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Abstract

Anomaly Detection of SCADA Networks through Network Measurement Study

by

Xi Qin

Despite all the increasing research efforts in industrial control systems (ICS),

these systems still fail to defend themselves at the time of some high-profile cy-

ber attacks. The most high-profile attack events include but not limited to the

Stuxnet attack on an Iranian nuclear power plant in 2010, the Industroyer malware

attack on the Ukrainian power grid in 2016, and the recent ransomware attack

on the U.S. Colonial pipeline in May 2021, which severely limit the fuel supply to

half of the east coast. The Supervisory Control and Data Acquisition (SCADA)

networks expose themselves to a broader attack surface after the migration from

serial communication network to TCP/IP compatible networks. Therefore, they

are susceptible to cyber-attacks. Another main reason why the security and re-

silience of SCADA networks have limited improvements over the decade is that,

the majority of the previous work does not have access to real-world systems

or datasets. Because it is not possible to interrupt the production process with

penetration tests, and not easy to earn the trust of the operators.

In the prelusive chapter of this dissertation, we first introduce the concepts of

SCADA and industrial control protocols. Then we review the previous work di-

vided by energy sectors in the critical infrastructure, which enables us to recognize

contributions, identify limitations, raise research questions, and discover answers.

With network captures from the SCADA networks in operational industrial con-

trol systems, specifically the power grid and the natural gas distribution network,

we launch our project with the reversal of the SCADA network topology with

xii



different levels of system knowledge, and show that even in the least bliss, one can

still conduct network discovery to the majority of network nodes. The later char-

acteristics we extract from the communication conversations between substations

and control servers challenge the long-term understanding of the SCADA network

in the security community. The primary industrial protocol under investigation

is IEC 60870-5-104, an application-layer protocol designed to control and monitor

the physical processes in federated SCADA networks.

With the knowledge base obtained from network characterization, then we pro-

pose network flow based anomaly detection method by applying unsupervised clus-

tering of the network flows, and process-based anomaly detection. The anomaly

detection is based on profiling process variables, by applying gradient boosting

tree algorithm and deep neural networks on time series datasets. Both work flows

are experimented with datasets divided by our system knowledge levels range from

the system operators help verifying the majority of network topology and hard-

ware devices, to no support at all. Approaching from the perspective of network

measurements, our goal is to establish the normal behavior baseline of the anomaly

detector by applying deep-packet inspection, and have captured several intriguing

outliers and process anomalies that are not available in a simulation/emulation

environment. After successfully training of the gradient boosting based detector,

we use feature importance analysis to mitigate the existing limitation of black-

boxed machine learning applications, and quantify the contribution of features

leading to the detection result.

The contributions of this dissertation are as follows:

• Provide solid testimonies that shred the security community’s consensus of

SCADA networks being stable and predictable, from the overall network

topology to the subtleties in the process variables

xiii



• Construct the first network characterization for an operational bulk power

grid, that offers the first view of the unique difficulties in defending a feder-

ated SCADA network

• Implement the first process-aware anomaly detector for two operational

SCADA networks, one bulk power grid and one gas pipeline network, that

successfully identifies the process anomalies and potentially dangerous mis-

configuration errors

• Present the discussion of the ambiguous understanding of false positives in

the anomaly detection for ICS, with the valuable insight from the study of

real-world datasets

xiv
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Chapter 1

Introduction

The security and resilience of the Supervisory Control and Data Acquisition

(SCADA) in industrial control systems (ICS) is an interdisciplinary research area,

which includes but not limited to the subjects of network security, control the-

ory and machine learning. Thus to perform research in this direction, one must

understand the scope of ICS, the architecture of SCADA, the industrial commu-

nication protocols, network traffic analysis and statistical models. In this chapter,

we present a concise demonstration of the key concepts in this area.

1.1 Industrial Control Systems

Industrial control systems, is a generic term for all kinds of control systems

and the related infrastructures in both software and hardware to monitor and

control industrial processes, including but not limited to energy resources (elec-

tricity, water, oil and gas), transportation regulation, commodity production and

building automation. Usually, there is a control center room in the ICS which is

remote in geographical distance from the local substations. The control server or-

chestrates local field devices in the substations from miles away through electronic

1



communication messages. In the last century, this kind of communication chan-

nels were not connected to the Internet, which were mostly serial communications.

In the recent decades, the operators have started to adopt the modern TCP/IP

compatible protocols. So the messages of control commands are encapsulated

into communication packets and sent to the field devices such as Programmable

Logic Controllers. In the opposite communication direction, the operators collect

passive measurement packets such as voltages and pressures from the sensors.

Figure 1.1 shows that the four core components in an ICS control loop. Let us

assume the components transmit messages to each other at a certain time point

k. Here is the big picture how the monitoring and controlling work.

1. The specific physical process generates a value of zk for a certain signal. E.g.

with all the connected loads, there is a consumed power signal;

2. The sensor connected to the generator collects this zk and sends out the

yk (yk = zk) to the controller. E.g. a power meter measures the power

consumed in real-time;

3. Receiving the sensor measurement, the controller sends the related control

command uk to the actuator. E.g. the controller sends a command of

slowing down power generation after receiving a consumption power lower

than a threshold value;

4. The actuators react to the control command uk, and adjust the related

mechanical device to reach the desired status by the controller. E.g. the

valve is open by a mechanical spring and the pressure is lowered to the

normal range.

2



Physical
Process

Actuators Sensors

Controller

Figure 1.1: The four most important components of an industrial control system

1.2 SCADA

Operators monitor and control the gas network with the help of a SCADA sys-

tem, which is one the most common type of ICS. A typical SCADA system has at

least one control center and multiple geographically distributed remote stations.

In the control center, the operator can see the status of the gas network through a

Human Machine Interface (HMI), which watches the status of all the stations and

is interactive for engineers. The control center may have other typical IT network

services, such as a database for historical data storage, the file system for logging

and administration documents, and a time server for network clock synchroniza-

tion. The SCADA server communicates with Remote Terminal Units (RTUs),

which is the local controller in each remote substation. In the ICS community,

there is a common hierarchical design of the SCADA network connections, shown

in Figure 1.2.

From top to bottom, Layer 5 and 4 refer to the enterprise IT networks, similar

to all other IT networks of other industries. Layer 3 has this DMZ regulating the

3



Layer 4
(Enterprise

LAN)

Internet

Layer 3
(Operation

DMZ)

Business
servers

Engineering
workstations

Historian 

Layer 2
(Supervisory

LAN)

Layer 1
(Controller

LAN)

Layer 0
(Local
bus

network)

Layer 5
(Internet)

Figure 1.2: The five layers of SCADA systems in terms of network connections
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system historians and SCADA related applications. Layer 2 is the actual super-

visory network, which is usually a local network at the substations with HMIs.

Engineers can monitor the status of the devices in this station here. In the Layer

1 of controller network, the operators utilize the Programmable Logic Controllers

(PLCs), RTUs, Intelligent Electronic Devices (IEDs) to perform any active control

or passive monitoring. These controller devices are also connected to the remote

control center. RTUs/PLCs interact directly with sensors (e.g., pressure sensors)

and actuators (e.g., valves) in Layer 0 through a local bus network. In the case

of more complex stations such as gas turbine stations, RTUs communicate within

the station with other PLCs, which are in charge of local control. But in the most

common scenarios, RTUs connect to sensors and actuators with either analog or

digital inputs and outputs. “Inputs” refer to incoming sensor values from the

physical process, and “outputs” refer to setpoints.

1.3 Power Grid

Approaching the end of the last century, the U.S. National Academy of Engi-

neering selected the top 20 engineering accomplishments of the twentieth century

that have most improved people’s quality of life. Power grid is at the top of the

list [19].

The power grid has three major components: generation, transmission, and

distribution. It generates electricity, transmits the energy across broad geographic

areas, and finally delivers to the consumers’ locations. In the transmission process,

the electricity transmission powers initially carry the energy at a relatively high

voltages at the degree of hundreds of kVs and then convert it to a lower voltages at

tens of kVs. The transmission system can span very large regions, such as the state

or even country level. The distribution network takes care of more locally regions,

5



Figure 1.3: Abstract scheme of the power grid components

Table 1.1: The Impact Differences between the Transmission and Distribution

Transmission Distribution
Power [W] 109 106

Area [km2] > 4.67 million > 10600
Voltage level [kV ] > 110 < 34.5

such as cities or districts. These differences are in Table 1.1. The generation and

transmission parts together compose the Bulk. Therefore, the failure of the Bulk

and the distribution network are not comparable in terms of the impacts. If the

adversary takes down the Bulk, it leads to a country-level black-out and affects

the whole population. While the distribution network’s failure usually endangers

merely a local area.

The measurements which the bulk system operator needs to collect from mul-

tiple electric companies (as well as the control commands they need to send)

are carried by standardized industrial protocols. One of the most popular indus-

trial protocols for bulk power system operators is the international standard IEC

60870-5-101 (IEC 101), meant for serial communications, and more recently IEC

60870-5-104 (IEC 104), which is an adaptation of IEC 101 for TCP/IP networks.

6



Control  Center System Operator

Substations

(RTUs)

Control Rooms of Substations

Substations

(RTUs)

Control Rooms of Substations

Figure 1.4: The structure of central and local administrators in a federated
SCADA network

In this dissertation we study the IEC 104 SCADA network of a system operator

as illustrated in Figure 1.4, orchestrating the operation of the Bulk power grid.

Federated networks such as the one in our study, lead to interesting observations,

because while all of the previous work in SCADA systems assumes that devices are

configured and maintained by the same system administrator and therefore have

predictable dynamics, we show here that in a federated system, SCADA networks

have diverse behaviors. Even when devices operate erratically or do not follow

the standards, the administrators of those devices do not respond to requests of

the system operator to update their systems.

1.4 Natural Gas Networks

Natural gas is a fossil fuel used worldwide primarily for heating, power gener-

ation, and cooking. Gas delivery is organized hierarchically, with a country-wide

transportation network, regional transport networks, and pipelines connecting

consumers to the network as outlined by the [6], [20], and [62]. The United States

has roughly three million miles of mainline in the gas network.
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Figure 1.5: Gas network and the differences between the country-wide, regional
and local distribution networks.

Generally, a natural gas network has three components, production, transmis-

sion, and distribution. With drilling and delicately breaking the rocks, gas wells

release and let natural gas arise from oil/water and collect the gas. Then the sep-

aration and separation station further divides the liquid and gas and cleanses any

impurity to improve the gas quality. The compressor station’s function is to com-

pensate for the friction loss of natural gas during forwarding through the metallic

pipelines[6]. As shown in 1.5, gas naturally flows from high to low pressured sec-

tions of the network, taking the point of least resistance. The gas transportation

network uses long-distance (country-wide) high-pressure pipelines, with pressures

ranging between 10 and 90 bar. Regional transport networks utilize medium pres-

sure pipelines and connect the high-pressure network to the local (low-pressure)

distribution networks. The low-pressure gas distribution network operates at pres-

sures ranging between 1 and 8 bar within a city or regional area. For every 250

to 500 households, local gas network operators deploy a distribution station [62],

which in Europe takes the form of closets visible at many street corners. The final

pipeline that connects distribution stations to individual consumers operates at

pressures below 1 bar.

An automated control system ensures that gas pressure and flow remain within

operational limits and according to the applicable standards and regulations by
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adjusting the state of valves at different points in the network. Closing a valve

reduces the amount of gas that flows into a specific network branch, creating a

higher pressure in the rest of the network. Likewise, opening a valve will allow

more gas to flow into a specific branch of the network and thus lower the pressure

in the rest of the network. The local network operator may deploy gas turbines

to increase gas pressure.

1.5 The Protocol of IEC 60870-5-104

The International Electrotechnical Commission (IEC) is an international stan-

dards organization. They prepare and publish standards for a variety of industrial

processes. One of the most popular SCADA communication standards for serial

lines is IEC 60870-5-101 (IEC 101). As TCP/IP networks slowly replace serial

communication links, standard bodies have developed new TCP/IP protocols com-

patible with legacy technologies. IEC 60870-5-104 is an extension and adaptation

of the same IEC 101 message structure but carried over TCP/IP standard. We

will refer to IEC 60870-5-101 [41] and IEC 60870-5-104 [42] as IEC 101 and IEC

104 respectively for the rest of this dissertation. IEC 104 is a protocol that is

being gravely targeted and very well studied and exploited by the adversaries[8].

As security researchers, we should investigate and comprehend how the industrial

control systems work under this protocol, and then we can evaluate how secure and

resilient the system is. International Electrotechnical Commission (IEC) devel-

oped IEC 101 first in 1995 and made amendments in 2000 and 2001 for gradually

upgrading to tele-control communications between control stations (e.g., SCADA

centers) and Remote Terminal Units RTUs (e.g., field devices in RTUs). The

connection was intended to be compatible with TCP/IP network. As a result, in

2000, IEC 60870-5-104 (IEC 104) came to the public in 2000 as a transportation
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method to transmit IEC 101 telecontrol messages over TCP/IP using port 2404.

IEC 104 encapsulates modified IEC 101 telecontrol messages into a TCP packet.

Later in 2013, IEC developed IEC 62341-5 [40] as a security extension, providing

security features for IEC 104. IEC 62341-5 provide end-to-end encryption through

the transport-layer-security TLS protocol, aiming to mitigate the replay and Man-

in-the-middle attacks that IEC 104 channels are prone to. However, most vendors

haven’t adopted this security extension yet, which is probably because of the ex-

tra configuration effort and complexity based on the feedback from one SCADA

engineer of our data provider.

The anatomy of the frame structure of one IEC 104 packet is in Figure 1.6. The

TCP payload of an IEC 104 packet contains one or more Application Protocol

Data Units (APDUs). The number of APDUs is configurable, depending on

the choice of the operators in the setting of IEC 104 protocol stack size. The

Application Protocol Control Information (APCI) is the header of the message.

Application Service Data Unit (ASDU) follows APCI, which is comprised of the

sensor values and control messages. Depending on the APCI format type as

defined by bit 0 and 1 of Control Field Octet 1, each APDU could consist of

APCI only (without any ASDU), or APCI with ASDU. For example, an APDU

that carries S-Format APCI has no ASDU while APDU that carries I-Format

APCI will have ASDU.

There are three types of APDUs, i.e. IEC 104 messages, in Figure 1.7:

I-Format APDUs have the meaningful information from the field devices. AS-

DUs are indexed by a Data Unit Identifier (DUI) and by Information Objects

(IO). Each IO represents a specific process variable measuring the value in

a field device, assigned with a unique address called Information Object Ad-

dress (IOA). IEC 104 only inherited 54 types from IEC 101’s 127 types. The
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Figure 1.6: IEC 104 Packet Frame Structure

passive measurements of sensors and the active control commands

contents are in this I-Format messages.

S-Format APDUs are acknowledgments after a certain number of I-Format AP-

DUs have been received, marked by the receive sequence number (N(R))

from the receiving station back to the sending station for data loss protec-

tion purposes. While TCP ACK number indicates the sequence number of

the next expected byte from the other end. S-format N(R) indicates the

sequence number of the next expected APDU.

U-Format APDUs supply two options: 1. the start and termination of I-Format

transmission via a STARTDT/STOPDT act message, which is acknowl-

edged with a STARTDT/STOPDT con message; 2. keep-alive exchange the

connection status requests with the TESTFR act/con messages.

Sending I-format is initiated when the control server sends a STARTDT

act to the RTU, basically telling the RTU to start transmitting its sensor

11



(Keep-alive, start/stop of transmission)

(Acknowledgement)

Control and monitor commands &

physical measurements
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readings. Then the RTU responds with STARTDT con, confirming that it

will start transmitting I-format APDUs. Otherwise, no I-format APDUs can

be transmitted since newly established (or switchover) connections are by

default in a STOPDT state. TESTFR act/con APDUs are primarily used

by both control server and outstation to keep the redundant connection from

being disconnected, i.e. keep-alive messages.

To understand the deep-packet inspection in the later sections, we need to empha-

size on some key terminologies: the ASDU type identifier (Type ID), the cause of

transmission (CoT or CauseTx), the common address (CA), and the information

objects (IO).

• Type identifiers define the format of the numeric values in the data units,

i.e. digital or analog, normalized or not, with/without time tags, etc. And

also the type of messages is a command or a measurement.
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• CoT configures how the ASDU is transmitted, and it gives how fresh the

APDU is transmitted. e.g., spontaneous, interrogation, and activation re-

lated.

– Spontaneous is an aperiodic mode, but not totally irregular. There is

a configurable threshold (also referred to as "deadbands" by SCADA

engineers). If the difference between two consecutive measurements is

larger than the threshold, the later one is polled. Otherwise the newer

measurement is not polled.

– Interrogation is an important mode for the remote control server to

query the targeted RTU, and collect all present values of all the con-

nected devices in this RTU. The ASDU type ID also defines the inter-

rogation command. If a new connection is set up, the interrogation is

must be done at the start of data transmission. The detailed frame

structure is shown in Figure 1.8. This command is in our analysis in-

terest in the later section, since it helps to separate different groups in

all the RTUs.

– Activation modes indicate the start of a new data transmission.

• The common address is a prefix to the IO address shared among all IOs

in the ASDU. In the protocol principles, it is the fingerprint of a (virtual)

device (e.g., an RTU) within the IEC 104 network. Although based on our

experience, some operators do not follow this recommendation.

• An IO is the IEC 104 representation of a process variable, e.g., a sensor

input reading or an actuator output value. The IO comprises, among other

fields, an Information Object Address (IOA) and the actual variable data.

Together, CA and IOA uniquely identify a process variable of a certain type

13



An ASDU of Interrogation Command

Type 100 Qualifier CoT: Activation
or not IO

IOA 0 Qualifiers of global or
local control

Figure 1.8: Frame structure of an interrogation command ASDU.

ID across the IEC 104 network.

In the high-profile power grid attack in Ukraine [36], the attackers injected the

IEC 104 payload into the SCADA network and accomplished a black-out. In the

most recent Industroyer2[66], the malware continued to focus on the exploit of

IEC 104. Therefore, IEC 104 is a protocol that is being gravely targeted and very

well studied and exploited by the adversaries. As security researchers, we must

investigate and comprehend why the payloads in this protocol are so attractive to

the adversary, and how the industrial control systems work under this protocol.

With more contexts, we can help build a more robust defense mechanism for ICS.

1.6 Other Industrial Protocols

In the routine activity of ICS operational network (OT network), availabil-

ity places the first in the security design principles, instead of the confidentiality

in the typical IT network. This consideration affects the design of ICS protocol

standards to be focused on the freshness of data exchange. The SCADA networks

were usually private networks composed of dedicated leased lines provided by a

telecommunications company; as such, SCADA networks are rarely connected to

the public Internet. In the last decade, the communication technologies used

for supervision and control of gas systems have migrated from serial links to IP-

network protocols, adapting to the deployment of industrial IoT devices. The
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modern ICS protocols widely adopted are Modbus/TCP, DNP3, and IEC 104.

Since the topic in this dissertation is not about the comparison of all these proto-

cols, we will only briefly introduce the application scenarios instead of deep diving

in the frame structures.

Modbus/TCP[64] are used between the PLC and field devices in a substation.

Clients and servers listen to the port 502 for data exchange. Packets of this

protocol have a straight-forward one-layer structure. There is an important field

of function code, which contains the read or write operation to a data register.

For example, one PLC as the server talks to a client device connected to a circuit

breaker in Modbus/TCP packets. The server requests to read a register storing

the breaker’s status. Then the client sends the data at the desired address to the

server as the response.

DNP3 [2] are widely implemented for communication between substations,

RTUs, and even control stations. The default TCP port is 2000, and there are

three layers (data link layer, transport function, and application layer) in a DNP3

packet. The similar field of function code describes the operation. For example,

in one conversation between a controller and general bus linked to all the field

devices, the controller requests to read the data for a certain group of event data,

if the bus has data in the requested group, it responses with the present data.

We compare these two protocols with the protocol in this dissertation in Table

1.2.

Table 1.2: Comparison of three popular ICS protocols

Aspects Modbus/TCP DNP3 IEC 104
Messaging modes Request and response Other than request and response, additional support for authentication 64 choices of messaging modes (CoT)
Structure Single-layer Three-layer Flexible, one or multiple layers
Data format 4 5 54
Parsing Available in Pyshark APIs Available in Pyshark APIs Need to implement
Security No specific security design Authentication and limited access control Authentication design in the protocol extension[40]
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1.7 Outline of Dissertation

In this section, we present the outline of this dissertation and a short summary

of each chapter. First, we provide a tutorial of the industrial control systems,

SCADA, and the industrial protocols in chapter 1. When reviewing the previous

work in 2, we collect the works from the defense and offense perspectives for the

power grid and gas network. In chapter 3, we clarify the research problem that we

are interested in, frame the exploration scope, and present the methodology and

research questions. From chapter 4 to chapter 7, we try to answer our research

questions by presenting the results from analyzing the network traffic from two

different sectors of industrial control systems, i.e. the bulk power grid and the

natural gas distribution network.

Chapter 1: Introduction - Industrial Control Systems. This is an interdisci-

plinary area where lots of areas resonate together. To properly protect its part,

speaking in the language of industrial control systems (operations, systems, proto-

cols, electronic devices) is very crucial. In this chapter, we tutor the reader about

the generic concepts and terms in ICS, especially the structure of one important

industrial protocol, IEC 104. As a complimentary reading, other popular relevant

procotols are also introduced.

Chapter 2: Related Works - Security studies in ICS. In this chapter, we first

provide an overview of the security challenges and trend in the ICS security. Then

we start with presenting the well-known real-world attacks, and attack methods

published previously against the power grid. In this research, we are try to dis-

tinguish the work with testbed/simulation/emulation setup and the work with

operational ICS systems. We provide a taxonomy that organizes the previous

work divided by testbed-based or real-world systems based for the first time. And

we try to clarify for the research work in gas network that, a few papers on the
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study of consumption dataset is not about modeling the control and monitoring

behaviors of SCADA network, which is different from what we do in this disser-

tation.

Chapter 3: Proposed Work - Defining our research scope, methodologies and

threat model for research questions. In this chapter, we want to construct a sys-

tematic way to characterize the SCADA network and develop detection models

following that. In all the experimental chapters, we follow our six-step methodol-

ogy.

Chapter 4: Experiments, Results, and Discussion for the Analysis of the Bulk

Power Grid - In this chapter, we first describe the experiments and used datasets

along with data preprocessing technique as well as protocol fields selection through

deep packet inspection (DPI). After that, the results of these experiments are

presented. Following this, a detail discussion of these results are provided. Specif-

ically, clustering techniques play an important role in recognizing the communica-

tion patterns of traffic flows, since most of the time, the problem in ICS systems is

defined as an unsupervised learning problem when no label is available. Through

clustering, we assign each sample instance to well-separated clusters. In this chap-

ter, we analyze the impact of flow-level information in the clustering approach.

After that, we look into the connections to discover the devices, and the physi-

cal dynamics within them. We identify interesting automatic generation control

during a power generation event.

Chapter 5: Experiments, Results, and Discussion for the Analysis of the Gas

Network - In this chapter, we also follow the six-step methodology, starting with

the description of the network captures. The first discovery we make is the exciting

exploration of unique RTU fingerprints. With two important IEC 104 features,

we identify an ongoing maintenance in the network and successfully reverse the

17



whole SCADA network topology.

Chapter 6: A Quick Comparison of the Two SCADA Network - We want to

give the big picture of how these two networks are different or similar in terms

of the capture location, the topology arrangements, and the utilization of control

and monitoring messages. To be noted, the differences not only come from the

different energy sectors, but also come from the different management styles and

goals of operators.

Chapter 7: Anomaly Detection Design in the ICS SCADA Network - We

profile the devices/process variables in the SCADA network for anomaly detection

from two directions, profiling the device type and the device readings with time

series modeling. we are able to get great results (99+% accuracy and performant

precision-recall curves) from the type profiler with gradient boosting algorithms,

and acceptable good results (20% false positive rate) from the reading profiler with

deep neural networks. From the deep dive in the correlated process variables, we

can know the root cause of anomaly (like the dangerous situation of pressure rising

out-of-range). In this case, process-aware anomaly detection would be possible

to implement. Process-aware approach can act as a core approach to augment

detection ability of IDS. Here we apply such kind of specification approach for

IEC 104. But, both protocol-level and configuration-level specifications are highly

customizable to deploy such technique.
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Chapter 2

Related Work

For a long period of time, the research community assumed SCADA and in-

dustrial control networks being more stable and consistent over time. However,

more operators connect their network nodes and devices to the Internet in the

most recent decade, which introduces the network to a larger attack surface and

leads more potential threats to their network. Over the most recent decade, re-

searchers have paid increasing attention to the security and resilience of SCADA

and industrial control networks. On a global scale, the attention governments pay-

ing to the critical infrastructures attacks continue to grow, when administrations

view the defense as part of their future military and political conflicts. There-

fore, the importance of securing the energy systems will keep arising. Because

of the confidentiality and availability issues of this type of infrastructure, it is

almost impossible to perform any active penetration test onsite. Also because of

the criticality of SCADA systems, combined with the conservative approach of

industries operating our critical physical infrastructures, researchers usually can-

not get access to SCADA networks to perform measurements or security exper-

iments. Consequently, most researchers conduct attack and defense experiments

on simulated/emulated test environments, or analyze network traces obtained by
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passively monitoring SCADA/industrial control networks, which is our approach

in this dissertation. In the way of analyzing network traces, out of confidentiality

constraints related to the criticality of production environments, availability of

production datasets remains to be quite limited. Even in the few work that is

fortunate to access the production datasets, the network scope that the datasets

cover is usually localized to an individual station. In this chapter, we review the

research work on the attack incidents and designs, and defend methods in differ-

ent sectors of the critical infrastructures, i.e. the power grid and the natural gas

pipeline network. For the power grid, we first start with a summary of recent

attacks to power systems and other new potential attacks developed by security

researchers, then demonstrate the evolution of technologies used for monitoring

and controlling the power grid, and eventually discuss the novel directions of the

power grid defense utilizing new unique properties from the smart grid. For the

gas network, we briefly discuss about the research work in defensing the gas util-

ity companies. But for the more critical operational gas pipeline network, there

is rarely any computer science paper on the monitoring and control interactions.

After each review of the power grid or gas network, we present the uniqueness of

the work in this dissertation in comparison with the previous work.

2.1 Security and Resilience of the SCADA of

Power Grid

In the United States, the administration recognizes that the aging infrastruc-

ture in the power grid has been increasingly vulnerable. Enacted by Congress

and signed by the President, the Infrastructure Investment and Jobs Act (IIJA)

came into play in 2021[63]. The IIJA assigns a $2.5-billion fund to prioritize
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the improvements for enhancing the resilience and reliability of the grid against

threats like cyber and physical attacks, and natural disasters. As early as 2007,

the Department of Energy and Idaho National Laboratory had a project named

"Aurora generator test"[79]. In a testbed with one power generator and one distri-

bution substation, the program drove the generator to a status of "out-of-phase"

by switching breakers status at a high frequency, and the generator got destructive

damage from the failure of synchronizing rotation speed. One of the most high-

profile power grid attacks in real world should be a series of attacks on Ukraine

power grid from 2015 to 2016 [36]. The adversary opened circuit breakers through

remotely compromised the control room in the distribution network in 2015, lead-

ing to a blackout. In 2016, the attackers injected a malware Industroyer[8] into a

transmission substation, let the malware carry over control commands, and even-

tually accomplished an automatic black-out. Under the circumstance of Russia-

Ukraine wartime at the time of this dissertation, Industroyer had an updated ver-

sion Industroyer2[66], which focused on the IEC 104 exploit with higher flexibility

in configuration. This serial event comprises the core part of our motivation in

this work. As illustrated in the introduction, the network structure is rather com-

plex on the route from electricity generation to the consumer market. One of the

most effective attack methods is the false data injection (FDI) attacks targeting

the readings of physical sensors in the field. In FDI attacks, the adversary injects

stealthy false data to the sensor measurements, and successfully evades from the

intrusion detection system in the control room. The researchers have proved this

attack is possible in either transmission substations[55], or in a nuclear generation

plant[76]. From the field to electricity customers, there are mainly two direc-

tions to maneuver the electricity consumption. Modernized smart grid employs

advanced metering infrastructures (AMI), where the electricity price adjusts it-
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self based on the balance between demand and generation. The AMI systems is

vulnerable from the electricity theft when the attackers can easily alter the con-

sumption time series data in the meters, conceive the local utility company with

the fabricated lower consumption, and get a smaller utility bill[14]. Other than

direct electricity thefts, the most recent load-altering attacks[72][7] plays with the

automatic program applied for consumers to have an adaptive load planning based

on the peak hours. This attack with the consumer devices (instead of the field

devices or meters) has two profit formulas for the adversary. In the first one, the

adversary can obtain economic benefits or bring down partial components in the

power grid, by causing a load surge with the high-wattage consumer devices[71].

Secondly, the manipulation of consumer devices can also impact the electricity

market in trading prices. The most recent attack on the consumer market by

Shekari et al. drives a high wattage IoT botnet to increase the electricity demand

suddenly, exploits the relationship between electricity prices and demand, and

offers advantages of predicting the price surge to the adversary[70].

Although there is more work in recent years on the characterization and secu-

rity analysis of industrial control systems or power grids specifically, previous work

has limited access to the real-world systems or has a shortage of the critical sys-

tem specifications. We classify of the most relevant work on the measurement and

security studies of power grids (with a focus on the ones employing the protocol

IEC 104) into the taxonomy as such:

1. Conducting their work on emulated/simulated networks in either laboratory

environments, or purely software testbeds

2. Presenting analysis results with insufficient descriptions of the control sys-

tem and the communication network

3. Studying a comparably smaller component (distribution network) in a power
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grid

As the result of our literature review, we present a taxonomy as shown in

Table 2.1. While the simulation system certainly gives the researchers freedom

to manipulate the devices as needed, still researchers should be cautious when

using this type of dataset to approach the first network characterization step in

anomaly detection design. Because the limited scope of the simulation will directly

narrow the scope of system events in the normal behavior baseline [52, 39, 59].

Most simulated environments assume a stable SCADA server interacting with

only a few substations with mostly expected behaviors. While the work in this

dissertation studies the real-world SCADA networks with dual SCADA servers

and up to hundreds of RTUs, having complex system configuration events.

A few papers do claim they have access to a real-world operational system,

however, there’s no such system information in their presentation. Wressnegger

et al. [81] states vaguely that their dataset is captured from a power plant, but we

don’t find any specification of the protocols or network topology of such a system

in their paper. Yang et al. [82] mentions their work is based on a real-world

system using IEC 104 also with no traces of the system and network information

in their published paper.

The work that is most closely related to ours is Formby et al. [31, 29] and Irvene

et al. [45]. This link of work studies a few real-world power grid distribution

substations under the standard of DNP3 industrial control protocol. Still, as

explained in the introduction, the distribution network is a relatively smaller

component comparing to the bulk in the power grid. Furthermore, Formby et

al. do not perform deep-packet inspection of the protocol, limiting their analysis

only to TCP dynamics. Irvene et al. also mainly parses the DNP3 packet headers

to report histograms of the message types observed in the datasets, but do not
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Table 2.1: Related Work on the security study of the power grid

Authors Facility Protocols Data Type
Formby et al. [29, 31] Power distribution substations DNP3 Real-world

Irvene et al. [45] Power distribution substations DNP3 Real-world
Barbosa et al.[13] Water treatment and distribution SNMP, Modbus/TCP Real-world
Villez et al. [76] Nuclear power plant unknown Simulated LabVIEW environment
Liu et al. [55] Power substations unknown Simulated power flow with IEEE Test Systems
Lin et al.[52] Power grid IEC 104 Emulated power grid testbed with real devices
Lin et al. [53] Power grid DNP3 Emulated power grid testbed with real devices

Yang et al. [82, 83] SCADA testbed IEC 104 Testbed

study the payload.

2.2 Security and Resilience in the SCADA of

Natural Gas Pipeline Network

While the natural gas network may have been less targeted as the power grid,

the Colonial Pipeline ransomware attack happened to the IT network on May 8,

2021 disrupted the gasoline supplies throughout the East Coast. The attackers

(identified as DarkSide) broke into the company’s network as a result of an em-

ployee’s password leak for the VPN account, and compromised multiple computer

systems. The company had to shut down the pipeline until May 12 to prevent

the spread of the ransomware, and paid 4.4 million dollars of ransom. With this

background, in September 2021, multiple federal agencies and industry stake-

holders presented specific pipeline cybersecurity issues to Congress in a federal

program[69], to emphasize the urgent need to strengthen the national effort of

pipeline protection.

There is a lot of work for scholars in the energy and resources, environmental,

or geographical communities to analyze the natural threats and hazards to the

gas pipeline. The major direction of gas network security in computer science re-

volves around the gas consumption dynamics of data from gas utility companies.
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These papers use statistical models to detect aberrant data samples in the time

series of consumed gas flow, including but not limited to Bayesian classifiers[4] and

deep learning neural networks[33]. While these detectors are effective in detecting

anomalies, these publications are focused on utility users and do not provide ex-

pert information for readers to grasp the more crucial monitoring and controlling

operations in a distributed gas network. Wang et al. designed a detector for FDI

attacks, specifically topology attack, in a simulated gas distribution network[77]

with the IEEE 118-bus system. However, the modeling simplified the network as

two pipelines with 14 nodes, and also compressed gas stations as discrete nodes

without complex interactions with the SCADA servers. This limitation may cause

the model has an incomplete baseline for the network state estimation. Therefore,

to our best knowledge, the work of gas pipeline network characterization and pro-

cess anomaly analysis in this dissertation, is the first engineering work analyzing

the SCADA network of a real-world operational gas pipeline network. Similar to

the uniqueness and potential contribution demonstrated in 2.1, only after charac-

terization of an operational gas network, can we construct a defense method that

has the capability of distinguishing routine activities, systematic configurations,

and actual attacks.

As far as we are aware, the only analysis of an IEC 104 network used in an

operational environment is our work in[56] and [57] describe the first network

measurement and security analysis of an IEC 104 network in the bulk power grid.

Another of our paper [65]is the second analysis of an IEC 104 network used in

a real-world system and the first measurement study of the SCADA in a gas

pipeline network. Moreover, our dataset (500GB) of the gas network is larger

than previous work, which captured more than three months of network activity

for hundreds of stations. To our best knowledge, this dataset of industrial control
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systems is the largest ever studied. The most comparable size of previous work is

the dataset (335 GB) from [46]. Their dataset comes from only four substations in

a power grid distribution network with DNP3 as the industrial control protocol.
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Chapter 3

Proposed Work

3.1 Problem Statement

We observe three problems in the domain of industrial control system secu-

rity. Problem one: Attacks to industrial control systems are real. Stuxnet attack

[26] on a nuclear power plant, the Industroyer malware attack on the Ukrainian

power grid in 2016 [8], and the recent ransomware attack to the U.S. Colonial

pipeline in May, all had severe consequences, despite all the research efforts in

industrial control systems or cyber-physical systems in general by the time of the

attack. Problem two: The Supervisory Control and Data Acquisition (SCADA)

network still requires more in-depth investigation to understand the basic system

behaviors. The critical infrastructures, such as the power grid and oil/gas sys-

tems, used to isolate their networks from the Internet. Within the recent decades,

they have gradually migrated from the traditional serial communication network

to the TCP/IP compatible networks. Consequently, their SCADA networks and

field devices are connected to the Internet and exposed to a broader attack sur-

faces. Problem three: There is only limited or almost none data access to such

real-world networks.

27



Considering the critical and essential functionalities of these infrastructures,

it is hardly possible for security professionals to interrupt the normal operations

or perform any security experiments onsite in an active way. Instead, the security

research of such systems usually takes two paths: 1. researchers build a simula-

tion/emulation testbed mimicking some certain system and conduct experiment

there; 2. the operators provide the researchers with a dataset of network traffic

and the researchers study the system behaviors passively from the network cap-

tures. Even so, most of the time it’s difficult to earn the trust from the operators

and obtain the data access.

3.2 Scope and Methodology

In this dissertation, we propose to develop the ICS (Power Grid and Natural

Gas) Anomaly Detection design based on the network measurement study. The

first step is to profile the network behavior under regular operation by deep-packet

inspection of the network capture datasets from two real-world SCADA networks

in a power grid and a natural gas system. Next, we hope to identify the outliers

deviating from the expected behaviors if there’s any. After that, we aim to extract

the system operational events behind the outliers.

We apply three levels of characterization for the two SCADA networks in my

projects. The dashed lines matching the X-axis in Figure 3.1 show how much

knowledge we obtain before our analysis, mostly from the conversations with the

network operators. The dashed lines matching the Y-axis indicate current progress

of each project. For each project, we follow these steps:

1. Dissect the network traffic captures in PCAP files

2. Divide into flows/connections

28



3. Recognize endpoints and devices

4. Compute message statistics

5. Extract physical dynamics

6. Identify ordinary and abnormal events

Some security researchers may pose the question, why is the network charac-

terization necessary to defend a SCADA network in industrial control systems?

From the view of the adversary, he/she needs to understand what is the most

effective strategy to disturb and alter the system state. As a result, the more

system specification he/she obtains, such as the control and monitor routines or

the mapping of the field devices, the higher attack power he/she is in charge of.

From the perspective of the defense team, it’s more ensuring to investigate the

network connections and master what are the most vulnerable access points in the

loop, what could be the potential attack path and where could be the attacker’s

most favorable target for effective attacks. This includes and not limited to the

regular operational routines and the possible system upgrade and configuration

events.

3.3 Threat Model

Inspired by the Industroyer malware, it is possible for the adversary to com-

promise the computer system in the SCADA network, and to inject either con-

trol commands or passive sensor measurements into the communication channels

between RTUs and SCADA servers. Therefore, our threat model assumes the

adversary has access to send malicious control command and to plant fabricated

measurement into the point variables collecting sensor readings, as shown in Fig-
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ure 3.2. He/She also may have in-depth knowledge of the SCADA network and the

physical functions of control systems components, which grants his/her capability

of effectively disrupt the physical process.

3.4 Research Questions

With the above proposed research plan, we intend to answer the following

research questions.

For the sections of network characterization, we will answer:

1. Will all the TCP connections stay alive for a long time once established?

2. Are real-world SCADA networks following the consensus of being stable and

predictable over time?

3. What types of operational connections we can learn about the network op-

eration?

4. What new physical behaviors we can extract from deep-packet inspection?

For the sections of anomaly detection, we will answer:

• Can we learn more about the process anomalies from the measurement in-

sights? How different are the process anomalies in different control systems?

• How can we utilize the system insights of the physical processes, to strengthen

the robustness of the anomaly detection design, i.e. to lower the false de-

tection rate?
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Chapter 4

Characterization of the Bulk

Power Grid SCADA Network

4.1 Description of the Network Capture Dataset

RTU

RTU
Switch

Switch

Router

WAN

Firewall

Figure 4.1: Abstract visualization of the SCADA network capture location,
noted in the dashed oval

Figure 4.1 gives a rough location where the operators sniff the network traffic

and obtain the capture dataset. The capture location is between the firewall and

the switch routing out to different substations. In this bulk power grid, each
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substation can have one or multiple RTUs and each RTU can be identified by its

static IP address. We omit the drawing of local field devices that each RTU is

in charge of since it’s irrelevant information here. But one should assume that

within each substation, each RTU controls tens to hundreds of field devices. The

substations communicate with SCADA servers within the private network under

IEC 104 for control and monitor purposes. The operators performed the sniffing

in discontinuous days of two consecutive years, as shown in Table 4.1. As a result,

we have the benefits to observe the network’s invariant and transitions over two

years. In the rest of the dissertation, we refer to the capture obtained in the first

year as “Y1” and the one in the second year as “Y2”. Datasets 1 to 5 are from

“Y1”. Datasets 6 to 8 are from “Y2”.

Table 4.1: IEC 104 Traffic Information of All the Datasets

Dataset Number of Packets Proportion Packet/sec Duration (H:M:S)
1 495,950 32.3% 76 01:48:18
2 592,055 31.7% 74 02:12:55
3 883,209 32.0% 75 03:14:06
4 517,908 32.4% 75 01:54:15
5 29,554 32.3% 74 00:06:36
6 346,712 4.55% 96 01:00:00
7 278,867 3.68% 77 00:59:59
8 837,871 3.98% 85 02:44:06

4.2 SCADA Network Topology Reversal

We can see that the control room of the system operator has 4 control servers:

C1, C2, C3, and C4. We also observed a total of 27 substations (identified in the

Figure as S1-S27).

Most substations are next to a power generator (identified as ovals) and some
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substations only deal with transmission equipment (identified as semi-circles).

This makes sense as the role of IEC 104 for this particular operator, is to monitor

and control generators (via AGC). The few substations that do not have gener-

ators provide auxiliary network measurements of the bulk power system. Each

substation has one or more RTU, and because RTUs are called Outstations in the

IEC 104 standard, we identify them in the figure as O1-O58. We can see that

each pair of servers (C1/C2 and C3/C4) maintains a primary and a secondary

connection to each outstation (as expected by Fig. ??). Finally, each RTU col-

lects measurements from a variety of field devices, from sensors in generators, to

circuit breaker information, frequency sensors, etc. These devices are enumerated

in the “cloud” attached to each Outstation (RTU).

In order to test our first hypothesis, we first look at the changes of the network

over a year. Fig. ?? illustrates several changes from Y1 to Y2. We can see in

red the substations and outstations removed from Y1, and in green, the new

outstations that had been added to Y2. The arrows associated with each “cloud”

indicate changes in field device measurements that we observed between Y1 and

Y2. An upward arrow indicates that we observed more IOAs in Y2 than in Y1,

and an downward arrow indicates we observed less IOAs in Y2 (the number of

IOAs observed in Y1 are in red and the number of IOAs seen in Y2 are in green).

We asked the bulk system operator about these changes and their answers

are summarized in Table 4.2. There are four different reasons for having new

outstations in Y2. The first reason is that there are new substations that came

online in Y2. In particular O50, which is associated with substation S24, and O53,

associated with substation S27. The power grid operator told us that adding new

substations over the years is not uncommon, and in fact this trend is accelerating

with the addition of renewable energy. The second reason for additions is that
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substations with serial links (IEC 101) were updated to TCP/IP networking with

IEC 104; these correspond to O52/S23 and O55/S26. The third addition occurred

because O54/S25 was undergoing maintenance during the first year of the capture,

and that is why we did not see it in Y1. The final reason for additions is a simple

one, many substations have backup outstations that can talk to the control servers.

In the first year we captured a different set of outstations communicating with

the servers, but in the second year we captured their alternate outstation; these

include O51, O56, O57, and O58, and similarly some of the removed outstations

like O28 were replaced by these redundant RTUs, while others such as O15 have

a backup outstation (O9 in this case) which still represents the substation to the

control servers. Perhaps the most surprising finding was the removal of O2/S2;

the operator told us that this substation had lost their connection and therefore

was not monitored by the system operator, but this does not mean the substations

was completely unsupervised, as it still presumably has the main connection to the

SCADA server of the power company managing the substation. Another reason S2

was not essential for the operator is because it is not a generation substation (i.e.,

it does not have a generator that can be controlled by their system) and therefore

it is one of the auxiliary substations that send data complementing their view of

the grid, but the missing data from S2 did not represent a critical component for

the operation of the AGC algorithm.

Overall, we see that 7 substations out of 27 (26%), and more precisely, 14

outstations out of 58 (25%) remained connected and reporting the same number

of IOAs in a year. So the answer of whether Hypothesis 1 is validated in this

network is not clear; on one side, most of the network changed between two years;

however, we can see that the server configuration remains stable, and over 1 out

of 4 of the devices in the field remains stable.
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Table 4.2: Outstations added or removed between Y1 and Y2.

Outstation Added/Remove Description
O50, O53 Added New substations
O52, O55 Added Updated from 101 to 104

O51, O56, O57, O58 Added Backup RTU
O54 Added Under Maintenance in year 1

O15, O20, O22, O28, O33, O38 Removed Redundant RTU in operation
O2 Removed Substation without supervision

4.3 Connection Analysis

We confirm our theory that the short-lived flows exist for the purpose of sec-

ondary connections. The followings are the processing procedures, also depicted

in Figure ??:

1. Filter out retransmission packets; retransmission packets also match the

SYN-RST/SYN-FIN pairs, but they are not the kind of short-lived flows we

target.

2. Only keep TCP flows with either source port or destination port as 2404

(port for TCP flows transmitting IEC 104 data).

3. Divide flows into short-lived flows with matching SYN-FIN/SYN-RST pairs

and long-lived flows.

Consequently, we’ve answered the research question one that the TCP connections

don’t retain the stable connections, and there is a significant amount of short-lived

connections lasting less than one second.

37



10-6 10-5 10-4 10-3 10-2 10-1 100

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

CDF of Short-lived Flows

Figure 4.2: Observation of the time duration of TCP short-lived flows

4.4 Distribution of Control and Monitor Mes-

sage Types

In an operational network where there’s only one single administrator, the

network might configure the majority measurements under the same data type

with the same communication message type. However in this network there are

multiple administrators for different RTUs. They may choose message types fol-

lowing their preference, such as the two message types for floating-point values

with or without time tag, respectively.

From Table 4.4, we observe that IEC 104 traffic in this bulk power grid is

heavily measurement-centric with 99.75% is for monitored measurement. If the

reader wants to learn the rest I-Format message types, please refer to Table .1 in
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Figure 4.3: The cause of TCP short-lived flows: RESET in the TCP hand-shake
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Table 4.3: Comparison of the number of TCP short-lived flows and long-lived
flows in two years

Year Y1 Y2
Count of Less-than-one-second
Short-lived Flows(proportion) 31614(99.8%) 7937(93.5%)

Count of Longer-than-one-second
Short-lived Flows(proportion) 63(0.2%) 549(6.5%)

Count of Short-lived Flows
(proportion) 31677 (74.4%) 8486 (93.8%)

Count of Long-lived Flows
(proportion) 10898 (25.6%) 560 (6.2%)

the appendix for details.

Table 4.4: I-format IEC 104 Message TypeIDs and Proportions

ASDU ID Meaning Percentage
I36 Measured value, short floating point number with time tag 65.13%
I13 Measured value, short floating point number 31.70%
I9 normalized measurement 2.70%
I50 Set-point command for short floating point number 0.23%
I3 Double-point information 0.14%
I5 Step position information 0.14%
I100 Interrogation command < 0.01%
I103 Clock synchronization < 0.01%
I30 Single-point information with time tag < 0.001%
I70 End of initialization < 0.001%
I31 Double-point information with time tag < 0.001%
I1 Single-point information < 0.001%
I7 Bitstrings < 0.0001%

4.5 Community Discovery of IEC 104 Connec-

tions

After understanding the message types, we want to use clustering algorithms

to identify the community groups inside of all the IEC 104 connections, for a bigger
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picture of the communication patterns and profiles that can give us insights into

the operation of the network.

We define as a session, all the packets that are sent in one direction between

the same end points. Originally we considered in total of 10 statistical features to

investigate, including the transmission direction (is the message coming from the

control center or from the outstations?), average inter-arrival times, total bytes,

total number of packets, and even some features that looked into the APDU

information such as the count of IOAs or the distribution of APDUs by type

(U/S/I). Using the Silhouette score for each individual feature[67], we pick the

features that generate relatively high Silhouette scores and reduce the feature

space dimensionality from ten to the following five features:

• ∆ti: average inter-arrival time between two consecutive packets

• numi: total number of packets sent in the same direction by two end points.

• percentageI : the percentage of I-format data units.

• percentageS: the percentage of S-format data units.

• percentageU : the percentage of U-format data units.

We use K-means++ clustering [47] on these features. To select the number

of clusters K we use the Elbow method on the sum of squared error [74], the

explained variance[35], and Silhouette scores[67]. These methods suggest that

a good number of clusters is K=5. In addition, we use Principle Component

Analysis (PCA) [32] to project and visualize our results to a the lower dimension

(2D plane). Our clustering results can be seen in Fig. 4.4. while retain the original

variance in the dataset as much as possible, we use principle component analysis

(PCA)[32], which results in Fig. 4.4.
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Figure 4.4: PCA of clustered IEC 104 sessions in Year 1

Inspecting the characteristics of each cluster, we find the following five repre-

sentative behaviors: (1) Cluster 0 represents (extremely) long inter-arrival arrival

times between packets; (2) Cluster 1 contains the largest amount of I-format

packets, characterized also by being spontaneous transmissions (as opposed to

periodic), (3) Cluster 2 represents the “average” case representing most outsta-

tions sending a regular amount of I-format packets, (4) Cluster 3 captures all the

acknowledgements (S-format packets) sent from control servers to outstations, and

(5) Cluster 4 represents the keep alive messages of the backup IEC 104 connection.

Figure 4.5 summarizes these clusters and their percentages.

For the outlier group in cluster 0, we identify they are secondary connections

and their communication pattern as in Figure 4.7 and compare it with all the other

secondary connections. While the RTU might reject TCP connection attempts for

backup IEC 104 channels, when the main connection is teared down, they readily

accept the backup connection to the other control server to send I messages.
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In these outlier connections, control server sends the keep-alive message every

430 seconds and then the TCP connection is torn down; whereas the default

universal timer for this type of packets is only 30 seconds. Figure 4.8 presents a

standard testing procedure with keep-alive messages, where a station should reply

a confirmation message to a request of testing activation.

The root cause is that, the central operator does not own or manage the con-

figuration of the RTUs/outstations. It does not have regulatory power to demand

these changes if the local operators don’t follow a specific configuration recommen-

dation. As long as the application-level behavior is satisfied, and all entities are

in compliance with the general reliability standards, the central operator mostly

won’t proceed to more intervention to force the local operators to alter anything,

even when the network behavior underneath has problems as such.
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Figure 4.8: The standard setting for timer T3 followed by the majority of RTUs

Cluster 1 contains connections with a large number of packets in I-format.

Sessions in this cluster all have the spontaneous type of transmission. Spontaneous
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transmission type is one of the reasons behind the heavy traffic. The field device

measurement values are volatile. For instance, a small change, 0.01 mW in power

variable, stimulates the RTU to report an IEC 104 data unit. While in cluster

light-I-message, around 35% of the sessions have other types of transmission, such

as periodic type and data transmission activation type. The other reason is a

critical control command in IEC 104, interrogation. Each time the control server

interrogates an outstation, and the outstation must report the status of all the

field devices. This command acts like a through activation and examination,

which even extracts the status of in-sleep devices, thus causes a burst in traffic

density.

Cluster 2 represents the "average” case where connections have a reasonable

enough bandwidth when transmitting I-type messages.

Cluster 3 accumulates all sessions in the control direction from control servers

to outstations. In these sessions, the control servers response to the I-format field

devices measurement values from the outstations in S-format messages. Servers

use one S message to acknowledge the receiving of every eight I-format measure-

ments. For such a federated power grid with multiple servers, the formation of

this cluster can contribute to distinguishing between the main and backup server

for each outstation before any in-depth analysis. Because theoretically, the out-

stations only report I-format messages to the central server.

Following cluster 3, cluster 4 aggregates all sessions exchanging U-format con-

trol information. There are mainly three subtypes in U-format messages, the

start, and stop of data transmission and the testing function for keep-alive mes-

sages. It’s very tricky for the operators to precisely capture the beginning and

end of a data transfer. So we only have less than 6% of U-format messages are the

start and stop signals, and all the rest are testing messages. When investigating
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both cluster 3 and cluster 4 in parallel, we can clarify the primary and secondary

connections for each outstation.

With this section, we’ve answered the research question 3, where we can use

unsupervised learning algorithm to learn the communication patterns of all con-

nections at once.

4.6 Physical Dynamics Study

Our first finding was in the analysis of power, as we can see power fluctuations

in Figure 4.9. This was a use case caused by a load connection failure, it means

that there was a lost electric load at a certain time point, the frequency of the

power grid will decrease because the electric generation is more than electric load.

The system operator need to make generators reduce their production of electricity

in order to stabilize the system balance via AGC messages. Once the load is

reconnected to the power grid, the operators ramp the generation up again. These

sequence of AGC commands and their effect can be seen in Figure 4.9. The y1,2,3

signals are the sensor readings for power measurements at the generators. The

u signal is the control signal for the control center taking charge of the power

generator. This plot shows that the actuation process is quite responsive within

seconds, when the generators adjust their power generation at the moment of

receiving the control command.

We also examine the measured voltage values in the same RTU. One voltage

time series jumps from zero kV to about 120 kV together with a circuit breaker

status value from zero to two before the above AGC event happens. It means

the operator tries to connect a generator to the power line, and the breaker closes

to make this connection. The discovery of physical dynamics in such process

variables can help collect the signatures for monitoring the local status among
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these correlated variables within a remote station, as in Figure 4.10.

4.7 Measurement Transmission Causes

We now discuss the cause of transmission utilization rate per ASDU typeID

and their timing characteristics.

According to Table 4.5, spontaneous and Periodic/Cyclic (Per/Cyl) COTs have

the highest utilization rates. Based on the measurement’s variation, the transmis-

sion can be handled by triggers as follows:

• Periodically: the transmission is carried based on a fixed periodicity in

seconds.

• Spontaneously: it means every time the measurement changes, a data

transmission for that value is performed.

As their names suggest, transmission of ASDU with spontaneous COT has no

fixed time interval between any two consecutive ASDUs, whereas Per/Cyl ASDUs

should have a fixed intervals, i.e., preset cycle. Therefore, one can expect that

spontaneous can have wide range of time intervals while Per/Cyl have narrow

range. If a measurement changes too much in time, spontaneous triggers can try

to deliver too much data leading to big payloads and it is not possible in some
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Table 4.5: Cause of Transmission utilization by typeID

Cause of Transmission (COT)
Act ActCon ActTer BackScan Init Inro Cyc RetC Spont

I36 0 0 0 4 0 0 0 0 1.58M
I13 0 0 0 0 0 129 256K 0 513K
I9 0 0 0 0 0 0 65K 0 0
I50 2.8K 2.8K 0 0 0 0 0 0 0
I3 0 0 0 0 0 134 3.3K 0 0
I5 0 0 0 0 0 0 2 0 2.2K
I100 66 64 63 0 0 0 0 0 0
I103 0 0 0 0 0 0 0 0 26
I30 0 0 0 0 0 0 0 0 12
I70 0 0 0 0 12 0 0 0 0
I31 0 0 0 0 0 0 0 2 9
I1 0 0 0 0 0 8 0 0 1
I7 0 0 0 0 0 0 0 0 1

Legends: M=Million; K=Thousand; Act=Activation; ActCon=Activation
Confirmation; ActTer=Activation Termination; BackScan=Background Scan;

Init=Initialization; Inro=Interrogated General; Cyc=Periodic/Cyclic;
RetC=Returned by Local Command; Spont=Spontaneous
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scenarios when the communication is jeopardized. To avoid that, spontaneous

data is triggered by data changes above a predefined threshold. The threshold

can be fixed or dynamically calculated as percentage of its variations related to

a reference value. In the other hand, big thresholds lead to poor quality of su-

pervision since some important changes of variable’s could be lost and there are

only data transmissions when big amount of changes are produced. RTU config-

uration plays an important role here since balance between big bandwidth usage

and reasonable reporting of data should be considered.

A plot of consecutive value changes on an IOA can disclose the possible value

configured for that IOA, so there is shown in Figure 4.11 that a minimum value

is held among time, indicating by a blank space between the bottom values of

the data samples and the X-axis. We think this threshold value is potential in

developing and defending stealthy false data injection attacks, where the volatile

variations in the sensor values can be a noise signal.
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mation objects in a RTU
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The last two sections enable us to answer the research question 4. By perform-

ing deep-packet inspection of the values in the sensor readings, we can spot useful

invariant and identify anomalies in the physical world. While these same anoma-

lies can be spotted in the SCADA server, the rise of attacks to control systems

like Industroyer [8], will motivate the identification of not only network-based

anomalies, but also physical-based anomalies and their correlations. This type

of anomalies essentially motivate this dissertation of the process/physics-based

anomaly detection system.

4.8 Discovery of Protocol Noncompliance

At the beginning of our deep-packet inspection, we extract the process vari-

ables, i.e. IOs inside of data units of IEC 104 packets. When we compute the

distribution of IOAs, we observe that the majority of IOAs are large numbers as

shown in Figure 4.12. These large numbers are invalid addresses for IOs, because

IOs have at most three octets for the address. Moreover, the payload content of

these suspicious data unit are incomplete with none information inside of IOs,

or the values simply appear to be random numbers not reflecting any real-world

physical variables. The packets cut off right at the IO frames.

Checking with Wireshark’s dissector, we find out these packets are malformed.

Wireshark official appendix has the following description about malformed pack-

ets: Malformed packet means that the protocol dissector can’t dissect the contents

of the packet any further. There can be various reasons:

• Wrong dissector: Wireshark erroneously has chosen the wrong protocol dis-

sector for this packet. This will happen e.g. if you are using a protocol not

on its well known TCP or UDP port. You may try Analyze|Decode As to

circumvent this problem.
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Figure 4.12: Irregular IOA ranges (extremely large) identifies malformed packets
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• Packet not reassembled: The packet is longer than a single frame and it is

not reassembled, see Section 7.8, “Packet Reassembly” for further details.

• Packet is malformed: The packet is actually wrong (malformed), meaning

that a part of the packet is just not as expected (not following the protocol

specifications).

• Dissector is buggy: The corresponding protocol dissector is simply buggy or

still incomplete. In our dataset, the malformed issue reported by Wireshark

matches the third reason: "Packet is malformed". The malformed field comes

as the last field in an APDU:

In our dataset, the malformed information is like this:

"_ws.malformed": {

"_ws.expert": {

"_ws.malformed.expert": "",

"_ws.expert.message": "Malformed Packet (Exception occurred)",

"_ws.expert.severity": "8388608",

"_ws.expert.group": "117440512"

},

"_ws.malformed": "Malformed Packet"

},

To investigate the cause, we trace back to the network flows and the RTUs

generating these packets. Precisely, outstations O37, O53, O58, and O28 had

100% invalid packets in all our traces. Eventually we identify two reasons why

the Wireshark IEC 104 dissector cannot properly interpret these packets. First,

outstation O37 used an IOA length of just two octets (instead of the standard

three octets length for an IOA address). The second set of malformed packets

53



came from outstations O53, O58, and O28, which used just one octet for the

“cause of transmission” field, while the IEC 104 standard specifies that the cause

of transmission field should be two octets. Validated by the system operator, these

two scenarios happened because these stations went through a network upgrade

from serial communication in IEC 101 to the TCP/IP network in IEC 104. For

these specific stations, the upgrade was not configured correctly. Consequently the

vendors of these stations are exchanging 104 packets in the 101’s legacy format.
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Chapter 5

Characterization of the Gas

SCADA Network

5.1 Description of the Network Capture

RTU

RTU
Switch

Switch

Router

WAN

Firewall

Figure 5.1: Abstract visualization of the SCADA network capture location,
noted in the dashed oval

This capture of a natural gas distribution network occurred outside of the

private network serving the operational network. It is between the firewall and

the mirror port of the main network switch for the control center. As a result, the

dataset includes traffic between devices and applications in the control center and
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the RTUs. The communication between the control room and the remote RTUs

is through GPRS and certain leased lines.

The dataset covers 98 days in total, within which 79 days of capture being

consecutive and seven days missing from the capture in the last month. The

possible cause of the missing days potentially came from a prompt glitch in the

switch’s port mirroring process. As a result, the actual overall capture time du-

ration is roughly 85 days. This giant dataset has 500 GB of raw PCAP files,

consisting of 2,222,253,073 network packets. It is the largest industrial control

system’s dataset ever studied according to our investigation of the previous work.

The projects with comparable sizes (around 200-300 GB) of the network cap-

tures have measured individual substations in a power grid distribution network

[29][31][45].

There are in total of 397 IP addresses observed in this network. By inspecting

the application-layer traffic, we identify the biggest group of 304 hosts are RTUs,

82 hosts are implicit workstations in the control room, four are HMI stations, two

are SCADA servers, two are time servers, one is a printer, and the rest two are

network switches. The only application-layer protocols deployed for communica-

tion with RTUs are IEC 104 (around 118 millions of packets) and Telnet (around

72 thousand of packets). If keeping the view within the control room, we spot the

typical IT protocols like DHCP, DNS, HSRP, NetBIOS, NTP, SLP, SMB, SNMP,

SSDP, SSH, X11), and an unrecognized proprietary industrial protocol for inter-

communication between the two SCADA servers or between the workstations and

SCADA servers. While we can recognize all the network services except this pro-

prietary industrial protocol, the payloads encapsulated in these packets are simply

the routine synchronization between SCADA servers and HMI workstations. The

network characterization and anomaly detection in the following contents focus on
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Table 5.1: Enumeration of the network services

OSI Layer Protocol # packets % packets

Transport-layer
TCP 2155570963 96.82%
Unknown proprietary protocol 40420388 1.82%
UDP, ICMP XXXX 1.36%

total - 2226220420 100.00%

the operational technology (OT), so we only analyze the traffic behaviors related

to the RTUs, i.e. the traffic in IEC 104 and Telnet.

To present the connections and their bandwidths in a complete view, we vi-

sualize the packet count of each flow in this chord diagram 5.2, where the width

of each band between the two endpoints represents the total amount of IEC 104

packets in that flow. This visualization is able to demonstrate three folds of flow

dynamics: 1. the connection quantity of all IEC 104 endpoints 2. active flow or

not between two endpoints 3. the bandwidths of all flows. By a glance at this

figure, we can observe the majority of RTUs have a single-connection with one of

the servers C2. Very few RTUs on roughly 3’clock direction have dual-connections

with both servers C1 and C2. Both C1 and C2 are the primary SCADA control

servers. In the middle of the capture time, the operators switch all the RTUs from

the server C1 to C2 under some unknown considerations. There are a few notice-

able groups based on the rainbow bands’ thickness. We’ll present the reason why

some connections have more conversations than the others in the following section,

where we use clustering algorithm to group these connections into community and

analyze the community formation in details.
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Figure 5.2: Complete chord diagram of all IEC 104 flows; channel bandwidths
(the amount of packets) rank in descending order in the clockwise direction

58



5.2 Connection Analysis

We don’t find a SCADA master backup server in the gas dataset based on the

analysis so far. There’s no short-lived TCP flows among IEC 104 endpoints trig-

gered by secondary connections for the whole period of the gas dataset. But there

are a few short-lived TCP flows caused by malformed packets. The reason for the

malformed packets and the terminated TCP connections is under investigation.

For the primary connections, the scenario is the same as the one in the bulk power

grid. Once established, IEC 104 can maintain the stable and long-lived type of

TCP connections.

5.3 Fingerprints of RTU by IEC 104 Features

From the start of endpoint recognition through IP addresses, we find 312

IPs potentially used for RTUs. However, the odd fact is that new IP addresses

being discovered continuously for multiple days, as shown in Figure 5.3. This fact

does not matches the consensus of SCADA network in the security community,

otherwise IP addresses should all be discovered within minutes or even seconds.

Moreover, more than 90% of the initial set of IP addresses are different from

the final set when the capture ends. Over the whole capture time, the number

of active IPs transmitting IEC 104 messages changes, starting at 65 on the first

day, ending on 153 on the last day, and having a peak of 217 on day 57. We

find only 4 out of 65 RTUs that maintain the active status throughout the whole

time span of the dataset (first day to last day). The other 153 − 4 = 149 IP

addresses are new; they don’t exist when tracing back to day one and 65 − 4

IPs were retired. We basically reach to an initial judgement that having 312 IP

addresses does not directly imply the presence of 312 physical RTUs. Especially,
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Figure 5.3: Count new IP addresses in the gas SCADA network
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Day 1

• Ini�al 76

RTUs

• Subnet C

Day 26

• RTU #120:

• Subnet C to
Subnet F

• RTU #170:

• Subnet C to

Subnet H

Day 30

RTU #171:

Subnet C to
Subnet G

Day 44 –

Day 45

• 31 RTUs:

• Subnet C to
Subnet H

Day 57 –

Day 58

• 76 RTUs

• Subnet C to
Subnet G,

Subnet I to

Subnet J

Day 63

• 36 RTUs

• Subnet C to
Subnet F

Day 64

• RTU #21

• Subnet C to
Subnet I

Day 69

• RTU #226

• Subnet C to
Subnet J

Day 

78

• RTU #46

• Subnet C to
Subnet I

Figure 5.4: Timeline of IP reconfiguration activities in the IEC 104 network

we locate some RTUs reconfigured among different subnets through Telnet traffic.

Therefore, we have a hypothesis that this network has been through a series of IP

reconfiguration events. We extract the total line of reconfiguration in Figure 5.4.

To the best of our knowledge we are the first to define an algorithms capable

of identifying the fingerprints of RTUs by their IEC 104 traffic, even when the

IP address migration events change the static network configuration. efalg:rtu-

identification-algorithm. With our expertise in the IEC 101/104 protocol speci-

fications, we acknowledge that the protocol defines two of its primitives together

have the representation of the physical stations and device variables in the real

systems. If the operators follow the protocol’s principle in this manner, then

the combination of both common addresses and IOAs shall have a one-to-one

mapping relationship with the physical system, projecting to a specific station

and its process variables. Each I-format message consists of at least one ASDU

message. Each ASDU message contains at least one information objects (IOs)

holding the values for specific process variables. Each IO uses information object

address (IOA) as the identity. In our dataset we observe that common addresses

(CAs) are unique across all RTUs, allowing us to use them as RTU identifiers

(RTU = CA). The algorithm outputs two dictionaries. Dioa : RTU → P(IOA)

maps which IOAs belong to which RTU, and D∆ip : RTU → P records de-

rived IP changes (from old to new ip, derived at given time). Given a method

61



Algorithm 1: RTU Identification and IP change detection Algorithm.
Input: Sequence of IEC 104 messages msg1 . . .msgM

Init: Dip ← {} Dioa ← {} D∆ip ← {}
For i = 1 to M
ti, ipi, {(ai1, oi1), . . . (ain, oin)} = parse(msgi);
rtu = ai1 ;
AddSet {oi1, . . . , oin} to Dioa[rtu];
If ipi 6= Dip[rtu] then
AddElement (Dip[rtu], ipi, ti) to D∆ip[rtu];
Dip[rtu]← ipi

EndIf
EndFor

parse : IMsg → TimeStamp, IP,P(CA, IOA) that extracts the RTU’s IP and as-

sociated (CA, IOA) pairs from an IEC 104 message. Dip stores the last known

IP of each RTU. Given an IEC 104 message, aij is the corresponding common

address, and oij represents the information object address.

The algorithm uses Dip : RTU → IP to store the last known IP of each RTU.

With this algorithm, we are able to extract this series of IP reconfiguration events

in Figure 5.4.

Finally we conclude there are 154 unique RTUs in this gas distribution net-

work1. During the time period of this capture (98 days), 304 IP addresses were

assigned to these RTUs. The subnets migrate from the initial two subnets C and

I to four other subnets F,G,H, J . Based on the limited knowledge learned from

the operator, this series of IP migration is part of the regular network mainte-

nance. Therefore, we can learn a lesson from this observation that researchers

cannot treat IP addresses as invariant in the SCADA networks. Researchers can-

not depend on the set of IP addresses without further exploration of other network

traffic to infer the static network layout. The examination of the endpoint IP dy-
1As defined in 1, we name the RTUs with their common address number, e.g. RTU #171

has common address as 171.
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namics and the network services diversity can be beneficial to concluding explicit

network topology. This section answers the research question two, that the oper-

ational SCADA network can contain a series of active configuration events last as

long as 78 days. One can not simply assume the SCADA network doesn’t evolve

and retain the same over time any more.

As illustrated in Figure 5.5, at the beginning of our network capture, a subset

of RTUs got connected to one control server. At the end of the capture, we can

see more RTUs connected to a second control server. During our 100 days, we see

a significant change in the SCADA network, and it is to be expected that such a

significant change was scheduled during the summer, the period of low demand

for gas (residential consumers use gas for heating) when potential outages have

less severe consequences.

We now utilize the information of the network and look deeper into the IEC

104 payload.

5.4 Community Discovery of IEC 104 Connec-

tions

To understand how the supervisory control process of a natural gas distribution

network works, we focus on classifications based on intuitive and straightforward

features that look promising. A more extensive investigation of the many potential

features and their usefulness in classification is left as future work. First, we

look at the characteristics of individual RTUs on the transport layer; we use an

agglomerating hierarchical clustering algorithm [78] with the pair-wise Euclidean

distance as the similarity metric to cluster RTUs based on their total amount of

TCP packets and the total size of TCP payloads. The result is in Figure 5.6 for
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Figure 5.6: Clustering result of all IEC 104 flows

the total 158 flows.

First, we cluster RTUs based on flow statistics in the transport layer. Next,

we explain clustering results by also looking at the application layer information.

We further investigate the IEC 104 payload and classify RTUs by the type of

commands they execute.

The flow traffic volume decreases from cluster 0 to cluster 2. Cluster 0 has

only one IEC 104 flow between RTU 26 and control server C2. This RTU is a clear

outlier because it sends the largest TCP payload size (IEC 104 data) with over 8-

million bytes in our dataset. In comparison, almost all other RTUs have flows with

less than 2 million bytes (there are only 7 other RTUs with flows between 2 to 4

million bytes). The other two clusters have more regular behavior, with Cluster 1

aggregating 14 RTUs that are moderately more heavy-traffic and Cluster 2 with

RTUs that send few and small packets.

We find that the main reason is because of a unique application of the IEC 104
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Figure 5.7: The full process of the interrogation

interrogation command: when the control server sends an interrogation command

to an RTU, the RTU has to report back immediately the status of all the process

variables it has access to. In 5.7, we present a complete interrogation process

between the control server and the RTU. After the RTU confirming launching

the interrogation, it starts to collect all the current readings in the sensors and

encapsulate these values into information objects in the IEC 104 packets (one or

multiple packets, depending on the specific RTU’s configuration). As one can

imagine, this command triggers a burst in network traffic since all the process

variables under one RTU send back their values at the same time. As shown in

5.8, RTUs in both Cluster 0 and Cluster 1 have interrogations every minute, while

all the RTUs in Cluster 2 have interrogations every ten minutes.

Now to identify the flows differences between Clusters 0 and 1, we need to

dig deeper into the payload of the IEC 104 flows. In particular, we find that
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Figure 5.8: The frequency of interrogations differentiates the clusters.

RTU 26 (the outlier in Cluster 0) has 138 process variables (in contrast the highest

number of variables in an RTU from Cluster 1 is 56; this can also be seen in the

y-axis of 5.8). We find this particular use of interrogation commands in this gas

dataset surprising, as our previous chapter reports that all process variables are

automatically sent by RTUs to the control server, and the control server only

sends interrogation commands when they establish a new connection.

From this observation of inner groups in the RTUs through analyzing statis-

tical traffic performance and process variables, the lesson we learn is that the

classification of IEC 104 connections are crucial to understand the roles of gas

stations. While we can obtain partial ground truth through locating the auto-

matic configuration sessions in other network service traffic, a majority of the

RTUs still require our effort in the study of the operational network traffic. The

intuitive features for clustering such as the network traffic volume are effective

in categorizing the RTUs and isolating the outlier station. This section answers

the research question three by locating the inter-communities in all the IEC 104

connections of this network.
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After grouping, we will elevate the station-wise understanding into the device-

wise recognition by a deep dive in the I-format types. We leave the extensive time

series analysis of the process variables, i.e. sensor readings and actuator status,

in the future work, which will also be the answer to research question four.

5.5 Distribution of Control and Monitor Mes-

sage Types

Table 5.2: I-format IEC 104 Message TypeIDs and Proportions

ASDU ID Meaning Percentage
I1 single-point information inrogen, req, retrem
I9 normalized measurement spont, inrogen, req
I30 single-point information with time tag spont,retloc
I34 normalized measurement with time tag spont
I45 single command to alternate single-point variables act, actcon, actterm
I70 end of initialization init
I100 interrogation command act, actcon, actterm
I102 read command req
I103 clock synchronization act, actcon, spont
I200 user-defined type spont

Furthermore, thanks to our previous analysis in Telnet traffic in our paper [65],

we find that the RTU in the outlier flow is the only “Testing Station”, which is used

to detect gas leakage. This substation has several safety valves and sensors to keep

the gas pressure within a safe range. Due to the critical requirement in the case

of leak detection, it makes sense that the operator sets this station’s interrogation

frequency to be as high as possible, so that the safety in the distribution lines can

be guaranteed. Telnet traffic also provides the information of physical stations

behind 20 RTUs as in Table 5.3.
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Table 5.3: Identified RTU station types (from Telnet)

# Name Description
18 Distribution

Station (GDS)
Where the low pressure local transport network be-
comes the last mile local distribution network

1 Measuring
Station (GMS)

Measures pressure variables from surrounding loca-
tions/streets.

1 Expansion
Station (GET)

Where the the local distribution network connects to
the the high-pressure gas transport network. To our
understanding, the high-pressure gas is expanded, i.e.,
to reduce the pressure to the operational values of the
distribution network.

1 Biogas Generator
Station (Biogas)

A third party company that produces and injects bio-
gas into the network.

1 Testing
Station (GBS)

Dedicated point for testing & measuring for gas leak-
age and over-pressure conditions in the distribution
network, with safety outlet valves to reduce pressure
in case of over-pressure.
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Chapter 6

A Bulk Power Grid v.s. A Gas

Distribution Network

After the separate investigation of the two SCADA networks, we would like

to make a thorough comparison of the characteristics we learned from both mea-

surement studies. Here we present some preliminary experiments and insights

after the comparison at levels of network topology and messages. Other in-depth

comparisons and the meaningfulness will follow. For clarification, we do not in-

dicate the two systems we study represent all the power grids and natural gas

distribution networks. Instead, we show that it is not rare that the network de-

sign fails to be compliant with the protocol standard, which introduces challenges

in the specification-based intrusion/anomaly detection when using protocol stan-

dards for whitelisting. We also show that depending on the preferences of the

operators and the needs of physical processes, even when two networks share the

same communication protocol, the networks can have various behavior patterns,

i.e. use the same protocol feature for different physical functions.
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6.1 Visibility of the Capture Location

Both datasets of the bulk and the gas network are collected outside of the

wide area network (WAN), which provides the communication channels for all

remote stations. The main difference is that the bulk dataset capture location

sits outside of the control room, while the gas one is inside of the control room.

Consequently, the gas dataset contains all interactions among all the devices in the

control center, other than the conversations between SCADA server and RTUs.

This vantage point brings us the remote management and diagnostic traffic, i.e.

the Telnet traffic used for network configuration and RTU maintenance. The

details of benefits from remote management and diagnostic traffic study are in

our paper of [65].

6.2 Network Topology

As shown in Table 6.1, the natural gas distribution network has much more

endpoints than the bulk power grid. The scale difference makes sense if consid-

ering the natural gas distribution network mostly have stations propagating the

pipeline expansion areas measuring gas pressures and setting up alarm signals

for transmission safety purposes. The operator of the bulk power grid constructs

two pairs of primary and secondary servers to control different geographical areas,

while the gas network operator centralizes the orchestration in one primary server

and switches the between two servers during the capture time.

Table 6.1: Endpoints in IEC 104 Communication

Dataset Substations Count SCADA Control Server Count RTU Count
Natural Gas 154 2 154

Bulk Power Grid Year 1 42 4 38
Bulk Power Grid Year 2 44 4 40
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When we design the anomaly detection system at the starting phase, we need

a white list of the endpoints and their IP addresses allowed in the operational

network. For the most proactive defense, we want to know how fast the monitoring

system is able to detect the asset, i.e. the RTUs and the control servers. So that

we can raise alerts as soon as new unauthorized endpoints connect to the network.

As shown in Figure 6.1, for the power grid, we can identify 90% endpoints within

25 seconds in Y1. We can classify the rest 10% endpoints discovered later (within

2.5 hours) in the power grids into three types: 1. the RTUs that transmit only one

IEC 104 packet during the whole capture; 2. the outlier RTU from the clustering

analysis; 3. a RTU that has a primary server switch-over event. The reasons for

the delayed discovery of these endpoints are as follows. First, type 1 RTUs with a

single packet and type 2 the clustering outlier RTU are from the redundant backup

stations. The operators don’t assume these RTUs have stable communication

channels all the time. The servers only ping them occasionally with keep-alive

testing messages to confirm they are still capable of setting up connections. These

keep-alive messages force these RTUs to come online in a glimpse. Second, our

dataset happens to capture the start of IEC 104 data transmission for this type

3 RTU, after the capture has elapsed 2.43 hours. This RTU is only online for six

minutes, during which it switches the primary server between C1 and C2. In Y2,

we can locate 100% endpoints within 17 seconds. For the natural gas network, we

discover 100% endpoints within 90 seconds. Therefore, other than the redundancy

setting and server reconfiguration in the power grid Y1, the majority endpoints

in both SCADA networks are discovered within 1.5 minutes, since most primary

operational connections need to remain online stably for 24/7.
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Figure 6.1: Endpoint IP addresses discovery speed comparison in two systems.
Power grid can have a delayed discovery because backup RTUs that only commu-
nicate when testing.

6.3 Monitor and Control in IEC 104 Communi-

cation

6.3.1 Message Distribution

As introduced in Chapter 1, IEC 104 protocol has mainly three types of con-

trol and monitor messages. I format messages are for encapsulation of the control

commands, sensor readings, and actuator states. S format messages acknowledge

the receiving of the I format messages. U format messages are for the instanti-

ation and termination of the data transfer in primary connections and the keep-

alive information exchange in secondary links. Computation of the distribution

of these three types can provide an overview of whether this SCADA network is
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measurement-centric or control-centric. It is helpful for the anomaly detection

system to understand how often the data transfer and redundancy control mes-

sages should occur in the regular operation. So that the anomaly detection system

can make a just verdict whether a new data transfer should open or not at this

time.

From Table 6.2, the bulk power grid is more measurement-centric where the U

messages take less than 5% over time. The natural gas network contains a much

higher portion of U messages. Unlike the standard recommendation in IEC 104

to use keep-alives in secondary connections, the operator uses keep-alives in all

primary links. Also, unlike the occasional testing in the secondary connections,

they use it over the whole capture time. Other than the keep-alive messages,

because of the IP reconfiguration events observed previously, there are much more

re-initiation and termination events in U messages for all the RTUs’ data transfer

processes than those in the bulk power grid.

We will examine the deep reasons from the physical process that might trigger

this setting in the following work.

Table 6.2: APCI distribution of all three datasets: for each dataset, the propor-
tion of the count of I/S/U format IEC 104 data units (APDUs) in all APDUs

APCI format Gas Power Grid Year1 Power Grid Year2
I-format 28% 83.46% 84.71%
S-format 26% 12.02% 11.02%
U-Format 46% 4.51% 4.27%

6.3.2 Polling Patterns of I-format Messages

As introduced in section 4.7, we can learn the direct cause that triggers the

specific I-format message (i.e. process values), or how often this conversation
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happens. We calculate the portions of different transmission causes for all I-

format IEC 104 messages in the datasets, and present the results in figure 6.2 and

6.3. The proportions in the heat maps have been rounded to three decimal places.

For instance, in the bulk dataset, the most messages are encapsulated in floating

point values with a time tag, mostly (57.1%) in transmission only when the value

change exceeds certain threshold (i.e. the spontaneous mode). Compared to non-

cyclic mode, cyclic pattern only applies for 1.18% (0.001 + 0.024 + 0.093 = 0.118)

of all the measurement values in the bulk dataset.

From the color shades of two heat maps, we can already observe the different

distributions in these two systems. Specifically, the differences are:

• The bulk has 87.9% of the polled measurement values in spontaneous mode,

while the gas network has only 11.6%;

• 9.3% of the measurement values in the power grid are collected periodically,

while the gas network does not configure any polling periodically;

• The majority of process values in the bulk are analog, only around 0.1%

digital values, while the gas has the digital ones as the largest category in

27%;

• The bulk has less than 0.01% measurement polled from the interrogation

process, while interrogation in the gas network happens much more frequent

in 47%;

We have our hypothesis with high confidence for each observation above:

• The majority process variable type in a gas distribution network is the gas

valve. While the power grid measures the current, power, frequency, all

in analog values. Therefore, digital values amount dominates in the gas

network.
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• Compared to the dynamics in electricity power or voltages, the changes in

valve status (open/close) are much less frequent. Therefore, gas network

attempts to use interrogation configured at a high frequency, instead of

spontaneous or cyclic mode to guarantee the freshness of process values.
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6.4 Clarification

By making this comparison, we do not intend to make an exemplary model

with each system among its own type. Instead our main goal is to show the security

community that it is necessary and favorable to study the operational network over

testbeds. Each real-world industrial control system has its own uniqueness in the

monitoring and control patterns although they comply to the same communication

protocol. These differences introduce the complexity to building system behavior

baseline in the anomaly detection design.
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Chapter 7

Anomaly Detection in ICS

SCADA Network

As introduced in chapter 2, the most effective anomaly detectors for ICS

testbeds are based on the statistical modeling of sensor reading values. They

usually have two approaches to build the baseline, one is to identify the control

system invariants by a state estimation, or to fit a regression/Bayesian/neural

network model to the time series.

7.1 Preliminary Defense Design

With the software testbed designed for a smart grid in compliance with IEC 104[68],

We construct our first defense design with the measurement values in the process

variables.

In simulation, we analyze two scenarios and collect network traffic captures

for each. As a starting point, we place the initial capture during normal system

operation. The SCADA system takes measurements and status from the RTUs

and sends commands issued by the operator in normal operation. Then, when the
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command injection described in [68] assaults the system during normal operation,

we perform the second capture. As a result, the traffic traces in the second capture

are intermingled. We may use these two datasets to first measure and construct

a baseline of normal operations, and then examine the effects of the attack on

physical device measurements.

The majority of network traffic in SCADA systems is about passive monitor-

ing the status of variables inside an RTU. Fewer data formats are designed for

the exchange of active control commands, compared to the formats for reporting

variables under monitoring. Under the protocol of IEC 104, payload data units

from type 45 single command to type 50 set-point command, are designed for

commands. We identify that power grid operators use type 50 set-point com-

mand for power modulation in the automatic generation control (AGC) process

of load balancing. In the attack simulation we creatively use type 50 to transmit

the injected malicious commands under type 45 in the attack, to open circuit

breakers and to cause a blackout.

7.1.1 Visualization of Time Series

In Figure 7.1, After preprocessing, we show the visualization of measurement

values. Current, voltage, and circuit breaker status are all physical factors that

we model based on their real-world behavior. Most of the time, the voltage and

circuit breaker status are relatively stable. In a real-world context, current is more

erratic than the other two. There are several (less than 10) scattered points for

all three types of measurements, assuming from the unknown simulation noise.
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Figure 7.1: Real-time measurement of all three types of physical variables of one
RTU to the control station under normal operation.
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7.1.2 Feature Selection

For each APDU in the network traffic, we pick the payload data under IEC 104

ASDU types as categorical features and measurement values as a numeric feature.

We use one-hot encoding to create the feature vectors, as shown in Table 7.1.

Table 7.1: Examples of Feature Vectors

type3 type36 type50 measurement
command data 0 0 1 0
voltage data 0 1 0 5200

7.1.3 Anomaly Detection

We apply clustering algorithms to detect abnormal traffic from traffic capture.

First, we train K-Means [47] and DBSCAN algorithms on the traffic captured

without attacks. Since the clustering result from both algorithms are similar,

we present K-Means results only in this section. First, we use the Silhouette

score [67] and Elbow method [74] to decide the number of clusters when using K-

Means, as shown in Figure 7.2c, Figure 7.2a, Figure 7.2d and Figure 7.2b. If the

Silhouette coefficient on the x-axis value is greater than 0.5, then it indicates that

the data point is well matched to its cluster and poorly matched to neighboring

clusters. If most objects have a high value, then the clustering configuration is

appropriate. If the majority of points have a low or negative value, then the

clustering configuration may have too many or too few clusters. Elbow method

can help us pick the cluster number at the elbow position with the least imprecise

cluster assignments. Therefore, we conclude that 4 clusters are the best choice.

In Figure 7.3a, we use compressed feature components to visualize the clustering

results with principal component analysis (PCA). PCA compresses four feature
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components into two principal components and preserves 86% variance of the

original feature vector. Each cluster composition is listed in Table 7.2.

Table 7.2: Cluster composition under regular operation

cluster 0 circuit breaker status
cluster 1 current measurement around 40000 amps
cluster 2 control command confirms the close of breakers
cluster 3 voltage measurement around 5200 volts
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Figure 7.2: Choosing the proper number of clusters with K-Means.

We then apply the same clustering algorithm on the traffic capture when the

testbed is in the same operation configuration but under attack. From Fig. 7.2d,

we have a cluster 4 successfully grouping all the abnormal values of current and

voltage when they suddenly change to negligible values, in Figure 7.3b. Comparing

the cluster groups in Figure 7.3a and Figure 7.3b, there is a new fifth cluster
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in Figure 7.3b. This new cluster successfully aggregates all the network traces

containing the abrupt drop of the currents and voltages to negligible values. This

phenomenon happens because the attacker opens all the circuit breakers in the

transmission line. So the measurements of the field devices all drop to close to

zero if the devices locate in the same transmission line as those circuit breakers.

The operators can further investigate all the data points in cluster 4 to confirm

the lines affected by the attack.

7.1.4 Limitations

We have a cluster successfully grouping all the abnormal values of current and

voltage when they suddenly changed to negligible values. In real scenarios, the

attackers could launch multiple delicate trials, especially in the reconnaissance

stage. And our unsupervised learning method is expected to catch the nuance

changes in the measurement values if the attack affects the process variables.

However, because of the primitive physics modeling in this testbed, the attack

scale was limited to one RTU. In the real world, the SCADA network has a broad

attack contamination surface, and all RTUs with circuit breakers can be effectively

shut down by issuing a circuit breaker open command. It may be difficult for

clustering to discover the outlier group if there is a global spike of negative or zero

values. A different time series modeling should be investigated instead.

7.2 Advanced Defense Design: Device Profiling

By applying the deep-packet inspection of IEC 104 traffic, we can build a

dataset from the time series of the measurements in point variables. Taking each

measurement value at a particular timestamp as each row in the data table, we

84



−1 0 1 2 3
1st Principal Component

−1

0

1

2

3

4

2n
d  P

rin
cip

al
 C

om
po

ne
nt

Cluster 0
Cluster 1
Cluster 2
Cluster 3

(a) normal operation

−2 −1 0 1 2
1st Principal Component

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

2n
d  P

rin
cip

al
 C

om
po

ne
nt

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4

(b) operation under attack

Figure 7.3: K-Means results in two situation with the identical testbed config-
uration
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compute the aggregated statistical characteristics over a specific rolling window

(e.g., hourly/daily) per point variable and use them as features. With the plain-

text description retrieved from Telnet traffic, we label the dataset with the physical

semantics of actuators or sensors connected to the points. Specifically, we focus on

the classification of analog variables, because the classification of digital variables

is a trivial problem when they are mostly about open/close gas valves in this

dataset. One can recognize the function by a number one as opening and zero

as closing. Through this modeling, we build a normal-behavior profile for each

category of points so that this model can detect an unexpected activity and raise

the alert.

This detection model is potential for defending against false data injection

(FDI) attack by maintaining the operational states of the gas network through

monitoring the point variables’ time series. [54] first proposed the attack design of

FDI for the power system under a strong threat model, where the adversary has

access to alter the sensor values with the full knowledge of the network topology

and parameters. This line of research evolves with weaker threat models, where

the most recent work in [50] assumes the attacker may have full system knowledge

but have limited access to change meter readings due to the improved meter

protections by the operators, and the attack method in [84] where the adversary

can use Principle Component Analysis to generate a stealthy attack vector. With

all these potential attack vectors, our detection model is threat-model-agnostic

and simply focuses on the classification of the point variable based on the collected

time series.
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7.2.1 Dataset Generation and Description

Raw Dataset

We are fortunate to access two real-world SCADA network traffic datasets in

PCAP files. One is for the bulk power system (defined by Kelvin et al. in [57])

and another for the distribution network in a natural gas system. The bulk power

system consists of the generation/production plant and transmission network,

out of the three main components of most industrial control systems with the

distribution network as the third. As introduced in some previous section

here, we extract the time series of the signals in actuators and sensors after

performing deep packet inspection of the IEC 104 packets. Each data sample

in the original intact packets is properly timestamped with the packet arrival

time, with the polled value in the payload of an Application Service Data Unit

at this specific timestamp and tagged by the point variable type if known (we

only know partial variable labels for both datasets). There are digital and analog

values for a variety of point variables, with the analog ones being real number

values or normalized values in the range of [0, 1]. The choice of normalization

totally depends on the operator’s choice of the encapsulation format, i.e. ASDU

types in IEC 104. During the In Table 7.3, we list the units of different variable

classes in these two systems after a label clean-up procedure for both datasets

(will introduce in the next part of "Physical semantics and labels"). Considering

the computation efficiency, out of all 154 RTUs we choose a representative subset

of six RTUs, covering all four gas station types with two Gas Distribution Stations

(GDS) RTU 22 and 172, Gas Leak Test Station (GBS) RTU 26, Gas Expansion

Station (GET) RTU 228, Gas Measurement Station (GMS) RTU 230, and Biogas

Generation Station RTU 11027. After comparisons of several different subset

combinations with different GDS data, it shows < 0.1% variation in classification

87



Table 7.3: Present analog measurement units

The number of occurrences of a unit is higher than the actual number of variables that are
actually measured in the respective unit, i.e., due to alarm thresholds using the same unit
of measurement. Various spellings of the same unit were aggregated, e.g., various ways of
abbreviating “Millibar”.

Dataset Unit Concept Count

Gas

mBar pressure 341
% relative 111
Bar pressure 67
Cts valve position 61
m3/h flow 11
Sec time (duration) 10
°C temperature 21
ppm parts per million 5

The bulk

kW power 190
kV voltage 101
A current 81
Hz frequency 23
kW AGC set-point 2
- motor position 1

performance which indicates almost no degradation in choosing a specific group.

Physical Semantics and Labels

In the bulk, the classes of the variables are relatively neater, i.e. the standard

physical variables in a power system. While the variable class labels of the gas

network come from the Telnet traffic with rather specific descriptions, and some

details are trivial to dissect. We identify the physical semantics of 1048 point

variables (705 digital ones and 343 analog ones) from the Telnet traffic. It is un-

reasonable to apply hundreds of distinctive point types as labels. Instead, we distill

a representative taxonomy of these types. For example, PT1 Gas Pressure High

High Limit and Gas Measurement Station K Pressure 100mB High High Limit

are both alarm configuration signals. Therefore, we perform a cleanup for these
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labels by pruning the redundant details and merging into the core types. Even-

tually we obtain five meaningful variable class labels, alarm_config (i.e. alarm

configuration signals), flow (i.e. flow rate), position, pressure and temperature.

In the bulk power system, we have access to the labels of 471 (73 digital ones and

398 analog ones) out of 856 point variables.

Feature Engineering

First, we would like to compute the statistical characteristics from the data

flows of different variables. We first form groups of time series for each point

variable over the time length of certain rolling window (per minute/hour/day).

With the Python package TSFRESH [18], we apply the statistical computation

over the data samples within each aggregated group. Initially, we start with the

complete set of 78 features provided by the package. Each individual feature may

have customizable parameters so the final set of features can be over 1000. Then

we reduce the feature space by excluding the invalid features that generate null

values, introduced from a divide-by-zero situation. We can further prune the fea-

tures by limiting only the top features from the feature importance analysis with

tree-based supervised learning algorithms. Then, we add protocol-specific fea-

tures to the instances in the aggregated groups resulted from the previous step.

Each point variable matches one information object in terms of IEC 104 pack-

ets. According to the information object belonging to what ASDU and CauseTx

types, we conduct one-hot encoding for the ASDU types and cause-of-transmission

(CauseTx) types to introduce more domain knowledge. For example, assuming

the dataset has observed ASDU IDs 1, 34, and 45, one instance is ASDU ID 34.

Then we name features asdu1, asdu34, asdu45, and this instance will have value

one in asdu34 and value zeros in asdu1 and asdu45, resulting in a feature vector

89



of 010. Similarly for CauseTx, the features are like causetx2, causetx20 and so on.

The complete process to construct this well-structured time series dataset is

visualized in Figure 7.4. Eventually we have the two datasets as summarized in

Table 7.4. The aggregated instances are the actual data input for our following

machine learning experiments.

Table 7.4: This table explains the dataset in a rule-of-thumb way for time series

Dataset #Samples #Aggregated Instances #Features #Classes
Gas 15.1 millions 61354 201 5
The Bulk 5.5 millions 3862 202 6

7.2.2 Modeling for Point Variable Type Profiling

For the two SCADA networks, we would like to develop a monitoring model

that can be trained offline with the historical measurement time series data of

the variables, and then perform the inference of device type (e.g. gas pressure or

electricity voltage) with the fresh data. Therefore, our task is to build a super-

vised learning model for time series, with the aggregated statistical features and

protocol-specific features and point variable types as tags.

Experimental Setup

Train-Test Split: The way we split the train and test set is to use the earlier

75% of time series for training and the later 25% of time series for testing, with all

classes stratified sampled. One thing to note about the train-test-split method is

that, we don’t run cross validation across various combinations of train-test splits.

This way we can isolate the model from two implausible situations, peeking future

information during training phase and forecasting occurred events during testing

phase. Then the model’s performance can testify its predictive power in this
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specific application scenario, where time series models are designed for anomaly

detection in future series.

Algorithm choices: Since we’ve defined this problem as a supervised learning

problem, we evaluate the performance of multiple popular supervised learning al-

gorithms, including the most performant gradient boosting algorithm XGBoost,

Random Forest, Support Vector Machine with a linear kernel, K-Nearest Neigh-

bors, and Logistic Regression. Other than XGBoost with its own toolkit, we use

scikit-learn package to apply the rest algorithms to our datasets.

Hyperparameter Tuning: We will present the eventual model performance of

the tested algorithms in next section section 7.2.2. XGBoost outperforms all the

rest ones with a more acceptable computation efficiency when all the algorithms

tested have been equally treated in fine-tuning. Since it is a tree-based gradi-

ent boosting algorithm, the hyperparameters most effective for tuning are mainly

about adjusting the tree branches, height and regularization items. Specifically, we

tune the learning parameters learning_rate, two regularization items reg_alpha

and reg_lambda, and the boosting tree based parameters n_estimator the num-

ber of trees, max_depth the tree height limit, subsample the random sampling

rate for each tree construction, to achieve a properly fitted learnt model. The

final sets of parameters for both datasets are as follows:

Table 7.5: Fine-tuned hyper-parameters of XGBoost algorithm

Dataset learning_rate max_depth n_estimators subsample
Gas 0.08 3 150 0.8
The Bulk 0.1 3 100 0.8
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Results and Discussions

We present the most performant result in the format of confusion matrix in

Figure 7.6, and precision-recall curves in Figure 7.5. In both cases, gradient

boosting tree algorithm with XGBoost package [17] performs the best.

Table 7.6: Algorithm performance comparison

Dataset Algorithm F1 Accuracy

Gas

Logistic Regression 0.95 0.95
K-Nearest Neighbors 0.90 0.89
SVM (linear kernel) 0.96 0.96

Random Forest 0.93 0.93
XGBoost 0.97 0.97

The Bulk

Logistic Regression 0.45 0.45
K-Nearest Neighbors 0.42 0.42
SVM (linear kernel) 0.45 0.45

Random Forest 0.65 0.65
XGBoost 0.92 0.92

Table 7.7: Top 10 features ranked by gain

Rank Feature Meaning Importance Score
1 the variance value over a corridor given by the quantiles 0 and 0.8 of the sample distribution 0.2294471
2 root mean square 0.14340197
3 A complexity estimate based on the Lempel-Ziv compression algorithm (bin width = 10) 0.05593252
4 IEC 104 ASDU type 34 normalized values with timetag 0.039654512
5 percentage of reoccurring datapoints 0.03806225
6 first location of minimum 0.037393752
7 the variance value over a corridor given by the quantiles [0, 0.4] 0.024982385
8 the size of data samples 0.021845581
9 the maximum value 0.021015033
10 the variance value over a corridor given by the quantiles [0.8, 1] 0.020797458

Explainable Learning with Feature Importance Analysis in XGBoost

and SHAP First, we conduct the feature importance analysis by computing

the average classification correctness gain during tree branch splits using a spe-

cific feature. This analysis result doesn’t indicate a direct causal relationship

between features and inference results, instead it shows the quantified impact of
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Figure 7.5: Precision-recall curves for device profiling in gas dataset
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Figure 7.6: The most performant classification results in confusion matrix: the
majority false detection results come from alarm configuration and position sig-
nals.
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Figure 7.7: Clusters of the wrong classification results

each feature over the classification result. In Table 7.7, it gives the top 10 features.

We can observe that during the decision process of the XGBoost algorithm, the

variance over a certain range of quantiles and the root mean square error (RMSE)

are more important (22.9% and 14.3%) for the classifier to make a correct judge-

ment than all the rest features (each is < 5.6%). These top two features together

demonstrate that the classifier reckons with the volatility information of the input

signal. To be noted, although no protocol-specific feature appears in the top 10

list, there is the top 17 feature ASDU type 34 (a format for normalized values

with a special timetag). This is reasonable because this feature separates flow and

temperature samples (both in type 34) from pressure, alarm configuration signals

and position (all in type 9).

SHAP, the SHapley Additive exPlanations method explains the marginal con-
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tributions from each feature to the classification output of machine learning models

based on game theory. It trains the model with each possible combination, i.e.

the power set, of each feature across with other features and compares the per-

formance difference under different impacts. Precisely for a tree-based boosting

algorithm, we claim a dataset N with features M and prediction function as fx.

We define S representing any subset of features that exclude the i-th feature, and

|S| is the cardinality of the subset. Then, the contribution of each feature φi on the

prediction/classification output is computed through each marginal contribution.

Officially it is determined through the following formula:

φi = ∑
S⊆N\{i}

|S|!(M−|S|−1)!
M ! [fx(S ⋃{i} − fx(S)]

First, we run SHAP analysis for all the features in the gas dataset. As shown

in 7.8, we give the top 20 contributing features. Specifically, the variation in the

sum of absolute value changes mostly impacts the class decision, especially for the

alarm_config class. This observation is reasonable because being the largest group

among all classes, the signals of configuration signals are fixed with little or no

changes over the whole timeline. While the second top contributing feature of the

mean value over the quantiles between 0 and 0.6 mainly impacts the recognition

of pressure readings. This indicates the pressure’s local average within such long

quantiles are more volatile than signals in the rest classes. As a matter of fact,

we observe that eight of top 20 features (2nd, 7th, 8th, 9th, 11th, 14th, 16th,

18th) are related to the analysis of the time series’ volatility within quantiles. As

for one protocol-relevant features, we only observe the ASDU type nine (a type

for the normalized measurement values) as one top contributing feature. It leads

the model to classify as pressures, alarm configuration signals, or positions when

it mostly directs the recognition of configuration signals due to more samples

in alarm configuration class. Other classes are in ASDU type 34, which is the
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normalized measurement value with a special formatted timestamp unit as result

of clock synchronization.

7.3 Process-Aware Anomaly Detection in Gas

Processes

7.3.1 Automated Process-Aware Detection Design

For the unsupervised anomaly detection, it is crucial for the model to learn

the normal patterns of SCADA network, specifically the physical dynamics in the

process variables. To introduce more insights of the correlated process variables,

we plan to develop multi-variate modeling, i.e. allow the model to learn not only

the seasonality in individual variables, but also the dependencies among multiple

correlated variables. Intuitively, this multi-variate modeling can also detect the

anomaly type where the dependency is violated. Moreover, the correlation among

variables facilitates the interpretation of the detected anomalies.

The main architecture is the Long Short-Term Memory (LSTM) autoencoder

decoder, which has been shown to be state-of-the-art in anomaly detection for

numeric time series[60][49]. To begin, we create a new dataset using the time

series of five signals, one pressure signal, and four pertinent safety alarm config-

uration signals representing various alerting levels. In big steps, we divide this

dataset at one time point into the subsets of normal session and contaminated

session, assuming that only the latter subset contains the abnormal process val-

ues. When a known process anomaly occurs in our dataset, we have information

of the rough timestamp. In real-world applications, historical data of no process

anomaly occurring yet can be used for training. Then in the training phase, the

normal session subset is the input to the LSTM autoencoder-decoder. After the
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model converges in the training, we apply the well-trained neural network to the

test dataset. In both training and testing, the neural network produces the recon-

struction of both the normal session and contaminated session. By calculating

the difference between input samples and reconstructed samples, i.e. the recon-

struction loss, we get the maximum loss in all the reconstructed training data and

define this max loss as the threshold. Later we call any testing data having a

reconstruction loss higher than this threshold as anomaly. The overall framework

is shown in Figure 7.9 and Figure 7.10. After a series of fine-tuning, our final

LSTM network structure is in Figure 7.11, with the Adam optimizer and mean

absolute error (MAE) loss optimization. In the following case study, we study the

gas pressure signal and the correlated safety alarm configuration signals.

Train Data Test Data

Code

Input Output

Encoder Decoder

Untrained Model
Input

Encoder

Code

Input Output

Encoder Decoder

Trained Model

Figure 7.9: Overall framework of the automated process anomaly detection

Finally, we show the detection result in Figure 7.12. Our model applies to a the

time series of a pressure sensor in a distribution station. The detector identifies
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Figure 7.10: The trained LSTM neural network learns a threshold of the recon-
struction loss from training data, and determine any sample with the loss higher
than this threshold as anomaly

the unexpected rising pressure at least five minutes before the value exceeding the

safety threshold. Therefore, the hazard of pressure explosion can be avoided with

the detection alert. It allows the engineers to have some time window to react

and confine the situation.

We will provide the anomaly interpretation in the next section.

7.3.2 Process Anomalies in Detailed Views

Here we describe a typical process control action issued by operators to Gas

Distribution System (GDS) RTU 172, used in the application scenario for auto-

mated anomaly detection. We observe the same behavior in many other RTUs.

To carry out our analysis, we leverage information regarding the mapping of IOAs

and their relation with the physical world from our previous analysis.

As depicted by the timeline in Figure 7.14, the process control operation starts

with the SCADA server sending an activation command (CoT: Act) of type single-

command to RTU 172 to switch the binary value at IOA 5162 to “on”. The RTU

immediately confirms receiving the message (CoT: ActCon) and confirms finishing
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Figure 7.11: Neural network layer structure of the fine-tuned LSTM autoencoder
decoder model

the transaction (CoT: ActTerm). We visualize how the single command works in

Figure 7.13.

Switching the value to “on”, results in a message from the RTU informing the

SCADA server that IOA 1066 changed its value to “on” due to a remote control

operation (CoT: Retrem). As can be seen in Table 7.8, on the RTU, IOA 5162

and 1066 both reference the same low-pressure-valve regulation indicator, one in

IEC 104 command and one in monitoring direction. This is expected as IEC 104

Figure 7.12: Detection result in a pressure sensor
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Control 
Server

RTU

1. Type 45 
(CoT: Ac�va�on)

2. Type 45 
(CoT: Ac�va�on Confirma�on)

3. Send current status (values in IOA)
(CoT: return informa�on caused by a remote command)

4. Type 45 
(CoT ac�va�on termina�on)

Figure 7.13: Legit operation sequences of single command

strictly distinguishes between IOs (and thus IOAs) used in command and moni-

toring directions. Interestingly, the local control logic of the RTU (CoT: Retloc)

switches the low-pressure-valve regulator to “off” immediately after. This is a typ-

ical pulse-signal behavior. While the IEC 104 protocol would allow one to specify

a pulse behavior directly in a single command, the feature is not used here, and

the pulse behavior is implemented with additional, custom control logic, written

in the RTU. In response to the initial command, the control motor for the valve is

powered up. The motor status is tracked by the RTU, which sends a spontaneous

(CoT: Spont) single-point information message to the SCADA Server indicating

that IOA 81 (i.e., the motor, see Table 7.8) is now “on”. In a second single-point

information message, the RTU informs the SCADA Server that IOA 1029, which

resembles the binary (on/off) status of the low-pressure-valve regulator is now

“on” as well. From the IEC 104 message we know that this status change is

caused by a remote control operation (CoT: Retrem), i.e., a direct consequence of

the initial command. We then observe IOA 1066 resetting its value to “off” due to

a local control operation triggered by the control logic on the RTU (CoT: Retloc).

After a few seconds, the sequence ends with the RTU informing the SCADA server
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time

Server → RTU
Act

single command: On
IOA: 5162

RTU → Server
Retrem

single-point info: On
IOA: 1066

RTU → Server
Spont

single-point info: On
IOA: 81

RTU → Server
Retloc

single-point info: On
IOA: 1029

RTU → Server
Retloc

single-point info: Off
IOA: 1066

Figure 7.14: Exemplary (and simplified) IEC 104 control message exchange
(ignoring ActCon and ActTerm) for RTU 172

Table 7.8: Simplified IOA to local I/O port mapping for RTU 172

Monitoring IOA Control IOA Local I/O port Description*
81 N/A Di-081 Motor Status

1066 5162 Do-042 Operate Low-Pressure Regulator
8213 N/A Ai-021 Valve Position Status
1029 5125 Do-005 Low-Pressure Regulator Status

that low-pressure-valve regulation indicator (IOA 1029) and motor (IOA 81) are

now “off” due to a local control operation (CoT: Retloc).

These control operations are relatively rare. On RTU 172, for example, this

sequence/operation repeats irregularly, with a few exceptions, roughly once a day

with gaps in between. We visualize the time sequence of events triggered by the

initial control command in Figure 7.15. The time series shows that the immediate

response of the RTU (in fact some of the IEC 104 messages are transmitted in the

same TCP segment), including the custom implementation of the pulse-signal. A

few seconds later (13 seconds in the example in the chart), the motor switches off

and the control operation completes.
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Figure 7.15: The control and monitor sequences between the SCADA server and
RTU 172

Normal Behaviors of Gas System Components

After the natural gas is produced from the decomposition of rock formations,

it is either compressed or enlarged to fit different volume needs for storage, trans-

mission and distribution.

Lower to Higher Pressure Depending on the the input pressure range, gas

regulators have the types of low-pressure ones and the high-pressure ones. The gas

compressors accomplish the transformation from lower pressure to higher pressure

through the electronic regulation of the gas flow with the low-pressure gas reg-

ulators. During the compression process, excessive heat is generated due to the

Conservation of energy, and there is a cooler system to dissipate this heat [25].
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Higher to Lower Pressure: High-range to Mid-range At the gas expan-

sion turbine station (GET), the high-pressure regulator takes in the national high-

pressure gas of tens or hundreds bars (40 bars in our dataset), through heating

the gas eventually outputs the regional mid-range pressure (8 bars in our dataset).

This process intrinsically avoids the energy loss by collecting the extra kinetic en-

ergy and transforming into another form of useful energy, e.g. the energy source

for power generators to produce electricity.

Higher to Lower Pressure: Mid-range to Low-range The local distribu-

tion station, i.e. a GDS, compresses 1 to 8 Bar mid-pressure gas to the < 1 Bar

low-pressure with the high-pressure gas regulators.

All kinds of regulators follow the same basic principle, which is changing the

medium’s pressure in the regulator cylinder through the interactive forces between

an internal spring and a diaphragm. The common components are a spring, a

metal or rubber thin plate called the diaphragm, and a valve.

Position sensors apply broadly in oil and gas systems. They are the monitoring

tool to ensure the system in a safe and reliable status even in a harsh environment.

Direct monitoring objects are valves, actuators, and motors.

Safety Control Ideally, every gas station has an emergency shutdown system

connected to automation processes. The operator schedules it to be activated

when abnormal events occur, such as the gas having an unanticipated out-of-limit

pressure change or a leakage. After detection, depending on which control unit

is connected, the emergency system will either shutdown the corresponding unit

such as a gas regulator or a motor, or open the vent to release excessive gas or

heat.
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Anomaly Interpretation

Abnormal Event 1: Pressure Peak in the Distribution Station RTU

172 monitors a distribution station (GDS). Among all the point variables this

RTU manages, there is a set of point variables connecting to a mid-pressure gas

regulator. The function of this regulator is to convert the 8-bar pressure to the

100-milibar pressure. We identify several crucial points from the Telnet traffic

representing the outlet 100-mbar pressure (with IOA 8193) and the 100-mbar cor-

responding safety thresholds HH/H/L/LL (IOA 9217 to IOA 9220) and the alarm

(IOA 88), position sensor for the valve status (IOA 8213) and the corresponding

safety variables (IOA 9221 to 9224 for thresholds, IOA 45 for the alarm).

The outlet pressure has a burst reading on the day of June 28th, and the peak

was 156.9 mbar comparing to the normal range of 109.4 to 120.4 mbar. With

the 100-mbar pressure reading marked as blue crosses, Figure 7.16 shows that

this reading has been stable and stayed within the four thresholds until one day

in late June (June 28th). During the burst, the pressure first exceeded the H

threshold of 120 mbar and then the HH threshold of 130 mbar. Figure 7.17 zooms

into the time frame when this occurred as an hourly view. Both digital variables

of the valve closed-or-not status and the safety alarm should be a 0/1 value. To

avoid overlapping in the plot, we add number two offset to the valve status value,

i.e. value two is actually zero and value three is actually two. Until the local

time midnight of June 28th, the valve remained open all the time. Starting from

2 am, the valve got closed for around 4 hours 20 minutes (to 6:20 am) from some

unknown maintenance, and the closing caused visibly larger fluctuation of the

pressure reading. In the middle of this closing, the valve got a brief opening at

around 4:59 am, and immediately closed again. Reacting to this brief opening, the

pressure reading burst and the safety alarm alerted within 3 seconds. After the
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valve opening gave the pressure a relief, we can observe that the pressure reading

peak dropped to the normal range right away. At the time of this abnormal event,

the position reading of the corresponding regulator also had a burst of 100%,

exceeding the H threshold of 85% and the HH threshold of 90% in Figure 7.18.

The polling modes of measurement values from the pressure sensor, valve and

alarm status are at a frequency of 10-minute by interrogation command.
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Figure 7.16: Measurement time series of the relevant points in RTU 172 over
the whole capture
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Figure 7.17: Safety exit alarm triggering event

Abnormal Event 2: Pressure Reading Myths in the Expansion Station

RTU 228 monitors a expansion station (GET) where the main task is to convert

high pressure of 40 bar to mid-range pressure 8 bar. Therefore, the key point

variables are the relevant pressure sensors and the corresponding safety control
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Figure 7.18: Position sensor readings correlate with the over-pressure anomaly

variables. During the whole capture, there are two abnormal events worthy of a

deep dive (Figure 7.19.

The first abnormal event on the day of May 5th (Figure 7.20), involves the high-

pressure point IOA 8195 and the emergency-stop safety control. The key takeaway

is that during this event the system has issued emergency stop out of a series of

suspicious faulty reading. Similarly, we compensate an offset of 40 to the digital

readings of IOA 1025 for presentation purpose. The signal of emergency stop (the

green line) stayed zero during the whole capture except at the moment of sudden

increase in the 40-bar variable IOA 8195 (the yellow triangles). Normally, the

polling mode of IOA 1025 is periodic at the frequency of 10 minutes by the station’s

interrogation schedule and the polled value is always zero. However, during this

event, two readings of ones have been returned within 15 seconds at 9:15 am as

the answer to a remote control command, which is indicated through the cause of

transmission (type 11, return information caused by a remote command). Based

on our experience, we suspect that before the morning of May 5th, the readings in

IOA 8195 of the 40-bar pressure sensor are faulty negative values out of unknown

reasons. The system makes the judgement that this is a potential safety threat

after a while the pressure reading is still too low, and issues the emergency stop.

For example the system can assume that there is a gas leakage going on. Then
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the emergency stop can interrupt the gas transmission at the moment, and allow

the operators to inspect the specific pipelines. After the high-pressure readings

come back to normal at around 40 bars, the system assigns no more emergency

stop commands.

The second abnormal event in Figure 7.21 is still relevant to the 40-bar pressure

readings on June 27th. During this event, the high pressure drops again gradually

from 42 bars to 10 bars over 8 hours, and then within one hour it climbs up back

to normal. The system hasn’t issued any emergency stop during these 9 hours.
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Figure 7.19: Measurement time series of the relevant points in RTU 228 over
the whole capture
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Figure 7.21: High pressure of 40-bar gradually degrades to 10 bars

7.4 Discussion

For critical infrastructures providing the essential utilities, the availability and

integrity of the services mostly prevail over the other security principles. There-

fore, it is unfeasible to interrupt the physical processes and perform penetration

testings. As a result, firewalls and the intrusion/anomaly detection systems are

the main defense mechanism deployed in ICS. Specifically, the network intru-

sion/anomaly detection is the focus of this dissertation. According to the taxon-

omy given by [21][51] and [34], there are the designs based on predefined attack

scenarios (i.e. misuses), signatures, system and protocol specifications and process

physics.

With the mechanisms of misuse and signature based, the SCADA network may

still be prone to any attacks outside of the predefined detection rules. With the

specification-based detector, stealthy attacks that follow the specification rules

may still evade. For instance, the adversary can inject a false time series to the

sensor in compatible with the protocol standards, still the false data can lead the
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system to a hazardous state. Therefore, we think the anomaly detection must have

the awareness of the physical processes, and the essence of the design should be

about how we build profiles from different perspectives, how the detection system

identifies a suspicious deviation, how we understand the detection results in the

downstream tasks.
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Chapter 8

Discussions, Conclusions and

Future Work

8.1 Discussions

8.1.1 Experience and Lessons

We are the first to analyze the SCADA traffic in a bulk power grid and gas

distribution network, revealing a thorough picture of how operators supervise the

physical operations of power grid transmission, distribution, and gas delivery.

We’d like to offer our approach in this chapter, which has been validated by

our own datasets and has led to fruitful discoveries of unanticipated network

misconfigurations, maintenance events, and real-world process anomalies. We’d

also like to highlight some of the key lessons we’ve learned from projects, which

may help researchers avoid pitfalls in the future.

First, we want to share our methodology when working with such

network captures, and summarize our methodology in Figure 8.1. With

this workflow, one can avoid being overwhelmed by all the network services and
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focus on the Operational Technology network activities.

Figure 8.1: Our attested approach when working with operational SCADA net-
work traffic datasets

Secondly, do not rely on the network endpoint and device finger-

prints based on previous IT network expertise. When we understand that

the gas stations are not fingerprinted by IP addresses, but rather by an IEC104

feature, the gas dataset in our study demands us to be attentive to unexpected

IP changes.

Thirdly, READ the protocol manual. It may appear to be a nuance

for network security researchers. Our experience with IEC 104 protocol standards

ensures that we will be able to spot interesting anomalies and deduce their origins.

An thorough investigation of the protocol itself is a must for understanding the

network’s normal behavior when designing a monitoring system.

Last but not the least, a ubiquitous metric system is needed for de-

tection evaluation. Supervised learning algorithms can use standard metrics,

such as accuracy, precision, recall, etc. However, anomaly detection for these net-

work monitoring datasets mostly does not have ground truth of real attacks, i.e.

the labels of 0/1. It is an essential step for the researchers first identify suspicious

irregular activities, and then define specific anomalies from there. This is also a
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limitation in our current research, in which we try to mitigate through defining

process anomaly categories based on specific physical processes, and detection

performance is measured by whether or not these anomaly categories are discov-

ered. However, generalizing all process abnormalities is difficult, and considering

all anomalies at the same level of severity and stealthiness is unfair.

8.1.2 Security, Safety, and Ethics

The dataset was collected as part of a research project aimed to increase cyber

security and resiliency of critical infrastructures. Confidentiality was practised

when handling the data. We explicitly do not disclose the network operator, the

exact geographical location of individual devices, public IP addresses, or any other

properties that may put the operator or the infrastructure at risk.

Our analysis shows a trusted insider assumption is used in this SCADA net-

work. The network we study is not part of the Internet (it is a private network

on leased lines). Anyone with access to this private network will have open access

to all devices in the network. Traffic is not authenticated (or encrypted), and

attackers can potentially spoof any device.

The usage of clear text protocols (i.e. IEC 104) is (still) common practise

in SCADA networks. The International Electrotechnical Commission (IEC) has

published a security specification for IEC 104 in 2013, to provide sender authenti-

cation and to ensure the integrity of data units (i.e. APDUs). However, operators

tend to be reluctant to upgrade the security features of IEC 104 channels with

this release, probably under the consideration for the expenses and interruption

to routine operations. Besides most SCADA protocols predating modern best

practises in protocol design, according to [27] the introduction of encryption may

decrease compatibility, introspection, and monitorability of the network, as well
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as introduce additional complexity and latency in the control process [27]. In this

context we do not consider the use of plain text protocols in a private and con-

trolled network a security issue by itself. Any Man-in-the-Middle attacker could

most likely, with or without the credentials gained from parsing Telnet traffic,

cause major interruptions on the gas delivery process.

Given this situation, accurate network security monitoring is needed. Any such

network monitoring solution must take into account that IEC 104 has a monitoring

and a control direction and thus two IOAs that are observed on the network may

refer to the same local variable on the RTU. we show several correlations between

variables and messages. This type of network profile can help in creating a list

of acceptable or expected behavior of the network. In addition to protecting the

network, the local control logic on the RTU can actually be a security and safety

feature. With a strong control logic on the RTU, an Attack like Industroyer[8]

would have less impact as the RTU can locally perform safety-checks to not allow

entering invalid or unsafe states regardless of the incoming commands.

8.2 Conclusion

In this dissertation, we conduct the first network measurement and anomaly

detection of the IEC 104-based SCADA system controlling a bulk power grid and

the natural gas distribution network, both as the large-scale state-level networks

spanning over multiple geographic areas. We list and explain several interesting

observations with respect to IEC 104 usage and RTU configurations in this gas

network.

By combining the information obtained from engineering and IEC 104 network

traffic, we reconstruct the bulk and gas distribution systems’ layouts, including

the type and purpose of the substations and the physical properties of the gas that
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enters the SCADA system. Our analysis shows that it is possible to extract this

information, essential for security monitoring, purely from the raw network traffic

and without background knowledge provided by the control system engineers. We

also note that configuration changes in SCADA environments, although probably

less frequent than in IT environments, are not as rare and exceptional as the

research community assumed.

Comparison with other IEC 104 networks and further exploiting context infor-

mation, such as communication using other protocols within the SCADA control

center, are planned to be explored further in follow-up studies.

We observed several differences in usage of the IEC 104 protocol between the

gas and the bulk power grid described. Most notably the operators of the gas

distribution network do not rely on IEC 104 periodic (e.g., an RTU transmits

the current variable in regular time intervals) or spontaneous reports (i.e., an

RTU automatically notifies the SCADA server when a value exceeds a defined

threshold). Instead, they interrogate the RTUs in constant time intervals (see

Figure 5.8). This is in contrast to the IEC 104 observations in the power grid.

We believe that the physical process of gas delivery is much more straightforward,

with devices mostly being valves/regulators. Because gas “just flows” through the

network as long as constant pressure is maintained.

8.3 Future Research Directions

• Investigation of differences between the use of IEC 104 in different

sectors: While we understand the intuition behind the differences between

the power grid and the gas network, it is important to further investigate

more system types. The reasons may be the operator’s design choices or

result from differences in the underlying physical processes. This will benefit
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the generalization in the SCADA network monitoring.

• Exploration of the interactions inside of the control room: Besides

the SCADA and Telnet traffic between the RTUs and the SCADA server,

gas dataset contains network traffic exchanged within the SCADA control

center as well. While the control center traffic is not in the scope of this

dissertation, we believe that understanding and describing an operational

real-world SCADA control center may be of use to the academic community.

• Downstream tasks of anomaly detection: It is tricky to identify

anomalies from a dataset without ground truth adversarial event labeled.

In our case, we have the remote management traffic in Telnet to facilitate

the unraveling of the myth. So one downstream task of anomaly detection

can be the parsing of the management and diagnostic traffic.

• Strengthening the motives for both researchers and industrial op-

erators: We can already notice an increase in interest in defending criti-

cal infrastructures since more critical facilities have been targeted in recent

decades. However, both parties’ collaboration and motivations are still insuf-

ficient. The operators can provide real-world viewpoints on various technical

jobs, assisting researchers in developing more accurate threat models and de-

tection models, as well as improving the monitoring system’s scalability and

real-time running difficulties. On the other hand, after earning the trust of

the operator and gaining access to datasets, the researchers construct more

robust and resilient intrusion/anomaly detection systems. In gas dataset,

for example, we see messages exchanged via proprietary protocols between

the two SCADA servers and an HMI.
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Table .1: ASDU I-Format Type Identification Codes and Semantics

Type ID Code Acronym Description
1 M_SP_NA_1 Single-point information
3 M_DP_NA_1 Double-point information
5 M_ST_NA_1 Step position information
7 M_BO_NA_1 Bitstring of 32 bits
9 M_ME_NA_1 Measured value, normalized value
11 M_ME_NB_1 Measured value, scaled value
13 M_ME_NC_1 Measured value, short floating point number
15 M_IT_NA_1 Integrated totals
20 M_PS_NA_1 Packed single-point information with status change detection
21 M_ME_ND_1 Measured value, normalized value without quality descriptor
30 M_SP_TB_1 Single-point information with time tag CP56Time2a
31 M_DP_TB_1 Double-point information with time tag CP56Time2a
32 M_ST_TB_1 Step position information with time tag CP56Time2a
33 M_BO_TB_1 Bitstring of 32 bit with time tag CP56Time2a
34 M_ME_TD_1 Measured value, normalized value with time tag CP56Time2a
35 M_ME_TE_1 Measured value, scaled value with time tag CP56Time2a
36 M_ME_TF_1 Measured value, short floating point number with time tag CP56Time2a
37 M_IT_TB_1 Integrated totals with time tag CP56Time2a
38 M_EP_TD_1 Event of protection equipment with time tag CP56Time2a
39 M_EP_TE_1 Packed start events of protection equipment with time tag CP56Time2a
40 M_EP_TF_1 Packed output circuit information of protection equipment with time tag CP56Time2a
45 C_SC_NA_1 Single command
46 C_DC_NA_1 Double command
47 C_RC_NA_1 Regulating step command
48 C_SE_NA_1 Set point command, normalized value
49 C_SE_NB_1 Set point command, scaled value
50 C_SE_NC_1 Set point command, short floating point number
51 C_BO_NA_1 Bitstring of 32 bits
58 C_SC_TA_1 Single command with time tag CP56Time2a
59 C_DC_TA_1 Double command with time tag CP56Time2a
60 C_RC_TA_1 Regulating step command with time tag CP56Time2a
61 C_SE_TA_1 Set point command, normalized value with time tag CP56Time2a
62 C_SE_TB_1 Set point command, scaled value with time tag CP56Time2a
63 C_SE_TC_1 Set point command, short floating-point number with time tag CP56Time2a
64 C_BO_TA_1 Bitstring of 32 bits with time tag CP56Time2a
70 M_EI_NA_1 End of initialization
100 C_IC_NA_1 Interrogation command
101 C_CI_NA_1 Counter interrogation command
102 C_RD_NA_1 Read command
103 C_CS_NA_1 Clock synchronization command
105 C_RP_NA_1 Reset process command
107 C_TS_TA_1 Test command with time tag CP56Time2a
110 P_ME_NA_1 Parameter of measured value, normalized value
111 P_ME_NB_1 Parameter of measured value, scaled value
112 P_ME_NC_1 Parameter of measured value, short floating-point number
113 P_AC_NA_1 Parameter activation
120 F_FR_NA_1 File ready
121 F_SR_NA_1 Section ready
122 F_SC_NA_1 Call directory, select file, call file, call section
123 F_LS_NA_1 Last section, last segment
124 F_AF_NA_1 Ack file, ack section
125 F_SG_NA_1 Segment
126 F_DR_TA_1 Directory
127 F_SC_NB_1 Query Log, Request archive file
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