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Key Points: 15 

• U.S. West Coast landfalling AR events originating from the Northwest Pacific are 16 

stronger with longer lifetime than those from the Northeast 17 

• A persistent tripole geopotential height anomaly pattern modulates the life cycles of 18 

landfalling AR events from distinct origin locations 19 

• Landfalling AR events originating from the Northwest (Northeast) Pacific induce 20 

precipitation over the northern (southern) U.S. West Coast  21 
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Abstract 22 

An atmospheric river (AR) event represents strong poleward moisture transport and is 23 

defined as a series of spatiotemporally connected instantaneous AR objects. Utilizing an AR 24 

tracking algorithm with a depth-first search (a widely-used algorithm in computer science), we 25 

examine the life-cycle characteristics of AR events that make landfall over the U.S. West Coast 26 

by their distinct origin locations. Landfalling AR events from the Northwest Pacific (120°E-27 

170°W, WLAR events) temporally last longer (5.3 days vs. 3.6 days on average) and have 28 

stronger intensity of integrated vapor transport (508 kg m-1 s-1 vs. 388 kg m-1 s-1 on average) than 29 

those originating from the Northeast Pacific (125°W-170°W, ELAR events). A persistent tripole 30 

geopotential height anomaly pattern over the North Pacific modulates the origin locations and 31 

propagation of landfalling AR events. WLAR events are associated with anomalous highs over 32 

northeastern Asia and the Northeast Pacific and an anomalous low over the central North Pacific. 33 

This pattern provides favorable conditions for WLAR events to start, propagate northeastward, 34 

and make landfall in the northwestern West Coast. WLAR events contribute approximately 25% 35 

of the total winter precipitation over Washington and British Columbia. ELAR events are 36 

associated with the nearly opposite tripole pattern to the WLAR events. The anomalous low over 37 

the Northeast Pacific helps ELAR events to start, propagate northeastward, and make landfall in 38 

the southwestern West Coast. Precipitation induced by ELAR events contributes up to 30% of 39 

total winter precipitation over California.  40 

  41 
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Plain Language Summary 42 

Atmospheric rivers (ARs) are strong poleward water vapor transport events in the lower 43 

troposphere. AR events are important to water resources over the U.S. West Coast. We compared 44 

the characteristics, circulation patterns, and precipitation of landfalling AR events over the U.S. 45 

West Coast based on their origin locations. In general, landfalling AR events originating from 46 

the Northwest Pacific (120°E-170°W) last longer and have stronger intensities than those from 47 

the Northeast Pacific (125°W-170°W). The life cycles (origin, propagation, and termination) of 48 

landfalling AR events and AR-related precipitation are strongly modulated by large-scale tripole 49 

geopotential height anomaly pattern over the North Pacific basin.  50 

  51 



Confidential manuscript submitted to Journal of Geophysical Research: Atmospheres 

4 

1 Introduction 52 

Atmospheric rivers (ARs) are filamentary plumes of intensive poleward water vapor 53 

transport in the atmosphere that play an essential role in the global hydrological cycle (Zhu & 54 

Newell, 1994, 1998). ARs are important to coastal water resources, especially over the U.S. West 55 

Coast, where they account for approximately 30-50% of precipitation and snow water equivalent 56 

over the region (Dettinger et al., 2011; Guan et al., 2010, 2013; J. Kim et al., 2013; Lavers & 57 

Villarini, 2015). About 30-70% of West Coast droughts were ended by AR-related storms 58 

(Dettinger, 2013). Strong ARs are associated with heavy precipitation and disastrous events such 59 

as floods and extreme winds (Dettinger et al., 2011; Neiman et al., 2013; Ralph et al., 2013; 60 

Ralph & Dettinger, 2012; Ralph et al., 2006; Smith et al., 2010; Waliser & Guan, 2017). The 61 

number of landfalling ARs and their associated precipitation over the U.S. West Coast are 62 

projected to increase with global warming (Dettinger, 2011; Espinoza et al., 2018; Gershunov et 63 

al., 2019; Hagos et al., 2016; Lavers et al., 2013; Payne & Magnusdottir, 2015; Warner et al., 64 

2015), which may cause significant economic loss (Dominguez et al., 2018). Therefore, a better 65 

understanding of landfalling ARs over the U.S. West Coast and their regional impacts is crucial 66 

for accurate predictions and projections of AR-related weather hazards, which could help 67 

policymakers and emergency managers to prepare mitigating actions in advance. Given the 68 

significant socio-economic impacts of ARs, the characteristics and variability of ARs and the 69 

associated physical mechanisms (e.g. Guan & Waliser, 2015; H. Kim et al., 2017; Mundhenk et 70 

al., 2016a; Mundhenk et al., 2016b; Payne & Magnusdottir, 2014; Ryoo et al., 2013; Ryoo et al., 71 

2015 and review by Gimeno et al., 2014 and Shields et al., 2018) as well as the prediction of 72 

ARs (e.g. DeFlorio et al., 2018a; DeFlorio et al., 2018b; Mundhenk et al., 2018; Nardi et al., 73 

2018; Wick et al., 2013; Zhou & Kim, 2017) have been widely investigated. 74 
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Most of the previous studies have focused on the characteristics of landfalling AR events 75 

during a relatively short period (about 24-72 hours) during landfall rather than analyzing their 76 

entire life cycles from origin to termination (e.g. Neiman et al., 2013; Rutz et al., 2014; Waliser 77 

& Guan, 2017). A handful of studies focusing on the entire life cycles of landfalling ARs have 78 

been limited to case studies or specific features of AR life cycles, such as intensity or spatial 79 

distributions of origin and termination. For example, Ralph et al. (2011) used observational data 80 

to track the evolution of a single landfalling AR event over the U.S. West Coast during March 81 

2005 and linked its life cycle with multi-scale dynamical processes such as mesoscale frontal 82 

waves and the Madden-Julian Oscillation (MJO). Since this study focused on a single case, it 83 

may not represent the general characteristics of the life cycles of landfalling AR events. By 84 

focusing on the intensities of landfalling ARs only, Payne and Magnusdottir (2014) showed that 85 

stronger landfalling AR events tend to originate from the western Pacific, while the weaker 86 

events originate from the eastern Pacific. Sellars et al. (2017) focused on the global distributions 87 

of origins and terminations of AR events and the association with climate variability, while other 88 

life-cycle characteristics such as lifetime and intensity of ARs were not examined.  89 

In Zhou et al. (2018), an automated object tracking algorithm was developed that can 90 

identify the life-cycle characteristics of ARs such as the locations of origin and termination, 91 

lifetime, intensity, and the propagation track. While the general characteristics of AR life cycles 92 

over the entire North Pacific have been discussed in Zhou et al. (2018), a detailed analysis that 93 

specifically targets landfalling AR events over the U.S. West Coast has yet to be conducted. 94 

Depending on their origin locations (Northwest (120°E-170°W) vs. Northeast Pacific (125°W-95 

170°W)), landfalling AR events may have distinct characteristics in intensity, propagation 96 

pathway, and precipitation location. In this study, the impact of distinct origin locations on the 97 
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life-cycle characteristics of landfalling AR events over the U.S. West Coast will be examined in 98 

detail by adopting the AR tracking algorithm from Zhou et al. (2018). Data selection and the 99 

updated tracking algorithm are introduced in section 2. Characteristics of landfalling AR events 100 

from different origin locations are compared in section 3. In section 4, we discuss the evolution 101 

of landfalling AR events originating from distinct locations and the corresponding large-scale 102 

patterns. Spatiotemporal evolution of AR-induced precipitation is examined in section 5. 103 

Summary and discussion are provided in section 6.  104 

 105 

2 Data and Tracking Algorithm 106 

2.1 Data 107 

To detect ARs, we use the vertically-integrated water vapor transport (IVT), which is 108 

calculated as:  109 

IVT =  − 
1

𝑔
∫ 𝑞𝑉⃑ 

300 ℎ𝑃𝑎

1000 ℎ𝑃𝑎
𝑑𝑝, (1) 110 

where g is gravitational acceleration (m s-2), p is pressure (hPa), q is specific humidity (kg kg-1), 111 

and 𝑉⃑  is the horizontal wind vector (m s-1). To calculate the IVT, 20 vertical levels (1000-300 112 

hPa) of 6-hourly horizontal winds and specific humidity data from the European Centre for 113 

Medium-Range Weather Forecasts Interim Reanalysis (ERAI, (Dee et al., 2011)) are used with 114 

1.0° horizontal grid spacing. To evaluate the evolution of landfalling AR events and circulation 115 

patterns, daily (00Z) anomalous (minus daily climatology) horizontal winds, specific humidity, 116 

and 500 hPa geopotential height from ERA-Interim are used. To examine the coastal 117 

precipitation responses, CPC unified gauge-based analysis of 0.5° daily-mean anomalous 118 

precipitation over land (Xie et al., 2007) is analyzed. We focus on 39 cool seasons (1979-2018) 119 
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from November to March, which is a relatively active season of landfalling ARs (Mundhenk et 120 

al., 2016a). 121 

2.2 Tracking Algorithm: Depth-First Search 122 

One of the approaches to detecting ARs is the “condition” parameter detection (Shields et 123 

al., 2018), which involves applying a set of conditions on the IVT field at every time step to 124 

identify an AR object. The AR object is defined as an enclosed two-dimensional (longitude and 125 

latitude) instantaneous area that meets the given AR-related conditions. In this study, we apply 126 

the AR detection method developed by Guan and Waliser (2015), who combined multiple 127 

conditions including IVT magnitude, IVT direction, and geometric shape. We define an AR 128 

event as a series of spatiotemporally connected AR objects. The life cycle of an AR event 129 

represents the evolution of multiple overlapping AR objects within an AR event. The AR origin 130 

and termination are defined as the first and last AR objects in an AR life cycle, respectively. To 131 

identify an AR event and its life cycle, a tracking algorithm was developed in Zhou et al. (2018) 132 

that utilizes the spatial overlapping ratio between AR objects of consecutive time steps. An 133 

example of an identified landfalling AR event by Zhou et al (2018) is shown in Figure 1. This 134 

landfalling AR event originated over the central North Pacific and terminated over the Northwest 135 

U.S. during January 2018. The black dots are the centroids of AR objects, which are calculated 136 

as the mass-weighted mean latitudes and longitudes of the objects. The letters mark the centroids 137 

of origin (O) and termination (T) objects. This landfalling AR event lasted for 4.75 days (19 6-138 

hourly time intervals).  139 
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 140 

Figure 1. Example of a landfalling AR event (O→T) in January 2018. Each shading color 141 

represents an instantaneous AR object from sequential time steps. The black dot marks the 142 

centroid of each AR object. The red dots marked with “O” and “T” are the centroids of the origin 143 

and termination objects, respectively. The red line connects the dots and represents the 144 

propagation track of the landfalling AR event.  145 

 146 

When AR objects propagate, it is possible that objects from different AR events merge 147 

together or one object splits into multiple objects that propagate in different directions. In Zhou 148 

et al (2018), the merging and splitting objects are marked as origins of new AR life cycles. While 149 

marking merging and splitting objects as new origins may help to explain the merging or 150 

splitting process, the AR events identified in this way may not represent the complete life cycle 151 

of moisture transport. To capture the complete life cycles of landfalling AR events, we updated 152 

the tracking algorithm from Zhou et al. (2018) so that the merging or splitting objects are 153 

identified as intermediate objects rather than new origin objects in AR life cycles. The updated 154 

tracking algorithm is based on the tree data structure (Sleator & Tarjan, 1983), which is a widely-155 

used data structure in computer science. The tree data structure contains a set of linked nodes 156 

that are distributed hierarchically (Figure 2). Like the shape of a tree, this data structure starts 157 
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from a root node and moves forward to any linked internal nodes in the next hierarchy. Moving 158 

forward, the tree structure may branch out, which means a single internal node is linked to 159 

multiple nodes in the next hierarchy. Finally, each branch of the tree structure ends with a 160 

terminal node. The life cycle of an AR event is similar to a tree structure. The origin (termination) 161 

object is analogous to the root (terminal) node. The merging/splitting object is equivalent to the 162 

branching node of the structure. For AR events, the spatiotemporal connectivity (overlapping) is 163 

a measure of linkage in the sense of a tree structure, and the number of time steps in the life 164 

cycle of an AR event equals the number of hierarchies in a tree structure.  165 

 166 

Figure 2. Schematic diagram of a tree structure. This tree structure starts at a root node, branches 167 

off, and connects with two terminal nodes.  168 

 169 

One of the classic algorithms used to traverse a tree structure is the depth-first search 170 

(Tarjan, 1972). The depth-first search algorithm aims to find all the paths between the root node 171 

(e.g., AR origin object) and the terminal node (e.g., AR termination object) and to track each 172 

branch to the terminal node before moving to the next branch. The updated tracking algorithm 173 

applies a depth-first search, which proceeds as follows: i) define the AR origin when an AR 174 

object has no overlap with any object in the previous time step (Zhou et al. 2018); ii) starting 175 

from the origins, repeatedly find the overlapping object in the next time step until termination 176 

(no overlap with the next time step). If a splitting object occurs, each object after the splitting 177 
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will be tracked separately until termination so that one origin is connected to multiple 178 

terminations. If multiple objects merge together, the life cycle after the merging object will be 179 

linked to each of the objects before merging so that one termination can be linked to multiple 180 

origins. Figure 3 shows an example of two merging AR events during December 2015 identified 181 

by the updated tracking algorithm. One AR event originated on December 14 (orange shading, 182 

O1) and the other originated on December 18 (green shading, O2). The two events merged on 183 

December 19 (point M) and terminated (grey shading, Tm) on December 21. The correspondence 184 

between one origin and one termination is recorded individually. For instance, the two AR events 185 

in Figure 3 are recorded separately (O1→Tm and O2→Tm), although they have the same 186 

termination (Tm). About 28% of total landfalling AR objects are recorded by more than one AR 187 

event due to merging and splitting (such as M→Tm).  188 

 189 

Figure 3. Example of merging AR events during December 2015. The two events originated 190 

with different objects (orange (O1) and green (O2) shadings), merged, and terminated as the same 191 

object (grey shading (Tm)). The red line (O1→Tm) and the blue line (O2→Tm) are the propagation 192 

tracks of these two AR events, respectively. “M” marks the time step of merging. 193 

 194 

3 Life-Cycle Characteristics by Distinct Origin Locations  195 
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We applied the updated algorithm to track landfalling AR events and record their life-196 

cycle characteristics, including the locations of origin and termination, lifetimes, intensities, and 197 

propagation tracks. We identified a landfalling AR event as when an AR event has passed 198 

through a landfalling region over the U.S. West Coast (blue box in Figure 4a) during its life 199 

cycle. The landfalling region is selected along the U.S. West Coast (30°N-49°N) with a zonal 200 

width of ten 1° grid points. We tested the sensitivity of landfalling AR events to the landfalling 201 

region by zonally shifting the region by three grids or decreasing the zonal width by three grids. 202 

The identified landfalling AR events are not sensitive to the width of the landfalling region (not 203 

shown). Figure 4a shows the total AR frequency associated with landfalling AR events, which is 204 

the grid-point accumulated number of AR objects per winter. AR objects recorded in multiple 205 

AR events due to merging/splitting are counted only once in the calculation of AR frequency. 206 

The AR frequency spreads over the North Pacific with a maximum of over 45 objects per winter 207 

at each grid point between 30°N-60°N adjacent to the West Coast (Figure 4a). On average, about 208 

24 landfalling AR events per winter occur over the U.S. West Coast, which agrees with previous 209 

studies (Harris & Carvalho, 2018; Payne & Magnusdottir, 2014). With the tracking algorithm, 210 

we can identify the origin and termination objects (Figures 4b-c) from all detected objects 211 

associated with landfalling AR events shown in Figure 4a. The AR origin frequency mainly 212 

scatters between 20°N-45°N in the North Pacific, with the maximum frequency over the 213 

subtropical Northeast Pacific. A secondary peak in origin frequency locates over the Northwest 214 

Pacific near 160°E, which suggests that a large number of landfalling AR events originate from 215 

the Northwest Pacific, travel across the North Pacific basin, and make landfall over the U.S. 216 

West Coast. The high termination frequency over land is due to the massive moisture loss 217 
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through precipitation when ARs make landfall (Dettinger, 2013; Neiman et al., 2013; Ralph & 218 

Dettinger, 2012).  219 

 220 

Figure 4. AR frequency (shading, number of objects per winter) for (a) total, (b) origin, and (c) 221 

termination objects in landfalling AR events. The area enclosed by the blue line in (a) is the 222 

region for landfalling AR event selection (10 longitudinal degrees along the U.S. West Coast 223 

between 30°N-49°N). Boxes in (b) denote the origin locations of landfalling AR events from the 224 
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Northwest Pacific (20°N-45°N, 120°E-170°W) (WLAR, dashed box) and landfalling AR events 225 

from the Northeast Pacific (20°N-45°N, 125°W-170°W) (ELAR, solid box).  226 

 227 

To compare the characteristics of landfalling AR events from different origin locations, 228 

we categorized the landfalling AR events into two groups based on their origin locations: 229 

landfalling AR events from the Northwest Pacific (WLAR events, dashed box in Figure 4b) and 230 

the Northeast Pacific (ELAR events, solid box in Figure 4b). To determine the domain for event 231 

selection, empirical orthogonal function (EOF) is applied to daily anomalous AR frequency 232 

(20°N-60°N, 120°E-250°E) that are associated with landfalling AR events. To calculate daily 233 

anomalous AR frequency, we first summed the objects associated with landfalling AR events by 234 

every four 6-hourly time steps, then subtracted the daily climatology. Figure 5 shows the first 235 

two EOF modes. The first mode (12.5% variance explained) is a basin-scale monopole pattern of 236 

daily AR frequency over the entire North Pacific, which reflects the occurrence location of 237 

landfalling AR objects (Figure 5a). The second mode (8.9% variance explained) shows a west-238 

east dipole pattern with the maxima over the Northeast Pacific around 30°N, 135°W and the 239 

minima over the central Pacific near 40°N, 160°W (Figure 5b). The second EOF mode could 240 

explain the variability of landfalling AR events from the Northeast Pacific (125°W-170°W) and 241 

from the Northwest Pacific (120°E-170°W). Therefore, we selected the two domains of origin 242 

locations based on the distinct west-east variation of daily AR frequency of landfalling AR 243 

events (Figure 4b). For 39 cool seasons, a total of 438 WLAR events and 499 ELAR events are 244 

selected for detailed analysis of landfalling AR life cycles. 245 

 246 
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 247 

Figure 5. Spatial patterns of (a) the first and (b) second EOF modes of daily AR frequency 248 

associated with landfalling AR events. The black boxes in (b) are the same as Figure 4(b) which 249 

mark the selection domains for AR origins. The percentage shown in each panel’s title represents 250 

the variance explained by each mode.   251 

 252 

The lifetime of an AR event is calculated as the product of the number of time intervals 253 

between origin and termination, and the length of the time interval (6 hours). For example, the 254 

lifetime of the landfalling AR event shown in Figure 1 is 4.75 days. Figure 6a shows the 255 

probability density function (PDF) of the lifetimes of WLAR and ELAR events. For ELAR 256 

events, the percentage gradually decreases as a function of lifetime. About 77% of ELAR events’ 257 

lifetimes persist less than 4 days (Figure 6a). We examined the ELAR events in the high tail of 258 

the distribution (lifetime > 5.5 days, ~85th percentile) and found that the prolonged lifetimes of 259 
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those ELAR events are due to slow-moving AR objects or merging with other AR events (not 260 

shown). The mean lifetime of ELAR events is 3.6 days, which is different from that of WLAR 261 

events (5.3 days) on a 99% confidence level based on a two-sample t-test. About 60% of WLAR 262 

events have lifetimes longer than 4 days because it requires more time for WLAR events to 263 

travel across the North Pacific basin and reach the West Coast. The shorter-lived WLAR events 264 

(< 2.5 days, ~15th percentile) mostly have origins closer to the central Pacific (not shown) and 265 

longer-lived WLAR events (> 7 days, ~85th percentile) originate further west. 266 

 267 

 268 

Figure 6. PDF of (a) lifetime (days), (b) mean intensity (kg m-1 s-1), and (c) change of object 269 

intensity through the lifetime (percentage of lifetime) for WLAR (red) and ELAR (blue) events.  270 
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 271 

The intensity of an AR event is calculated as the average of objects’ intensities which are 272 

the area-weighted mean IVT magnitudes within the AR objects. Figure 6b shows the PDF of the 273 

intensities of WLAR and ELAR events. The mean intensity is 508 kg m-1 s-1 for WLAR events 274 

and 388 kg m-1 s-1 for ELAR events, which are significantly different on a 99% confidence level 275 

based on a two-sample t-test. A previous study also showed that AR events originating from the 276 

western Pacific generally have stronger intensities than those from the eastern Pacific (Payne & 277 

Magnusdottir, 2014). To further understand why WLAR events have stronger intensities than 278 

ELAR events, we investigated the intensity changes during landfalling AR life cycles. Because 279 

the lengths of lifetimes vary among landfalling AR events (Figure 6a), we interpolated the time 280 

series of object intensity into 100 portions for every landfalling AR event for easier comparison. 281 

0% represents the origin and 100% represents the termination. For example, in Figure 1, 40% of 282 

the lifetime represents the first 1.9 days of the total 4.75 days. Figure 6c shows the temporal 283 

change in the object intensity of WLAR and ELAR events. WLAR events on average have 284 

stronger object intensity than ELAR events throughout their life cycles. The mean object 285 

intensity continuously decreases in ELAR events, whereas it increases during the first 20% of the 286 

lifetime and then gradually decreases for WLAR events (Figure 6c). 287 

 288 

4 Distinct Evolutions of Landfalling AR Events 289 

To better understand the evolutions of landfalling AR events, we calculated the daily AR 290 

frequency starting from origins (Day +0) (Figure 7). Since the AR origins can occur in any of the 291 

four 6-hourly time steps during Day +0, we included the origin objects from all four time steps 292 

for Day +0 in Figure 7. After Day +0, only the AR objects at 00z are used and referred to as 293 
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daily for simplicity. A three-day (i.e., three 00z) moving average is performed after Day +0. For 294 

example, Day +2 represents the average from Days +1 to +3.  295 

 296 

 297 

Figure 7. AR frequency (number of objects per winter) of (a-d) WLAR and (e-h) ELAR events 298 

from Day +0 to Day +8. A three-day moving average is applied except for Day +0. 299 

 300 

On Day +0, the origin objects of 438 WLAR events spread over the subtropical 301 

Northwest Pacific with a maximum (over 1.4 objects per winter) between 20°N-30°N, 140°E-302 

170°E (Figure 7a). On Day +2, as objects of WLAR events propagate northeastward, the area 303 

covered by WLAR objects enlarges over the North Pacific, with the maximum (over 2 objects 304 

per winter) in the subtropical central Pacific (Figure 7b). The broad area of WLAR frequency 305 

may be due to various propagation directions of WLAR events or intensification of WLAR 306 

events as shown in Figure 6c. A few WLAR events make landfall over the West Coast on Day 307 

+2 with less than 0.6 objects per winter over grid points in western North America (Figure 7b). 308 

After Day +2, the overall WLAR frequency decreases due to the weakening of intensity (Figure 309 

6c) or increasing number of terminated events. Day +5 is the peak landfall period for WLAR 310 

events with over 0.8 object per winter between 40°N-70°N and roughly 1.4 objects per winter 311 
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near 50°N (Figure 7c). About 15% of all WLAR events last longer than 7 days and make landfall 312 

on Day +8 (Figure 6a and 7d). The landfalling latitudes of WLAR events are generally in the 313 

northwestern U.S. West Coast and British Columbia. Because ELAR events originate 314 

geographically closer to the U.S. West Coast, some ELAR events already extend to the West 315 

Coast on Day +0 with the maximum frequency of 1 object per winter over the grids near 35°N 316 

(Figure 7e). The ELAR frequency expands northward and reaches 70°N on Day +2 (Figure 7f). 317 

Day +2 is the peak landfall period for ELAR events. The ELAR frequency over the entire North 318 

American West Coast (25°N-60°N) is over 0.2 object per grid per winter, with a maximum of 1.6 319 

objects per winter near 35°N (Figure 7f). After the peak of landfall, the ELAR frequency 320 

decreases rapidly (Figures 7g-h).  321 

To understand the evolution processes and large-scale patterns associated with the 322 

landfalling AR events, we calculated the composites of anomalous geopotential height at 500 323 

hPa (Z500), IVT, and moisture flux divergence from six days prior (Day –6) to nine days after 324 

(Day +9) landfalling AR origins (Figures 8 and 9). The selected time steps in Figures 8 and 9 are 325 

consistent with landfalling AR events shown in Figure 7. A three-day moving average is applied 326 

to the anomalous fields except for Day +0. For example, Day –5 represents the average of Day –327 

6 to –4. For the significance test, a one-sample t-test is applied to the anomalous fields on each 328 

composite day. The significant values shown in Figure 8 and 9 represent that the value over the 329 

grid is 95% significantly different from the climatology for at least one day among the three-day 330 

averaging.  331 
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 332 

Figure 8. Daily composites of anomalous Z500 (contours, 10-meter interval, zero line is omitted, 333 

red/blue contours represent positive/negative anomalies), IVT anomaly (vectors larger than 15 kg 334 

m-1 s-1), and anomalous moisture flux divergence (shading, 1×107 kg m-1 s-1 interval) for WLAR 335 

events. A three-day moving average is applied except for Day +0. The magenta dot in (e) marks 336 

the location of maximum frequency during landfall. The dotted shading, thickened contours, and 337 

vectors represent values that exceed the 95% confidence level of a one-sample t-test.  338 

  339 

The life cycles of WLAR events are associated with a tripole pattern of geopotential 340 

height anomalies over the North Pacific that persists for one week (from Day –2 to +5) with an 341 

anomalous low over the central North Pacific and anomalous highs over northeast Asia and the 342 

subtropical Northeast Pacific (Figure 8). A similar tripole pattern associated with landfalling 343 

ARs over Oregon is shown in Benedict et al. (2019) by calculating lagged regression of 344 
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geopotential height onto the IVT at landfall. On Day –5, an anomalous high appears over 345 

northeastern Asia and an anomalous low emerges over the North Pacific (Figure 8a). As the two 346 

height anomalies intensify from Day –5 to +0, the increasing pressure gradient induces an 347 

equatorward IVT anomaly and enhanced moisture flux divergence at the northwest side of the 348 

anomalous low (Figures 8a-c). The equatorward IVT decays from Days +2 to +8 with the 349 

weakening anomalous high over northeastern Asia (Figures 8d-f). Another anomalous high 350 

intensifies over the Northeast Pacific from Days –2 to +5. Meanwhile, an eastward IVT anomaly 351 

and enhanced moisture flux convergence prevail between the anomalous low and high due to an 352 

increased pressure gradient (Figures 8b-e). The combination of the anomalous low and high 353 

modulates the origin and propagation of WLAR events. The eastward IVT anomaly supports the 354 

occurrence of WLAR origins on Day +0. Anomalous moisture flux convergence is induced over 355 

the Northwest U.S. and British Columbia during the landfall of WLAR events and persists until 356 

this tripole Z500 anomaly pattern dissipates on Day +5 (Figures 8d-f).  357 

A similar tripole pattern is shown associated with ELAR events but shifted eastward 358 

comparing to WLAR events (Figure 9). An anomalous high, which induces an anticyclonic 359 

circulation, persists over the northwestern Pacific from Days –5 to +2. Correspondingly, 360 

equatorward (poleward) IVT and enhanced moisture flux divergence (convergence) remain at the 361 

east (west) side of the anomalous high from Days –5 to +2 (Figures 9a-d). On Day –2, an 362 

anomalous low, which modulates the occurrence and propagation of ELAR events, prevails over 363 

the Northeast Pacific (Figure 9b). As the anomalous low deepens, the IVT magnitude increases 364 

(not shown) and therefore leads to the origin of ELAR events (Figure 9c). On Day +0, another 365 

anomalous high appears over western Mexico. This anomalous high develops from Day +0 to +2 366 

and dissipates after Day +2 (Figures 9c-f). The northward steering flow between the anomalous 367 
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low and high over the Northeast Pacific may be associated with the spread of landfalling 368 

latitudes of ELAR events (Figure 9f). The maximum moisture flux convergence which is 369 

associated with the landfalls of ELAR events appears further south compared to that of WLAR 370 

events. The tripole anomalous Z500 pattern related to ELAR events persists for about one week 371 

and gradually dissipates after Day +5 (Figures 9e-f) as ELAR events terminate (Figures 7g). 372 

 373 

Figure 9. Same as Figure 8 but for ELAR events. The magenta dot in (d) marks the location of 374 

maximum frequency during landfall.    375 

 376 

5 AR-Induced Precipitation  377 

To examine the precipitation related to WLAR and ELAR events, percentages of AR-378 

induced precipitation over the West Coast are calculated (Figure 10). We summed the daily 379 

precipitation over 39 winters when an AR object made landfall and divided it by the total winter 380 

precipitation accumulated over 39 winters. On average, about 40% of winter precipitation is 381 
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sourced from landfalling ARs over the West Coast, which is consistent with previous studies 382 

(Dettinger et al., 2011; Gershunov et al., 2017; Guan et al., 2010, 2013; J. Kim et al., 2013). The 383 

precipitation contributed by WLAR and ELAR events is compared in Figure 10. The percentage 384 

of WLAR-induced precipitation increases from south to north, with about 10% in Southern 385 

California, 10-20% in Northern California and Oregon, and 20-30% in British Columbia and 386 

Washington (Figure 10a). The higher percentages (over 20%) between 45°N-60°N match well 387 

with the area of enhanced moisture flux convergence and landfall latitudes (Figures 8d-e). The 388 

percentage of precipitation induced by ELARs is about 30% over California, 20-30% over 389 

Oregon and Washington, and 15-20% over British Columbia (Figure 10b). Overall, total winter 390 

precipitation induced by ELAR events is higher than that by WLAR events, possibly due to the 391 

ELAR events occurs more frequently in total (Figures 7). 392 

 393 

Figure 10. Percentage (%) of AR-induced precipitation to total winter precipitation by (a) 394 

WLAR and (b) ELAR events. The region with a width of five longitudinal degrees (10 grids in 395 

0.5°) along the West Coast from 32°N-60°N (marked with the purple polygon in (a)) shows the 396 

region for the zonal average shown in Figure 11. 397 

 398 
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To further understand the temporal changes of AR-induced precipitation, we calculated 399 

the temporal evolution (starting from AR origins) of the AR-induced precipitation anomaly 400 

(Figure 11, mm per event) zonally-averaged over the U.S. West Coast (enclosed purple polygon 401 

in Figure 10a). The x-axis labels in Figure 11 are consistent with the subplot titles in Figures 7-9 402 

where Day +0 represents the day of AR origin. A three-day moving average is also applied after 403 

Day +0 in Figure 11. During the life cycle of every AR event, we include daily mean 404 

precipitation only when an AR object is over land during the 10-day period. Since AR conditions 405 

can persist for 24hr to 120hr after landfall (Payne & Magnusdottir, 2016; Ralph et al., 2013; 406 

Ralph et al., 2011; Ralph et al., 2019), the precipitation caused by one landfalling AR event will 407 

be counted in multiple consecutive days as long as the AR condition persists after landfall.  408 

 409 

Figure 11. Evolution of AR-induced precipitation anomalies (shading, mm per event) averaged 410 

along the West Coast (enclosed red polygon in Figure 10a) for (a) WLAR and (b) ELAR events. 411 

Day +0 represents the AR origin. The areas enclosed by black contours are statistically 412 
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significant at the 95% confidence level based on a one-sample t-test. A three-day moving 413 

average is applied, except for Day +0. 414 

 415 

For WLAR events, the increased AR-induced precipitation persists between 40°N-60°N 416 

from Days +2 to +8 with the maximum increase of over 2 mm per event between 55°N-60°N on 417 

Day +5 (Figure 11a). The increased precipitation on Day +2 corresponds with the enhanced 418 

moisture flux convergence induced by the anomalous low over the North Pacific (Figure 8d). 419 

The positive precipitation anomalies on Day +5 match with the peak of landfalling WLAR 420 

events (Figure 8e). Meanwhile, the reduced precipitation over the southern West Coast from 421 

Days +2 to +8 is associated with the enhanced moisture flux divergence between 20°N-40°N 422 

accompanied by the anomalous high over the Northeast Pacific (Figures 8d-f).  423 

Positive precipitation anomalies appear between 35°N-45°N on Day +0 (Figure 11b) 424 

because some ELAR events reach the West Coast during their origins (Figure 7e). The positive 425 

precipitation anomalies last until Day +8 with a maximum increase of 1.3 mm per event between 426 

35°N-40°N on Days +2, which match with the peak landfall period of ELAR events (Figure 7f). 427 

The positive precipitation anomalies weaken after Day +2 due to the increasing number of 428 

terminated ELAR events (Figures 7g-h). The continuous positive precipitation anomalies from 429 

Days +5 to +8 may be due to persistent moisture support from the tropics or merging of events, 430 

which prolongs the lifetimes of ELAR events (long tail in Figure 6a). Meanwhile, negative 431 

precipitation anomalies appear between 50°N-60°N from Days +0 to +2, which is related to the 432 

moisture flux divergence anomaly associated with the anomalous high over the central North 433 

Pacific (Figures 9c-d).  434 

 435 
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6 Summary and Discussion 436 

To understand the impacts of distinct origin locations on the life cycles of AR events that 437 

make landfall over the U.S. West Coast, we investigated the landfalling AR events originating 438 

from the Northwest and Northeast Pacific by examining their life-cycle characteristics, 439 

associated circulation patterns, and precipitation anomalies during 39 winters from 1979 to 2018. 440 

We applied an AR tracking algorithm using a depth-first search to identify the life cycles of 441 

landfalling AR events. Generally, WLAR events are prone to landfall in the Northwest U.S. and 442 

British Columbia, while ELAR events have a vast range of landfalling latitudes along the U.S. 443 

West Coast. WLAR events have longer lifetimes and stronger intensities than ELAR events.  444 

Two schematic diagrams are shown in Figure 12 to describe the distinct life cycles of 445 

WLAR and ELAR events. WLAR events are induced by northeastward IVT anomalies at the 446 

southeast side of the cyclonic circulation associated with an anomalous low over the central 447 

North Pacific (Figure 12a). Within 4-5 days after WLAR origins, maximum precipitation appears 448 

over the northern West Coast associated with the landfalls of WLAR events. The accumulated 449 

precipitation induced by WLAR events contributes 20-25% of the total winter precipitation over 450 

British Columbia and Washington. On the other hand, reduced precipitation occurs over the 451 

southern West Coast due to reduced moisture flux convergence associated with the anticyclonic 452 

flow anomaly over the Northeast Pacific. Such tripole pattern that shifts eastward is linked to the 453 

occurrence and propagation of ELAR events (Figure 12b). The anomalous low over the 454 

Northeast Pacific accelerates the cyclonic circulation, which enhances the northeastward IVT, 455 

triggers ELAR events, and supports their northeastward propagation. The ELAR events lead to 456 

maximum precipitation over the southern West Coast approximately 2 days after their origins. 457 

ELAR-induced precipitation produces up to 30% of total winter precipitation over California. 458 
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Meanwhile, reduced precipitation over the northern West Coast is attributed to the moisture flux 459 

divergence anomaly. While previous work has shown the large-scale patterns associated with 460 

precipitation over the west coast of North America (Benedict et al., 2019; Carrera et al., 2004; 461 

Higgins et al., 2000; Jiang & Deng, 2011; Lackmann & Gyakum, 1999), our study further 462 

demonstrates that the life cycle of AR events can serve as an indicator to show how the large-463 

scale patterns modulate the pathway of moisture transport prior to the precipitation over land.   464 

 465 

Figure 12. Schematic diagrams for the large-scale patterns, evolutions, and precipitation 466 

anomalies related to the life cycles of (a) WLAR and (b) ELAR events. Green ovals mark the 467 

distinct origin locations. Dashed green arrows indicate the propagation direction of AR events. 468 

Circle arrows denote the circulation direction where the blue (red) arrow indicates cyclonic 469 

(anticyclonic) circulation. Green and brown colors represent wet and dry precipitation anomalies, 470 

respectively.  471 
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 472 

Our results indicate that the life cycles of AR events can be useful tools to improve the 473 

forecasts of ARs and associated precipitation over the West Coast. With the empirical 474 

relationships discussed in this study, it may be possible to forecast the propagation track, 475 

termination location, and precipitation amount associated with a specific AR by knowing its 476 

origin location. In addition, since the signal of the tripole Z500 anomaly pattern occurs 477 

approximately 5 days prior to AR origins and persists for a week, the circulation patterns can be 478 

considered as potential precursors for landfalling AR events and therefore may help improve the 479 

subseasonal prediction of landfalling AR activity.  480 

Recently, research interest has been growing in the subseasonal prediction of ARs 481 

because the subseasonal forecast is particularly important in making management decisions 482 

regarding water, agriculture, and hazards. Skillful prediction of weekly AR occurrence is 483 

maintained for up to 3 weeks (DeFlorio et al., 2018b) and can be further extended to 5 weeks by 484 

taking the MJO and Quasi-Biennial Oscillation into account (Baggett et al., 2017; Mundhenk et 485 

al., 2018). The MJO is a major source of subseasonal predictability for ARs because the MJO-486 

induced tropical heating can modulate ARs by perturbing midlatitude geopotential heights via 487 

Rossby wave teleconnections (Guan et al., 2012; Payne & Magnusdottir, 2014; Ralph et al., 2011; 488 

Stan et al., 2017). Therefore, to further improve subseasonal AR prediction, it is crucial to 489 

understand the physical processes governing the MJO’s modulation of ARs. The AR life cycle 490 

approach may help to extend the understanding of how the MJO influences AR activity by 491 

linking the spatiotemporal evolution of AR events to the propagation of the MJO. For example, 492 

by comparing the life cycles of AR events during different MJO phases, it is feasible to study the 493 

dynamical mechanisms of how the MJO’s intensity, propagation, and teleconnection patterns 494 
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modulate the origin locations and evolutions of AR events, which has implications for a better 495 

understanding of AR activity and improving the subseasonal AR prediction.   496 
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