports several blindly tested examples of nanoparticles that are not clearly 

resolved in the input images, but become distinct after the application of the neural network. These 

fields of view are distinct from those used to train the network, but taken from different areas of 

the same sample. Pixel-intensity cross-sections are also reported to illustrate the resolution 

enhancement more clearly. From these examples we can see that the network is able to reveal 

spatial details that are not clear in the input (lower magnification) SEM images, matching at its 

output the corresponding higher magnification SEM images of the same fields-of-view. This is 

particularly evident in the gaps between the gold nanoparticles shown in Figure 3.2.  
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Figure 3.2 Examples of the up-sampled network input images compared to the output and ground truth SEM images. 

Cross sections of various spatial features with noticeable resolution enhancement are shown. 

In fact, Figure 3.3 provides a statistical analysis of these gaps to quantify the enhancement 

provided by the trained network; for this analysis, 300 gaps between arbitrary adjacent 

nanoparticles were randomly selected using the high-resolution SEM images. They were then 

analyzed to determine whether the neighboring particles are resolvable, as well as to quantify the 

gap-size in the input image, output image, and target image. The gap width was defined as the 

distance between the points at which the intensity drops below 80% of highest intensity value of 
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the adjacent particles, and a gap was determined to exist if the lowest intensity point between the 

particles fell below 60% of the peak value. In the input SEM image (lower magnification), 13.9% 

of these gaps were not detectible, i.e., could not be resolved (see Fig. 3). However, after super 

resolving the input SEM images using the trained network, the percentage of undetected gaps 

dropped to 3.7%. Additionally, the average absolute difference between the measured gap sizes in 

the low- and high-resolution SEM images decreases from 3.8 nm to 2.1 nm after passing through 

the network. 
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Figure 3.3 Histograms of the gap sizes inferred from the network input and the output images compared to the ground 

truth image. Total count changes among the histograms due to some of the gaps only being visible in specific images. 

In the input SEM images, 13.9% of the gaps were not detectible; the percentage of undetected gaps dropped to 3.7% 

for the output images. A Gaussian distribution, fitted to the gap histograms, with the corresponding mean gap size is 

also shown for each plot. The number of unresolved gaps in both the input and output images is also shown using a 

different color; unresolved gaps were not used for mean gap estimation. Pixel size per image is 7.1 nm; the input 

image is upsampled by a factor of 2. 

Another way to illustrate the resolution improvement is reported in the spatial frequency 

analysis shown in Figure 3.4. This figure compares the magnitudes of the spatial frequencies for 

the low- and high-resolution SEM images as well as those of the network output images. From this 

comparative analysis we can see that the network enhances the high frequency details of the input 

SEM image such that the spatial frequency distribution of the network output image is consistent 
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with the high-resolution SEM image – including the spatial frequencies that are aliased in the input 

image due to the large pixel size.  

 

Figure 3.4 Top: spatial frequency distributions of the average of five up-sampled input, output, and ground truth 

images are compared. Bottom: radially-averaged plot of the above distributions. Analysis was performed on the 

uncropped versions of the SEM images shown in Figure 3.2 as well as three additional images.  

 

To demonstrate the performance of the network when applied to a sample that is prone to 

beam damage, a hydrogel sample was used. In this case, the network was able to improve the 

image quality by sharpening and denoising it (Figure 3.5). However, the electron beam-induced 

damage of the sample during imaging makes accurate co-registration impossible and therefore 

reduces the success of the network training process and its inference. An example of this can be 

seen in Figure 3.5. In cases like this, the performance of the super-resolution network will decrease 

as the high- and low-resolution images used to train the network become more dissimilar due to 

movement of the specimen. However, once a network has been trained, the inference process 
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requires only a single input image. Therefore, this approach can help to mitigate some of the 

sample deformation caused by the radiation as the low-resolution image can be captured using 

reduced beam intensity. 

 

Figure 3.5 Examples of the up-sampled hydrogel network input images compared to the network output and the 

ground truth SEM images. Top: full field of view. Bottom: zoomed in region of interest. As the hydrogel sample is 

partially damaged during the imaging process, the ground truth images have a slightly different structure than the input 

images. This sample damage makes subpixel image co-registration impossible, which reduces the quality of the 

network training and limits the success of its inference, compared to earlier presented results. 

3.5 Conclusion 

Taken together, deep learning-based super resolution is shown to be a powerful and practical 

tool to computationally improve the resolution in SEM. The 2-fold increase in resolution 
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demonstrated here allows for a four-fold reduction of the number of electrons which must interact 

with the sample to acquire an SEM image, in turn enabling a four-fold increase in the speed of 

image acquisition. While the demonstrated method is less effective when trained using samples 

that are prone to significant beam damage or other movement during the acquisition of the training 

dataset, it could benefit the characterization of samples that present limited charging or beam-

induced damage by reducing the electron exposure without sacrificing the image quality. This 

would allow for higher resolution imaging of a variety of biological materials and nanofabricated 

samples that previously could not be characterized adequately by SEM.  While I demonstrated the 

effectiveness of this network in the ideal case, where the training and testing datasets are made up 

of the same type of sample, deep learning-based super-resolution techniques have been shown to 

generalize to other types of samples or magnification factors, where larger datasets were used or 

there were strong similarities between different types of samples [8]; this can be further improved 

through transfer learning [41], which can be performed in almost real time by acquiring a few 

calibration images corresponding to a new type of sample of interest. 
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Chapter 4 Automated detection of sickle cell disease using enhanced 

smartphone microscope images 

Beyond simply improving the resolution of microscopy images, this deep learning-based 

framework can be used to correct for a wide variety of aberrations ranging from color correction 

to minor changes in focus. In this chapter, I will present an application this technology, and use it 

to enhance brightfield images of thin blood smears captured by a mobile phone microscope to 

match the quality of an industry standard benchtop scanning microscope. By improving the image 

quality and standardizing the images, it allows a second neural network to be applied to the 

enhanced images, performing semantic segmentation and detecting sickle cells and normal red 

blood cells found within the images. In turn, the slide can have an automated sickle cell disease 

(SCD) diagnosis performed using this segmentation. I will show that this combination of neural 

networks can be used to accurately diagnose sickle cell disease in 96 patients (32 having SCD), 

with an accuracy of ~98% and an area under the curve of 0.998. In addition to standardizing images 

for the classification network, the enhancement network improves images captured by a 

smartphone microscope to a level which could be used by a diagnostician if required. 

Parts of this chapter have been published in: 

 K. de Haan, H.C. Koydemir, Y. Rivenson, D. Tseng, E. Van Dyne, L.S. Bakic, D. Karinca, K. 

Liang, M. Ilango, E. Gumustekin, and A. Ozcan, “Automated screening of sickle cells using a 

smartphone-based microscope and deep learning,” npj Digital Medicine DOI: 

10.1038/s41746- 020-0282-y (2020). 

This was reused from ref.  [72] under the Creative Commons Attribution 4.0 International License. 

4.1 Introduction 
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Sickle cell disease is the most common hematologic inherited disorder worldwide and a public 

health priority [73]. The majority of the world’s SCD burden is in Sub-Saharan Africa, affecting 

millions of people at all ages. It is estimated that 200,000 to 300,000 children are born with SCD 

every year in Africa alone [74,75]. The prevalence of the disease varies across countries, being 

approximately 20% in Cameroon, Ghana and Nigeria and even rising up to 45% in some parts of 

Uganda [75].  

SCD is an inherited disorder caused by a point mutation in hemoglobin formation, which 

causes the polymerization of hemoglobin and distortion of red blood cells in the deoxygenated 

state. As a result of this, the normally biconcave disc-shaped red blood cells become crescent or 

sickle shaped in people living with SCD.  These red blood cells are markedly less deformable, 

have one-tenth the life span of a healthy cell, and can form occlusions in blood vessels. Children 

with SCD also suffer from spleen auto-infarction and the burden of disease becomes significant. 

Loosing splenic function, these children are at high risk for infections at an extremely young age, 

which significantly increases mortality rates [76]. Due to the lack of diagnosis and treatment, over 

50% of these of children with SCD in middle and low-income countries will die [77]. 

Various methods have been developed for screening and diagnosis of SCD, including e.g., 

laboratory-based methods such as high performance liquid chromatography (HPLC) [78], 

isoelectric focusing [79], and hemoglobin extraction [80]. In addition to these relatively costly 

laboratory-based methods, there have been SCD diagnostic tests developed for point-of-care 

(POC) use [81–86]. These POC tests are mainly based on human reading, and human errors along 

with the storage requirements of these tests (involving e.g., controlled temperature and moisture 

to preserve chemical activity/function) partially limit their effectiveness to screen SCD, especially 

in resource limited settings [86].  
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An alternative method used for screening of SCD involves microscopic inspection of blood 

smear samples by trained personnel. In fact, each year hundreds of thousands of blood smear slides 

are prepared in sub-Saharan Africa to make diagnosis of blood cell infections and disorders  [87]. 

Peripheral blood smears, exhibiting variations in e.g., the size, color, shape of the red blood cells 

can provide diagnostic information on blood disorders including SCD [88]. In addition to 

diagnosis, inspection of blood smears is also frequently used for evaluation of treatment and 

routine monitoring of patients [89]. Preparation of these blood smear slides is rather straight-

forward (i.e., can be performed by minimally-trained personnel), rapid and inexpensive. However, 

this method requires a trained expert to operate a laboratory microscope and perform manual 

analysis once the blood smear is prepared; the availability of such trained medical personnel for 

microscopic inspection of blood smears is limited in resource scarce settings, where the majority 

of people with SCD live [90]. In an effort to provide a solution to this bottleneck, deep learning-

based methods have been previously used to classify [91] and segment [92] different types of red 

blood cells from digital images that were acquired using laboratory-grade benchtop microscopes 

equipped with oil-immersion objective lenses. However, these earlier works focused upon cell 

level detection, rather than slide level classification and therefore did not demonstrate patient level 

diagnosis or screening of SCD. 

As an alternative to benchtop microscopes, smartphone-based microscopy provides a cost-

effective and POC-friendly platform for microscopic inspection of samples, making it especially 

suitable for use in resource limited settings [93–95]. Smartphone microscopy has been 

demonstrated for a wide range of applications, including e.g., the imaging of blood cells [96,97], 

detection of viruses and DNA [98,99], quantification of immunoassays [100–103] and 

microplates [104] among many others  [105–108]. Recently, machine learning approaches have 
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also been applied to smartphone microscopy images for automated classification of parasites in 

soil and water [109,110].  

Here I present a smartphone-based microscope and machine learning algorithms that together 

form a cost-effective, portable and rapid sickle cell screening framework, facilitating early 

diagnosis of SCD even in resource-limited settings. This mobile microscope (Figure 4.1) utilizes 

an opto-mechanical attachment, coupled to the rear camera of a smartphone, transforming it into 

a portable microscope using external parts that cost ~$60 in total. This compact microscope design 

has sub-micron spatial resolution [38] and weighs only 350 g including the smartphone itself.  

 

Figure 4.1 Field portable smartphone based brightfield microscope and its principle of detection. a) A photograph of 

the smartphone-based brightfield microscope. Schematic illustration of b) the design of the portable microscope in 

detail and c) the light path. d) Deep learning workflow for sickle cell analysis. Scale bar indicates 20 μm. 

Using this cost-effective mobile microscope, slide-level automated diagnosis of SCD was 

performed by rapidly classifying thousands of red blood cells within a large field-of-view using a 

deep learning-based framework that takes <7 sec to process a blood smear slide per patient. The 
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approach was blindly tested using 96 blood smears (32 of which came from individual patients 

with SCD) and achieved ~98% accuracy together with an area-under the-curve (AUC) of 0.998. 

Therefore, this platform provides a robust solution for cost-effective and rapid screening of SCD, 

making it especially promising for POC use in resource-limited settings. 

4.2 Results 

The process of screening peripheral blood smears using this framework is illustrated in Figure 

4.1(d).  Following the imaging of the patient slide with the smartphone-based microscope (Figure 

4.1(a, b, and c)), these smartphone images were rapidly enhanced using a deep neural network as 

shown on the left part of Figure 4.1(d). This network was trained to transform the lower resolution, 

spatially and spectrally aberrated images of the smartphone microscope into enhanced images that 

are virtually equivalent to the images of the same samples captured using a higher numerical 

aperture (NA) laboratory-grade benchtop microscope. During the training phase (Chapter 4.4, 

Methods section), which is a one-time effort, pairs of mobile microscopy images (input to the 

network) were cross-registered to the corresponding images of the same training samples, captured 

using a ×20/0.75 NA objective-lens with a ×2 magnification adapter (i.e., ×40 overall 

magnification), which were used as ground truth image labels.  

This intermediate image transformation is essential for not only the automated blood smear 

analysis using a subsequent classification neural network (Figure 4.1(d)), but is also important for 

the improvement of smartphone microscopy images to a level that can be used by expert 

diagnosticians for manual inspection of the blood smears. Due to aberrations and lower resolution, 

the raw smartphone microscope images of red blood cells might be relatively difficult to interpret 

by human observers, who are traditionally trained on high-end benchtop microscopes. While this 

framework automatically performs cell classification and slide-level SCD diagnosis, any manual 
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follow-up by a trained expert requires digital images that can be accurately interpreted. This is an 

important need satisfied by the image enhancement neural network that is specifically trained on 

blood smear samples to enhance the smartphone microscope images.  

Another major advantage of this approach is that the enhancement network standardizes the 

microscopic images of blood smears, making it easier for the second classification network 

perform its task and more accurately classify the sickle cells. Therefore, the enhancement network 

improves both the quality and the consistency of the subsequent sickle cell classification network 

by performing an image standardization at its output. It also helps us to account for variations 

between images over time. In fact, the sample collection was performed over the course of 3 years, 

and the blood smear images were captured with different smartphones (using the same opto-

mechanical attachment, same phone manufacturer and model number), resulting in some variations 

between the acquired mobile-phone images over time. In addition to using multiple smartphones, 

variations can be caused by the 3D printed plastic attachments partially warping over time, the 

smartphone heating up during its operation, and the illumination intensity fluctuating over time. 

These changes can cause fluctuations in the alignment of the lenses to occur, which in turn lowers 

the quality of the captured images. The image enhancement network was trained with blood smear 

samples imaged over this time period and in different operational conditions in order to account 

for these variations in the raw image quality of smartphone microscopy, successfully standardizing 

the resolution and the spatial as well as spectral features of the output images of the network.  

Using the structural similarity index (SSIM) [111], I quantified the effectiveness of this image 

enhancement network on unique fields-of-view from the same slides that the network was trained 

with. The neural network improved the SSIM of the smartphone microscopy images from 

0.601±0.017 (input) to 0.965±0.012 (output), where the mean and standard deviation were 
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calculated for 8 smartphone microscope images, compared with the ground truth image labels 

acquired with a high NA benchtop microscope (see the Methods Section). This shows that after 

the neural network-based transformation, the intensity component of the smartphone images 

become highly similar to the benchtop microscope images. Examples of these image 

transformations can be seen in Figure 4.2, where direct comparisons between the network output 

and the ground truth benchtop microscope (0.75 NA) images are shown. 

 

Figure 4.2 Example image patches. Demonstration of various test image patches that passed through the various steps 

of the automated sickle cell analysis framework. The smartphone microscopy images are first passed through an image 

enhancement and standardization network. Following this step, the images are segmented using a second, separate 

neural network. This segmentation network is in turn used to determine the number of normal and sickle cells within 

each image; 5 fields-of-view together covering ~1.25 mm2 is automatically screened, having on average 9630 red 

blood cells to make a diagnosis for each patient blood smear. Scale bar indicates 20 μm. 
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Following the image enhancement and standardization network output, a second classification 

network was then used to segment the enhanced images into three classes of objects: normal red 

blood cells, sickle cells, and background. Using the output of this network, each patient blood 

smear slide imaged by smartphone microscopy was automatically analyzed and screened for SCD 

using 5 different fields-of-view, each covering 0.51 mm × 0.51 mm, i.e., a total of ~1.25 mm2 area 

of each blood smear was processed by the classification network, screening on average 9630 red 

blood cells per patient sample. Following this segmentation, the number of sickle cells and normal 

cells contained within each image were automatically counted. The patient slides were classified 

as being SCD positive if the average number of sickle cells within 5 images covering a 1.25 mm2 

field-of-view was above 0.5% of the total red blood cell count for that sample. This threshold was 

chosen based on the performance of the classification neural network in the validation dataset 

(separate from the blind testing data) to mostly account for sickle shaped healthy cells found in 

normal blood smears. 

After the training phase, the accuracy of the framework was confirmed by blindly testing 96 

blood smear slides that were never seen by the networks before. Covering 96 individual patients, 

32 of these blood smears are from SCD patients and 64 of them are from healthy individuals. These 

slides were imaged using the smartphone microscope between 2016 and 2019, and were 

anonymously obtained from existing specimen at the UCLA Medical Center; the clinical diagnosis 

of each patient sample was used as the ground truth label for each slide. In this blinded test, this 

framework achieved ~98% accuracy across these 96 blood smears, where there was one false 

positive slide and one false negative slide. As for the misclassifications, one healthy blood smear 

was found to have a significantly higher average number of sickle cells (0.64%) than the remaining 

healthy blood smears; the one false negative sample was only slightly below the 0.5% threshold, 
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while exhibiting a higher percentage of sickle cells than any of the remaining normal blood smears. 

Several examples of patches from these test images, as they digitally pass through the networks, 

are also shown in Figure 4.2. 

I also report the receiver operating characteristic (ROC) curve of the framework in Figure 

4.3, which demonstrates how the SCD diagnosis accuracy can change depending on the threshold 

used to label the blood smear slide, achieving an AUC of 0.998. 

 

Figure 4.3 ROC curve. Demonstration of the false positive rate versus the true positive rate for the sickle cell detection 

framework. 

4.3 Discussion 

Through blind testing spanning 96 unique patient samples I have shown that the presented 

framework can consistently achieve high accuracy even using a limited training dataset. Similar 
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to human diagnosticians examining blood smears under a microscope, screening through a large 

number of cells (on average 9630 red blood cells per patient sample) helped us achieve a high 

accuracy for automated diagnosis of SCD. In general, by using more training data containing a 

larger number of labeled sickle cell images, one can further improve the SCD detection accuracy 

and make it more efficient, requiring the capture of fewer smartphone images covering an even 

smaller field-of-view. On the other hand, acquiring a large training dataset with accurate labels at 

the single cell level is a challenge in itself; in fact, single cell level ground truth labels from blood 

smear samples clinically do not exist, and are not being recorded. Although one could perform 

single cell level molecular analysis on blood samples of patients, creating a sufficiently large scale 

image library backed up with such single cell level ground truth labels would be very costly and 

time consuming. As an alternative, one can use multiple diagnosticians to establish a clinical 

ground truth at the single cell level by statistically merging the decisions made by a panel of 

diagnosticians. A similar multi-diagnostician based decision approach has previously been used to 

detect malaria infected cells in blood smears, rather than relying on a single expert [112,113].  This 

approach mitigates the fact that single cell level labeling which is performed by a human can be 

highly subjective and inconsistent even for highly-trained experts [112]. Therefore, an accurate 

patient diagnosis can be difficult to perform with only a limited number of cells screened per slide, 

particularly with diseases such as SCD, where normal/healthy blood can also contain cells showing 

sickle cell like microscopic features. For example, children with normal blood were shown to have 

on average 0.28% sickle cells [114]. Due to this variation, a large number of cells must be screened 

per patient slide to better evaluate the rate of occurrence and make an accurate diagnosis.  

Given these aforementioned challenges in obtaining large scale ground truth labeled image 

data from blood smears, the image enhancement and standardization network is particularly vital 
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for SCD screening, helping the subsequent red blood cell segmentation network to better 

generalize sickle cell features and be efficient with limited training data by standardizing the input 

images that are fed into the classification network.  

In this work, the blood smear slides were classified by measuring the percentage of sickle 

cells over a field-of-view of ~1.25 mm2, covering on average 9630 red blood cells. Figure 4.4(a) 

reports how the diagnostic accuracy and AUC would change as a function of the number of cells 

that are screened per patient, further demonstrating the importance of inspecting a large sample 

field-of-view, and therefore a large number of cells for accurate SCD diagnosis (see the Methods 

section).  Without inspecting an average of a few thousand red blood cells per patient slide, the 

accuracy of the automated SCD screening platform can drop significantly. Figure 4.4(b) also 

reports how the ROC curves are impacted as a function of the number of cells being screened per 

patient slide, confirming the same conclusion that both the sensitivity and the specificity of the test 

steadily drop as the number of inspected cells decreases. 
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Figure 4.4 Accuracy as a function of the number of cells counted. a) Plot of how the accuracy and AUC change as a 

function the number of cells (and the blood smear area) inspected by the method. b) ROC curves for various simulated 

blood smear areas. These plots (except the 1.25 mm2 one, which is the experimental result) are based on the average 

of 1000 Monte Carlo simulations performed by removing the red blood cells from the imaging fields-of-view at 

random to change the number of cells inspected by the method. As the cells are relatively monodisperse, this random 

removal of the cells simulates a reduction in the inspected blood smear area per patient. Error bars represent the 

standard deviation (s. d.) across the 1000 Monte Carlo simulations. 

These results and analysis demonstrate that the presented method, enabled by smartphone 

microscopy and deep learning, is robust to perform SCD diagnosis by automated processing of 

blood smears. However, there are also some drawbacks to using a blood smear to diagnose sickle 

cell disease which the automated system is unable to overcome. One of these is that using blood 

smear slides to diagnose sickle cell disease or sickle cell anemia is not effective for infants and 

can cause false negatives. Therefore, the method presented in this chapter is not to be used in 

newborn screening programs, and has been designed for use with older children and adults. While 

newborn screening programs are rather important, there are many areas where they have not been 

implemented due to e.g., cost and logistical issues. Furthermore, even in areas where newborn 
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screening programs have been implemented, there are still adults and children who have not been 

screened due to a lack of supplies, power outages, or lack of complete coverage, which makes a 

mobile phone-based cost-effective SCD screening technology ideal to serve such patients. Blood 

smears also cannot be used to distinguish between sickle cell genotypes, and therefore patients 

may need follow up testing. However, for critical clinical management of e.g., an initial episode 

of stroke, chest syndrome, or hand-foot syndrome, it may not be clinically necessary to know the 

sickle cell genotype immediately. 

Therefore, this technology would ideally be targeted towards adults and older children who 

have not undergone newborn screening. I believe that it would be particularly useful in settings 

where the existing point of care technologies are not ideal due to cost, need for reagents etc. as the 

presented SCD screening method is rapid, cost-effective and the required sample preparation is 

minimal. It would be particularly useful in locations where operators are already trained to use thin 

blood smears to perform diagnoses of other diseases. The preparation of blood smears is being 

routinely performed in resource limited settings for the diagnosis of other diseases such as malaria 

(thick/thin smears) and complete blood counts (when specialized machines are not available), 

resulting in hundreds of thousands of blood smears prepared per year just in sub-Saharan 

Africa [115]. This method is also quite fast to compute an answer: each one of the 5 images passes 

through the neural networks in 1.37 seconds using a single Nvidia 1080 Ti GPU. This results in a 

total analysis time of 6.85 sec per patient, which is significantly faster than any manual inspection 

by experts.  While in the current implementation the analysis is performed on a computer (which 

can be a local or remote server), a smartphone application could be also used to perform the 

processing on the phone itself with an increase in the slide processing time. 

4.4 Methods 
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Study design 

The objective of the research was to perform automated diagnosis of SCD using blood smear 

slides imaged with a smartphone-based microscope and analyzed by deep learning. The test dataset 

was made up of 96 unique patient samples involving 32 SCD thin blood smears and 64 normal 

thin blood smears. The blood smears were obtained from the UCLA Ronald Reagan Hospital, and 

no sample selection criterion was applied. Both the normal and SCD blood smears came from 

patients with a mix of gender and wide range of ages (<5 years to >60 years old). 

Ethics approval and consent to participate 

De-identified blood smears from existing human samples were obtained from the UCLA 

Ronald Reagan Hospital. No patient information, or any link to it, was disclosed to the research 

team. General consent for the samples to be used for research purposes was obtained. Due to these 

factors, no specific IRB from UCLA was required. 

Design of the smartphone-based brightfield microscope 

The Nokia Lumia 1020 smartphone attached to a custom-designed 3D-printed unit was used 

to capture images of the blood smear slides. An RGB light emitting diode (LED) ring (product no. 

1643, Adafruit) was utilized to illuminate the sample in a transmission geometry and a 

microcontroller (product no. 1501, Adafruit) was used to adjust the illumination intensity. To 

ensure uniform illumination of the sample, a diffuser (product no. SG 3201, American Optic 

Supply, Golden, CO, USA) was placed in between the LEDs and the specimen. An external lens 

with a focal length of 2.6 mm (LS-40166 – M12xP0.5 Camera Lens) was used for magnification 

and was coupled to the rear camera of the smartphone. This design has a field of view of ~ 1 mm2 

per image. However, each one of the mobile phone images is cropped to the center ~0.5x0.5 mm2 
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in order to avoid increased aberrations toward the edges of the field of view; per patient slide, 5 

independent images were captured, covering a total of ~1.25 mm2. The microscope is also 

equipped with a custom-designed manual translational stage to laterally move the sample. This 

stage, which was also 3D-printed, also contained a microscope slide holder. In total, the 

smartphone-based microscope weighs 350 g, including the phone itself, and the total cost of the 

device parts is ~ $60 (excluding the smartphone). 

Imaging of thin blood smears  

Thin blood smear slides were used for image analysis. The ground truth microscope images 

were obtained using a scanning benchtop microscope (model: Aperio Scanscope AT) at the Digital 

Imaging Laboratory of the UCLA Pathology Department. The standard smartphone camera 

application was used to capture the corresponding input images using the smartphone-based 

microscope, using auto focus, ISO 100, and auto exposure.  

Areas of the samples captured using the smartphone microscope were co-registered to the 

corresponding fields-of-view captured using the benchtop microscope (please refer to “Image co-

registration” in Methods section for details). Three board-certified medical doctors labelled the 

sickle cells within the images captured using the benchtop microscope using a custom-designed 

graphical user interface (GUI). As the images are co-registered, these labels were used to mark the 

locations of the sickle cells within the smartphone images, forming the training image dataset. The 

images were captured on the feathered edges of the blood smear slides, where the cells are 

dispersed as a monolayer. 

Images from blood smears containing cells which have been scraped and damaged were 

excluded from the dataset, as the cut cells can appear similar to sickle cells. One normal blood 
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smear was accordingly excluded as we were unable to capture a sufficient number of usable fields-

of-view due to the poor quality of the blood smear, with many scratches on its surface. Blood 

smears from four patients who were tested positive for SCD and were taking medicine for 

treatment were also excluded from the study since their smears did not contain sickle cells when 

viewed by a board-certified medical expert.  

Image co-registration 

The co-registration between the smartphone microscope images and those taken by the 

clinical benchtop microscope (NA=0.75) was done using a series of steps. For the first step, these 

images are scaled to match one another by bicubically down-sampling the benchtop microscope 

image to match the size of those taken by the smartphone. Following this, they are roughly matched 

using an algorithm which creates a correlation matrix between each smartphone image and the 

stitched whole slide image captured using the benchtop lab-grade microscope. The area with the 

highest correlation is the field of view which matches the smartphone microscope image and is 

cropped from the whole slide image. An affine transformation was then calculated using 

MATLAB’s (Release R2018a, The MathWorks, Inc.) multimodal registration framework which 

extracts feature vectors and matches them to further correct the size, shift, shear, and account for 

any rotational differences [116]. Finally, the images were matched to each other using an elastic 

pyramidal registration algorithm to match the local features [38]. This step accounts for the 

spherical aberrations, which are extensive due to the nature of the inexpensive optics coupled to 

the smartphone camera. This algorithm co-registers the images at a subpixel level by progressively 

breaking the image up into smaller and smaller blocks and uses cross-correlation to align them. 

Image enhancement neural network 
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Figure 4.5 Deep neural network architecture. Diagram detailing the network architecture for both a) the image 

enhancement network and b) the semantic segmentation network. The numbers above the layers represent the size of 

the tensor dimensions at that point in the network, in the format: length × width × number of channels. N was chosen 

to be 128 during training and can be set to any arbitrary size during testing. Scale bar indicates 20 μm. 
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Figure 4.6 Demonstration of the aberrations and various differences among smartphone microscope images. 

Aberrations include blur due to the device’s inherent challenge to accurately focus on the sample, as well as blur in 

certain areas of the image due to the usage of cost-effective optical components, tilt and defocus aberrations due to 

optical misalignments, spectral aberrations between the fields of view as well as between the cells within each field 

of view, and pixel saturation in the centers of some of the cells (e.g., the cells in panel (d)). 

Due to the variations among the images taken by the smartphone microscope, a neural 

network is used to standardize images and improve their quality in terms of spatial and spectral 

features. These variations stem from e.g., changing exposure time, aberrations (including defocus), 

chromatic aberrations due to source intensity instability, mechanical shifts, etc. Some examples of 

the image variations that these aberrations create can be seen in Figure 4.6. The quality of the 
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images taken by a smartphone microscope can be improved and transformed so that they closely 

resemble those taken with a state-of-the-art benchtop microscope by using a convolutional neural 

network [38]. The image normalization and enhancement network uses the U-net architecture as 

shown in Figure 4.5(a) [4]. The U-net is made up of three “down-blocks” followed by three “up-

blocks”. Each one of these blocks is made up of three convolutional layers, which use a zero 

padded 3×3 convolution kernel and a stride of one to maintain the size of the matrices. After each 

of the convolutional layers, the leaky ReLU activation function is applied, which can be described 

as: 

Leaky ReLU (x) = ቄ
𝑥

0.1𝑥
  where 𝑥 > 0

otherwise
                (4.1) 

where x is the tensor that the activation function is being applied to. 

In the case of the down-block, the second of these layers increases the number of channels by 

a factor of two, while the second convolutional layer in the up-block reduces the number of 

channels by a factor of one quarter. The down-blocks are used to reduce the size of the images 

using an average pooling layer with a kernel size and a stride of two, so that the network can extract 

and use features at different scales. The up-blocks return the images to the same size by bilinearly 

up-sampling the images by a factor of two. Between each of the blocks of the same size, skip 

connections are added to allow information to pass by the lower blocks of the U-net. These skip 

connections concatenate the up-sampled images with the data from the down-blocks, doubling the 

number of channels. As the up-blocks reduce the number of channels by a factor of four and the 

skip connections double the number of channels, the total number of channels in each subsequent 

up-block is halved. Between the bottom blocks, a convolution layer is also added to allow 

processing of those large-scale features. The first convolutional layer of the network initially 



 

62 

increases the number of channels to 32, while the last one reduces the number back to the 3 

channels of the RGB color space to match the benchtop microscope images (ground truth). The 

network was trained using the adaptive movement estimation (Adam) optimizer with a learning 

rate of 1×10-4. 

The image enhancement network is trained using a combination of two loss functions, 

described by the equation: 

𝐿ே௘௧௪௢௥௞ = 𝐿ଵ{𝑧, 𝐺(𝑥)} + 𝜆 ∗ 𝑇𝑉൫𝐺(𝑥)൯         (4.2) 

where an L1 (mean absolute error) loss function is used to train the network to perform an accurate 

transformation, while the total variation (TV) loss is used as a regularization term.  λ is a constant 

set to 0.03; this constant makes the total variation ~5% of the overall loss. G(x) represents image 

generated using the input image x. The L1 loss can be described by the following equation [70]: 

𝐿ଵ{𝑧, 𝐺(𝑥)} =
1

𝑁channels × 𝑀 × 𝑁
෍ ෍ ห𝐺(𝑥)௜,௝,௡ − 𝑧௜,௝,௡ห

ெ,ே

௜,௝ୀଵ

ேchannels

௡ୀଵ

 (4.3) 

Where Nchannels is the number of channels, n is the channel number, M and N are the width and 

height of the image in pixels, and i, and j are the pixel indices. The total variation loss is described 

by the following equation [71]: 

𝑇𝑉(𝐺(𝑥)) =
1

𝑁channels × 𝑀 × 𝑁
෍ ෍ ൫ห𝐺(𝑥)௜ାଵ,௝,௡ − 𝐺(𝑥)௜,௝,௡ห

ெ,ே

௜,௝ୀଵ

ேchannels

௡ୀଵ

+ ห𝐺(𝑥)௜,௝ାଵ,௡ − 𝐺(𝑥)௜,௝,௡ห൯                                                          (4.4) 

The network was trained for 604,000 iterations (118.5 epochs) using a batch size of 16. The 

data were augmented through random flips and rotations of the training images by multiples of 90 

degrees. 
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For this image enhancement network training, there is no need for manual labeling of cells by 

a trained medical professional, and therefore this dataset can be made diverse very easily. Because 

of this, it can also be expanded upon quickly as all that is required is additional images of the slides 

to be captured by both microscopy modalities and co-registered with respect to each other. 

Therefore, the network was able to more easily cover the entire sample space to ensure accurate 

image normalization and enhancement. The training image dataset consisted of 520 image pairs 

coming from 10 unique blood smears. Each of these images have 1603×1603 pixels, and are 

randomly cropped into 128×128 pixel patches to train the network.  Several examples of direct 

comparisons between the network’s output and the corresponding field of view captured by the 

benchtop microscope can be seen in Figure 4.7(a). 

 

Figure 4.7 Direct comparison between the network output and the ground truth for the two networks. a) Demonstration 

of the image enhancement network, where the smartphone image is the network input, the enhanced image is the 

network output, and the benchtop microscope (NA=0.75) is the ground truth image label. b) Demonstration of the 

segmentation network, where the enhanced image is the network input, a segmented probability map is the network 

output, and the probability mask based on the expert’s label is the ground truth. 
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Mask creation for training the cell segmentation network 

Once the cells were labeled by board-certified medical experts and the images were co-

registered, the cell labels were used to create a mask which constitutes the ground truth of the 

segmentation network; this mask creation process is a one-time training effort and used to train 

the cell segmentation neural network used in this work. These training masks were generated by 

thresholding the benchtop microscope images according to color and intensity to determine the 

locations of all the healthy and the sickle cells. The exact thresholds were chosen manually for 

each slide due to minor color variations between the blood smears; once again, this is only for the 

training phase.  As the centers of some red blood cells were the same color as the background, 

holes in the mask were filled using MATLAB’s imfill command, a morphological operator. 

Following this, the mask was eroded by four pixels in order to eliminate sharp edges and eliminate 

pixels misclassified due to noise. Any cell labeled by the medical expert as a sickle cell was set as 

a sickle cell while any unlabeled red blood cell was set as a normal cell for training purposes. 

White blood cells, platelets and the background were all labeled as a third background class.  As 

the medical experts might have randomly missed some sickle cells within each field of view, a 

128×128 region around each labeled sickle cell was cut out of the slide for training, reducing the 

unlabeled area contained within the training dataset. The remaining sections of the labeled slides 

were removed from the training dataset. At the end of this whole process, which is a one-time 

training effort, three classes are defined for the subsequent semantic segmentation training of the 

neural network: (1) sickle, (2) normal red blood cell, and (3) background. 

Semantic segmentation 

A second deep neural network is used to perform semantic segmentation of the blood cells 

imaged by the smartphone microscope. This network has the same architecture as the first image 
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enhancement network (U-net). However, as this network performs segmentation, it uses the 

SoftMax cross entropy loss function to differentiate between the three classes (sickle cell, normal 

red blood cell, and background). In order to reduce the number of false positives as much as 

possible, the normal cell class is given twice the weight of the background and the sickle cells in 

the loss function. The overall loss function for the segmentation network, LSegmentation, is described 

in equation (4.5): 

𝐿ௌ௘௚௠௘௡௧௔௧௜௢௡ = −
1

𝑀 × 𝑁
෍ 𝑎௜,௝,ଵ log൫𝑝௜,௝,௖ୀଵ൯ + 2𝑎௜,௝,ଶ log൫𝑝௜,௝,௖ୀଶ൯

ெ,ே

௜,௝ୀଵ

+ 𝑎௜,௝,ଷ log൫𝑝௜,௝,௖ୀଷ൯                                                                         (4.5) 

where M and N are the number of pixels in an image, and i, and j are the pixel indices as above. 

ai,j,c is the ground-truth binary label for each pixel (i.e., 1 if the pixel belongs to that class, 0 

otherwise), and c denotes the class number (c={1,2,3}), where the first class represents the 

background, the second class is for healthy cells, and the third class is for sickle cells. The 

probability pi,j,c that a class c is assigned to pixel i,j is calculated using the softmax function:  

𝑝௜,௝,௖ =
ୣ୶୮൫௬೔,ೕ,೎൯

∑ ୣ୶୮൫௬೔,ೕ,ೖ൯య
ೖసభ

 (4.6)                                                                          

where y is the output of the neural network. 

 A visual representation of the network architecture can be seen in Figure 4.5(b). Several 

examples of direct comparisons between the network’s output at the single cell level and the 

corresponding field of view imaged by the clinical benchtop microscope can be seen in Figure 

4.7(a).  

This network was trained for 80,000 iterations (274 epochs) using a batch size of 20. The 

training dataset for this network was made up of 2660 sickle cell image patches (each 128×128 
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pixels) from a single blood smear slide, each one containing a unique labeled sickle cell. An 

additional 3177 image patches (each 128×128 pixels) coming from 15 unique slides containing 

solely normal cells were also used. Separate from the blind testing image dataset which involved 

96 unique patients, 250 labeled 128×128-pixel sickle cell image patches and two 1500×1500-pixel 

images from healthy image slides were used as validation dataset for the network training phase. 

The classification algorithm was validated using these images alongside 5 unique fields-of-view 

from 10 additional blood smear slides of healthy patients. The network was trained using the Adam 

optimizer with a learning rate of 1×10-5. 

Classification of blood smear slides 

Once the images have been segmented by the second neural network, the number of total cells 

and sickle cells must be extracted. The algorithm first uses a threshold to determine which pixels 

are marked as cells. Areas where the sum of the sickle cell and normal cell probabilities is above 

0.8 are considered to be part of a red blood cell, while areas below this threshold are considered as 

background regions. Connected areas which contain more than 100 pixels above the 0.8 threshold 

are then counted to determine the total number of cells. Sickle cells are counted using a similar 

methodology: connected areas where there are over 100 pixels above a sickle cell probability 

threshold of 0.15 were counted as sickle cells. This threshold is set to be low since significantly 

more number of healthy red blood cells is used to train the network. A slide is classified as being 

positive for sickle cell disease when the percentage of sickle cells among all the inspected cells 

(sickle and normal red blood cells) over a total field-of-view of ~1.25 mm2 is above 0.5%. The 

0.5% threshold was chosen using the validation image dataset, i.e., it was based on the network’s 

performance in classifying the 10 healthy validation slides to account for false positives and the 

occurrence of sickle shaped cells in normal blood smears. Several examples of direct comparisons 
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between the network’s output and the ground truth labels for blindly tested regions of the labeled 

slides are shown in Figure 4.7(b). 

Structural similarity calculations 

The SSIM calculations were performed using only the brightness (Y) component of the 

YCbCr color space as the intensity contrast component are expected to remain similar, while the 

chroma components (Cb, Cr) to depend on other factors, including variability in the slide’s 

staining. The color difference between the smartphone microscope images and the benchtop 

microscope images is also significant. The smartphone microscope images appear with a blue 

background, and should not directly be compared against the benchtop microscope images in the 

RGB color space. Therefore, using a color space where the brightness component can be extracted 

separately is necessary. 

 The calculations were performed upon 8 unique fields-of-view from the same slides which 

were used to train the enhancement network. SSIM is calculated using the equation: 

𝑆𝑆𝐼𝑀(𝑥, 𝑧) =
(2𝜇௫𝜇௭ + 𝑐ଵ)൫2𝜎௫,௭ + 𝑐ଶ൯

(𝜇௫
ଶ + 𝜇௭

ଶ + 𝑐ଵ)(𝜎௫
ଶ + 𝜎௭

ଶ + 𝑐ଶ)
   (4.7) 

where x and z represent the two images being compared, as above. µx and µz represent the average 

values of x and z respectively, and σx and σz are the variance of x and z, and σz is the covariance of 

x and z. c1 and c2 are dummy variables, which stabilize the division from a small denominator. 

Monte Carlo simulation details 

The Monte Carlo simulations reported in Figure 4.4 demonstrate how the accuracy of the 

presented technique changes as a function of the number of cells analyzed by the neural networks; 

these simulations were implemented by beginning with the full cell count from the 5 fields-of-
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view tested for each patient slide. This total cell count was reduced by randomly eliminating some 

of the cells to evaluate the impact of the number of cells analyzed on the accuracy. As the cells are 

relatively monodisperse, this random removal of red blood cells was used as an approximation of 

a reduction of the inspected blood smear area per patient. The results of 1000 simulations were 

averaged since the accuracy can fluctuate significantly, particularly at low numbers of cells. The 

total number of cells within the 5 fields-of-view that were used for SCD diagnosis varies from 

4105 to 13989. 

Implementation details 

The neural networks were trained using Python 3.6.2 and the TensorFlow package version 

1.8.0. The networks were trained and test images were processed on a desktop computer running 

Windows 10 using an Intel I9-7900X CPU, 64 GB of RAM and one of the computer’s two GPUs 

(NVIDA GTX 1080 Ti). The enhancement network infers each field of view in 0.73 seconds while 

the classification network inference takes 0.64 seconds per field of view, taking a total of 6.85 sec 

to process the entire 1.25 mm2 area of the blood smear. For both of the neural networks, the training 

image data were augmented by using random rotations and flipping. The hyperparameters and 

network architecture were chosen specifically for the datasets used in this chapter, adjusted 

through experimental tuning. 
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Chapter 5 Virtual multiplexed and microstructured staining of label-

free tissues 

In addition to performing transformations between images to improve the quality of the 

images, the same general technique can be used to perform a wide variety of arbitrary 

transformations where the information required for the transformation is contained within the input 

to the neural network.  Chapter 5 of this dissertation will focus on the transformation from label-

free autofluorescence images of thin tissue sections into virtually stained tissues which resemble 

the same tissue after chemical labeling. Virtual staining of unlabeled tissues has previously been 

shown to be highly effective at recreating histochemical stains both in quality as well as 

diagnostically [117]. However, it relied upon tissue-stain-specific neural networks to perform the 

transformation.  

Here, I will demonstrate a new framework that can generate multiple stains using a single 

deep neural network. This framework can generate virtually stained images using label-free tissue 

images, in which different stains are merged following a micro-structure map defined by the user. 

This approach uses a single deep neural network that receives two different sources of information 

as its input: (1) autofluorescence images of the label-free tissue sample and (2) a “digital staining 

matrix”, which represents the desired microscopic map of the different stains to be virtually 

generated in the same tissue section. This digital staining matrix is also used to virtually blend 

existing stains, digitally synthesizing new histological stains. This virtual-staining network was 

trained and blindly tested using unlabeled kidney tissue sections to generate micro-structured 

combinations of hematoxylin and eosin (H&E), Jones’ silver stain, and Masson’s trichrome stain. 

Using a single network, this approach multiplexes the virtual staining of label-free tissue images 

with multiple types of stains and paves the way for synthesizing new digital histological stains that 
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can be created in the same tissue cross section, which is currently not feasible with standard 

histochemical staining methods. 

Parts of this chapter have been published in: 

 Y. Zhang, K. de Haan, Y. Rivenson, J. Li, A. Delis, and A. Ozcan, “Digital synthesis of 

histological stains using micro-structured and multiplexed virtual staining of label-free tissue,” 

Light: Science & Applications (Nature Publishing Group) DOI: 10.1038/s41377-020-0315-y 

(2020). 

This was reused from ref. [118] under the Creative Commons Attribution 4.0 International 

License. 

5.1 Introduction 

Histological analysis is used to diagnose a wide variety of diseases. It is considered the gold 

standard for tissue-based diagnostics, with some well-established versions of common stains, such 

as haematoxylin and eosin (H&E), having been used for over a hundred years [119]. The 

histological staining process first requires the slicing of a fixed tissue specimen into sections of 2-

10 microns, which are then fixed to microscope slides. Histological staining chemically introduces 

contrast into tissue sections, which can then be analysed and used to screen for diseases through 

bright-field microscopic imaging of the stained samples. However, histological staining can be a 

long and labour-intensive process, particularly in the case of special stains such as Jones’ silver 

stain and Masson’s trichrome stain. Therefore, the tissue staining process can increase both the 

time needed for diagnosis and the associated costs. 

A wide variety of stains have been developed over the years to enable the visualization of 

different target tissue constituents. For example, haematoxylin stains cell nuclei, while Masson’s 
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trichrome stain is used to view connective tissue [120]. These stains have also been chemically 

mixed to enable the visualization of different biomarkers. An example of this is when periodic 

acid-Schiff (PAS) and Alcian blue stains are used in conjunction to perform differential staining 

of glycoproteins [121]. 

In recent years, various methods have been developed as substitutes for the histochemical 

staining of samples in an attempt to avoid (1) the specimen-destructive nature of the labelling 

process, allowing tissue preservation for more advanced analysis; (2) the lengthy and laborious 

labelling steps, saving time and cost; and (3) unnecessary additional biopsies from the same patient 

due to tissue depletion. Some of the earliest alternative contrast generation methods utilize various 

processes related to light-matter interaction, including nonlinear microscopy [122], Raman 

scattering [123], programmable supercontinuum pulses [124] and reflectance confocal 

microscopy [125]. However, as pathologists (and, more recently, machine learning algorithms) are 

mainly trained to perform diagnoses using histologically stained specimens, images generated 

using alternative contrast mechanisms might require additional training to analyse. Recent efforts 

have also focused on the development of computational methods of creating bright-field 

microscopy images that closely resemble the stained versions of the same specimens. For example, 

digitally generated pseudo-stains have been demonstrated using analytical and statistical learning-

based approaches that transform an input pixel (or pixel spectrum) into an RGB output 

pixel [123,126,127]. Some of these pixel-to-pixel transformation approaches have also used rapid 

staining methods to provide contrast in cell nuclei [122,127]. 

Recently, emerging deep learning methods have enabled the development of algorithms for 

learning accurate transformations between many different imaging modalities [8,12,38,128,129]. 

Notably, by utilizing the statistical correlations between the structures in images of unstained tissue 
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slides and the structures in images of the same slides once stained, an unstained tissue sample can 

be virtually stained by a trained deep neural network without the need for any chemical processing. 

For example, using deep learning, autofluorescence images of unlabelled tissue samples have been 

virtually stained with various types of stains [117]. These virtual stains were validated through a 

blind study involving a team of board-certified pathologists, revealing that there is no statistically 

significant difference in quality between a virtually stained image and a standard histochemically 

stained version of the same sample imaged with a bright-field microscope in terms of either stain 

quality or diagnostic information. Various other techniques for performing virtual staining of 

unlabelled tissue images have also been demonstrated, for example, by using quantitative phase 

images [130] or a combination of two-photon excitation and fluorescence lifetime imaging [131]. 

Researchers have also used deep learning to improve the accuracy of diagnosis using H&E 

images [132]; it has been shown that deep neural networks can be used to normalize stains, making 

them more consistent, which allows automated diagnostic analysis to be performed more 

easily [133]. 

In this chapter, I demonstrate a novel machine-learning-based framework that allows users to 

virtually create micro-structured and multiplexed histological stains in the same tissue section 

using only a single artificial deep neural network. Using this technique, a trained deep neural 

network can (1) perform virtual staining in a defined region of interest following a micro-structure 

map defined by the user and (2) achieve the blending of multiple virtual stains and the synthesis 

of new digital stains. This framework uses the stain type as the input class for a conditional 

generative adversarial network (GAN) to transform the input images, consisting of pairs of 

unlabelled autofluorescence images of the same tissue sample, into a virtually stained image of the 

same label-free sample. To do so, I introduce a “digital staining matrix”, which is used as part of 



 

73 

the input to the deep network, to spatially encode the stain type, i.e., each pixel can be virtually 

stained using a different stain type or a different set of histological stains (see Figure 5.1). 
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Figure 5.1 Demonstration of multiple stains being virtually generated using a class-conditional neural network and 

images in two autofluorescence channels (DAPI and Texas Red) of a label-free tissue sample. (a) Steps involved in 

virtually creating the various stains. By adding a class condition to the network using a digital staining matrix, a single 

network can be used to generate multiple stains or a blending of stains in the same tissue cross section on demand. (b) 

A second field of view demonstrating the three digital stains generated using a single trained network. Contrast-

enhanced unstained tissue images are provided for visual guidance; unprocessed raw versions of these images were 

used as the input to the neural network. N/A (not available) refers to the fact that once a tissue section has been 

histochemically stained with one type of stain, it cannot be subsequently stained with other stains; therefore, the 

comparison includes N/A entries. 
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To demonstrate the utility of this technique, a single neural network was trained to virtually 

stain unlabelled autofluorescence images of kidney needle core biopsy tissue sections with H&E, 

Jones’ silver stain, and Masson’s trichrome stain following a user-defined micro-structure map, as 

illustrated in Figure 5.1. Synthesizing different histological stains and their combinations 

following a user-defined micro-structure in the same tissue section is currently not feasible with a 

standard histological staining process, in which different stains are histochemically processed in 

different tissue sections, leading to tissue depletion. This approach entirely eliminates the need for 

this, preserving tissue for further analysis while also paving the way for the on-demand synthesis 

of new digital histological stains in the same tissue section. 

5.2 Results 

As summarized in Figure 5.1, I demonstrate a method that can be used to perform virtual 

staining of unlabelled tissue sections using two channels of tissue autofluorescence along with a 

digital staining matrix, which are used as inputs to a trained deep neural network. The framework 

was demonstrated using kidney tissue and three different stains, namely, H&E, Masson’s 

trichrome, and Jones’ silver stain, as these stains are jointly used for practical renal disease 

diagnostics. Visualizations of comparisons between histochemically and virtually stained tissue 

sections can be seen in Figure 5.1 and Figure 5.2. 
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Figure 5.2 Examples of various fields of view that have been virtually stained using the presented multistain network. 

Co-registered histochemically stained fields of view of the same samples are also shown to the right, and the unstained 

autofluorescence images are shown to the left to permit direct comparison. (a,b) Tissue stained with H&E, (c,d) tissue 

stained with Masson’s trichrome, and (e, f) tissue stained with Jones’ silver. Contrast-enhanced unstained tissue 

images are provided for visual guidance; unprocessed raw versions of these images were used as the input to the neural 

network. 
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The accuracy of the network inference outcomes was validated using quantitative metrics. 

These quantitative metrics were calculated to confirm that the images generated by the multistain 

network are highly accurate and that they are equivalent to the images generated using a previously 

validated single-stain neural network [117]. The first quantitative metric used is the structural 

similarity index [111] (SSIM), which is defined as: 

𝑆𝑆𝐼𝑀(𝑎, 𝑏) =
(2𝜇௔𝜇௕ + 𝐶ଵ)൫2𝜎௔,௕ + 𝐶ଶ൯

(𝜇௔
ଶ + 𝜇௕

ଶ + 𝐶ଵ)(𝜎௔
ଶ + 𝜎௕

ଶ + 𝐶ଶ)
  (5.1) 

where μa and μb are the averages of a and b, the two images being compared; σa and σb are the 

standard deviations of a and b; σab is the cross-covariance of a and b; and C1 and C2 are stabilization 

constants that are used to avoid division by zero. 

Table 5.1 Comparison of SSIM values among the outputs of the different networks and the corresponding 

histochemically stained tissue images. The averages and standard deviations were calculated across four measured 

tissue sections. 

 

Table 5.1 reports the average SSIM values across four unique blindly tested kidney tissue 

blocks, each from a different patient. Each of these blocks, in turn, was divided into 16 to 60 

patches (1224×1224 pixels, or 0.16 mm2 per patch), each comprising an unlabelled 

Stain type 
 

(1) Multistain network output vs. 
histochemically stained tissue 

(2) Single-stain network output 
vs. histochemically stained tissue 

(3) Multistain network 
output vs. single-stain 

network output 

Total 
number of 

image 
patches 

compared Average Standard 
deviation 

Average Standard 
deviation 

Average Standard 
deviation 

H&E 0.898 0.021 0.905 0.022 0.967 0.006 198 

Masson's 
trichrome 

0.850 0.011 0.855 0.023 0.942 0.010  

207 

Jones’ 
silver 

0.803 0.007 0.803 0.010 0.917 0.007 118 
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autofluorescence image pair and its co-registered histochemically stained counterpart (see the 

Methods section). Because this comparison relies on histochemical staining of the same tissue 

section, a different section from each tissue block was used for each of the three different stain 

types. The variation in the number of patches is partially due to the variations in the size of the 

tissue blocks among patients; furthermore, images that could not be successfully co-registered due 

to, for example, histochemical-staining-induced tissue distortions were excluded from the SSIM 

calculations. Three different SSIM values were calculated for each stain type to prove that this 

new virtual staining technique is successful: (1) the SSIM between the output image of the 

conditional multistain network and the corresponding image of the histochemically stained tissue, 

(2) the SSIM between the output of a previously validated [117] single-stain network architecture 

(see the Methods section) and the corresponding image of the histochemically stained tissue, and 

(3) the SSIM between the outputs of the multistain network and the single-stain network for each 

of the three stains. As shown in Table 5.1, a high structural similarity is found for all three cases. 

Furthermore, the SSIM values calculated for cases (1) and (2) are found to be very similar, 

indicating that the images generated by the multistain network achieve the same virtual staining 

performance as was previously reported and validated using the single-stain network [117]. The 

particularly high structural similarity between the two different virtual staining techniques, i.e., 

case (3), is also important because the corresponding images are perfectly co-registered since they 

were generated from the same raw fluorescence images. Together, these results suggest that the 

presented multistain network generates highly accurate virtually stained images. This 

demonstrates that the images generated by the multistain network are similar to the corresponding 

bright-field images of histochemically stained tissue and are of the same quality as those generated 

by the single-stain network. 
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These different sets of comparisons between SSIM values are required because the SSIM 

values between any virtually stained and histochemically stained images depend on a number of 

factors, some of which are external to the performance of the trained neural network. Perfect co-

registration is not feasible, particularly since physical changes are made to the tissue during the 

actual staining process, [117] somewhat lowering the structural similarity values regardless of the 

success of the virtual staining network. Furthermore, one of the major benefits of deep-learning-

based virtual staining is stain normalization, as the network output will not exhibit the staining 

variability of the standard histochemical staining process as performed by 

histotechnologists [117]. While this is certainly a desired feature and will help to improve the 

consistency of diagnoses, it also lowers the SSIM values due to the histotechnologist-to-

histotechnologist variations that are encountered in the ground-truth images. 

  



 

80 

Table 5.2 Comparison of brightness and chroma differences (using the YCbCr colour space) between (1) multistain 

network output and histochemically stained tissue, (2) single-stain network output and histochemically stained tissue, 

and (3) multistain network output 

 

As another quantitative metric, the average percentage differences in the brightness and 

chroma components (using the YCbCr colour space) was next compared for the three cases 

reported in Table 5.1, i.e., (1) multistain network output vs. histochemically stained tissue, (2) 

 1 

Stain type 
 

Comparison Y difference (%) Cb difference (%) Cr difference (%) Total number 
of image 
patches 

compared 

Average Standard 
deviation 

Average Standard 
deviation 

Average Standard 
deviation 

H&E (1) Multistain network vs. 
histochemically stained 

tissue 

6.62 3.32 0.51 0.18 1.69 1.18 198 

 

 
(2) Single-stain network vs. 

histochemically stained 
tissue 

7.78 3.48 0.87 0.21 2.04 1.41 

(3) Multistain network vs. 
single-stain network 

1.48 0.12 0.22 0.03 0.72 0.20 

Masson's 
trichrome 

(1) Multistain network vs. 
histochemically stained 

tissue 

3.85 1.50 1.34 0.87 2.60 1.16  

207 

(2) Single-stain network vs. 
histochemically stained 

tissue 

5.31 1.32 2.09 1.51 3.00 1.44 

(3) Multistain network vs. 
single-stain network 

1.96 1.70 0.43 0.19 1.35 0.53 

Jones’ 
silver 

(1) Multistain network vs. 
histochemically stained 

tissue 

8.56 2.01 0.82 0.12 2.45 0.69 118 

 

(2) Single-stain network vs. 
histochemically stained 

tissue 

9.07 1.93 1.33 0.21 3.15 0.86 

(3) Multistain network vs. 
single-stain network 

4.32 1.01 0.34 0.11 1.15 0.24 
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single-stain network output vs. histochemically stained tissue, and (3) multistain network output 

vs. single-stain network output. As summarized in   
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Table 5.2, similar to the case of the SSIM values, the colour differences for cases (1) and (2) 

are very similar. Case (3) shows particularly small differences, indicating that the two networks 

(multistain and single-stain) behave very similarly. The change in the brightness (Y) of the 

multistain network output with respect to the histochemically stained tissue images is relatively 

low, ranging from 3.84% to 8.57% depending on the stain. The colour distances (Cb and Cr 

differences) are even smaller (ranging from 0.51% to 2.60% depending on the stain type; see  
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Table 5.2), indicating that the multistain network accurately generates the correct colours that 

represent each stain. Together, these results further demonstrate that the multistain network is 

capable of accurate virtual staining of unlabelled autofluorescence images of tissue samples and 

that the output of the multistain network matches the accuracy of the previously validated tissue- 

and stain-specific neural network [117]. 

One of the major advantages of using a class-conditional neural network is that it can perform 

micro-structured virtual staining of tissue sections. Using the presented method, virtual staining of 

specific areas or structures within tissue sections can be performed by staining different areas of 

the tissue in accordance with a given micro-structure map. The digital staining matrix, which 

defines the micro-structure map used to virtually apply different stains for each specified area, can 

be generated either manually or through the use of a computer algorithm to select structures based 

on certain diagnostic criteria. An example of virtual stain micro-structuring in accordance with a 

manually drawn micro-structure map is shown in Figure 5.3. In this example, the marked areas are 

virtually stained with Masson’s trichrome and Jones’s silver stains, while the remaining areas not 

selected are stained with H&E. A co-registered image of the same field of view (FOV) after 

histochemical H&E staining is also shown for comparison. 

 

Figure 5.3 Example of multistain micro-structuring. Either a diagnostician or an algorithm can label sub-regions of 

the unstained tissue, creating on demand a digital staining matrix that defines the microscopic map of multiple stains 

to be virtually generated in the same tissue section. These labels are used by a single trained network to stain different 
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areas of the tissue with the desired stains. A co-registered image of the histochemically H&E-stained tissue (same 

sample) is shown for comparison. Producing a histochemically stained image with the same or a similar microscopic 

map, with multiple stains in the same tissue section, is not possible with current chemical staining technology. 

Stain blending can also be used to digitally synthesize new types of stains. Rather than using 

the digital staining matrix to generate individual stains, a mixture of multiple stains can be chosen. 

Such a stain mixture is generated by designing the digital staining matrix to mix two or more stains 

in the desired tissue areas, simultaneously and at controllable ratios (see Figure 5.4). In other 

words, the newly generated stain can be tuned on demand by simply changing the ratio between 

the different values in the digital staining matrix, thus making the different stain combinations 

more or less pronounced. Figure 5.4 demonstrates several such stain combinations for different 

pairs of stains. By using these blended stains, aspects of the different stains can be made visible at 

the same time, which may allow pathologists to more easily view different tissue structures and 

perform diagnosis. For example, Figure 5.4 (a-e) demonstrates blending between H&E and Jones’ 

silver stain; H&E enables easy differentiation of cell nuclei and cytoplasms [134], while Jones’ 

silver stain provides contrast to basement membranes [135]. By blending these two stains, their 

associated characteristics can be visualized simultaneously. 
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Figure 5.4 Examples of stain blending. (a-e) Kidney tissue that has been virtually stained with varying class-condition 

ratios of H&E to Jones’ silver stain. (g-k) Kidney tissue that has been virtually stained with varying class-condition 

ratios of H&E to Masson’s trichrome stain. (m-q) Kidney tissue that has been virtually stained with varying class-

condition ratios of Masson’s trichrome stain to Jones’ silver stain. (f,l,r) Co-registered images of the histochemically 

stained tissues (same samples) for comparison (top: H&E; middle: Jones’ silver stain; bottom: Masson’s trichrome 

stain). 
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While the digital stains generated here are completely unique to virtual staining, various 

histochemical stains have also been mixed together to generate new stain combinations [121]. 

However, new chemically developed stain combinations can take a large amount of time and 

resources to reach maturity. In contrast, the stain blending combinations presented here can be 

developed on demand by simply changing the values of the digital staining matrix until the desired 

stain is achieved. The virtual stain blending presented here also has a different effect on the tissue 

than standard histochemical stains, introducing a new mode of micro-structured visualization for 

pathologists. 

5.3 Discussion 

In this chapter, I have demonstrated that autofluorescence images of a label-free tissue sample 

can be used to perform micro-structured and multiplexed virtual staining using a deep neural 

network. By adding a digital staining matrix to the input of the neural network, it can generate 

multiple virtual stains upon the same tissue section using a single network. The success of this 

approach has been validated using kidney tissue sections and three different stains – H&E, 

Masson’s trichrome stain and Jones’ silver stain – and allows a pathologist to view the same areas 

of a sample with all three stains, perfectly matched in the same tissue cross section. The digital 

staining matrix also allows us to perform micro-structured virtual staining of a label-free sample, 

in which the sub-area for each stain can be defined either manually or using a separate algorithm. 

This approach can further be used to perform stain blending by using a digital combination of the 

stains that the multistain neural network has been trained to apply. 

The ability to apply multiple stains to a single tissue section using a single neural network, 

alongside the newly added capabilities of stain blending, synthesis, and micro-structured virtual 

staining, has the potential to improve the accuracy and consistency of tissue-based diagnoses. 
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These new techniques might allow pathologists to obtain more relevant information from tissue 

than is otherwise possible. By applying stains to specific areas, each tissue constituent can be 

stained with the most relevant stain. By blending stains, the network is able to simultaneously 

display information conveyed by each of the separate stains, providing additional channels of 

information to the pathologists making diagnoses. 

These virtual staining techniques also open up opportunities to augment the diagnostic 

workflow currently used by pathologists and/or machine-learning-based diagnostic algorithms. 

Virtual staining normalizes the stain quality, improving its consistency and removing variations 

(caused by, for example, the manual histochemical staining performed by trained professionals) 

that have not been learned by the neural network [117]. Furthermore, micro-structured staining 

and stain blending can ensure that the diagnostic platform has access to the most relevant 

information possible, reducing the amount of unnecessary data viewed/processed by either a 

pathologist or an algorithm. Consequently, it is believed that the push-pull relationship between 

the presented virtual staining framework and diagnosticians (human or AI-based) will lead to new 

uses of the capabilities of this unique framework in pathology and clinical diagnosis, all of which 

must be clinically validated through rigorous testing and blinded large-scale studies. 

5.4 Methods: 

Data acquisition 

Unstained formalin-fixed and paraffin-embedded (FFPE) kidney tissues were sectioned into 

thin, 2 μm slices and fixed on standard glass microscope slides. The training and validation dataset 

for each stain was made up of images obtained from 12 thin tissue sections acquired from unique 

patients. The test dataset was made up of 4 tissue sections from additional unique patients. 
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Adjacent tissue sections from each of these patients were used for each of the three stains. Ethical 

approval for the use of these tissue sections was obtained under UCLA IRB number 18-001029. 

Using a conventional widefield fluorescence microscope (IX83, Olympus) equipped with a 

20×/0.75 NA objective lens (Olympus UPLSAPO) and two separate filter cubes, DAPI (OSFI3-

DAPI-5060C, EX 377/50 nm EM 447/60 nm, Semrock) and Texas Red (OSFI3-TXRED-4040C, 

EX 562/40 nm EM 624/40 nm, Semrock), autofluorescence imaging of these unlabelled tissue 

sections was performed. The tissue sections were neither deparaffinized nor cover-slipped before 

being imaged via fluorescence microscopy. The exposure time for the DAPI channel was 50 ms, 

and that for the Texas Red channel was 300 ms. Once the autofluorescence images had been 

obtained, the slides were histochemically stained using standard H&E, Jones’ silver or Masson’s 

trichrome stain and were then cover-slipped. The staining of the slides was performed by the 

UCLA Translational Pathology Core Laboratory (TPCL). The histochemically stained slides were 

then imaged using a scanning microscope (Aperio AT, Leica Biosystems, 20×/0.75NA objective 

with a 2× adapter) to create the target labels used to train, validate and test the neural network 

models. 

The two unlabelled autofluorescence images of the same tissue sample were used in 

conjunction with a digital staining matrix to select the stain or set of stains to be generated as the 

input to a neural network. This input was transformed by a class-conditional generative adversarial 

network into an equivalent image of a stained tissue section with the same field of view. 

Image pre-processing and co-registration 

Because the purpose of the deep neural network was to learn the transformation from the 

unlabelled autofluorescence images of a tissue specimen to an image of a stained specimen, it was 

crucial that the FOVs were accurately aligned. Furthermore, since more than one autofluorescence 



 

89 

channel was used as the network input, it was necessary to align the different filter channels. To 

use three different stains (H&E, Masson’s trichrome and Jones’s silver), the image pre-processing 

and alignment was implemented for each pair of input and target images from the three staining 

datasets individually. 

The registration steps for matching the autofluorescence and bright-field images followed the 

process reported by Rivenson et al. [117] One major addition is that when multiple 

autofluorescence channels (e.g., DAPI and Texas Red) are used as the network input, they must 

be aligned even if the images in both channels are captured using the same microscope; the 

corresponding FOVs from the two channels are not precisely aligned at the subpixel level, 

particularly at the edges of the FOVs. Therefore, an elastic pyramidal registration algorithm was 

applied to accurately align the multiple autofluorescence channels. This elastic registration 

algorithm matches the local features of two image channels by hierarchically breaking the image 

into increasingly smaller blocks and then matching the corresponding blocks [38]. The elastic 

registration algorithm begins by dividing the image into a grid of 5×5 blocks and calculating block-

wise cross-correlations. The distance between the location with the peak correlation and the centre 

of the block is used to calculate the shift, as the area with the peak correlation is the point with 

maximum similarity between the two images. By using a weighted average of the translation vector 

for each block, a 2048×2048-pixel translation map was generated. This translation map was then 

applied to the Texas Red image to account for the differences between it and the DAPI image. To 

achieve accurate co-registration, the image was iteratively broken into increasingly smaller blocks 

until a block size of 100×100 pixels was reached. The final calculated transformation map was 

then applied to the Texas Red images to ensure that they were aligned with the corresponding 

images in the DAPI channel. An example of the use of this elastic transformation map can be seen 
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in Figure 5.5. Finally, the aligned images from both channels were switched to obtain whole-slide 

images of the samples that contained both the DAPI and Texas Red channels. 

 

Figure 5.5 Example of co-registration between the DAPI and Texas Red image channels. The translation map was 

calculated using an elastic pyramidal registration algorithm and then applied to the Texas Red image channel. This 

process ensured that the two image channels were accurately co-registered with respect to each other. 

Co-registration between the fluorescence and bright-field images began with global 

registration and proceeded with progressive alignment at smaller scales until subpixel-level co-

registration was achieved. This first step of this process was to find a rough match by extracting 

the area of the bright-field image with the highest cross-correlation with a contrast-reversed 

version of the DAPI image. These images were then further aligned using MATLAB’s multimodal 

image registration feature [116]. Following this registration process, the neural network was 

trained using patches from these coarsely matched images. Using this network, the 

autofluorescence images were then virtually stained. However, because only coarse co-registration 

had been achieved at this point, the accuracy of the virtual staining results could not be satisfactory. 

Therefore, elastic pyramidal co-registration was then applied to match the histochemically stained 

images with the initial virtually stained images, resulting in a matched image pair. 
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Before feeding the aligned pairs into the neural network, we implemented normalization on 

the whole-slide images generated from the DAPI and Texas Red images. This whole-slide 

normalization was performed by subtracting the mean value of the entire tissue sample and 

dividing by the standard deviation of the pixel values (note that background regions were excluded 

when calculating the mean and standard deviation). 

Deep neural network architecture, training and validation 

In this study, a class-conditional GAN architecture was used to learn the transformation from 

the label-free unstained autofluorescence input images to the corresponding bright-field image 

using three different stains (H&E, Masson’s trichrome and Jones’ silver). Following the co-

registration of the autofluorescence images and the bright-field images, the accurately aligned 

FOVs were randomly partitioned into overlapping patches of 256×256 pixels and further 

augmented through rotation and flipping. The patches were then used to train the GAN. During 

the training process, this class-conditional GAN used a set of one-hot-encoded matrices, together 

referred to as the digital staining matrix, which was concatenated with the network’s 256×256 

input image/image stack patches, with each matrix corresponding to a different stain. One way to 

represent this conditioning is: 

𝑐̃ = [𝑐ଵ,   𝑐ଶ,   𝑐ଷ]  (5.2) 

where [∙] denotes concatenation and 𝑐௜ represents a 256×256 matrix of labels for the 𝑖-th stain type 

(in this example, H&E, Masson’s trichrome or Jones’ silver). For a pair of input and target images 

from the 𝑖-th stain dataset, 𝑐௜ was set to be an all-one matrix, while all remaining matrices were 

assigned values of zero. 
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Figure 5.6 Diagram showing the network architecture of the GAN used to perform the transformation. (a) Generator 

network. (b) Discriminator network. 

A GAN is composed of two deep neural networks, a generator and a discriminator (Figure 

5.6). During GAN training, the generator learns to perform a statistical transformation to generate 

a virtually stained image, while the discriminator attempts to distinguish between histochemically 

stained images and their virtually stained counterparts. The networks improve by learning from 

one another, improving the quality of the virtually stained images. For this task, the loss functions 

of the generator and discriminator were defined as: 

ℓ௚௘௡௘௥௔௧௢௥ = 𝐿ଵ൛𝓏௟௔௕௘௟ , 𝐺൫𝑥௜௡௣௨௧ , 𝑐̃൯ൟ  +  𝜆 × 𝑇𝑉൛𝐺൫𝑥௜௡௣௨௧ , 𝑐̃൯ൟ

+  𝛼

× ቀ1 − 𝐷൫𝐺൫𝑥௜௡௣௨௧ , 𝑐̃൯, 𝑐̃൯ቁ
ଶ

                                                           (5.3) 

ℓௗ௜௦௖௥௜௠௜௡௔௧௢௥ =  𝐷൫𝐺൫𝑥௜௡௣௨௧ , 𝑐̃൯, 𝑐̃൯
ଶ

+ ൫1 − 𝐷(𝓏௟௔௕௘௟, 𝑐̃)൯
ଶ
 



 

93 

where the total variation (𝑇𝑉) operator and mean absolute error (𝐿ଵ-norm) are used to regularize 

the generator’s output and ensure that it is highly accurate. The 𝑇𝑉 operator and the 𝐿ଵ-norm are 

defined as: 

𝑇𝑉(𝑧) =  ෍ ෍ห𝓏௣ାଵ,௤ − 𝓏௣,௤ห + ห𝓏௣,௤ାଵ − 𝓏௣,௤ห

௤௣

(5.4) 

𝐿ଵ(𝓏,   𝐺) =  
1

𝑃 × 𝑄
෍ ෍ ቚ𝓏௣,௤ − 𝐺൫𝑥௜௡௣௨௧ , 𝑐̃൯

௣,௤
ቚ

௤௣

 (5.5) 

where 𝐷(∙) and 𝐺(∙) refer to the outputs of the discriminator and generator networks, respectively; 

𝓏௟௔௕௘௟ denotes the bright-field image of the histochemically stained tissue; and 𝑥௜௡௣௨௧ represents 

the input to the neural network. P and Q represent the numbers of vertical and horizontal pixels, 

respectively, of the image patch, and p and q represent the pixel locations. The regularization 

parameters (𝜆 and 𝛼) were set to 0.02 and 2000, respectively, to accommodate a total variation 

loss term of approximately 2% of the 𝐿ଵ loss and a discriminator loss term of 98% of the total 

generator loss. 

For the generator a modified version of the U-net architecture was adopted [4], as visualized 

in Figure 5.6 (a). This U-net consists of four “down-blocks” followed by four “up-blocks”. Each 

of the down-blocks is made up of three convolutional layers and their activation functions, which 

together double the number of channels. These convolutional layers are followed by an average 

pooling layer with a stride and kernel size of two, which effectively down-samples the image. The 

up-blocks first bilinearly resize the tensors, up-sampling them by a factor of two. This is followed 

by three convolutional layers and their activation functions. These convolutional layers together 

reduce the number of channels by a factor of four. Between each of the up- and down-blocks of 

the same level, a skip connection is used. These skip connections concatenate the output of the 



 

94 

down-blocks with the up-sampled values, allowing data to be passed at each level. Following these 

down- and up-blocks, a convolutional layer is used to reduce the number of channels to three, 

which correspond to the three colour channels in the bright-field image. 

The discriminator network, visualized in Figure 5.6 (b), receives six input channels. Three 

channels (YCbCr colour map) come from either the generator output or the target/label, and three 

come from the one-hot-encoded digital staining matrix. The discriminator architecture contains a 

convolutional layer that transforms this input into a 64-channel feature map, which is, in turn, 

passed through a set of five blocks, each consisting of two convolutional layers and their 

corresponding activation functions. The second of these convolutional layers doubles the number 

of channels and has a stride of two. These five blocks are followed by two fully connected layers, 

which reduce the dimensionality to a single channel, which is acted upon by a sigmoid activation 

function. 

The convolutional filter size throughout the GAN is set to 3 × 3; the outputs of these filters 

are acted upon by the Leaky ReLU activation function, which is described as: 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = ቄ
𝑥          𝑓𝑜𝑟 𝑥 > 0

0.1𝑥      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (5.6) 

During training, the learnable parameters were updated using the adaptive moment estimation 

(Adam) optimizer with learning rates of 1 × 10ିସ for the generator network and 2 × 10ି଺ for the 

discriminator network. For each step of discriminator training, ten iterations of training were 

performed for the generator network. The batch size for training was set to 8. 

Virtual staining of unlabelled tissue images with a single stain 
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Once the network had been trained, the one-hot-encoded label 𝑐̃ was used to condition the 

network to generate the desired stained images. In other words, to generate solely the 𝑖-th stain, 

the matrix 𝑐௜ was set to be an all-one matrix, and the remaining matrices were set to be all zeros. 

Stain blending and micro-structured virtual staining of unlabelled tissue images 

Following the training process of the neural network model, the conditional matrices can be 

used in ways different to that in which the model was trained to virtually create new types of stains. 

The basic encoding rule that should be satisfied can be summarized as follows: 

෍ 𝑐௜ ,௝ ,௞

ேೞ೟ೌ೔೙ೞ

௜ୀଵ

= 1   (5.7) 

In other words, for a given set of indices j and k, the sum over the number of stains on which 

the network was trained (𝑁௦௧௔௜௡௦ = 3 in this example) should be equal to 1. By modifying the class 

encoding matrices to use a mixture of multiple classes, the various stains can be blended, creating 

unique stains with features inherited from the various stains learned by the artificial neural 

network. Examples of such blended stains are illustrated in Figure 5.4. 

Another possible use of the trained multistain neural network is to partition the tissue field of 

view into different regions of interest (ROIs) and virtually stain each ROI using a different specific 

stain or blend of a sub-set of these stains: 

෍ 𝑐௜ ,௝ ,௞

ேೞ೟ೌ೔೙ೞ

௜ୀଵ

= 1     𝑓𝑜𝑟    𝑗, 𝑘 ⊆ 𝑅𝑂𝐼    (5.8) 

where ROI is the defined region of interest in the sample field of view. Multiple non-overlapping 

ROIs can be defined across a field of view, with different stains applied to different regions of 
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interest or micro-structures. These can be either defined by the user or algorithmically generated. 

As an example, a user can manually define various tissue areas via a graphical user interface and 

stain them with different stains. This will result in different tissue constituents being stained 

differently, as illustrated in Figure 5.1 and Figure 5.3. This ROI-selective staining (micro-

structured staining) has been implemented functionality using the Python segmentation package 

Labelme [136]. Using this package, we can generate logical masks in accordance with labelled 

ROIs, which are then processed to be the 𝑐̃ோைூ labels for specific microscopic areas. Other manual, 

software or hybrid approaches can also be used to implement the selection of certain tissue 

structures. 

Single-stain network used for SSIM calculations 

To generate virtually stained images using a single-stain network, a network with the same 

architecture but excluding the digital staining matrix was used. A separate network was trained for 

each of the three stains using the portion of the dataset specific to that stain. This single-stain 

network was implemented followed the approach previously reported [117]. 

Implementation details 

The virtual staining network was implemented using Python version 3.6.0, with the 

TensorFlow framework version 1.11.0. We implemented the software on a desktop computer with 

an Intel Xeon W-2195 CPU @2.30 GHz and 256 GB of RAM running the Microsoft Windows 10 

operating system. Network training and testing were performed using a single NVIDIA GeForce 

RTX 2080 Ti GPU. The network was trained for 21000 discriminator training steps over 47 hours. 

Using a single GPU, inference can be performed at a rate of 3.9 s per 1 mm2 of unlabelled tissue. 
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Chapter 6 Transforming H&E stained tissue into special stains 

One of the unique aspects of the technology described in Chapter 5 is the ability to generate 

multiple stains using a single deep neural network. In this chapter, I will describe a method which 

uses images generated by this technique to create synthetic data, which can in turn be used to train 

addition neural networks to perform transformations between stains.  Since hematoxylin and eosin 

is the most commonly used stain, used in nearly every case, I will demonstrate the utility of this 

supervised stain transformation technique by performing a transformation from H&E to special 

stains (Masson’s Trichrome, periodic acid-Schiff and Jones silver stain) using kidney needle core 

biopsy tissue sections. Based on the evaluation by three renal pathologists, followed by 

adjudication by a fourth pathologist, I will show that the generation of virtual special stains from 

existing H&E images improves the diagnosis across several non-neoplastic kidney diseases, 

sampled from 58 unique subjects (P=0.0095). A second study which found that the quality of the 

computationally generated special stains was statistically equivalent to those which were 

histochemically stained will also be presented. This stain-to-stain transformation framework can 

improve preliminary diagnoses when additional special stains are needed, also providing 

significant savings in time and cost. 

Parts of this chapter have been published in: 

 K. de Haan, Y. Zhang, J.E. Zuckerman, T. Liu, A.E. Sisk, M.F.P. Diaz, K. Jen, A. Nobori, S. 

Liou, S. Zhang, R. Riahi, Y. Rivenson, W.D. Wallace, and A. Ozcan, “Deep learning-based 

transformation of H&E stained tissues into special stains,” Nature Communications DOI: 

10.1038/s41467-021-25221-2 (2021) 
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This was reused from ref. [137] under the Creative Commons Attribution 4.0 International 

License. 

6.1 Introduction 

Histological analysis of stained human tissue samples is the gold standard for evaluation of 

many diseases, as the fundamental basis of any pathologic evaluation is the examination of 

histologically stained tissue affixed on a glass slide using either a microscope or a digitized version 

of the histologic image following the image capture by a whole slide image (WSI) scanner. The 

histological staining step is a critical part of the pathology workflow and is required to provide 

contrast and color to tissue by facilitating a chromatic distinction among different tissue 

constituents. The most common stain (otherwise referred to as the routine stain) is the H&E stain, 

which is applied to nearly all clinical cases, covering ~80% of all the human tissue staining 

performed globally [138]. The H&E stain is relatively easy to perform and is widely used across 

the industry. In addition to H&E, there are a variety of other histological stains with different 

properties which are used by pathologists to better highlight different tissue constituents. For 

example, Masson’s trichrome (MT) stain is used to view connective tissue [120] and periodic acid-

Schiff (PAS) can be used to better scrutinize basement membranes. The black staining in the Jones 

Methenamine silver stain offers sharp contrast to visualize glomerular architecture and enables the 

pathologist to recognize subtle basement membrane abnormalities resulting from remodeling due 

to various forms of injury. These features have importance for certain disease types such as non-

neoplastic kidney disease [139]. These non-H&E stains are also called special stains and their use 

is the standard of care in the pathologic evaluation of certain disease entities including non-

neoplastic kidney, liver and lung diseases, among others. 
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The traditional histopathology workflow can be time consuming, expensive, and requires 

laboratory infrastructure. Tissue must first be sampled from the patient, fixed either through 

freezing in Optimal Cutting Temperature (OCT) compound, or paraffin embedding, sliced into 

thin (2-10 μm) sections, and mounted onto a glass slide. Only then can these sections be stained 

using the desired chemical staining procedure. Furthermore, if multiple stains are needed, multiple 

tissue sections are cut, and a separate procedure must be used for each stain. While H&E staining 

is performed using a streamlined staining procedure, the special stains often require more 

preparation time, effort and monitoring by a histotechnologist, which increases the cost of the 

procedure and takes additional time to produce. This can in turn increase the time for diagnosis, 

especially when a pathologist determines that these additional special stains are needed after the 

H&E stained tissue has been examined. The tissue sectioning and staining procedure may therefore 

need to be repeated for each special stain, which is wasteful in terms of resources, materials and 

might place a burden on both the healthcare system and patients if there is an urgent need for a 

diagnosis. 

Recognizing some of these limitations, different approaches have been developed to improve 

the histopathology workflow. Histological staining has been reproduced by imaging rapidly 

labeled tissue sections (usually by a nuclear staining dye) using an alternative contrast mechanism 

acquired by e.g., non-linear microscopy [122] or ultraviolet tissue surface excitation [140], and 

digitally transforming the captured images into user-calibrated H&E-like images [141]. These 

approaches mainly focus on eliminating tissue fixation from the workflow, targeting rapid 

intraoperative contrast to unfixed specimens. More recently, computational staining techniques 

known as virtual staining have been developed.  Using deep learning, virtual staining has been 

applied on label-free (i.e., unstained) fixed and glass slide affixed tissue sections using various 
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modalities such as autofluorescence [117,118], hyperspectral imaging [142], quantitative phase 

imaging [130], and others [131,143]. Virtual staining of label-free tissue not only has the ability 

to reduce costs and allow for faster staining, but also allows the user to perform further advanced 

analysis on the tissue since the destructive additional sectioning and staining process is avoided 

that can cause the specimen to be depleted leading to e.g., additional/unnecessary biopsies from 

the patients [144]. Furthermore, virtual staining of label-free tissue enables new capabilities such 

as the use of multiple virtual stains upon a single tissue section, stain normalization (i.e., 

standardization), region-of-interest specific digital blending of multiple stains, all of which are 

challenging or highly impractically with standard histochemical staining workflows [117,118]. 

An alternative approach that can be used to bypass histochemical tissue staining is to 

computationally transform the WSI of an already stained tissue into another stain (this will be 

referred to as stain transformation). This allows users to reduce the number of physical stains 

required without making any changes to their traditional histopathology workflow, and also carries 

many of the benefits of the virtual staining techniques such as improving stain consistency and 

reduction in stain preparation time. Different stain transformations have been demonstrated in the 

literature, e.g., transformation of H&E into MT [145] or transformation of fibroblast activation 

protein-cytokeratin (FAP-CK), a duplex immunohistochemistry (IHC) protocol [146], from 

images of Ki67-CD8 stained slides. Stain transformations have also been used as a tool to improve 

the effectiveness of image segmentation algorithms [147,148]. However, many of these stain 

transformation techniques rely upon unsupervised approaches which use distribution matching 

losses used by techniques such as cycle consistent generative adversarial networks (GANs) – also 

known as CycleGANs [149]. It has been shown that, when applied to medical imaging, neural 

networks trained using only these types of distribution matching losses are prone to 
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hallucinations [150].  Some researchers have been able to avoid the use of these distribution 

matching losses and unpaired image data by training networks to perform other stain-to-stain 

transformations. For example, a stain transformation network was trained using image pairs 

acquired from adjacent tissue sections [151], while another work used image pairs captured by 

chemically de-staining and then re-staining the same tissue sections [152]. 

In this chapter, I present a supervised deep learning-based stain transformation framework, 

outlined in Figure 6.1. The training of this technique is based on spatially-registered (i.e., perfectly 

paired) image datasets which allow the stain transformation network to be trained without relying 

on unpaired image data and corresponding distribution matching losses. I demonstrate the efficacy 

of this technique by evaluating kidney tissues with various non-neoplastic diseases. Non-

neoplastic kidney disease relies on special stains to provide the standard of care pathologic 

evaluation. In many clinical practices, H&E stains are available well before the special stains are 

prepared, and pathologists may provide a preliminary diagnosis to enable the patient’s nephrologist 

to begin any necessary treatment. In a setting when only H&E slides are initially available, the 

preliminary diagnosis is followed by the final diagnosis made by examining the special stain 

images, which are often provided the next working day. Using the presented stain transformation 

technique (Figure 6.1) would alleviate the need to wait for the special stains to be available. This 

is especially useful for some urgent medical conditions such as crescentic glomerulonephritis or 

transplant rejection where quick and accurate diagnosis followed by rapid initiation of treatment 

may lead to significant improvements in clinical outcomes. 
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Figure 6.1 Overview of deep learning-based H&E stain transformation into special stains. Histochemical staining of 

H&E is digitally transformed using a deep neural network into the special stains: (i) generation of JMS (purple arrow); 

(ii) generation of MT (red arrow); (iii) generation of PAS (blue arrow). 

6.2 Results 

In order to prove the utility of the stain-transformation technique, I investigated whether it 

can be used to improve preliminary diagnoses made by pathologists when only H&E is available. 

To do this, I used stain-to-stain transformation networks to create three additional computationally-

generated special stains, i.e., PAS, MT and Jones methenamine silver (JMS), from existing H&E 

tissue sections. These WSIs were reviewed alongside the existing histochemically-stained H&E 

images by pathologists (i.e., entirely bypassing the need to stain and wait for new slides). Based 

on tissue samples from 58 unique patients that are evaluated by three independent renal 

pathologists (i.e., N=174 total diagnoses), these results revealed that the generation of the three 

stain-transformed special stains (PAS, MT and JMS) improved the diagnoses in various non-

neoplastic kidney diseases. These computationally generated panels of special stains transformed 

from existing H&E images using deep learning give the pathologists the additional information 

channels needed for standard of patient care. I show that this unique stain-to-stain transformation 

workflow can be applied to a variety of diseases, and significantly improves the quality of the 
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preliminary diagnosis when additional special stains are needed. We believe that this technique 

has significant utility in enhancing preliminary diagnoses, and could also provide time savings and 

help to reduce healthcare costs and burden for histopathology labs and patients. 

Design and training of stain transformation networks 

Deep neural networks were used to perform the transformation between H&E stained tissue 

and the special stains. To train these networks, a set of additional deep neural networks were used 

in conjunction with one another. This training workflow relies upon the ability for virtual staining 

of unlabeled tissue to generate images of different stains using a single unlabeled tissue section 

(Figure 6.2a). By using a single neural network to generate both the H&E images alongside the 

special stains (PAS, MT, JMS), a perfectly matched training image dataset can be created. 

However, due to the standardization of the output images generated using the staining network, 

the virtually stained images (to be used as inputs when training the stain transformation network) 

must be augmented with additional staining styles to ensure generalization. In other words, 

network was designed to be able to handle inevitable variability in histochemical H&E staining 

that is a natural result of (i) differing staining procedures and reagents among histotechnologists 

and pathology labs, and (ii) differences among digital WSI scanners that are being used. This 

augmentation is performed by K=8 unique style transfer (staining normalization) networks (Figure 

6.2b), which ensured that a broad sample space is covered for the presented method to be effective 

when applied to H&E stained tissue samples regardless of the inter-technician, inter-lab or inter-

equipment (e.g., WSI) variations observed at different institutions. Note here that these style 

transfer networks and the underlying training methods (e.g., CycleGANs) were solely used for 

H&E stain data augmentation. The use of CycleGANs only expands the sample space of the 

network inputs during the training, and their outputs were therefore not part of the stain 
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transformation network loss function. This was possible since perfectly registered training images 

created by virtual staining of label-free autofluorescence images of tissue were used. This process 

simultaneously generated both the H&E and special stain images with nanoscopic match in the 

local coordinates of each virtually stained image pair of the training dataset, which eliminated the 

need for the use of CycleGANs for stain-to-stain transformation.  
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Figure 6.2 Deep neural networks used to generate the training data for the stain transformation network. a) Virtual 

staining network (pink arrow) which can generate both the H&E and special stain images. b) Style transfer network 

(green arrow) that is used just to augment the training data. c) Scheme used to train the stain transformation network. 

During its training, the stain transformation network is randomly given, as the input, either the virtually stained H&E 

tissue, or an image of the same field of view after passing through one of the 8 style transfer networks. A perfectly 

matched virtually stained tissue image with the desired special stain (in this example shown: PAS) is used as the 

ground truth to train this neural network. 

Using this image dataset, the stain transformation network is trained, following the scheme 

shown in Figure 6.2c. The network is randomly fed with image patches either coming from the 
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virtually stained tissue, or the virtually stained images passing through one of the 8 style transfer 

networks. The corresponding special stain (virtually stained from the same unlabeled field of view) 

is used as the ground truth regardless of the H&E style transfer. After its training, the network is 

then blindly tested on a variety of digitized H&E slides taken from UCLA repository, which 

represent a cohort of diseases and staining variations (all taken from patients that the network was 

not trained with). The network performs the stain transformation at rate of ~1.5mm2/s which takes 

in total ~0.5-1 min for a typical needle core kidney biopsy slide that was used in this study.  



 

107 

 

Figure 6.3 Overview of the study design. Phase 1 shows the initial portion of the study where three pathologists 

review H&E WSIs of N=58 different tissue sections (each from a unique patient). After a >3-week washout period, 

the second phase of diagnosis is performed, where the same three pathologists view the same WSIs, where, in addition 

to the H&E, the special stains generated by the stain transformation technique (PAS, Masson’s Trichrome, Jones) are 

provided as well. After an additional >3-week washout period, the third phase of diagnosis is performed, where the 

same three pathologists again review the same WSIs. For this phase, instead of using special stains generated through 

the stain transformation technique, the images of all four stains (H&E, PAS, Masson’s Trichrome, Jones) come from 

histochemically stained serial sections.  (i) Generation of JMS. (ii) Generation of MT. (iii) Generation of PAS. 
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Evaluation of stain transformation networks for kidney disease diagnoses 

To validate the presented stain transformation technique, a study was performed using WSI 

data from 58 different H&E stained tissue sections (each corresponding to a unique patient) 

obtained from an existing database of non-neoplastic kidney diseases. In this blinded study, three 

board-certified pathologists filled out diagnostic information for each H&E WSI (see the Methods 

section for details).  Following a >3-week washout period, the same pathologists were asked to fill 

out the same diagnostic information, but along with the H&E, they were also provided the stain-

transformed WSIs corresponding to special stains PAS, MT, and JMS, all generated from the 

existing H&E images. Following a second >3-week washout period, the pathologists were asked 

to fill out the same diagnostic information. For this third phase, instead of using computationally-

generated, stain-transformed special stains, histochemically stained serial tissue sections were 

given to the pathologists along with the H&E (these sections originated from different depths 

within the tissue block).  A diagram visualizing this study process can be seen in Figure 6.3. 

Following the third round of diagnoses, a fourth board-certified pathologist adjudicated all the 

results/diagnoses and determined whether the viewing of the neural network generated special 

stains resulted in an Improvement (I), Concordance (C) or Discordance (D) with respect to the 

original H&E-only diagnoses. It is important to note that the official reported diagnosis that were 

used as the ground truth for this study also utilized additional information, such as electron 

microscopy and immunofluorescence images in order to make these diagnoses. 
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Figure 6.4 Visualization of the improvements, concordances and discordances by case number for the two 

comparisons. a) Comparison of H&E only vs. H&E and the three stain-transformed special stains coming from the 

same tissue section. The use of the three stain-transformed special stains results in a statistically significant 

improvement over H&E only (P=0.0095). b) Comparison of H&E only vs. H&E and the three special stains (all 

histochemically stained) coming from serial tissue sections. The use of the three histochemically stained special stains 

results in a statistically significant improvement over H&E only (P=0.0003). P values were calculated using a one-

sided t-test. No adjustments for multiple comparisons were needed. 
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Adjudication of the preliminary diagnoses made by using H&E only and the use of both H&E 

and stain-transformed special stains across the 58 cases revealed that using stain-to-stain 

transformations resulted in an average of 13 improved diagnoses (22.4%), 38.3 concordant 

diagnoses (66.1%) and 6.7 discordant diagnoses (11.5%) across the three pathologists. A total of 

10 cases had an improved preliminary diagnosis by 2 or more pathologists, while 3 cases had a 

discordant diagnosis by more than one pathologists (see Figure 6.4).  When comparing the 

diagnoses made with only H&E against those made with H&E alongside the histochemically 

stained special stains from serial tissue sections, an average of 15 improved diagnoses (25.8%), 

38.6 concordant diagnoses (66.6%) and 4.3 discordant diagnoses (7.4%) were found across the 

three pathologists and 58 cases. For this second comparison, 12 cases were improved by two or 

more pathologists, while 2 cases were discordant for more than one pathologist (see Figure 6.4). 

These results show that the additional 3 virtual special stains improve the diagnostic outcome 

over a single histochemically stained H&E slide for a myriad of non-neoplastic diseases 

(P=0.0095, using a one-tailed t-test). These stain-to-stain transformation results are also in line 

with the level of improvement demonstrated when the pathologists had access to the H&E and 3 

additional sections that are histochemically stained with the corresponding special stains 

(P=0.0003, using a one-tailed t-test) over a single histochemically stained H&E slide. In addition 

to these, a secondary analysis was used to compare differences in the proportion of improvements, 

concordances and discordances for each of these two comparisons reported in Figure 6.4a,b. To 

do this, three separate chi-square tests were used – one for each pathologist (see the Methods 

section). These tests found that, while the histochemically stained tissue performed better for all 

three pathologists, the differences between the two comparisons were not statistically significant 

(with P values of 0.60, 0.34, and 0.92 for the first, second, and third pathologist, respectively).  
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For each of the diagnoses marked as improvements, the pathologists were able to provide 

more accurate characterization or a more complete diagnosis. As an example, Figure 6.5 

demonstrates the improvement using the presented stain transformation technique for a case used 

for the preliminary evaluation of the technique (diagnosed with Acute Cellular Rejection and 

Acute Antibody Mediated Rejection), where all three pathologists had the quality of their 

diagnoses improved. These improvements appear to be based on the clearer definition of the 

tubular and glomerular basement membranes in the computationally generated special stains. This 

biopsy contains very pronounced cellular inflammation that is difficult to precisely localize on a 

standard H&E stain, as H&E does not give clear contrast to structures such as basement 

membranes. The computationally generated special stains highlight the tubular basement 

membranes which allowed all 3 pathologists to see the location of the inflammatory cells and give 

a more precise characterization of the organ rejection process. Another example is case #2, where 

two pathologists were able to provide a diagnosis of membranous nephropathy only after review 

of the stain-transformed JMS stain, which is demonstrated in Figure 6.6a. In this case, the 

generated JMS helped the visualization of changes to the basement membrane which are 

characteristic of membranous nephropathy. 
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Figure 6.5 Examples of improved diagnoses fostered by the stain-transformed special stains. These WSIs are 

generated using the stain transformation technique. In this case, the addition of the computationally generated special 

stains improved all three of the diagnoses made by the pathologists. The red arrows point to a region, where the special 

stains help highlight inflammatory cells within the tubule, otherwise the boundary of the tubules cannot be seen with 

the H&E stain only. (i) Generation of JMS. (ii) Generation of MT. (iii) Generation of PAS. A total of 58 cases were 

viewed by 3 pathologists to perform the statistical analysis. 
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Figure 6.6 Examples of improved and discordant diagnosis achieved by the stain-transformed special stains. a) 

Example of improved diagnosis fostered by the stain-transformed special stains. For case #2 (in Figure 6.4), the 

basement membrane changes that are characteristic of membranous nephropathy (subepithelial spikes and basement 

membrane holes) are only appreciated after reviewing the stain-transformed JMS. The bottom images exemplify 

histochemically stained images of adjacent serial sections of the patient sample; that is why they correspond to 

different sections within the tissue block. b) Example of the discordance demonstrated between the H&E and 

computationally generated special stains for case #1 (in Figure 6.4). In this field of view, the fibrin thrombi are grey-

yellow in color on the stain-transformed PAS stain rather than pink-red. (i) Generation of JMS. (ii) Generation of MT. 

(iii) Generation of PAS. A total of 58 cases were viewed by 3 pathologists to perform the statistical analysis. 
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Figure 6.7 Example of the discordance demonstrated between the H&E and stain-transformed special stains for case 

# 3. The amyloid is darker than normal in the stain-transformed JMS stain for this field of view. (i) Generation of 

JMS. (ii) Generation of MT. (iii) Generation of PAS. A total of 58 cases were viewed by 3 pathologists to perform the 

statistical analysis. 

The discordances were broken up into two categories: those which were determined to be due 

to pathologist interpretation error (e.g. case #7), and those which are likely due to mis-

representation of the image on the virtual stains. As an example, in case #1, the fibrin thrombi in 

a case of thrombotic microangiopathy (TMA) appeared too pale on the stain-transformed PAS 

stain. An example field of view (FOV) with the matching histochemically stained FOV from an 

adjacent serial tissue section can be seen in Figure 6.6b. As a second example, in case #3 

(amyloidosis), amyloid deposits were darker on the stain-transformed JMS stain than would be 

typical in histologically stained slides (an example FOV can be seen in Figure 6.7). It is worth 

emphasizing that in both of these cases (#1 and #3), two of the three pathologists were able to 
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make concordant diagnoses. Furthermore, one pathologist made a more definitive diagnosis of 

TMA with the aid of the stain-transformed special stains in case #1 in addition to the original 

images of the histochemically stained H&E. 

We should note that previous research on statistical evaluation of intra-observer decisions 

revealed a small intra-observer disagreement rate of ~4% when the same cases are viewed by the 

same pathologist at two different time points [153]. This could potentially account for the 

discordance in some of the cases such as #7, which was determined to be due to pathologist 

interpretation error.  

Evaluation of the quality of stain-transformed special stain images 

An additional study was performed to assess the quality of the stains generated by the stain 

transformation network. For this study, three pathologists rated the quality of various aspects of 

the stains generated using the stain transformation network as well as the images of 

histochemically stained tissue from serial tissue sections. The pathologists each viewed 16 unique 

rectangular FOVs (with dimensions ranging from ~150 μm ×175 μm to ~375 μm ×500 μm) coming 

from the three validation slides used during the training of the neural network. These same FOVs 

were scored for each of the 3 generated special stains, as well as for the same region of the tissue 

in a serial histochemically stained tissue section. The 16 FOVs were randomly chosen by one of 

the pathologists to be representative of the tissue sections used, and only in-focus areas where the 

tissue is unbroken in all of the tissue sections were selected. The FOVs were ordered randomly, 

and each pathologist rated every image twice – before and after the image randomly being rotated 

or flipped (resulting in a total of 32 ratings for each stain and image type). Overall, each one of the 

three pathologists rated 192 FOVs (half virtually stained and half histologically stained).  
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The pathologists scored four aspects of each FOV on a scale from 1 to 4, where 4 is perfect, 

3 is very good, 2 is good enough (passable), and 1 is not acceptable, for a total of 2304 unique 

assessments/ratings made by three pathologists. The Masson’s trichrome stain was rated for overall 

stain quality, nuclear detail, cytoplasmic detail, and extracellular fibrosis quality. The PAS and 

Jones Silver stains were rated based on their overall stain quality, along with nuclear detail, 

cytoplasmic detail and basement membrane detail.  

Table 6.1 Quality comparison between the stains generated by the stain transformation network and the 

histochemically stained tissue, where 4 is Perfect, 3 is Very Good, 2 is Good Enough (Passable), and 1 is Not 

Acceptable. The scores are the average of 16 fields-of view coming from 3 tissue sections, each rated twice by three 

separate pathologists. 

a) Masson’s Trichrome 

 

Stain quality 
score 

Nuclear 
detail 

Cytoplasmic 
detail Extracellular Fibrosis 

Stain transformation 3.19 3.39 3.24 3.11 
Histologically stained 3.09 2.95 3.19 3.30 
Stain transformation std. 
error (between 
pathologists) 0.52 0.35 0.47 0.71 
Std. error histological 
(between pathologists) 0.21 0.27 0.25 0.43 

b) PAS 

 
Stain quality 
score 

Nuclear 
detail 

Cytoplasmic 
detail 

Basement membrane 
detail 

Stain transformation 3.40 3.53 3.38 3.39 
Histologically stained 3.51 3.49 3.41 3.53 
Stain transformation std. 
error (between 
pathologists) 0.41 0.26 0.39 0.44 
Std. error histological 
(between pathologists) 0.33 0.33 0.42 0.33 
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c) Jones Silver Stain 

 
Stain quality 
score 

Nuclear 
detail 

Cytoplasmic 
detail 

Basement membrane 
detail 

Stain transformation 3.84 3.70 3.70 3.91 
Histologically stained 3.88 3.72 3.82 3.98 
Stain transformation std. 
error (between 
pathologists) 0.13 0.22 0.15 0.05 
Std. error histological 
(between pathologists) 0.06 0.16 0.01 0.02 
 

Table 6.1 shows the mean score for each stain type and quality metric. This table shows that 

the difference in stain quality for all of the measured aspects of each stain is significantly smaller 

than the standard error between the ratings. This indicates that the stain-to-stain transformation 

technique achieves quality of stain equivalent to that of the histochemically stained tissue used as 

the ground truth.  

6.3 Discussion 

While different approaches have been explored over the past few years to perform a 

transformation between two stains, the approach presented here has several unique advantages: (1) 

it involves less chemical processing applied to tissue, without the need for de-staining and re-

staining; and (2) the approach is based on supervised training of the stain transformation network 

using pairs of perfectly registered training images that are created by label-free virtual staining, 

which constitutes a precise structural fidelity constraint for the distribution loss that is learned by 

the discriminator, significantly helping its generalization. Stated differently, no stain-to-stain 

image aberrations or misalignments exist in this training data due to the fact that the source of 

information (autofluorescence of the label-free tissue) is common for all the virtually stained 

images. This feature significantly improves the reliability and accuracy of the stain-to-stain 
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transformation that is learned using this method. These important advantages are enabled by using 

autofluorescence-based virtual staining of label-free tissue sections with multiple stains to create 

perfectly paired training image datasets. While in this chapter I showed that autofluoresence can 

be used to generate contrast from label-free tissue, other contrast mechanisms such as quantitative 

phase imaging, multi-photon-microscopy, fluorescence lifetime imaging and photo-acoustic 

microscopy, among others, can also support this supervised training of the presented stain 

transformation method. The resulting networks that are trained with this methodology can digitally 

transform any existing chemically-stained tissue image into new types of stains. 

Similar to the validation of digital pathology systems in general, a perfect stain-to-stain 

transformation is not required; the standard of practice is to demonstrate lack of inferiority, which 

is what we have endeavored to do. Substituting chemically stained slides for stain-transformed 

slides leads to several advantages, including e.g., decreased slide preparation time, decreased 

laboratory costs and preservation of tissue for subsequent analysis, if necessary. In the future, the 

use of computationally generated special stains may make it possible to selectively omit the need 

for performing actual special stains and save time and laboratory expenses in some settings. 
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Figure 6.8 Demonstration of the use of style transfer-based image data augmentation. a) Three H&E WSIs that are 

used as the ground truth distributions for three different stain augmentation networks. b) Demonstration of the 

effectiveness of the stain transformation technique across different H&E distributions. The three stain augmentation 

networks (green arrows) perform a style transfer to make the H&E field of view match the distribution of the 

corresponding three distributions shown in part a. This demonstrates that the stain transformation network (blue 

arrows) is robust and able to consistently perform accurate transformations when applied to various distributions. A 

total of 8 style augmentation networks corresponding to 8 unique H&E slides were used to train the stain 

transformation network. 
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The ability of this stain-to-stain transformation network to generalize across stain variations 

is also highly beneficial as there are significant differences among stains produced by different 

labs and even across stains performed by the same histotechnician (e.g., Figure 6.8a demonstrates 

three examples of such variations for stains produced by the same lab). However, in order a stain 

transformation technique to be effective for any practical application, the network must generalize 

across this wide sample space. As one of the key features of virtual staining is stain 

normalization [117], the network requires data augmentation to better facilitate the learning across 

a wide input staining distribution. For this purpose, I used a set of 8 CycleGAN networks to 

perform this stain data augmentation of the H&E dataset used to train the stain transformation 

network. The use of CycleGAN networks to perform a stain normalizing style transfer has been 

shown to be more effective than traditional stain normalization algorithms [154]. Furthermore, 

they have proven to be highly effective at performing data augmentation for medical 

imaging [155]. By applying these CycleGAN augmentation networks to the training image dataset, 

I was able to successfully generalize to various slides used for blind testing. Three examples of 

this CycleGAN-based stain augmentation results are reported in Figure 6.8b, which demonstrates 

that the three different networks are capable of converting the virtually stained tissue to have H&E 

distributions which match the distributions seen in Figure 6.8a. Furthermore, the results show that 

the same stain transformation network is consistent across these various distributions as there is 

little variation among the virtual PAS outputs (Figure 6.8b). These style normalization/transfer 

networks used in data augmentation can be easily further expanded upon, if needed, using existing 

databases of H&E images.  
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Figure 6.9 Comparison between the performance of the stain-transformation network presented in this work and stain 

transformations performed by a CycleGAN. For the Masson’s Trichome stain there are only minor differences 

between the quality of the CycleGAN and our method. However, the other two stains are much more difficult for a 

CycleGAN to perform, and the CycleGAN technique hallucinates features throughout all of the images generated for 
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these stains. For example, the red arrows point to locations where the basement membrane has been incorrectly labeled 

by the CycleGAN for the Jones and PAS stains. 

As I emphasized earlier, these style transfer networks were only used for H&E stain data 

augmentation and were not included in the stain transformation loss function. I utilized perfectly 

registered training images generated by virtual staining of label-free tissue; as a result of this, 

potential hallucinations or artifacts related to unsupervised training with CycleGANs and unpaired 

training data are eliminated (as can be seen in Figure 6.9).  When the same CycleGAN architecture 

used for the data augmentation is applied to the various stain transformations, a number of clear 

hallucinations occur. These hallucinations are particularly evident for the PAS and Jones Silver 

stain, where the networks incorrectly label the tubular basement membranes (see Figure 6.9). The 

tubules are composed of epithelial cells lining basement membranes that stain black on the Jones 

stain and magenta on the PAS stain.  The brush border lining the luminal surface of the epithelial 

cells is also normally lightly stained black and magenta by the Jones and PAS stains, 

respectively.  The CycleGAN method incorrectly recognized the basement membranes and tubular 

brush borders leading to incorrect image generation, which is a very significant error. In contrast, 

the quality and features of the Masson’s Trichrome stain appear to be more similar between the 

two techniques. This is believed to be due to the Masson’s Trichrome stain being relatively similar 

to H&E, while the other stains require significant structural changes which can cause the 

hallucinations for CycleGANs. These results and observations highlight the significant advantages 

of the stain-to-stain transformation network compared to standard CycleGAN-based methods. 

It is important to note that the current stain-to-stain network is trained to work with H&E 

stains performed at a few institutions and imaged by different microscopes from the same 

vendor/model (Leica Biosystems Aperio AT2 slide scanner). Additional data would be required 
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for the network to generalize to samples imaged using microscopes with different specifications 

or vendors, or any H&E stains which are performed in a significantly different manner. 

Furthermore, while this study covers a broad range of diseases, it is still a proof-of-concept. Future 

studies should be performed which contain both larger training and test datasets in order to 

conclusively show the technique may be suitable for diagnostic use. Future work may also apply 

this technique that I have presented to other biomarkers that are currently labeled with IHC to help 

target specific conditions. 

In addition to histological stains, immunofluorescence and electron microscopy [156]  based 

evaluation play significant roles in the standard of care for non-neoplastic kidney biopsy 

evaluation. In this study we have attempted to isolate the role of standard light microscopy in the 

non-neoplastic kidney disease evaluation and therefore these other modalities were not included. 

However, their application in clinical cases would only serve to support the pathologic final 

diagnosis and add a layer of further confirmation and safety to this resource-saving stain 

transformation technique. 

In this work, I focused on image transformations from H&E to special stains, since H&E is used 

as the bulk of the staining procedures, covering approximately 80% of all the human tissue staining 

procedures [138]. However, other stain-to-stain transformations can also be considered. For 

example, transformations from special stains to H&E or from immunofluorescence to H&E or 

special stains could be performed using the presented method. This approach allows pathologists 

to visualize different tissue constituents without waiting for additional slides to be stained with 

special stains, and I demonstrated it to be effective for clinical diagnosis of multiple renal diseases. 

Another advantage of the presented technique is that it can rapidly perform the stain transformation 
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(at a rate of 1.5 mm2/s on a consumer-grade desktop computer with two GPUs), while saving labor, 

time, chemicals and can significantly benefit the patient as well as the healthcare system.  

6.4 Methods 

Training of stain transformation network 

All of the stain transformation networks and virtual staining networks used in this dissertation 

were trained using GANs.  Each of these GANs consists of a generator (G) and a discriminator 

(D). The generator is used to perform the transformation of the input images (xinput), while the 

discriminator network is used to help train the network to generate images which match the 

distribution of the ground truth stained images. It does this by trying to discriminate between the 

generated images (G(xinput)) and the ground truth images (zlabel). The generator is in turn taught to 

generate images which cannot be classified correctly by the discriminator. This GAN loss is used 

in conjunction with two additional losses: a mean absolute error (L1) loss, and a total variation 

(TV) loss. The L1 loss is used to ensure that the transformations are performed accurately in space 

and color, while the TV loss is used as a regularizer, and reduces noise created by the GAN loss. 

Together, the overall loss function is described as: 

𝑙୥ୣ୬ୣ୰ୟ୲୭୰ = 𝐿ଵ൛𝑧୪ୟୠୣ୪, 𝐺൫𝑥୧୬୮୳୲൯ൟ  +  𝛼 × TV൛𝐺൫𝑥୧୬୮୳୲൯ൟ +  ꞵ × ൬1 − 𝐷 ቀ𝐺൫𝑥୧୬୮୳୲൯ቁ൰
ଶ

        (6.1) 

where α and ꞵ are constants used to balance the various terms of the loss function. The stain 

transformation networks are tuned such that the L1 loss makes up ~1% of the overall loss, the TV 

loss makes up only ~0.03% of the overall loss, and the discriminator loss makes up the remaining 

~99% of the loss (relative ratios change over the course of the training). The L1 portion of the loss 

can be written as: 
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𝐿ଵ(𝓏,   𝐺) =  
1

𝑃 × 𝑄
෍ ෍ ቚ𝓏௣,௤ − 𝐺൫𝑥୧୬୮୳୲൯

௣,௤
ቚ

௤௣

 (6.2) 

where p and q are the pixel indices and P and Q are the total number of pixels in each image. The 

total variation loss is defined as: 

TV൫𝐺(𝑥୧୬୮୳୲)൯ = ෍ ෍ |𝐺(𝑥୧୬୮୳୲)௣ାଵ,௤ − 𝐺(𝑥୧୬୮୳୲)௣,௤| + |𝐺(𝑥୧୬୮୳୲)௣,௤ାଵ

௤௣

− 𝐺(𝑥୧୬୮୳୲)௣,௤|                                                                                                  (6.3) 

The discriminator network has a separate loss function which is defined as: 

𝑙ୢ୧ୱୡ୰୧୫୧୬ୟ୲୭୰ =  𝐷 ቀ𝐺൫𝑥୧୬୮୳୲൯ቁ
ଶ

+ ൫1 − 𝐷(𝑧୪ୟୠୣ୪)൯
ଶ

 (6.4) 

A modified U-net1 neural network architecture was used for the generator, while the 

discriminator used a VGG-style2 network. The U-net architecture uses a set of 4 up-blocks and 4 

down-blocks, each containing three convolutional layers with a 3×3 kernel size, activated upon by 

the LeakyReLU activation function which is described as: 

LeakyReLU(𝑥) = ቄ
𝑥          for 𝑥 > 0

0.1𝑥      otherwise
   (6.5) 

The first down block increases the number of channels to 32, while the rest each increase the 

number of channels by a factor of two. Each of these down-blocks ends with an average pooling 

layer which has both a stride and a kernel size of two. The up-blocks begin with a bicubic up-

sampling prior to the application of the convolutional layers. Between each of the blocks of a 

certain layer, a skip connection is used to pass data through the network without needing to go 

through all the blocks. After the final up-block, a convolutional layer maps back to three channels. 
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The discriminator is made up of five blocks. These blocks contain two convolutional layers 

and LeakyReLU pairs, which together increase the number of channels by a factor of two. These 

are followed by an average pooling layer with a stride of two. After the five blocks, two fully 

connected layers reduce the output dimensionality to a single value, which in turn is input into a 

sigmoid activation function to calculate the probability that the input to the discriminator network 

is real, i.e., not generated. 

Both the generator and discriminator were trained using the adaptive moment estimation 

(Adam) [50] optimizer to update the learnable parameters. A learning rate of 1×10-5 was used for 

the discriminator network while a rate of 1×10-4 was used for the generator network. For each 

iteration of the discriminator training, the generator network is trained for seven iterations. This 

ratio reduces by one every 4000 iterations of the discriminator to a minimum of one discriminator 

iteration for every three generator iterations. The network was trained for 50000 iterations of the 

discriminator, with the model being saved every 1000 iterations. The best generator model was 

chosen manually from these saved models by visually comparing different models. For all three 

of the generator networks (MT, PAS and JMS), the 15000th iteration of the discriminator was 

chosen as the optimal model. 

The stain transformation networks were trained using pairs of 256×256-pixel image patches 

generated by the class conditional virtual staining network (label-free), downsampled by a factor 

of 2 (to match 20× magnification). These patches were randomly cropped from one of 1013 

712×712-pixel images coming from 10 unique tissue sections, leading to ~7,836 unique patches 

usable for training. 76 additional images coming from three unique tissue sections were used to 

validate the network. These images were augmented using the eight stain augmentation networks, 

and further augmented through random rotation and flipping of the images. Each of the three stain 
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transformation networks (MT, PAS and JMS) were trained using images generated by the label-

free virtual staining networks from the same input autofluorescence images. Furthermore, the 

images were converted to the YCbCr color space [157] before being used as either the input or 

ground truth for the neural networks. 

As this stain transformation neural network performs an image-to-image transformation, it 

learns to transform specific structures using the ~513 million pixels in the dataset that are 

independently accounted for in the loss function. Furthermore, since the network learns to convert 

structures which are common throughout many different types of samples, it can be applied to 

tissues with diseases that the network was not trained with.  When used in conjunction with the 8 

data augmentation networks which convert the values of these pixels, as well as random rotation 

and flipping (for an additional 8×) augmentation, there are effectively many billions of pixels 

which are used to learn the desired stain-to-stain transformation. Because of these advantages, a 

much smaller number of training samples from unique patients can be used than would be required 

for a typical classification neural network. 

Image data acquisition 

All of the neural networks were trained using data obtained by microscopic imaging of thin 

tissue sections coming from needle core kidney biopsies. Unlabeled tissue sections were obtained 

from the UCLA Translational Pathology Core Laboratory (TPCL) under UCLA IRB 18-001029, 

from existing specimen. The autofluorescence images were captured using an Olympus IX-83 

microscope (controlled with the MetaMorph microscope automation software, version 7.10.161), 

using a DAPI filter cube (Semrock OSFI3-DAPI5060C, EX 377/50 nm EM 447/60 nm) as well as 

a Texas Red filter cube (Semrock OSFI3-TXRED-4040C, EX 562/40 nm EM 624/40 nm) to 

generate the second autofluorescence image channel.  
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In order to create the training dataset for the virtual staining network, pairs of matched 

unlabeled autofluorescence images and brightfield images of the histochemical stained tissue were 

obtained. H&E, MT and PAS histochemical staining were performed by the Tissue Technology 

Shared Resource at UC San Diego Moores Cancer Center. The JMS staining was performed by 

the Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los 

Angeles, CA, USA. These stained slides were digitally scanned using a brightfield scanning 

microscope (Leica Biosystems Aperio AT2 slide, using 40x/0.75NA objective). All the slides and 

digitized slide images were prepared from existing specimen. Therefore, this work did not interfere 

with standard practices of care or sample collection procedures. The H&E image dataset used for 

in the study came from the existing UCLA pathology database containing WSIs of stained kidney 

needle-core biopsies, under UCLA IRB 18-001029. These slides were similarly imaged using 

Aperio AT2 slide scanning microscopes.  

Image co-registration 

To train label-free virtual staining networks, the autofluorescence images of unlabeled tissue 

were co-registered to brightfield images of the same tissue after it had been histochemically 

stained. This image co-registration was done through a multi-step process [41], beginning with a 

coarse matching which was progressively improved until subpixel level accuracy is achieved. The 

registration process first used a cross-correlation based method to extract the most similar portions 

of the two images. Next, the matching was improved using multimodal image registration [116]. 

This registration step applied an affine transformation to the images of the histochemically stained 

tissue to correct for any changes in size or rotations. To achieve pixel-level co-registration 

accuracy, an elastic registration algorithm was then applied. However, this relies upon a local 

correlation-based matching. Therefore, to ensure that this matching could be accurately performed, 
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an initial rough virtual staining network is applied to the autofluorescence images [117,118]. These 

roughly stained images were then co-registered to the brightfield images of the stained tissue using 

a correlation-based elastic pyramidal co-registration algorithm [69]. 

Once the image co-registration is complete, the autofluorescence images were normalized by 

subtracting the average pixel value of the tissue area for the WSI and subsequently dividing it by 

the standard deviation of the pixel values in the tissue area. 

Class conditional virtual staining of label-free tissue 

A class conditional GAN was used to generate both the input and the ground truth images to 

be used during the training of the presented stain transformation networks (Figure 6.2a). This class 

conditional GAN allows multiple stains to be created simultaneously using a single deep neural 

network [118]. To ensure that the features of the virtually stained images are highly consistent 

between stains, a single network must be used to generate the stain transformation network input 

(virtual H&E) and the corresponding ground truth images (virtual special stains) that are 

automatically registered to each other as the information source is the same image. This is only 

required for the training of the stain transformation neural networks and is rather beneficial as it 

allows both the H&E and special stains to be perfectly matched.  Furthermore, an alternative image 

dataset made up of co-registered virtually stained and histochemically stained fields of view will 

present limitations due to imperfect co-registration and deformities caused by the staining process. 

These are eliminated by using a single class conditional GAN to generate both the input and the 

ground truth images. 

This network uses the same general architecture as the network described in the previous 

section, with the addition of a Digital Staining Matrix concatenated to the network input for both 
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the generator and discriminator [118]. This staining matrix defines the stain coordinates within a 

given image field of view. Therefore, the loss functions for the generator and discriminator are: 

𝑙୥ୣ୬ୣ୰ୟ୲୭୰ = 𝐿ଵ൛𝑧୪ୟୠୣ୪, 𝐺൫𝑥୧୬୮୳୲, 𝐜෤൯ൟ  +  𝛼 × TV൛𝐺൫𝑥୧୬୮୳୲, 𝐜෤൯ൟ +  ꞵ × ቀ1 − 𝐷൫𝐺൫𝑥୧୬୮୳୲, 𝐜෤൯, 𝐜෤൯ቁ
ଶ

 (6.6) 

𝑙ୢ୧ୱୡ୰୧୫୧୬ୟ୲୭୰ =  𝐷൫𝐺൫𝑥୧୬୮୳୲, 𝐜෤൯, 𝐜෤൯
ଶ

+ ൫1 − 𝐷(𝑧୪ୟୠୣ୪, 𝐜෤)൯
ଶ

  (6.7) 

where 𝐜෤ is a one-hot encoded digital staining matrix with the same pixel dimensions as the input 

image. When used in the testing phase, the one-hot encoding allows the network to generate two 

separate stains (H&E and the corresponding special stain) for each field of view.  

The number of channels in each layer used by this deep neural network was increased by a 

factor of two compared to the stain transformation architecture described above to account for the 

larger dataset size and the need for the network to perform two distinct stain transformations. 

A set of four adjacent tissue sections were used to train the virtual staining networks for H&E 

and the three special stains. The H&E portion of all three of the networks was trained with 1058 

1424×1424-pixel images coming from 10 unique patients, the PAS network was trained with 946 

1424×1424-pixel images coming from 11 unique patients, the Jones network was trained with 816 

1424×1424-pixel images coming from 10 unique patients, and the Masson’s Trichrome network 

was trained with 966 1424×1424-pixel images coming from 10 unique patients.  All of the stains 

were validated using the same three validations slides. 

Style transfer for H&E image data augmentation 

In order to ensure that the stain transformation neural network is capable of being applied to 

a wide variety of histochemically stained H&E images, I use the CycleGAN [149] model to 

augment the training dataset by performing style transfer (Figure 6.2b). As discussed, these 
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CycleGAN networks only augment the image data used as inputs in the training phase. This 

CycleGAN model learns to map between two domains 𝑋 and 𝑌 given the training samples 𝑥 and 

𝑦, where 𝑋 is the domain for the original virtually stained H&E and Y is the domain for the H&E 

image generated by a different lab or hospital. This model performs two mappings 𝐺 ∶ 𝑋 → 𝑌 and 

𝐹 ∶ 𝑌 → 𝑋. In addition, two adversarial discriminators 𝐷௑ and 𝐷௒ are introduced. A diagram 

showing the relationship between these various networks is shown in Figure 6.10. 

 

Figure 6.10 Diagram showing the transformations performed by the various networks during the training phase. 

The loss function of the generator 𝑙୥ୣ୬ୣ୰ୟ୲୭୰ contains two types of terms: adversarial losses 

𝑙ୟୢ୴ to match the stain style of the generated images to the style of histochemically stained images 

in target domain; and cycle consistency losses 𝑙ୡ୷ୡ୪ୣ to prevent the learned mappings 𝐺 and 𝐹 from 

contradicting each other. The overall loss is therefore described by: 

𝑙୥ୣ୬ୣ୰ୟ୲୭୰ =  𝜆 × 𝑙ୡ୷ୡ୪ୣ + 𝜑 × 𝑙ୟୢ୴   (6.8) 
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where 𝜆 and 𝜑 are relative weights/constants. For each of the networks, I set 𝜆 = 10 and 𝜑 = 1. 

Each generator is associated with a discriminator, which ensures that the generated image matches 

the distribution of the ground truth. The adversarial losses for each of the generator networks can 

be written as: 

𝑙ୟୢ୴ ௑→௒ = ቀ1 − 𝐷௒൫𝐺(𝑥)൯ቁ
ଶ

  (6.9) 

𝑙ୟୢ୴ ௒→௑ = ቀ1 − 𝐷௑൫𝐹(𝑦)൯ቁ
ଶ

  (6.10) 

And the cycle consistency loss can be described as: 

𝑙ୡ୷ୡ୪ୣ = 𝐿ଵ൛𝑦, 𝐺൫𝐹(𝑦)൯ൟ + 𝐿ଵ൛𝑥, 𝐹൫𝐺(𝑥)൯ൟ   (6.11) 

The adversarial loss terms used to train Dଡ଼ and Dଢ଼ are defined as: 

𝑙஽೉
= ൫1 − 𝐷௑(𝑥)൯

ଶ
+ 𝐷௑൫𝐹(𝑦)൯

ଶ
(6.12) 

𝑙஽ೊ
= ൫1 − 𝐷௒(𝑦)൯

ଶ
+ 𝐷௒൫𝐺(𝑥)൯

ଶ
  (6.13) 

For these CycleGAN models, 𝐺 and 𝐹 use U-net architectures similar to the stain 

transformation network. It consists of three down-blocks followed by three up-blocks. Each of 

these down-blocks and up-blocks are identical to the corresponding blocks in the stain 

transformation network. 𝐷௑ and 𝐷௒ also have similar architectures to the discriminator network of 

stain transformation network. However, they have four blocks rather than five blocks as in the 

previous model.  

During the training, the Adam optimizer was used to update the learnable parameters with 

learning rates of 2×10-5 for both the generator and discriminator networks. For each step of 



 

133 

discriminator training, one iteration of training was performed for the generator network, and the 

batch size for training was set to 6. 

Training of single-stain virtual staining networks  

In addition to performing multiple virtual stains using a single neural network, separate 

networks which only generate one individual virtual stain each were also trained. These networks 

were used to perform the rough virtual staining that enables the elastic co-registration. These 

networks use the same general architecture as the stain transformation networks, with the only 

difference being that the first block in both the generator and the discriminator increases the 

number of channels to 64. The input and output images are the autofluorescence images and the 

histochemically stained images, respectively, processed using the image registration described in 

image co-registration section. 

Implementation details 

The image co-registration was implemented in MATLAB using version R2018a (The 

MathWorks Inc.). The neural networks were trained and implemented using Python version 3.6.2 

with TensorFlow version 1.8.0. Timing was measured on a Windows 10 computer with two Nvidia 

GeForce GTX 1080 Ti GPUs, 64GB of RAM, and an Intel I9-7900X CPU. 

Pathologic evaluation of kidney biopsies 

An initial study of 16 sections – comparing the diagnoses made with H&E only against the 

diagnoses made with H&E as well as the stain-transformed special stains – was first performed to 

determine the feasibility of the technique. For this initial evaluation, 16 non-neoplastic kidney 

cases were selected by a board-certified kidney pathologist (J.E.Z.) to represent a variety of kidney 

diseases.   For each case, the WSI of the histochemically stained H&E slide, along with a worksheet 
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that included a brief clinical history, were presented to 3 board-certified renal pathologists 

(W.D.W, M.F.P.D and A.S.). The WSIs were exported to the Zoomify format [158], and uploaded 

to the GIGAmacro [159] website to allow the pathologists to confidentially view the images using 

a standard web browser. The WSIs were viewed using standard displays (e.g., LCD Monitor, 

FullHD, 1920x1080 pixels).  

In the diagnostic worksheet, the reviewers were given the H&E WSI and a brief patient history 

and asked to make a preliminary diagnosis and quantify certain features of the biopsy (i.e. number 

of glomeruli and arteries) and provide additional comments if necessary. After a >3-week washout 

period to reduce the pathologists’ familiarity with the cases, the 3 reviewing pathologists received, 

in addition to the same histologically stained H&E WSIs and the same patient medical history, 3 

computationally generated special stain WSIs for each case: MT, PAS and JMS. Being given these 

slides, they were asked to provide a preliminary diagnosis for a second time. This >3-week 

washout period was chosen to be one week greater than the College of American Pathologists 

Pathology and Laboratory Quality Center guidelines [160], ensuring that the pathologists were not 

influenced by previous diagnoses. 

To test the hypothesis that using additional stain-transformed WSIs can be used to improve 

the preliminary diagnosis, the adjudicator pathologist (J.E.Z.) who was not among the 3 

diagnosticians provided judgement to determine Concordance (C), Discordance (D) or 

Improvements (I) between the diagnosis quality of the first and second round of preliminary 

diagnoses provided by the group of diagnosticians.  

To expand the total number of cases to 58 and perform the third study, (Figure 6.3) the same 

set of steps were repeated. To allow for higher throughput, in this case the WSIs were uploaded to 

a custom built online file viewing server based on the Orthanc server package [161]. Using this 
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online server, the user is able to swap between the various cases. For each case, the patient history 

is presented, along with the WSI and the option to swap between the various stains, where 

applicable. The pathologists were asked to input their diagnosis, the chronicity, and any comments 

that they might have into text boxes within the interface.  

Once the pathologists completed the diagnoses with H&E only as well as with H&E and the 

stain-transformed special stains, another >3-week washout period was observed.  Following this 

second washout period, the pathologists were given WSIs of the original histochemically stained 

H&E along with the 3 histochemically stained special stains coming from serial tissue sections. 

Two of these cases used in the preliminary study were excluded from the final analysis, as WSIs 

of the three special stains could not be obtained from serial tissue sections. For the first of these 

excluded cases, all of the pathologist’s diagnoses were improved using stain-to-stain 

transformation, and for the second, one of the diagnoses was improved while the other two 

pathologists’ diagnoses were concordant. 

Statistical analysis 

Using the preliminary study of 16 samples, a total of 41 samples were calculated to be needed 

in order to show statistical significance (using a power of 0.8 and an alpha level of 0.05 and using 

a one tailed t-test). Therefore, the total number of patients was increased 58 to ensure that the study 

was sufficiently powered.   

A one tailed t-test was used to determine whether a statistically significant number of 

improvements were made when using either [H&E and stain-transformed special stains], or [H&E 

and histochemically stained special stains] over only [H&E] images. The statistical analyses were 

performed by giving a score of +1 to any improvement, -1 to any discordance and 0 to any 
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concordance. The score for each case was then averaged among the three pathologists who 

evaluated the case, and the test showed that the amount of improvement (i.e. if the average score 

is greater than zero) across the 58 cases was statistically significant. 

A chi-squared test with two degrees of freedom was used to compare the proportion of 

improvements, concordances and discordances between the methods tested above. The 

improvements, concordances and discordances for each pathologist was compared individually. 

For all tests, a P value of 0.05 or less was considered to be significant. 
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Chapter 7 Conclusions 

Deep learning has become a key tool for image enhancement and transformations in 

computational microscopy. Throughout this dissertation I have demonstrated a few of the many 

applications of this technology.  

In summary, in Chapter 1, I introduce inverse problems in microscopy. I give a short 

background of deep learning in relation to inverse problems, and give a general overview of how 

neural networks can be used to solve a number of these problems. 

In Chapter 2 I show that deep learning can be used to perform super-resolution of images 

captured by coherent microscopes. In this chapter we demonstrate that these neural networks can 

both super-resolve numerical aperture-limited and pixel-limited images, showing that the 

technique is broadly applicable across widefield imaging systems. Chapter 3 expands upon these 

super-resolution results by showing that a similar framework can be applied to images captured by 

a scanning electron microscope. In Chapter 4, I showed an application of this technology, where 

it enhances and standardizes mobile phone microscope images, enabling downstream detection of 

sickle cell disease in thin blood smears. While in Chapter 2 through Chapter 4 I showed a few 

different modalities that can be enhanced using deep learning, these general techniques can be 

generalized beyond to fluorescence microscopy [41] and beyond [12]. 

In Chapter 5 I introduce a neural network that can be used to generate multiple stains from a 

single tissue section. I show that this technology generates highly accurate stains, while enabling 

new features such as micro structured staining within a single field of view, as well as stain 

blending. Chapter 6 demonstrates how a network can be trained to perform transformations from 

H&E to various special stains by using the multistain network proposed in the previous chapter to 
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generate pairs of synthetic data. This technology was then shown to be effective at improving 

preliminary diagnoses as well as statistically equivalent in quality to histochemical staining of 

special stains. 

Looking forward, there is still significant room for these technologies to continue to develop. 

The field of deep learning is rapidly growing, with continual improvements being made to training 

techniques and network architectures. Each of the applications presented here can be improved 

upon through both hardware and software advancements. Furthermore, all of the networks 

presented here are simply a proof of concept. Larger datasets will likely improve the quality of the 

networks, and significantly more robust models can be used to ensure that they generalize beyond 

individual microscopes or samples. The techniques may also be improved by improvements in the 

dataset creation workflow such as improved registration algorithms. 
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