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Abstract We derive a new analytical solution for the first-order, short-periodic perturbations due to plan-
etary oblateness and systematically compare our results to the classical Brouwer-Lyddane transformation.
Our approach is based on the Milankovitch vectorial elements and is free of all the mathematical singulari-
ties. Being a non-canonical set, our derivation follows the scheme used by Kozai in his oblateness solution.
We adopt the mean longitude as the fast variable and present a compact power-series solution in eccentricity
for its short-periodic perturbations that relies on Hansen’s coefficients. We also use a numerical averaging
algorithm based on the fast-Fourier transform to further validate our new mean-to-osculating and inverse
transformations. Only the developed Milankovitch solution was found to accurately handle all regions of the
orbital phase space, and it significantly outperforms both Brouwer-Lyddane and the numerical scheme at
high eccentricities and inclinations. Improvements should be sought for the low eccentricity and inclination
regimes, where the other formulations have an apparent advantage. For a complete first-order theory the
long-periodic dynamics, in turn responsible of the critical inclination singularity, should be also included.

Keywords Kepler problem - oblateness - nonsingular elements - averaging - artificial satellite theory

1 Introduction

In the brief span of time after the launch of Sputnik, a whole succession of analyses was devoted to the
problem poised by the drag-free motion of an artificial satellite about an oblate planet, employing almost
every known perturbation method. Although, in a sense, the problem is a classic one that also occurred
among the natural satellites, in the applications of artificial satellite motion it was necessary to obtain a
more general, detailed, and accurate solution. The most intricate and notable investigations were presented
by Brouwer (1959), Garfinkel (1959), and Kozai (1959) in the celebrated 1959 issue of the Astronomical
Journal. These authors treat the first- and second-order secular perturbations, as well as the first-order
short-periodic (related to the satellite’s mean motion) and long-periodic (related to the evolution of the
argument of the perigee) perturbations of the orbital elements, where order here refers to the oblateness
parameter.

Astronomical experience amply bears out the notion of separation of perturbing effects into periodic
and secular variations and the distinction between fast and slow time variables concerning the motion of
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satellites (Lara 2019). The device of canonical transformations employed by Brouwer (1959) and Garfinkel
(1959) permits a deeper understanding of the difference between periodic and secular perturbations, and
provides a systematic procedure for the inclusion of higher-order terms (Kozai 1962b). On the other hand,
the technique used by Kozai (1959), known formally as the method of analytic continuation (Scheeres 2012),
while applicable to any set of orbital elements, canonical or otherwise, can be cumbersome beyond the first
order. The Poincaré-von Zeipel method of canonical transformations, though still in use (Nie et al 2019),
was significantly generalized by Hori (1966) and Deprit (1969) based on Lie series; the latter becoming the
sine qua non of modern perturbation theory in celestial mechanics (Deprit and Rom 1970; Kaufman 1981).

Kozai’s gravity solution to the artificial satellite problem became the basis for the simplified general
perturbations theory, SGP, that would be supplanted by SGP4, an analytical solution for satellite short-
term prediction using the two-line element sets that instead has its roots in Brouwer’s gravitational theory
(Hoots et al 2004). Brouwer (1959) developed his original solution in Delaunay variables, the canonically-
conjugate counterpart of the Keplerian orbital elements used by Kozai (1959), which, like the classical ones
themselves, are singular for circular and equatorial orbits. The mathematical singularities associated with
zero eccentricity and vanishing line of nodes that plague these solutions can be removed by reformulating
them in nonsingular variables, such as those of Poincaré (Lyddane 1963; Breakwell and Vagners 1970), Hill
(Izsak 1963; Aksnes 1972), or the equinoctial set (Gim and Alfriend 2003; Alfriend et al 2009; Le Févre
et al 2014),' or Euler-parameters-based elements (Alfriend et al 2009). A simplified form of the Lyddane-
modified Brouwer theory, optimized in SGP4 for the rapid propagation of satellite ephemerides of the space
object catalog (SOC) (Hoots 1981), is the basis for many tracking and prediction operations. Moreover,
SGP4, or its deep space equivalent, SDP4, must be used to convert the mean, orbit-averaged, TLEs of
the SOC into an osculating set of elements for use in special perturbation theory to obtain more accurate
predictions (Levit and Marshall 2011).

The principal observable features due to Earth’s oblateness are a secular precession of the orbit plane
about the polar axis and a steady motion of the major axis in the moving orbit plane. Well-known ap-
plications of this particular problem are the two inclined and elliptical orbit systems (12-hr Molniya and
24-hr Tundra), placed at the reputed critical inclination of ~63.4° so that the apsidal precession freezes on
average. The critical inclination is an intrinsic singularity in the artificial satellite theories of our forebears
(Coffey et al 1986), and hitherto remains a fundamental issue in all modern reformulations of the main
problem (Breakwell and Vagners 1970; Aksnes 1972; Lara 2015b,a). The orbit-averaging technique funda-
mentally involves removing all terms that depend on the fast-varying mean anomaly, thus retaining the
(secular and long-period) mean-element motion. As noted by Kozai (1959), the long-periodic perturbations
of the first order come from the terms of the second order, and the singularity associated with the critical
inclination only arises when such long-period effects are retained. Nevertheless, the distinction between
secular and mean elements has often been muddled in the literature, and tabulated mean-to-osculating
transformations (Gim and Alfriend 2003; Schaub and Junkins 2018) apply Brouwer’s full periodic cor-
rections. This approach will inevitably lead to significant errors near the critical inclination, but can be
properly amended by neglecting the long-periodic terms (Breakwell and Vagners 1970).

An important application of the mean-to-osculating transformation is in the computation of the nominal
osculating orbits from the frozen-orbit conditions determined in mean-elements space (Gurfil and Lara
2013). Frozen orbits correspond to equilibria for the averaged equations of motion, and, in the oblateness
model, occur when secular effects due to even zonal harmonics are canceled by the long-period perturbations
of the odd harmonics. While modern formulations compute frozen orbits directly from the non-averaged
equations, based on the underlying quasi-periodic structure of librations around these mean equilibria,
explicit analytical solutions form the starting point for the numerical optimization process. Recovering the
short-periodic effects needed for this initialization can be troublesome at the critical inclination, whose
precise frozen-orbit location is very sensitive to model truncation (Lara 2018).

Here, we present a new formulation of the mean-to-osculating and inverse conversions for first-order
oblateness perturbations based on the Milankovitch elements (Rosengren and Scheeres 2013, 2014). We
use the direct method of Kozai (1959), as further elucidated by Scheeres (2012), and present an explicit
analytical short-period correction in vector form that is valid for all elliptical orbits. We adopt the mean
longitude as the fast variable and present a compact power-series solution in eccentricity for its short-
periodic perturbations that can be truncated to achieve the necessary accuracy. We establish a truth model
using a numerical averaging approach based on the fast-Fourier transform (Uphoff 1973; Ely 2015), and
make detailed comparisons between our vectorial solution and the classical Brouwer-Lyddane (BL) theory.

1 The open-source and extensively validated tool, Semi-analytic Tool for End of Life Analysis (STELA), developed by
CNES, is also based on the equinoctial parameters (Le Fevre et al 2014).



For the latter, we adapt the more streamlined formulas presented in Schaub and Junkins (2018) and Gim
and Alfriend (2003).

2 Problem formulation
2.1 Analytical averaging

The basic idea in orbit-averaging methods is to obtain approximate equations for the system evolution
that contain only slowly changing variables by exploiting the presence of a small dimensionless parameter
e that characterizes the size of the perturbation. The tacit assumption is that the perturbing forces are
sufficiently weak so that these approximate mean equations of motion can be used to describe the secular
and long-period orbital evolution. The perturbation equations in celestial mechanics, relating the time
variation of the orbit parameters to the perturbing accelerations, in Gauss or Lagrange form, are nonlinear,
nonautonomous, first-order differential equations: (Alfriend et al 2009; Scheeres 2012)

T = eg(zx,t), (1)

in which g(z, t) is assumed to be T-periodic in time ¢. Equation (1) is trivially solved when e = 0, yielding the
integrals (Keplerian elements) in the unperturbed problem. The method of averaging consists of replacing
Equation (1) by the averaged autonomous system (Sanders et al 2007)

T
i=q@).  g@ =g [ @oa 2)

where the average is performed over time, and it is understood that Z in the integrand is to be regarded as
a constant during the averaging process. The basis for this approximation is the averaging principle, which
states that in the general, non-resonant case, the short-period terms removed by averaging cause only small
oscillations that are superimposed on the long-term solution described by the averaged system.

Comparison between numerical integrations and the mean solution will in general show a divergence
between the two as a result of an inconsistent choice of initial conditions, as depicted in Fig. 1. This offset
can be understood by decomposing the osculating elements into mean and short-period components (Kozai
1959; Scheeres 2012):

x(t) =z(t) + 2 (1). 3)
Differentiating, we can obtain an approximate equation governing the short-period dynamics:
& (t) =& —z = g(x,t) - g(T), (4)

in which the mean state = has replaced the corresponding osculating elements « in the dynamical equations
and where the small parameter ¢ has been omitted without lack of generality. From Egs. (3) and (4), the
short-periodic perturbations can be obtained as (Kozai 1959)

T
2(0) = d= (1)~ 3" = [lo(@) —g@]at— 1 [ [lot@n) ~g@)] ar’ (5)

Accordingly, it can be seen that P = 0, which is also the implicit assumption in the averaging process.
The interpretation of this result is that given an initial condition for a state g = x(to), the mean
equations have to be initialized at a value provided by Egs. (3) and (5) as

Ty = xo — =7 (to), (6)

to have the averaged dynamics track the true evolution more closely.

The removal of time, or analogously of the mean anomaly, requires computing the quadrature of func-
tions depending implicitly on this variable through the true anomaly. The time averaging is performed
over a periodic motion having a period much shorter than the time that characterizes the evolution of the
dynamical system; this periodicity necessarily implies that averaging is taken for elliptical orbits. Given a
quantity g(zx, M) representing the right-hand side of the equations of motion, defined as a function of the
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Fig. 1 Schematic showing a comparison between the numerical and mean solutions for an arbitrary orbital element, when
starting from the same initial condition. The mean solution changes approximately linearly over one orbit and is referred
to as the averaged variation. The short-period oscillations are the fluctuations that happen per orbit in the real motion.

dimensionless time variable M (the mean anomaly) in addition to the other orbital elements given by @,
the average, Eq. (2), can be redefined as

27
9@) = 5 [ ot (7)

where the orbital elements & are held constant in the integration. Although the average is defined with
respect to mean anomaly, it is often more easily calculated by means of the true or eccentric anomaly, f
and F, respectively, using the differential relationships

1”2

r
dM = —dE = —d 8

a ab 5 (8)
in which a and b = av/1 — €2 are the semi-major and semi-minor axes, respectively, and e is the eccentricity;

yielding the equivalent forms for averaging:

1 2m 1 2m 1 2m 9
9@ =5 [ s@amnaw = [ g@nyrar= o [ g pay (9)
Note that r can be expressed in terms of f and E as
a(l—¢?) _ H?/p
r={ l1+ecosf 1+ecosf’ (10)
a(l —ecos E).

Here, H is the specific angular momentum and p is the gravitational parameter.

The Milankovitch elements consist of the two fundamental vectorial integrals of motion, namely, the
eccentricity vector e and angular momentum vector H. These vectors can be parameterized in terms of the
Keplerian elements relative to an inertial frame:

H = Hh = H(sinisin Q& — sini cos 24 + cosiz), (11)
e=cé =e|(coswcos 2 — cosisinwsin )&
+ (coswsin 2 + cosisinw cos 2)g
+ sinisinwz], (12)
where i is the inclination, 2 is the right ascension of the ascending node, and w is the argument of periapsis.

Because of the orthogonality constraint (i.e., H-e = 0) we need a sixth scalar element to fully define an orbit
(Roy and Moran 1973). Adopting the mean longitude | = w+ 2+ M, the non-averaged equations of motion



for an arbitrary disturbing acceleration a4 can be stated in ‘dyadic’ form? as (Battin 1999; Rosengren and
Scheeres 2014):

éz%(’ﬁ-?—ﬁ)-ad:ge(w,t), (13a)
H=7 a;=gg(z1), (13b)
i=n+ (—; [H(é%)ﬁ—k(r—i—p)(é-v)é} s #H> . ag,
n(1+ V1 —e2) na H(H+H - 2) (13c)
:n+gl(m7t)v

where n? = p/a®, p= H?/u, and 6 = h-#. Note that Eq. (13¢) consists of terms that collect the contributions
due to the three components in the radial, transverse, and normal directions of the disturbing acceleration,
and is valid for elliptical orbits in which e < 1.

The position and velocity vectors, » and v, may be expressed as

r =r(cos fé+sinfé,), (14)
v:%[—sinféJr(eJrcosf)éJ_], (15)

where é = e/e, € =h-é,and h=H/H.

The Gauss equations have time-varying terms multiplying the accelerations involving the true anomaly,
and thus they must each be averaged separately. The mean evolution of these elements can be computed
as

I _
€= | edM =g, (), (16a)
— 1 2w
H=_—-— HdM =gy (Z), (16b)
2r Jo
- 1 2w
=5 ) ldM =n+7g)(z). (16¢)

The approximate short-period equations of motion for each element can then be formulated by subtract-
ing Eq. (16) from Eq. (13), while holding all orbital elements but f constant. Kozai (1959), in his solution
employing the classical elements a, e, ¢, 2, w, and M, obtained the non-averaged, mean, and short-period
equations of motion using the Lagrange planetary equations. We note that a more general procedure has
been outlined herein.

Particularly, for e and H, following Eq. (5), we have

4e”(0) = [ lge(a.0) - 7@ (17a)
4t (1) = [ lon(@.0) - gu(@) dt (17b)
so that
e*P(t) = de®P(t) — de”, (18a)
H®P(t) = dH®P(t) —dH". (18b)

Special care, however, must be taken in the case of the mean longitude due to the presence of the
mean motion appearing without any factor in Eq. (13¢) (Kozai 1959). Expanding the osculating n into
a first-order Taylor series about the mean elements, and following Eq. (4), we can write the approximate
equation governing the short-period dynamics as

() =1 - 12 (@,t) - 9,(&) + Ven(@) - €™ (1) + Vun(@) - H (1), (19)

2 An expression ab, formed by the juxtaposition of two vectors in R3 constitutes what is called a dyad. For notational
convenience, we denote the cross-product dyadic as @ so that the tilde operator turns a vector into a skew-symmetric
dyadic, allowing to write the cross product as a linear vector function. Equivalent expressions of the cross product are:
axb=a-b=a-b=-b-a=-b-a.



where

9 3p2
Ven@ﬁ—-gg :—ré%w/l—€2é, (20)
2
VHn@ﬁ:E%% = M _eprw 21)

Accordingly,

di’P(t) = / [g:(Z,t) — ()] dt + Ven(T) - /eSp(t) dt + Vgn(z) - /Hs”(t) dt, (22)

and

T
@’ =1 [ [ @ -a@) e

T T
+ Ven(E) - l/ /eSp(t) dt* + Vygn(z) - l/ /HSP(t) de?. (23)
T Jo T Jo
As a result, the short-periodic perturbations of [ is given by

1°P(t) = dI*P(t) — di™. (24)

2.2 Numerical averaging

The conversion between mean and osculating elements can be obtained numerically, as previously shown
by Walter (1967), Uphoff (1973), and Ely (2015). Here, we will exploit a numerical implementation of the
near-identity transformation in Eq. (3) between averaged and osculating Milankovitch elements to validate
our subsequent analytical developments.

The mapping is obtained by numerically solving

o x®P
ot

T
/ z°P(z,t)dt = 0.
0

=elg(@.t)-g(@)],
(25)

The boundary condition in Eq. (25) guarantees that the oscillations of °P(t) are unbiased with respect to
Z. The formal solution is then (Sanders et al 2007)

2P (57 t) = —51 f: L(E)eiknt’ (26)

n k
k=1

where ¢ (Z) are the Fourier coefficients of g (Z,t), and ¢ is the imaginary unit.

In this study, we numerically approximate Eq. (26) by truncating the series and by using the fast-
Fourier transform (FFT) algorithm as discussed in Ely (2015), under the assumption that g is analytic
on the continuation of nt in a non-vanishing complex strip. This assumption guarantees that the Fourier
coefficients exhibit exponential decrease as a function of k. For the mean orbit longitude, we incorporate
the additional terms in Eq. (19), resulting from the Taylor series of n, into Eq. (25), before performing the
numerical quadrature.



3 Analytical short-period correction for oblateness perturbations

The quadrupolar (i.e., Jo-truncated) disturbing function arising from an oblate planet can be stated in a
general vector expression as (Scheeres 2012)

_ pJaR?
R= 273

[1 —3(f -ﬁ)ﬂ , (27)

where J7 is the second zonal harmonic coefficient, R is the mean equatorial radius of the planet, and # = »/r
from Eq. (14). Note that the Earth’s spin axis p is assumed to be fixed in inertial space, and, as such, is
aligned with 2.

The perturbing acceleration is then given by OR/0r as

_ 3uJ2R? L2 R
a=-—573 {[1—5(7’-p)}7‘+2(7‘-p)p}4 (28)
Accordingly, following Eq. (13), the perturbation equations can be stated as
L BRRPr o ola P
€= 33 {{1 5( - p) }H~r 2(r-p)(v-7 H)-p}, (29a)
: 3uJaR?, .

H=- Nri (r-p)7 - P, (29Db)
. 3uJoR? 1 L2 NP
I=n+—53 {u(l Vi [H(e~7’)(1 =3(7-p)7) +2(r +p)(€'”)(r'p)(9-p)]

2r2 oy 2(r-p)*(H - p)
+ o5 (1=3(7-p)7) - HH+H p) [ (29¢)

The averaged equations of motion for the eccentricity and angular momentum vectors are given by Ward
(1962) and Rosengren and Scheeres (2013). Averaging Eq. (29¢) directly requires computing the quadrature
of various dyadics and higher rank tensors of the dynamical variables, the details of which we omit. The
mean equations can be stated as

2 g ~
é:73njp22R {[1*5(’1'13)2}’14‘2(’1'15)15}‘6, (30a)
. 2 ~
7= 2 ), (30D)
i 3nJo R? 5 [ari a2 s o S
=nt T {vlfe [S(h‘p) 71}+5(h-p) f2(h-p)fl}, (30c)

where the bar operator is omitted from the elements because there is no ambiguity in what follows; i.e.,
all variables are averaged variables. Note that Eq. (30c) can be seen as the sum of the classical secular

precession rates arising from planetary oblateness, [ = M + @ + {2, where

. 2 2 . 2
M=n+ nJ2 R V1-—e? (3COS2i— 1) W= SnJ2R (5005272— 1) , 2= _3nf2R COS . (31)
4p? 4p2 22

Following the procedure outlined in §2.1 and detailed in Appendix B, the short-periodic perturbations
in the eccentricity vector, angular momentum vector, and mean longitude can be stated as

e (t) = —327};2{ {fz +2(I + el + I1111 — 1122 — 51V122)(é - p)(éL - P)
- (2f1\1112 + 51/‘\/112)(é P)2 + (2L + 2ell12 + 211115 — 51/‘\/222)(é¢ 'ﬁ)ﬂ é
- [Il — Me+2(Io — elT1z — ITT112 + 111222 — 51V 112) (& - B) (€L - B)
4 (3Me/2 + 211 + 2011195 — 5IVi11)(é - )2 + (3Me/2 — 2elIny — 2111125 — 51Vi22)(é) ﬁ)ﬂ éL
+ Me(é, -p)(h-p)h — 2¢ [ﬁlg(é -P) + IIoz(é, ~ﬁ)}ﬁ}, (32a)
17(0) = =2 (oo )b ) + (11— M2 e -5 h- D)



— [T = My2)(@ - ) (- ) + TTaz(e1 - 5) (- 5)] €1

# [10 — s + T (61 5)° - (@ ﬁ)Q)}iz}, (32b)
s 3.J>R? - = s .
lp(t)z 2;2 {1+\/61_762[11—3(IV111(€'p)2+2]V112(e'p)(ej_'p)+IV]_22(€J_'p)2)

+2 (TI\IQQQ — TIT112 + IV 29 —I/‘\/uz) (é-p)(éL -P)+2(III22 + [Vi22) ((é '13)2 —(éy 'ﬁ)2>}
h-p .
—2<3\/1—e2+TﬁpA) (I[H(e-p) +2[T12(é-p)(e, - p) + I12z(é - p) )+2\/1—6210
P
~ M [VI=e (3(h-p)* ~1) +5(h-p)* ~2(h-p) ~ 1]

+ 3T (T + eTT) (@ pes - B) + (14 2eL )?)

— 51V 112(é-p)? —5IVan(é, -p)* — Q(mlm + 6ﬁ12) ((é -p)’ — (e 'ﬁ)zﬂ

6H
np?

+ (=) 2[TT(e p)(er - p) - TTha((€-5)” - (e1 - 5)?)] } (32¢)
where Roman numerals I1, I2, II11, ... designate various functions of true anomaly, fQ, fI12, ... represent
the difference of these trigonometric expressions from their averaged values, I1, ... are indefinite integrals

of the previous core functions, and I. 2, ..., represent differences between the doubly-integrated expressions,
their averaged values, and the previous core averages. While somewhat cumbersome, the adopted notation
mirrors the derivation of Appendix B and is otherwise systematic and methodical. The needed results
pertaining to the solution, Eq. (32), are given by

Ip = f +esinf, (33a)
I = % (12ef + (12 + 9¢2) sin f + Gesin 2f + ¢ sin3f) : (33b)
1111:%(6)‘+9€Sinf+3sin2f+esin3f), (33¢)
1122=%(6f+3esinf—3sin2f—esin3f), (33d)
I = % (36ef + 72sin f + 24esin2f + 8sin3f + 3esin4f), (33e)
III90 = %(12@f—|—2451nf 8sin3f — 3esin4f), (33f)
Vi = ﬁ (1806f +30(6 4 5¢?) sin f + 120esin 2f + 5(4 4 5¢?) sin 3f + 15esin4f + 3¢* sin 5f> , (33g)
IWVigo = ﬁ (GOef +30(2+ €®)sin f — 5(4+ ¢*)sin3f — 15esin4f — 3¢ sin 5f) , (33h)
%2 ((12 +3¢2)(cos f — XY + 6e(cos 2 — XO2) + €*(cos 3f — X8’3)), (34a)
1112——1—12(36 (cos f — X0 1Y 4+ 3(cos 2f — X02)+e(cos3f X )), (34b)
Il110 = —% (24 cos f — XO1) 4+ 12e(cos 2f — X0%) + 8(cos 3f — X0%) + 3e(cos 4f — X8’4)), (34c)
T2 = % (72(cosf — X>Y) +12e(cos 2f — X?) — 8(cos 3f — X®) — 3e(cos4f — X ) (34d)

V112 :—240 (30(2—|—e )(cos f — X§") 4 60e(cos 2f — X %) + 5(4 + 3e?) (cos 3f — X°)
n 156((308 Af — X0 + 3¢2(cos 5f — X8’5)), (34e)

Vo = —240 (30(6 +¢®)(cos f — XO1) + 60e(cos 2f — X0?) — 5(4 — %) (cos 3 — X0?)

— 15e(cos4f — X8’4) —3e*(cosbf — X8’5 ), (34f)



= 1 1 0,1 0,2 0,3
I,= E;E(lzwe YO 4 6eC + CP° ) sin kM, (35a)
= 1 o1
Iy = =55 > 2 (360" +3C)2 +ec®) sink, (35b)
k=1
= 1 1
Mz =—5: > ¢ (2 ACOT 412602 48003 4 3eC: 4) sin kM, (35¢)
k=1
= 1 =1
IViz =55 Z - (30(2 + )Pt 4 60eCy® 4+ 5(4 + 3e*) O + 150" + 3e202’5) sinkM,  (35d)
k=1
= 1 =1
Vo = — 575 > i (30(6 +e2)OP 4+ 60eCY? —5(4 — ) OP® — 15eC)* — 3e20,2’5) sin kM, (35¢)
k=1
1 i 1 (359" +350% + eSp*) coskM (36a)
6 £k k k k ’
1 o0
21 00,1 0,2 2\ 00,3 0,4 2 40,5
=1 [2_: (6(2+e )Sp Tt +36eS,7 + (28 4 9¢%) S, 7 + 185, + 3”5}, ) coskM} (36b)

where all intermediate terms are given in Appendix B.
Thus, following Eq. (6), given the initial osculating state (eo, Ho,lo), the mean equations of motion,
Egs. (30), have to be initialized as

ey =-eg — eSp(to),
ﬁo = Hy — HSp(to), (37)

Zo =1y — ISP(to).

4 Numerical comparisons with Brouwer-Lyddane

Lyddane (1963), in establishing the validity of his new formulas for small eccentricities and inclinations
that leverages the fundamental solution of Brouwer (1959), made only a few comparisons with the results
of a Cowell integration. The general domain of validity of the Brouwer-Lyddane (BL) mean-to-osculating
theory, however, has hitherto not been established. Here, we consider an extended grid of initial conditions
and test the developed Milankovitch formulation against both BL and the fully numerical transformation of
§2.2. For Brouwer-Lyddane, we have verified that the more streamlined formulas presented in Schaub and
Junkins (2018) have been correctly transcribed according to their original sources, excepting the missing
sin(2w) factor in the long-period terms of M, w, and 2, which has only been noted in the recent erratum
of the latest edition of this widely used monograph.® Furthermore, rather than using Lyddane’s adhoc
modification, Gim and Alfriend (2003) developed a new theory based on Brouwer’s generating function that
uses equinoctial elements. While still invalid at the critical inclination, Gim and Alfriend (2003) concluded
from various numerical simulations that their method produces reasonable results within 0.25° of this small
divisor. Being inherently rooted in Brouwer’s theory, it was expected at the outset that Lyddane (1963)
and Gim and Alfriend (2003) would yield the same overall degree of accuracy. Nevertheless, for the sake of
completeness, and because, superficially, it is not apparent that the formulas of Gim and Alfriend (2003)
are mathematically equivalent to those systematized in Schaub and Junkins (2018),% we have also extended
our numerical campaign to include a comparison between these as well (see Appendix C).

Figure 2 shows a numerical confirmation of the validity of the Milankovitch formulation for satellites
of the Sun-synchronous and Molniya type. The procedure was to first convert the initial osculating orbit
into its corresponding mean elements using the developed formulas. These initial osculating and mean

3 Retaining the long-periodic perturbations in the transformation from osculating to mean elements is technically a
misuse of Brouwer’s theory (Breakwell and Vagners 1970); yet, it is, perhaps inadvertently, done in the literature (Schaub
and Alfriend 2001) and we show herein that it does not have much bearing on the solutions outside the critical inclination.

4 We have verified that the expressions for a and i do indeed agree, but have not done so for the remaining elements,
which is a more painstaking and arduous task.



states were then propagated according to their dynamics described by Eqgs. (29) and (30). In the former
case, the results are equivalent to, though generally more accurate than, a simple Cowell integration in
Cartesian space. The time histories of these evolutions at various subintervals were subsequently used as
input to the respective osculating-to-mean and mean-to-osculating transformations in order to recover the
aforementioned simulated trajectories.
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Fig. 2 Evolution of the osculating and mean orbital elements for a low-altitude, nearly circular, and retrograde satel-
lite (top) and a highly elliptical, semi-synchronous, critically inclined satellite (bottom). The initial osculating states
(a,e,i, M,w, 2) = (R + 800 km, 0.001, 98°,0,90°, 180°) (top) and (26562 km, 0.74,64.3°,120°,60°,30°) (bottom) were con-
verted into their corresponding mean elements using the developed Milankovitch formulation, and each set was propagated
according to Egs. (29) and (30), respectively. The osculating (cyan) and mean (yellow) trajectories were recovered (purple
circles and red diamonds) at equal time steps using the aforementioned transformations, taking the respective simulated
dynamics as input.

Projecting both the simulated and recovered osculating evolutions into the radial, along-track, and
cross-track frame, we use the norm root mean square (RMS) of the positional error as a means to as-
sess the accuracy of the transformation. To keep the presentation brief, we do not consider the velocity
errors or other metrics. Figure 3 shows the results of this process for Brouwer-Lyddane, Milankovitch,
and the numerical transformations, respectively, for Sun-synchronous-like orbits and nearly critically in-
clined, semi-synchronous ones. While the Milankovitch scheme yields sub-kilometer accuracy in these orbital
configurations, neither BL nor the numerical formulation can handle the more challenging scenario. The
dependence of the resulting errors on the choice of orbit orientation angles is also highlighted by Fig. 3.

For completeness and further validation, Figure 4 compares the aforementioned Brouwer-Lyddane trans-
formation which includes the long-period terms, with a BL mean-to-osculating implementation that omits
them. These test cases are simulated in the trusted semi-analytical propagator, STELA, using a J2-only
model. While slight discrepancies with STELA are to be expected due to different platforms, mean-element
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Fig. 3 Radial, along-track, and cross-track errors between the recovered and simulated osculating trajectories, using the
Brouwer-Lyddane (orange, dash-dot), Milankovitch (blue, dashed), and numerical (gray, solid) transformations, respectively.
The initial osculating orbits (a, e,7) = (R+ 800 km, 0.001, 98°) (top) and (26562 km, 0.75,63°) (bottom), each with (w, £2) =
(90°,180°) and M = 0 (left) or M = 45° (right), were converted to their corresponding mean states using each respective
transformation and subsequently propagated following Eq. 30. At every time step, the simulated mean trajectory was
converted to osculating according to each transformation and compared against the simulated dynamics of Eq. 29. The
norm RMS of the difference between the recovered and simulated positions (in km) over five orbital periods varied between
0.0556 and 20.9714 for Brouwer-Lyddane, 0.0666 and 0.3114 for Milankovitch, and 0.0533 and 20.9796 for the numerical
transformation.

equations, and astronomical constants used in the respective simulations, the results are in good quanti-
tative agreement. Importantly, the long-period terms in the full Brouwer theory do not cause appreciable
changes in the recovered solutions throughout the whole of orbital phase space excepting a narrow band
centered around the critical inclination.

Figure 5 shows error maps corresponding to two different initial eccentricities for 500 x 500 grids of initial
inclinations and semi-major axes. Each grid point, together with (M, w, £2) = (0,0,0), was used to form the
full osculating element state vector, and propagated for five orbital periods. The same procedure outlined
in the previous paragraph was used to characterize the accuracy of each transformation, where the colorbar
in Fig. 5 corresponds to the norm RMS of the difference between the recovered and simulated positions
over the timescale of the propagations (five orbital periods). Note that prescribed limits were imposed on
the colorbar of each map in this numerical campaign so as to more clearly highlight the differences among
the various transformations.

For the low-Earth orbit (LEO) map of Fig. 5, for which a € (R+200, R+2000) km and e = 0.01, all three
transformations performed worse for low inclinations, with the Milankovitch scheme slightly degrading at
very low altitudes. Milankovitch has the highest accuracy near the critical inclination and its retrograde
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Fig. 4 Radial, along-track, and cross-track errors between the recovered and simulated osculating trajectories, using
the full Brouwer-Lyddane (orange, dash-dot), BL without long-period terms (blue, dashed), and STELA (black, solid)
transformations, respectively. The initial osculating orbits (a, e, ) = (R+800km, 0.001, 98°) (left) and (26562 km, 0.75, 63°)
(right), each with (w, £2) = (90°,180°) and M = 45 (left) or M = 0° (right), were converted to their corresponding mean
states using each respective transformation and subsequently propagated. At every time step, the simulated mean trajectory
was converted to osculating according to each transformation and compared against the simulated osculating dynamics.
The norm RMS of the difference between the recovered and simulated positions (in km) over five orbital periods was 0.0556
and 20.9714 for BL, 0.0555 and 20.9785 for BL w/out LP, and 0.0543 and 22.4028 for the STELA transformation.

counterpart, while BL fails in these regimes.® The Milankovitch transformation has a similar high perfor-
mance as the numerical scheme for the medium-Earth orbit (MEQO) to geosynchronous orbit (GEO) map,
which considers a higher initial osculating eccentricity of e = 0.2. For even higher eccentricities, however,
as in those considered in the geostationary-transfer orbit (GTO) and Molniya maps of Fig. 6, both the BL
and the numerical schemes break down. Brouwer-Lyddane is particularly divergent within the band cen-
tered at the critical inclination, as expected, but otherwise yielded similarly poor results as the numerical
transformation.

Figure 7 shows error maps in the semi-major axis—eccentricity plane for four different initial inclinations.
For all three transformations, the error is highest at the boundary of allowable orbits, above which the
perigee altitude would equal the Earth’s radius. Only the Milankovitch formulation can accurately treat
all permissible initial conditions of these maps. The retrograde critical inclination map sheds more light on
the intrinsic singularity present in BL, which often leads to unphysical results.

The remaining slice of the action-like element space is given in Fig. 8, which shows how the errors
manifest in the (4, e) plane for two values of initial semi-major axes (representing LEO satellites at 800 km
altitude and GEO birds). Once again, we can see that Milankovitch is somewhat weak in the low-inclination,
low-eccentricity, and low-altitude regimes, but otherwise can adequately treat all of phase space, including
orbits near the critical inclination that render BL singular and the high-eccentricity orbits that cause issues
in the numerical transformation. The reason for the slight degradation in performance of Milankovitch
remains unknown.

It must be noted that all previous error maps were constructed with the same set of orbital angles
M, w, and §2 (all being set to zero). As shown earlier in Fig. 3, other specific combinations of angles lead
to different evolutions, in general, and different error residuals. Figure 9 shows how such errors manifest
in the angles phase space for a particular set of (a,e,i). While not readily apparent in the Milankovitch
transformation, Brouwer’s theory has no functional dependence on (2, and thus the errors are expected to
be independent of this orientation angle. This is validated in Fig 9, where we can also see that the errors in
both the BL and numerical solutions spike at M +w = 90°. Strikingly, this specific value of mean argument
of latitude is when Milankovitch performs best. It can be concluded from Fig 9 that setting all angles to
zero did not unfairly bias any of the previous error map results.

5 Note that neither an implementation of BL without the long-period terms or STELA would be singular here, but would
otherwise perform as the numerical scheme (cf., e.g., Figs. 3 and 4).
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osculating (¢, a) values, for initial eccentricities of 0.01 (left) and 0.2 (right), and where the initial mean anomaly, perigee,
and node angles were all set to zero. The colorbar represents the norm RMS of the difference between the recovered and
simulated positions over five orbital periods, according to each formulation. The colorbar limit was set to the maximum
error found between the Milankovitch and numerical schemes, as the Brouwer-Lyddane formulation becomes singular near
the critical inclination. Grid points leading to unphysical errors or to values that exceed this limit are represented in white.
From left to right, the (mazimum, mean) errors (in km) were (1.0626,0.1967) and (68.9371,0.1804) for Brouwer-Lyddane,
(1.4004,0.2664) and (0.8627,0.0268) for Milankovitch, and (0.9673,0.1933) and (0.3948,0.0334) for the numerical scheme.
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Fig. 6 Error maps in the inclination-semi-major axis plane using the Brouwer-Lyddane (top), Milankovitch (msiddle), and
numerical (bottom) transformations, respectively. Each panel samples an equidistant grid of 40 thousand initial osculating
(4, a) values, for initial eccentricities of 0.69 (left) and 0.74 (right), and where the initial mean anomaly, perigee, and node
angles were all set to zero. The colorbar represents the norm RMS of the difference between the recovered and simulated
positions over five orbital periods, according to each formulation. The colorbar limit was set to the maximum error found
between the Milankovitch and numerical schemes, as the Brouwer-Lyddane formulation becomes singular near the critical
inclination. Grid points leading to unphysical errors or to values that exceed this limit are represented in white. From
left to right, the (mazimum, mean) errors (in km) were (6.7332,4.3022) and (1689.0290, 19.5805) for Brouwer-Lyddane,
(1.1909,0.4257) and (0.8106, 0.6340) for Milankovitch, and (6.7502,4.2019) and (11.0569, 9.8514) for the numerical scheme.

5 Discussion

Appendix C provides a detailed comparison of Brouwer-Lyddane against Gim-Alfriend (GA), the implemen-
tations of both contain the long-period terms. While still suffering from the critical inclination singularity,
the formulas of Gim and Alfriend (2003) yield a more consistent result, on average, with the numerical
scheme. This is surprising given that they were both fundamentally based on the same generating function,
given by Brouwer (1959), and the modifications made by Lyddane (1963) also rendered the solution valid
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Fig. 7 Error maps in the semi-major axis—eccentricity plane using the Brouwer-Lyddane (top panels), Milankovitch (mid-
dle panels), and numerical (bottom panels) transformations, respectively. Each panel samples an equidistant grid of 40
thousand initial osculating (a,e) values, for initial inclinations of 6° (top-left), 63° (top-right), 98° (bottom-left), and
116.6° (bottom-right), and where the initial mean anomaly, perigee, and node angles were all set to zero. The color-
bar represents the norm RMS of the difference between the recovered and simulated positions over five orbital peri-
ods, according to each formulation. The colorbar limit of each map was set to the maximum error found in the Mi-
lankovitch scheme to provide a better contrast. Grid points leading to unphysical errors or to values that exceed this
limit are represented in white. Clockwise starting from the top left: Brouwer-Lyddane recorded (mazimum, mean) errors
(in km) of (58.5237,1.2662), (59.5538,1.2013), (59.6549,1.2698), and (82198.6187,218.0410); Milankovitch recorded errors
of (3.7776,0.2221), (2.2572,0.0675), (3.4344,0.0914), and (2.2940,0.0682); and the numerical scheme recorded errors of
(58.4914,1.0276), (59.5997,1.1049), (59.5904, 1.0825), and (59.6009, 1.1046).

for small eccentricities and inclinations. Nevertheless, while notable quantitative differences are apparent
in Appendix C, they are in good qualitative agreement, though neither can adequately treat orbits near
the critical inclination or those of high eccentricity.

Being a non-canonical set of elements, our derivation followed the approach used by Kozai (1959), as
further elucidated by Scheeres (2012). We note, however, that, like Gim and Alfriend (2003), we could
have merely adopted Brouwer’s generating function and computed the short-periodic corrections using
Poisson-bracket operations. Nevertheless, we elected to present an independent derivation on account of
the numerical results of Appendix C, and because our future work will extend our formulation to other
perturbations for which a convenient generating function is not always available Shen et al (2019).
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provided a general series solution for the mean longitude [ based on Hansen coefficients that can be taken
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Fig. 9 Error maps in the mean anomaly—periapsis angle plane (left) and periapsis—node angles plane (right) using the
Brouwer-Lyddane (top), Milankovitch (middle), and numerical (bottom) transformations, respectively. Each panel samples
an equidistant grid of 40 thousand initial osculating (M,w) or (w, 2) values, for an initial semi-major axis of R + 800 km
(left), eccentricity of 0.1, and inclination of 98°. The remaining orbital element needed to form the full state vector was set
to zero in each case. The colorbar represents the norm RMS of the difference between the recovered and simulated positions
over five orbital periods, according to each formulation. The colorbar limit was set to the maximum error found across all
schemes, as there were no singular or outlier cases for these maps. From left to right, the (mazimum, mean) errors (in km)
were (1.3241,0.4100) and (1.0332,0.4704) for Brouwer-Lyddane, (0.2068,0.1417) and (0.2064,0.1490) for Milankovitch, and
(1.0182,0.2048) and (1.0180,0.3181) for the numerical scheme.

to any desired order of accuracy.® Although not leading to drastic errors, improvements should be sought
in our algorithm for treating low-altitude orbits of small eccentricity and inclinations, as this is the only
orbital regime for which Milankovitch did not outperform the rest. We note that our formulation bypasses
the critical inclination because we do not consider the long-periodic terms that arise from a second-order

6 Truncating to order 12 in the Hansen coefficients was found to yield accurate results, in general, with higher orders
being needed with increasing eccentricity.
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perturbation treatment. On this account, we also omitted these in Brouwer’s theory in Fig. 4 to compare the
performance against our -selely—first-order vectorial formulation. We emphasize that the long-periodic terms
included in the recovered solutions for BL and GA for all presented error maps are otherwise negligible
away from the critical inclination.

6 Conclusions

We have developed a new mean-to-osculating and inverse transformation based on the Milankovitch vecto-
rial elements and with the mean longitude as the fast variable, that is valid for all eccentricity less than one.
An extensive numerical campaign was used to validate the vectorial transformation over orbital phase-space
grids tailored to the relative distribution of cataloged Earth satellites and debris. Having provided a general
Kozai-like scheme, not rooted in canonical perturbation theory, our approach can be adopted to noncon-
servative forces, such as solar radiation pressure and atmospheric drag, in addition to treating lunisolar
third-body gravity and other predominant perturbations (Shen et al 2019). It could also be advantageous
to use the true orbit longitude as the fast variable, given that the non-averaged and averaged equations are
more simple than those for the mean longitude.
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A Auxiliary Formulas

We require the double quadrature of f, sinmf, cosmf, where m is an integer. The traditional approach
has resorted to more or less elaborate expansions of various functions into sums of periodic terms, which
depend chiefly on Taylor’s series and Fourier’s theorem, mainly because the integrals of these functions
cannot be obtained conveniently in any other way (Brumberg 1995). While detailed explicit tabulations for
these quantities may be found in Cayley’s and Newcomb’s classical tables, these results may be deduced
from the Hansen coefficients (Hughes 1981). Namely,

o0
sinmf =" S () sinkM, (38a)
k=1
o0
cosmf =Cy™(e) + Z Cg’m(e) cos kM, (38b)
k=1

where the coefficients ;"™ and C;"™ for integers k, n, and m are power series in the eccentricity, starting

with degree |m — k|, and are related to Hansen coefficients X, by

Co™ =X, (39)
Cpm = XM 4 X (40)
Spm = X X (41)

For k = 0, exact analytical expressions exist for the zero-order Hansen coefficients X" for all values of
n and m; in particular, we recall a special result for the zero-order Hansen coefficients, derived by Kozai
(1962a):
(—e)m(l +mv1— 62)
Irvi—eym
For k # 0, the analytical expressions for them do not terminate and, consequently, the series have to be
truncated at some particular order in the eccentricity.
Hansen'’s coefficients can be expressed as series invoking Bessel and hypergeometric functions from which
several formulae of recurrence can be derived that greatly facilitate their calculation (Challe and Laclaverie
1969; Giacaglia 1976):

2m
X(()),m = i Cos(mf) dM = m = 1,2,3, .. (42)
2 Jo

EX = %‘; D AN B s (43)
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(44)

A useful series representation to seed the recursion, which dates back to Hansen, is given by (Proulx and

McClain 1988)

o0
X;,m -1 +ﬂ2)—(n+1)(_6)\k—m| ZLéZ_;mfffsfl) (k\/m) Léi—:mffftfl) (k 1 +ﬁ2) 6247 (45)
=0

where the functions ng ) (z) are the generalized Laguerre polynomial defined as

0 . . ¢
() _ eft+7\x
@ =Y ()%
=0
and

s=[lk—m|+ (k+m)]/2
= [k —m|— (k+m)] /2.

In the preceding expressions, n = v1 —e2 and 8 = (1 —7)/e.
Also needed in our derivation is the classical equation of the center, which is given by

f=M+2 Z Te(ke) + Y B" (Jo—n(ke) + Jogn(ke)) | sin kM,
k=1 n=1

=M+ Z b sin kM,
k=1

where Jy(z) are Bessel functions of the first kind.

B Derivation of the short-periodic perturbations in the Milankovitch elements

(46)

(47)
(48)

(49)

The procedure involves first writing down an approximate differential equation that governs the short-period
dynamics for each variable (e, H,I), according to Eq. (4). The first indefinite time integration of Eq. (5)
requires the quadrature of dyadics and higher rank tensors of the dynamical variable ». In particular, we
can expose all of the fast-variable terms of Eq. (13), and can complete the needed core integrals by changing

the dependent variable from time to true anomaly or mean anomaly:
2
r 1
dt = i df = - dM.

Specifically, we have

[La [ty

= H3 /(1 +ecos f)df
H3 107

For the vector term, we have

I_/—dt H/—df

= H5 /(1+ecosf) (cos fé+sin fé, ) df

= %([1(-3 + e ).
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(50)

(51)

(52)



Similarly, for the dyadic terms, we find

P
II:/—dt H/Tdf
=L /(1—|—ecosf)[cos2féé+cosfsinf(ééj_+éJ_é)+sin2féJ_éJ_] af

= 153 {Illlee—l—lllg(eeL + eLe) + [IQQ@LEL}

where

117 = /(1+ecosf)cos2fdf
- %(6f—|—9esinf+3sin2f+esin3f),
I3 = /(1 + ecos f)cos fsin fdf

=1 (3ecosf+30052f+ecos?)f)

I35 = /(1+ecosf)sin2fdf
- %(6f—|—3esinff3sin2ffesin3f).

In the same way, we have for the first triadic terms:

rre TP
11T = / 5 dt=5 / ——df

- % /(1 + ecos f) [cos fééeé + cos® fsin f(ééé| + éé é+ é, éé)
+cosfsin® f(éé é, +é éé, +é,é,é)+sin’ féLéLéL] df
=5 [Illlueee Y IIIa(é6é, +éé é+é) éé)

+1II22(éé €, +é, 66, +é,€,é)+ IIIQQQéLéLéL} .
Finally, for the last triadic term, we have

rrr rrT

2

H5

/(1+ecosf) [cos fééeé + cos® fsin f(éée| + éé é+ e, éé)

+cos fsin® f(éé é, +é,éé, +é,é,é)+sin’ féLéLéL} df
5[5 [IVHleee + IVii2(ééé| +¢éé e+ é, ée)

+IV]_22(ééJ_éJ_ +éée| +éJ_éLé) +IV222éJ_éJ_éJ_i|.

Iy = /(1+ecos)df

= f+esinf,

I = /(1+ecosf)zcosfdf

1
12

where

(12€f+ (12 + 9¢> )sinf+6esin2f+62sin3f),
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(53)

(54)

(59)

(58)

(59a)

(59b)



I, = /(1+ecosf)2sinfdf

= 112 ((12+36 )cos f + 6ecos2f + € cos3f>, (59¢)

11111 = /(1 + ecos f)cos® fdf
= 5% (36ef+72s1nf+24651n2f+851n3f+3651n4f> (59d)
Iz = /(1+ecosf)0052fsinfdf

:7%(24(308]04-126C082f+80083f+360084f) (59e)

IIT90 = /(1 + ecos f) cos fsin® fdf

96(126f+24smf 8sin3f — 3esm4f) (59f)

111390 = /(1+ecosf) sin® fdf

:—%(72cosf+12ecos2f 8cos3f — 3ecos4f) (59g)

Vi1 = /(1 +ecosf)2 cos3fdf

1
~ 240

IVi1o = /(1+ecosf)2c052fsinfdf

(1806f +30(6 + 5e2) sin f + 120esin 2f + 5(4 + 5e2) sin 3f + 15esin4f + 3¢ sin 5f), (59h)

- 240(30(2+e ) cos f + 60 cos 2f + 5(4 + 3¢2) cos 3f + 15¢ cos 4f + 3¢ cossf) (59i)
IVi0 = /(1+ecosf)2cosfsin2fdf
24110 (6Oef+3o(2+e )sin f — 5(4 + €2) sin3f — 15esin4f — 3¢ sin5f), (59))

IVa9o = /(1+ecosf)25in3fdf

515 (30(6+e )cos f + 60ecos2f — 5(4 — 2) cos 3f — 15ecosdf — 3¢> cos5f). (59Kk)

We also require the averages of these core integrals, which can easily be deduced by exploiting the
Hansen coefficients (Eq. (38)) and equation of the center (Eq. (49)) expansions:

- 1 2m
o= 5 | (f +esinf)dM
=T, (60&)
_ 11 2m
Ti= —— (12ef+(12+9@2)sinf+66sin2f—|—62s1n3f>dM
1227 J,
= Te, (60b)
- 11 [ )
IQZ—E? ((12+3e )cos f + 6ecos2f + e c0s3f) dMm
1
= — 15 (243X +6eX0? +X7°) (60c)
= 11 [ . . .
T = —=— (6f+9esmf+3sm2f+esm3f)dM
1227 J,
Z%m (60d)
o 11 2w
Ilho = -5 (Becosf+3cos2f+ecos3f)dM
1227 J,
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)
12
11

ﬁmzﬁf 6f+3esinf—3sin2f—esin3f)dM

(36X8’1 +3x02 + exgv?’) , (60c)

1
5T (60f)
IIT111 = &%/ 366f+7251nf+24esin2f+8sin3f+3esin4f) dMm

- 8”6’ (60g)

27
ﬁm:f%% (24cosf+1260052f+8cos3f+3ecos4f> dM

0,1 0,2 0,3 0,4
= -5 (24X0 +12eX92 +8X03 + 3ex? ) , (60h)
11 2m

Mhas = 55— (12ef+24sinff8sin3ff3esin4f) dM
0

= %ﬂ'e, (601)
11 27

mm:_%% (72cosf+12ecos2f—8cos3f—3ecos4f)dM

= -5 (72X° L 412ex02 - 8X0% — 3ex 4) (60j)
11

27
IVi11 = 5403 /0 (180ef +30(6 + 5¢”) sin f + 120esin 2 f

+ 5(4 4 5¢%)sin3f + 15esin4f + 3¢ sin 5f) dMm

_ %m, (60K)

— 11 [ 9
IV == 2+ + 2
112 54027 |, (30( e”) cos f + 60ecos2f

+ 5(4 +3¢%) cos 3f + 15e cos Af + 3¢2 cos5f) aM

= 7240 (30(2 + ) X0 +60eX0? 454+ 3¢3) X% + 15e X0 + 362X8’5) , (601)

1 1 2m

11 .
Wiz = 560- | (6oef+30(2+e ) sin f

—5(4+€?)sin3f — 15esin4f — 3e2 sin5f) aM

_ im’ (60m)

11

27
NV - - = 2
Vi = — 50 %/O (30(6+e ) cos f + 60e cos 2f

—5(4—ez)cos3f— 15€COS4f—3€2COS5f) dm

~55G (30(6 + ) X0+ 60ex0? — 5(4 — €2)X0P — 15Xt - 362)(8’5) . (60n)

The previous results are sufficient to derive the short-periodic perturbations in the eccentricity and
angular momentum vectors, according to Egs. (18a) and (18b), respectively. The mean longitude, however,
requires the computation of additional integrals due to the mean motion Taylor-series terms, as detailed in
Eqgs. (22) and (23). These can be carried through to the core integrals, where again we can use Egs. (38)
and (49). In particular, using the mean anomaly as the dependent variable, we have

I = 112 (12ef+ (12 + 9¢2) sin f + Gesin 2f + ¢ sin3f) dM
1 1
== {661\42 -3 (12e¢k + (124 96380 + 6esP? + 6252’3) cos kM} : (61a)
k=1
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I, = —1—12 ((12+362)cosf+6ecos2f+e2cos3f) dM

((12 +3¢2)001 + 600 + eQCS’S)M

+ Z ((12 + 3¢? Co"l + 660,2’2 + 6202’3) sin kM:| ,
Iy = E/ 6f+9@Sinf+SSin2f+esin3f) aM
1 1
=1 {SM2 — Z % (6¢k + 9652’1 + 352’2 + 682’3) cos kM} ,
k=1

ITio = —1—12/(Secosf+3cos2f+60053f) dM

—1—12 (3608’1 +300% + 608’3)M

(o)
+ 3 1 (3Rt 43002 4 e sin kM] ,
=1

ng—% (6f+3esinf—3sin2f—esin3f)dM
1 =1
= aare > 2 (60k+3esp" — 3502 — 5P cos kM} ,
L k=1

1111 = %/(366f—|—72sinf+24esin2f+8sin3f+3esin4f) dM

oo
= % 18eM? -3 1 - (36e0p + 72507 + 24650 + 85)° + 3esP ") cos kM} :
k=1
Ili1o = —— / 24 cos f + 12ecos 2f + 8 cos 3f —|—Secos4f) aM
1

o6 (2400 U4 126002 4+ 8C0° + 3600 4)

o0
1 0,1 0,2 0,3 0.4) .
+ Z 2 (24001 +12e02 +8CP° + 3ec?) sim kM} ,
=1

TTT120 = % (1zef+24sinf—8sin3f—3esin4f) aM

1 — 1
- 5% {GeMQ = 2 (12e0 + 24807 — 8507 — 3esP*) cos kM} ,
k=1

TTT920 = —%/(72cosf—|-1260052]‘—8(}083)‘—360054}‘) aM

96

(7208 +12e00? — 8C0* — 3eCy )M

o0
+3 %(720,3’1 +12¢C)” = 8CP° — 3¢CP) sin kM] ,
k=1

~ 11 [ . ,
Vi = m%/o (180ef+30(6+5e )sin f + 120e sin 2f

+5(4 4 5e?)sin3f + 15esin4f + 3¢ sin5f) dMm

2
240 [QOeM
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(61b)

(61c)

(61d)

(61e)

(61f)

(61g)

(61h)

(61i)



=

o0
=7 2 (180e0 +30(6 4 5¢*)SP" + 1206507 +5(4 + 5¢%)5P° + 1550 + 3¢ 5P ) cos kM] :
k=1
(61j)
1

Vi = —m/ (30(2+ e?) cos f + 60ecos 2f

+5(4 + 3¢%) cos 3f + 15¢ cos 4f + 3¢ cos5f) M

1

~or (30(2+e )OO 4 60eC0? + 5(4 + 3¢2)C0P + 1500 + 3¢ 005)

+ Z (30 (2 + )P +60eCy? +5(4 + 3¢%)CP % + 15eC* + 3¢*Cp 5) sin kM} (61k)

L
240

—5(4 +€*)sin3f — 15esin4f — 3¢ sin5f) dMm

Viss = / (GOef +30(2 + €2)sin f

_ 2
=510 |:30€M

|
WE
it

(606¢k +30(2+€%)S," —5(4 +€%)S)° — 15e8,* — 3e252=5) cos kM} : (611)

>
Il

1

IVago = —ﬁ/ (30(6+ e®) cos f + 60ecos2f

~5(4— e cos3f — 1Secos4f—362cos5f) aM

B [(30(6“ )OO +60eC0 = 5(4 — )CQ® ~ 15eCP — 3°CO7 )M

240
2

w\H

(30 (64 ¢2)COL +60eC0? — 5(4 — €)% — 1500 — 3¢ 20,275) sinkM} . (61m)

Note that integrands are the same as those of the previous averages I1, I2, I111, ..., in Eq. (60), but they
differ in that the former are definite while the later are indefinite.
Finally, we require the averages of these doubly-integrated expressions:

I = sme (62a)
To = _%2 ((12+3e)Cf" +6ecy® + 6208*3)7r} , (62b)
= 1 2 i
1111 = gﬂ' s (62C)
ITyy = 7% (3608’1 +3Cy° + 608’3)71' (62d)
- 1 2 i
IIQQ = gﬂ' N (626)
III11 = in%, (62f)
IIT115 = *i (240871 +12eC% 4+ 8Cy° + 3608’4)7T : (62g)
1 5 _
Moz = 5%, (62h)
TIl32; = —% (7208 + 1202 — 8C9* — 3eCy )r |, (62i)
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— 1
IVi12 = —

1
1Vi11 = §7F267

240

ﬁlzg = %71’26,

ﬁ//222:_

1
240

(62j)
(30(2 + )00 +60eCY + 5(4 + 3¢%)C0P + 1500 + 36208’5)7r (62k)
_ (621)
—(30(6 + )OO 4 60eCY% — 5(4 — )03 — 15600 — 36208’5)7r (62m)

With these ingredients at hand, we now step through the derivation of the short-period corrections.

FEccentricity vector: Subtracting Eq. (30a) from Eq. (29a), holding the slowly varying orbital elements con-
stant, and integrating, according to Eq. (17a), gives the short-periodic perturbations in e as

de®P(t) =

3JoR?

—5IV11

o {11 [e1+2(e p)h-5| — 12 [e—2(e1 - B)h 5]

1(é-P)%eL +51Vira [(é-5)%6 — 2(e- ) - p)é ]

~2el111(é-p)(éL - P)é+2elhs (€ p)p — (& B)(eL - P)es — (é1 - $)°¢]

4 2ellss [

+ 2(é

4 51Vias [Q(é P, -plé— (e, -ﬁ)QéL} 4 5IVaza(é, - P)2é
e
(é

é -p)p—(éL D) el} +2 [(6 p) — (éL 'ﬁ)ﬂ (II1I112€ 4+ I11122€))
1

e p) [(111122—111111)64-([[]222—IIIllg)el]

D)
[1—5hp )ﬁ+2(ﬁ~ﬁ)ﬂ-e}, (63)

The mean value of this deviation with respect to the mean anomaly is given by

—sp
de =

3JoR?

o {11 e +2(e p)h 5] -T2 [e —2(e1 - p)h 5]

=51V (é-p)’eL +51V s [(6-p)°e —2(e-p)(e. - p)é. |

+51V122

—2elT11(

26 p)(e1 P)e— (61 p)%e.L] +5TVan(er - )%

¢-p)(eL - p)é+2eTTiz (6 P)p— (&-B)(eL - Pes — (e1 )¢

+2el 122 [(ej_ P)p— (€L -P) ej_} +2 [(é p)%—(eL -ﬁ)z} (ITT112€ + TTT122€))
+2(é-p)(eyL - p) [(ITTiza — TTT111) €+ (ITTa2o — I11112) €, ]

+%7r [(1

—5(ﬁ.ﬁ)2)ﬁ+2(ﬁ~ﬁ)ﬂ ~e}, (64)

We then have from Eq. (18a), after simplifying, that

e’P(t) =

3JoR?

e {h e +2(e p)h 5] T2 [e—2(e1 - B)h 5]

= 5IVin(é-p)’er +51V 1z (€ 5)°e — 2(é - p)(e. - p)é ]

+ 51Vi292

é
[2(6-p)(eL - P)e — (e1-P)%eL] +5IVan(e, -p)e

—2el1n1(é-p)(e. - p)é+2elTiz (6 P)p — (e-P)(eL - B)eL — (é1-P)%¢]

e -
+ 2ella2 [ é -p)p—(éL '13)2é4 +2 [(é -p)° — (éL '13)2} (71\111265 + 111122éL)
+2(e-p)éy -p)(III22 —III111)é+2(ée-p)(éL - P) (1/1\1222 - 1/1\1112) e
+%M[(1—5(ﬁ.ﬁ)2)h+2 b } (65)
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in which

Iy = I — I, (66a)
12 = I12 — T2, (66b)
Iz = I — T2, (66¢)
Il1203 = I11205 — TT1223, (66d)
IVii2 = IVir2 — IV 112, (66e)
IVa20 = IVago — IV 202. (66f)

Equation (65) can be cast into a simpler form that exposes the perifocal frame components, as given in
Eq. (32a).

Angular momentum vector: In the same vein, following Eq. (17b), upon integrating, we have

dH®P(t) = M{% |:11116€+_[112(86J_+6J_€)+IIQ26J_6J_+2Mhh:| (67)
Computing the average gives
dII”’-—3Hz§R2ﬁ~{Ihléé+ljuﬁééL—kéLé)+IIméLéL%—;ﬂﬁﬁ}-E. (68)
The result is then
LFW@)::—égggﬁiﬁ-Pjnééﬁ—fhzﬁél—%élé)+ILnéLéL%—%Nﬁﬁ4~E. (69)

Equation (69) can also be written in a non-dyadic form as shown in Eq. (32b)

Mean longitude: We first note that

[a@.0 -5@) a

B 3J2R2{ e [
2p% | 1+V1—e2
+2(I1Iz222 — I1I112 + V222 — IV112) (é-p)(éL - P)

+2 (11122 + IVi22) ((é'ﬁ)Q — (&L 'ﬁ)Z)}

I -3 (IV111(é . 13)2 +2IVi2(é-p)(éy -p) + IViaa(é '13)2)

—2(3 1—€2+17APA) (1111(e~p)2+2[[12(e-p)(ej_~p)—|—][22(6J_~p)2)

+h-p
+2¢Tf§m—%w4y7f§(aﬁﬁf-4)+5m-m2—mﬁ¢n—@}, (70)
and
1 [* 2
?/o /[91(57 t) —g(@)] dt
= 321;2 { T Ll — [71 -3 (Wm(é -p)° + 21V 112(é-p)(éL - P) + TV122(éL ~I5)2)

+2 (ITT222 — ITT112 + IV 220 — IV 112) (€ - p) (€1 - P)
+2 (IT1122 + 1V 122) ( (é-p)?—(eL '13)2) }

9 (3 —es ’;hpp) (TTia(e-9)* + 2TTua(e - p)(e1 - §) + TTnn(e1 - 5)%)
+2v/1 - e2To - 777 [\/1 > (3(}1-15)2 - 1) +5(h-p)2—2(h-p) — 1} } (71)
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Furthermore,

/ P (7) dr

= _ 3JoR? {11 [eL-l-?(e P)h P} (Is — TaM) [é*Q(éL'ﬁ);pﬁ}

2np?
—51Vi11(é-p)?es +5(IViia — IV 112M) [(e p)’e—2(e-p)(éL -p)é J_}
+ 51V 122 |2 [ e-p)(éL-plée—(eL 'ﬁ)zél} +5(IVa2 — IVa22 M) (€, - p)’é

—2elly1(é-p)(éL - P)é + 2e(IT1a — TT12M) [(e p)p—(é-p)(eL-pleL — (L )Qé]

4 2elTan [ P)p— (eL -ﬁ)QéJ 2 [(é p)* — (eL 'ﬁ)ﬂ ((fﬁm ~ Iz M)é + ml?QéL)
(&-p)(ey (111122 ~ T ) é+ (ITaz — ToeaM — 1Tz + TTT112M ) &
N MQK >h+2(h 55| - } (72)
/HSp(t) dt
— w I1118é + (IT12 — TT1aM)(éé) +é, &) + I122é 6, + = Mhh| - (73)
np? 4

We also have that

1/T/eSp(t)dt2

_ 3aR {71 [eJ_-f—Z(e )k p} (I — Tom) {é—2(éL-ﬁ)ﬁ-ﬁ}

2np2
~5IVi(é-p)?er +5(IViz ~ TViizm) [(€-5)% — 2(6 - p)(e. - p)e. |

+51V122 [2(6-p)(e1 - p)é — (&1 - P)eL| +5(1V a2z — IVamam) (e, - p)°e

—2elT11(é- )1 - p)é+ 2e(ITiz — Thar) [(e- B)p — (6 B) (€1 -P)ér — (&1 - )]

+ 20T (61 PP — (61 -p)%eu ] +2[(e-5)* = (€1 - $)°] ((ITTnra — TTTniame + ITThzme )

+2(ée-p)éL-p) Kmmz - fﬁ111) é+ (m222 — TITa9om — IT1112 + m1127r) éL}

1 P2\ L o a\E

1 /T

7/ /HSP(t) dt?

— M IT116é + (IT12 — TTham)(éé +€¢e)+11223lﬂ+ 37 hh (7)
np? 3

The short-periodic perturbations for mean longitude can thus be stated as

1°P(t) = dI*P(t) — i (t)

B 3J2R2{ e

2p2 14+vV1—¢2
+2(IViie — IV1i12)(€-p)(€1 - p) + (IVi22 — IV 122) (€L 'ﬁ)z)
+ 2 (IITz22 — 11222 — 11112 + ITT112 4 IVaga — IVa22 — IVi12 + IV 112) (é - B)(é1 - )
+2 (111122 — 11192 + IVi22 — Wuz) ((é -p)” - (éL 'ﬁ)z) }

[(11 7)) - 3((IV111 ~TVi1)(e-p)

izv) (11 = Tha)e - p)°
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+2(ILiz — IT12)(é-p)(éL - p) + (112 — I122) (€ 'ﬁ)2>

/1= e2(Iy - To) — S(M ) [\/1 —e2 (3(11-,3)2 - 1) +5(h-p)%—2(h-p)— 1} }

2

V=l (1T er 26 D] - (- T T - ) o - 26 )5

—5(IV111 — [V111)(é -p)?é; +5(IV1i2 —ﬁuz —IV112(M — 7)) [(é -p)e—2(e-p)(eL 'Is)éJ_}

+ 5(ﬁ7122 —ﬁ122) [2(é -p)(éL -p)ée—(éL ’ﬁ)QéL} + 5(ﬁ/222 — ﬁ222 — TV (M —7))(é, -p)2é
—2e(lT1 — [11)(é - B) (€. - P)é+2e(ITra — [ha = Tha(M = 7)) (& )b — (€ P)(eL - B)éL — (é1 - p)’¢]
+2¢(IT22 — IT22) [(ér p)p— (€L P) 64

+2 [(é p)?—(eL '13)2] ((mHQ ST ~TIT112(M —7))é + (111122 —ﬁ122)éj_)

+2(é-p)(éy -p) [ (m122 *ﬁ122 —1IIT 11 +ﬁ111) é

+ (ﬁjmz —ﬁzm —IIT222(M —7) — IITq1o +ﬁ112 + IT1112(M — 7?)) él]

#5074 [(1 50 p) ot 2] 2 e

+ np?2 HS

(1-e )3/2{ [(Hn —[T1h1)éé+ (ITyg — ITha — TT1o(M — 7))(éé, +é, &)
+ (ITaz — [T22)é, &, + 15 (3M2 )iziz} -5} -H. (76)

Simplifying gives

°P(t) = 3;;2%2 { o \;ﬁ [Il - 3([V111(é p)? +21Vi1a(é-p)(éL - ) + [Vina(éy '13)2)
+2(f1\1222—1/1\1112+ﬁ/222—f/‘\/112) (é-p)(éL p)+2(I1122 + IVi22) ((é'ﬁ)2—(é1_'ﬁ)2)}
72(3\/1762—‘- p> (Ihl(e p)’ +20112(é-p)(é, -p) + I1x2(é) - P) >+2\/1762[()
f%M[M(S(h-ﬁ) ~1) +5(h-$)* ~2(h-p) ~ 1]
+i‘;H 1—62[ (ﬁ/—i—eﬁ)(é-ﬁ)(éL-ﬁ)+?z(1+2(éL-ﬁ)2)

C5IV112(6-P)? — 51V asa(é - p)> —2([11112+ell12) ((e 52— (e -p) )}
+ (- 2T ) es p) - Tha((e-5)” - (1-p) )]} (77)
where

Io=1Ir— I —Ts(M —7)
oo

=53 (124300 + 6002 + 2000 sinkM, (78a)

ﬁ12=ﬁ12—ﬁl2—ﬁ12(M—ﬂ)

o0
- 7% %(3602’1 +3C2% ¢ ng’3> sin kM, (78b)
k=1

IITy19 = 111112 —ﬁIIQ —IIT112(M —7)

oo
= —£ > %(240,8’1 +12eC)% + 807 + 36()2’4) sin kM, (78c)
k=1
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IVig = ﬁ//112 — V112 —IVi12(M — )

= 240 Z (30(2 +)OP +60eCP? +5(4+ 36°)CP° + 150" +3¢°CP° ) sinkM,  (78)

IV = IVago — IV222 — V92 (M — )

1 1 5\
=5 2. (30(6 + €3O0 4 60eCV? — 5(4 — )OO — 1500 — 3e20,‘j'5) sinkM,  (78e)
k=1

and

ﬁzf]u—ﬁu—ﬁm +Ezz
1 oo

+ +e cos kM,
52 (3 SO 43892 4 g 3) k (78f)

V=T — I + IIT1 — [y — ITiss + oo ~5(IV122 — IV122)

oo
= 418 [Z : (6(2+€?)SP" +86eS)% + (28 + 9¢)S7° + 18eSP* + 3¢25)°) cos kM}. (78¢)
k=1

C Numerical comparisons between Brouwer-Lyddane and Gim-Alfriend

Figures 10 through 13 show comparisons between the Brouwer-Lyddane and Gim-Alfriend formulations, as
concerns the error maps of §4.
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Fig. 10 Error maps in the inclination—semi-major axis plane using the Brouwer-Lyddane (top panels) and Gim-Alfriend
(bottom panels) transformations, respectively. Each panel samples an equidistant grid of initial osculating (¢, a) values, for
initial eccentricities of 0.01 (top-left), 0.2 (top-right), 0.69 (bottom-left), and 0.74 (bottom-right), and where the initial mean
anomaly, perigee, and node angles were all set to zero. The colorbar represents the norm RMS of the difference between
the recovered and simulated positions over five orbital periods, according to each formulation. The colorbar limit was set
to the maximum error found between the Milankovitch and numerical schemes (cf. Figs. 5 and 6), as the Brouwer-Lyddane
formulation becomes singular near the critical inclination. Grid points leading to unphysical errors or to values that exceed
this limit are represented in white. Clockwise starting from the top left: Brouwer-Lyddane recorded (mazimum, mean)
errors (in km) of (1.0626,0.1967), (68.9371,0.1804), (6.7332,4.3022), and (1689.0290, 19.5805); and Gim-Alfriend recorded
errors of (1.3476,0.1967), (65.1025,0.0728), (3.4344,0.0914), and (1470.5632, 18.7458).
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Fig. 11 Error maps in the semi-major axis—eccentricity plane using the Brouwer-Lyddane (top panels) and Gim-Alfriend
(bottom panels) transformations, respectively. Each panel samples an equidistant grid of initial osculating (a, €) values, for
initial inclinations of 6° (top-left), 63° (top-right), 98° (bottom-left), and 116.6° (bottom-right), and where the initial mean
anomaly, perigee, and node angles were all set to zero. The colorbar represents the norm RMS of the difference between
the recovered and simulated positions over five orbital periods, according to each formulation. The colorbar limit of each
map was set to the maximum error found in the Milankovitch scheme (cf. Fig. 7) to provide a better contrast. Grid points
leading to unphysical errors or to values that exceed this limit are represented in white. Clockwise starting from the top
left: Brouwer-Lyddane recorded (mazimum, mean) errors (in km) of (58.5237,1.2662), (59.5538,1.2013), (59.6549, 1.2698),
and (82198.6187,218.0410); and Gim-Alfriend recorded errors of (58.4994, 1.0281), (59.8837, 1.6868), (59.6433,1.0878), and
(48982.3446, 196.3659).
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Fig. 12 Error maps in the inclination—eccentricity plane using the Brouwer-Lyddane (top) and Gim-Alfriend (bottom)
transformations, respectively. Each panel samples an equidistant grid of initial osculating (%,a) values, for initial semi-
major axes of R+ 800 km (left) and aggo (right), and where the initial mean anomaly, perigee, and node angles were all
set to zero. The colorbar represents the norm RMS of the difference between the recovered and simulated positions over
five orbital periods, according to each formulation. The colorbar limit of each map was set to the maximum error found in
the Milankovitch scheme (cf. Fig. 8) to provide a better contrast. Grid points leading to unphysical errors or to values that
exceed this limit are represented in white. From left to right, the (mazimum, mean) errors (in km) were (1.2992,0.2601)
and (94.1968,1.9108) for Brouwer-Lyddane, and (2.5030, 0.2355) and (80.6873,1.8132) for Gim-Alfriend.
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Fig. 13 Error maps in the mean anomaly-periapsis angle plane (left) and periapsis—node angles plane (right) using the
Brouwer-Lyddane (top) and Gim-Alfriend (bottom) transformations, respectively. Each panel samples an equidistant grid of
initial osculating (M, w) or (w, §2) values, for an initial semi-major axis of R+ 800 km, eccentricity of 0.1, and inclination of
98°. The remaining orbital element needed to form the full state vector was set to zero in each case. The colorbar represents
the norm RMS of the difference between the recovered and simulated positions over five orbital periods, according to each
formulation. The colorbar limit was set to the maximum error found across all schemes (cf. Fig. 9, as there were no
singular or outlier cases for these maps. From left to right, the (mazimum, mean) errors (in km) were (1.3241,0.4100) and
(1.0332,0.4704) for Brouwer-Lyddane, and (1.0173,0.2060) and (1.3206,0.4133) for Gim-Alfriend.
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