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Abstract

Robotic RF Sensing with Off-the-Shelf Devices

by

Chitra Karanam Ravindranath

Radio Frequency (RF) signals, like WiFi, are ubiquitous in our surroundings. These

signals interact with the objects as well as people, on their path from the transmit-

ter to the receiver, and can thus carry implicit information about the area that they

pass through. Sensing and extracting such information from off-the-shelf devices in our

surroundings, is a problem of considerable interest. Additionally, robots are becoming

an integral part of our lives. Utilizing the mobility of robots, along with the ubiquity

of off-the-shelf devices, opens up new possibilities for RF sensing with robots. In this

dissertation, we show how we can use readily available off-the-shelf devices to deduce

information about our surroundings, and discuss various possibilities for utilizing the

mobility of robots for RF sensing.

First, we discuss how we can use WiFi RSSI measurements and drones to achieve

3D through-wall imaging of completely unknown areas behind brick walls. This is possi-

ble through our proposed approach involving signal propagation modeling, sparsity and

spatial correlation exploitation, and path planning optimization. We then validate our

proposed approach through experimental results obtained using our extensive testbed

that includes drones and off-the-shelf WiFi devices.

In the second part, we propose a new approach to the traditional angle-of-arrival

(AoA) estimation problem, which enables AoA estimation with only the signal magni-

tude at an antenna array, and without the need for signal phase measurements. We

estimate the AoA of various signal paths by utilizing the spatial correlation of the signal
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magnitude. We then discuss the fundamental ambiguities that can arise in such a frame-

work and propose methods to address them. We finally show how this new framework

allows for predicting the ray makeup, and the resulting channel quality, at unvisited

locations in the workspace.

Finally, we discuss our proposed approach for multi-target tracking using WiFi. We

have enabled passive tracking of multiple people walking in an area, with a small number

of transceivers located on one side of the area, and without the need for people to carry

any device. Our approach builds on the magnitude-based AoA framework, and utilizes

multi-dimensional parameter extraction and particle filtering in order to track multiple

targets. We then discuss our extensive experimental results for passively tracking up to

three simultaneously walking people, using a small number of WiFi transceivers on one

side of the area.
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Chapter 1

Introduction

Radio Frequency (RF) signals are ubiquitous in our everyday lives. Most of our devices

have the capability of transmitting and receiving such signals. As these signals go through

and interact with objects/people in the environment, the surroundings leave their signa-

ture on the transmitted signals. Thus, in addition to transmitting information from one

device to another, these signals can also be used to sense and deduce information about

our physical surroundings. Furthermore, signals like WiFi can easily pass through walls,

facilitating sensing through obstacles as well. As such, RF sensing has become a topic

of interest to the research community in recent years. In RF sensing, it is of interest to

sense and learn about the environment with everyday communication signals.

RF sensing with WiFi signals is the main topic of this thesis. In particular, since

WiFi signals are ubiquitous, it is of interest to sense and learn about the environment

using WiFi transceivers of off-the-shelf devices, such as laptops, routers, and mobile

phones. This dissertation focuses on RF sensing with signal power measurements, which

can easily and reliably be measured on off-the-shelf devices and WiFi cards.

Robots are predicted to become an integral part of our society in the near future. We

currently use them for a variety of tasks including home cleaning, construction, warehouse

1



Introduction Chapter 1

packing, and goods delivery. Using robots to aid our RF sensing tasks then opens up new

sensing paradigms. For instance, we can utilize the mobility of the robots to optimally

sense our surroundings and extract the necessary information from the RF signals. More

specifically, using robots allows for autonomous and optimized antenna positioning in

the area of interest. Thus, robotic RF sensing is a particularly interesting and valuable

conjunction that we explore in this dissertation.

There are a variety of RF sensing applications that have been of interest to the

research community in the recent years, including through-wall imaging, localization,

tracking, occupancy estimation, person identification, and gesture recognition. In this

dissertation, we investigate a few of these applications, delving specifically into through-

wall imaging, angle-of-arrival estimation, and multi-target passive tracking. The main

thrust of this dissertation is then to achieve solutions to these problems using only infor-

mation that is easily extractable from off-the-shelf wireless devices, and without the need

for extensive resources like ultra wideband signals and synchronized phase measurements

across antennas.

More specifically, in this dissertation, we focus on three aspects of RF sensing, as

described below:

• 3D Through-Wall Imaging: We equip two drones with WiFi transceivers in

order to move around outside a completely unknown area and image the area in

3D, through walls, using only on-board WiFi RSSI measurements. Our proposed

approach is a novel combination of wave modeling, spatial correlation exploitation,

and path planning. We extensively test our proposed approach with our experi-

mental test-bed.

• Magnitude-Based Angle-of-Arrival Estimation and Channel Prediction:

We show that it is possible to estimate the angles-of-arrival at an antenna array

2
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using only the magnitude of the signals received at the array, without the need for

signal phase information. We extensively discuss the ambiguities that can arise in

such a framework and show ways to resolve them. We then show the implication

of this framework in the context of robotic channel prediction, with only signal

magnitude. More specifically, we show how we can predict the fundamental makeup

of the rays and subsequently predict the channel at unvisited locations in the space.

• Multi-Person Passive Tracking: We show how to extend the previous magnitude-

based framework to the dual problem of using stationary transceivers to track mov-

ing targets. We experimentally validate our proposed approach using WiFi devices

located on one side of the area, and track up to 3 moving people passively, without

the need for them to carry any device.

We next introduce the aforementioned topics in more detail, place them in the con-

text of the state-of-the-art by reviewing the literature in the respective domains, and

summarize our contributions in each of these areas.

1.1 3D Through-Wall Imaging

Consider a completely unknown area that is occluded from view by a wall or other

obstacles. RF signals such as WiFi can pass through walls and carry relevant infor-

mation about the objects on the other side of the wall. This naturally brings up the

following question,“Can WiFi signals image details of stationary objects through walls?”

Through-wall imaging is of particular interest due to its benefits for scenarios like disas-

ter management, surveillance, and search and rescue, where assessing the situation prior

to entering an area can be very crucial. However, the general problem of through-wall

imaging using RF signals is a very challenging problem, and has hence been a topic of

3
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RX - UAVTX - UAV
TX - UAV

RX - UAV

Figure 1.1: Two examples of our considered scenario where two UAVs fly outside an
unknown area to collect WiFi RSSI measurements for the purpose of 3D through-wall
imaging.

research in a number of communities such as electromagnetics, signal processing, and

networking [2, 3, 4, 5, 1].

In Chapter 2, we are interested in the 3D through-wall imaging of a completely

unknown area using Unmanned Aerial Vehicles (UAVs) and WiFi RSSI measurements.

More specifically, we consider the scenario where two UAVs move outside of an unknown

area, and collect wireless received power measurements to reconstruct a 3D image of the

unknown area, an example of which is shown in Fig. 1.1. We then show how to solve

this problem using a novel combination of Markov random field (MRF) modeling, loopy

belief propagation, sparse signal processing, and proper 3D robotic path planning. We

further develop an extensive experimental testbed and validate the proposed framework.

1.1.1 Related Work

In the electromagnetics literature, inverse scattering problems have long been ex-

plored in the context of imaging [6, 7, 8]. Ultra wideband signals have also been heavily

utilized for the purpose of through-wall imaging [9, 10, 2, 11]. Phase information has also

been used for beam forming, time-reversal based imaging, or in the context of synthetic

aperture radar [12, 2, 13]. However, most past work rely on utilizing a large bandwidth,

phase information, or motion of the target for imaging. Validation in a simulation envi-
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ronment is also common due to the difficulty of hardware setup for through-wall imaging.

In [5, 1, 3, 14, 15], the authors use WiFi RSSI measurements to image through walls in

2D. They show that by utilizing unmanned ground vehicles and proper path planning, 2D

imaging with only WiFi RSSI is possible. This has created new possibilities for utilizing

unmanned vehicles for RF sensing, which allows for optimizing the location of the trans-

mitter/receiver antennas in an autonomous way. However, 3D through-wall imaging with

only WiFi RSSI measurements, which becomes considerably more challenging than the

corresponding 2D problem, has not been explored, which is the main motivation for this

chapter. It is noteworthy that directly applying the aforementioned 2D imaging frame-

work to the 3D case can result in a poor performance (as we see later in the chapter),

mainly because the 3D problem is considerably more under-determined. This necessi-

tates a novel and holistic 3D imaging framework that addresses the new challenges, as

we propose in this chapter.

1.1.2 Contributions

The main contributions of this chapter are as follows:

1. We show how to design efficient robotic paths in 3D for our through-wall imaging

problem. In effect, our paths aim at capturing the most spatial changes of the area

while considering quality and time constraints of operation.

2. We propose a new framework for 3D through-wall imaging of unknown areas based

on MRF modeling and loopy belief propagation. In the vision literature, MRF

modeling has been utilized in order to incorporate the spatial dependencies among

the pixels of an image [16, 17]. Furthermore, various methods based on loopy belief

propagation [18, 17], iterative conditional modes [16], and graph cuts [19] have been

proposed for image denoising, segmentation, and texture labeling. In this chapter,
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we borrow from such literature to solve our 3D through-wall imaging problem,

based on sparse signal processing, MRF modeling and loopy belief propagation.

3. We design and implement a complete experimental testbed that enables two octo-

copters to properly localize, navigate, and collect wireless measurements. We then

present 3D through-wall imaging of unknown areas using our testbed. Our results

confirm that high-quality through-wall imaging of challenging areas, such as behind

thick brick walls, is possible with only WiFi RSSI measurements and UAVs. To

the best of our knowledge, our 3D imaging results showcase high-quality imaging of

more complex areas than what has been reported in the literature with even phase

and/or UWB signals.

1.2 Magnitude-Based Angle-of-Arrival Estimation

In addition to imaging, there has been an increasing interest in using RF signals

for localization and tracking. These are crucial techniques that can be useful in many

scenarios such as emergency response, radio navigation, security, surveillance, and smart

homes. Angle of Arrival (AoA) estimation, on the other hand, is an important problem

that can be used towards localization and tracking. However, most AoA estimation

approaches require synchronized signal phase information, which can not be obtained on

all off-the-shelf devices, or on a synthesized array using robots.

In Chapter 3, we show how to estimate the AoA of the signal paths arriving at a

receiver array, using only the received signal magnitude measurements (or, equivalently,

the received power measurements). We discuss the loss in information arising due to

using only signal magnitude, instead of the classical phase-based approaches, and how

this leads to ambiguity in AoA estimation. We then show how we can overcome these

ambiguities and uniquely estimate AoA using only WiFi received signal magnitude. We
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then show how to use this magnitude-based AoA estimation framework to predict the

ray makeup at unvisited locations in the workspace and subsequently predict the channel

quality and channel variations.

1.2.1 Related Work

AoA estimation is a classical problem that has gained considerable attention in the

field of array signal processing. Many solutions have been proposed in the literature,

including traditional beamforming [20], MUSIC [21], and ESPRIT [22]. All of these

techniques assume that the received signal phase measurements are available and syn-

chronized across the elements of a measurement array. However, many of the commercial

off-the-shelf (COTS) wireless devices do not provide stable absolute phase measurements

[23], making the synthesis of a long array not possible due to synchronization issues.

There have been attempts to stabilize the phase measurements in COTS devices (e.g.,

Intel 5300 WLAN card), but these approaches do not result in synchronized phase mea-

surements required for array signal processing [23]. Few works have investigated the

problem of AoA estimation using only the signal power (or equivalently, magnitude)

measurements at the array elements. For instance, in [24], mechanical steering of a

directional antenna is utilized, whereas in [25], special type of antennas that have mul-

tiple radiation patterns are used. Such work, however, require custom-made hardware.

As for array processing techniques using magnitude-only measurements, [26] proposes

a sparsity-based optimization problem which assumes the knowledge of the number of

sources, and [27] proposes an algorithm that can only find a function of the AoAs, but

not the AoAs themselves. Furthermore, the aforementioned papers are only validated in

a simulation environment, and with only active transmitters. In this chapter, we propose

and experimentally validate a framework for estimating the AoAs of active transmitters
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as well as passive objects, using only the received signal magnitude.

Channel prediction is also a well known problem and a variety of solutions have

been proposed for prediction, including ray tracing and probabilistic channel prediction

[28, 29]. More recently, there have been ray-tracing based approaches proposed for using

RF signals and robots to estimate the reflectivity of objects and thereby predict the

channel at unvisited locations [30, 31]. These approaches, however, need precise location

and shape of the objects in the area, they assume that each object in the workspace

reflects uniformly in all the directions, and further use mmwave signals which reduces

the number of effective reflections. Such assumptions hinder the prediction of small scale

variations in general scenarios. For instance, each object does not necessarily reflect with

the same coefficient in all the directions, especially in near-field cases, due to the varying

radar cross sections of the object in different directions [32]. Also, precise information

of objects in the area may not be available. Finally, they fail in cases where there

are non-homogeneous objects, or when the rays in the area undergo other propagation

phenomena like diffraction or propagation through objects. Hence, in this chapter, we

propose a new framework that estimates the fundamental parameters of the rays and

predicts the channel at unvisited locations.

1.2.2 Contributions

The main contributions of this chapter are as follows:

• We propose a new approach to estimate the AoA of signal paths arriving at a receiver

array using only the magnitude of the corresponding received signal measurements.

Our approach shows that the auto-correlation function (and therefore the power spec-

trum) of the received signal magnitude at the receiver array carries vital information

on the AoA, an analysis which will then be the foundation for our proposed method-
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ologies throughout the chapter. For instance, we propose a framework for the case of

angular localization of static objects/humans, based on this foundation.

• We then extend this framework to estimate and predict the fundamental makeup of the

rays at unvisited locations in an area, in order to predict the overall channel strength

and channel variations at any unvisited location in the workspace.

• We validate our magnitude-based AoA estimation framework with extensive experi-

ments in various areas and show that our approach can achieve high-quality angular

localization. More specifically, we utilize a robot to emulate an antenna array and

estimate the AoA of active and passive objects, using only WiFi magnitude measure-

ments. Our angular localization has an overall Mean Absolute Error (MAE) of 2.56◦,

and only takes an average of 0.45 seconds to localize up to three objects. Overall, our

results show that AoA can be estimated, with a high accuracy, and with only the re-

ceived signal magnitude measurements. We then experimentally validate our channel

prediction framework and show its performance.

1.3 Multi-Person Passive Tracking

In the previous section, we introduced the idea of using signal magnitude to achieve

AoA estimation at an antenna array. As mentioned, AoA can be further used to achieve

localization and target tracking. In particular, passively tracking multiple people that

are walking in an area, without relying on them to carry any device, is a challenging

problem of considerable interest, due to its importance in many applications such as

elderly monitoring, intrusion detection, and retail analytics.

In Chapter 4, we consider the problem of passively tracking multiple people walking in

an area, using minimal WiFi resources on only one side. In particular, we are interested
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in multi-person tracking using only the magnitude of WiFi Channel State Information

(CSI) measurements, measured using one WiFi transmitter and a small number of WiFi

receiver Network Interface Cards (NICs) located on only one side of the area. We next

review the state-of-the-art in multi-person tracking.

1.3.1 Related Work

Device-free localization and tracking (DFLT) is a challenging problem that has gained

a considerable attention in the recent years. The efforts exerted in DFLT can be broadly

categorized into two categories: (a) machine learning and fingerprinting-based approaches,

and (b) model-based approaches. Machine learning and fingerprinting approaches (e.g.

[33, 34, 35]) require extensive prior calibration and training, which is both time con-

suming and environment-specific. Model-based approaches, on the other hand, build a

model/relationship between the location (or track) of the target and the wireless mea-

surements at the receiver. They then estimate the location and track of the target based

on that model. Earlier work in this category assumes the availability of extensive amount

of resources. For instance, [36] tracks multiple targets using a link-crossing model based

on RSSI, but with a large number of wireless sensors (total of 32) distributed on all sides

of the tracking area. Other attempts track multiple targets using specialized hardware

and signals with very large bandwidth [37, 38].

More recently, WiFi CSI has been made available on Commercial Off-The-Shelf

(COTS) WiFi devices, such as Intel 5300 and Atheros AR9580 WiFi cards. The availabil-

ity of CSI on COTS WiFi cards has opened the door for DFLT techniques that require

fewer resources than before. Several works then utilized WiFi CSI to track a single mov-

ing target by estimating different parameters of the wireless signal, e.g. Angle-of-Arrival

(AoA), Time of Flight (ToF), and Doppler spread [39, 40]. Two common threads exist
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among the aforementioned CSI-based device-free tracking approaches. First, all these

approaches are designed for single target tracking, and fail to track multiple targets that

are moving simultaneously. Second, these approaches rely on the CSI phase information,

which can be hard to measure accurately or may be unavailable on other COTS devices.

Furthermore, relying on the phase information limits the flexibility of adding more an-

tennas to the receiver, since different WiFi cards need to be synchronized for obtaining

meaningful phase information. This will add a considerable synchronization overhead to

the system. These two problems motivate the need for a device-free tracking framework,

that is able to track multiple targets, using only the WiFi magnitude measurements.

Our proposed framework in this chapter is then the first to enable multiple tar-

get tracking with comparable accuracy to the state-of-the-art, without requiring extra

resources. We show that multiple target tracking is possible using only magnitude mea-

surements on one receiver array located on the same side of the tracking area as the

transmitter. We provide tracking results of up to 3 people, with a mean absolute error

of 47 cm across 40 experiments in six different tracking areas.

1.3.2 Contributions

In this chapter, we propose a framework for passively tracking multiple people walking

in an area, without requiring a prohibitive amount of resources (e.g. bandwidth or number

of transceivers), which were used previously for such purposes. Our framework uses only

the magnitude of WiFi CSI measurements, measured from one side of the area, on a

small receiver array. More specifically,

• We propose a new magnitude-based framework to track multiple people walking in

an area, using one transmitter and a very small receiver array (for instance, from a

couple of laptops), without the need to make any prior measurements in the area of
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interest. By modeling the tracking problem in terms of only the signal magnitude, our

proposed framework can be implemented on any off-the-shelf platform where phase

measurements are not reliable or are not easily available. Furthermore, additional

Rx NICs can be added to the receiver setup if required, without any need for phase

synchronization or calibration. On the other hand, such a receiver antenna extension

in the case of relying on phase measurements would have required an antenna port

on each NIC to be used up for the purpose of synchronization, after which the phase

is still only accurate to within a median error of 20◦ [41]. Our proposed framework

does not lose any antenna ports in the process of combining multiple NICs, and is not

sensitive to phase errors that can affect the receptions on off-the-shelf devices.

• We propose a two-dimensional signal model for the estimation of various AoA param-

eters that are functions of the targets’ locations and motion directions. By posing

our problem as a joint parameter estimation problem in this manner, we show how

the ambiguity in individual dimensions can be overcome. We then extend the multi-

dimensional MUSIC algorithm to our magnitude-based modeling framework in order

to estimate the 2D AoA parameters. Finally, we track multiple targets in the area

by using a Particle Filter (PF) with a Joint Probabilistic Data Association Filter

(JPDAF).

• We extensively validate our proposed multi-person tracking framework through a total

of 40 experiments in 6 different environments, with 1, 2, and 3 people walking on

different paths, on different days. We use only one transmit and 3 WiFi receiver NICs

on one side of the area to measure WiFi CSI magnitude. Our results show highly

accurate tracking with a mean error of 38 cm in outdoor areas/parking lots, and 55

cm in indoor areas.
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Chapter 2

3D Through-Wall Imaging With

UAVs Using WiFi

In this chapter, we are interested in the 3D through-wall imaging of completely unknown

areas, using Unmanned Aerial Vehicles (UAVs) and WiFi RSSI. Imaging stationary ob-

jects in 3D using only WiFi is a challenging problem due to several propagation phe-

nomena as well as the vast number of unknowns and limited number of measurements

that can feasibly be obtained. Thus, in this chapter, we show how to properly design

3D robotic paths that can be utilized for efficient and autonomous antenna positioning

for the imaging through wall problem. We further propose an approach that properly

models the signal propagation through objects and solves for the 3D image of the area

using Markov random field modeling, spatial correlation exploitation, and sparse signal

processing. Finally, we describe our extensive experimental testbed that enables us to

successfully validate our approach in real areas.

The rest of this chapter is organized as follows. In Section 2.1, we formulate our 3D

through-wall imaging problem and summarize the measurement model. In Section 2.2,

we show how to solve the 3D imaging problem using Markov random field modeling,
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loopy belief propagation, and sparse signal processing. We then discuss how to design

efficient 3D UAV paths in Section 2.3. Finally, we present our experimental testbed in

Section 2.4 and our experimental results for 3D through-wall imaging of unknown areas

in Section 2.5.

2.1 Problem Formulation

Consider a completely unknown area D ⊂ R3, which may contain several occluded

objects that are not directly visible, due to the presence of walls and other objects in D.1

We are interested in imaging D using two Unmanned Aerial Vehicles (UAVs) and only

WiFi RSSI measurements. Fig. 1.1 shows two example scenarios, where two UAVs fly

outside of the area of interest, with one transmitting a WiFi signal (TX UAV) and the

other one receiving it (RX UAV). In this example, the domain D would correspond to

the walls as well as the region behind the walls.

When the TX UAV transmits a WiFi signal, the objects in D affect the transmission,

leaving their signatures on the collected measurements. Therefore, we first model the

impact of objects on the wireless transmissions in this section, and then show how to

do 3D imaging and design UAV paths in the subsequent sections. Consider a wireless

transmission from the transmitting UAV to the receiving one. Since our goal is to per-

form 3D imaging based on only RSSI measurements, we are interested in modeling the

power of the received signal as a function of the objects in the area. To fully model the

receptions, one needs to write the volume-integral wave equations [42], which will result

in a non-linear set of equations with a prohibitive computational complexity for our 3D

imaging problem. Alternatively, there are simpler linear approximations that model the

interaction of the transmitted wave with the area of interest. Wentzel-Kramers-Brillouin

1In this chapter, we will interchangeably use the terms “domain”, “area” and “region” to refer to the
3D region that is being imaged.
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(WKB) and Rytov are two examples of such linear approximations [42]. WKB approxi-

mation, for instance, only considers the impact of the objects along the line connecting

the transmitter (TX) and the receiver (RX). This model is a very good approximation

at very high frequencies, such as x-ray, since a wave then primarily propagates along a

straight line path, with negligible reflections or diffractions [42]. Rytov approximation,

on the other hand, considers the impact of some of the objects that are not along the

direct path that connects the TX and RX, at the cost of an increase in computational

complexity, and is a good approximation under certain conditions [42].

In this chapter, we use a WKB-based approximation to model the interaction of the

transmitted wave with the area of interest. While this model is more valid at very high

frequencies, several work in the literature have shown its effectiveness when sensing with

signals that operate at much lower frequencies such as WiFi [3, 4]. WKB approximation

can be interpreted in the context of the shadowing component of the wireless channel,

as we shall summarize next.

Consider the received power for the ith signal transmitted from the TX UAV to the

RX one. We can express the received power as follows [43, 44]:

PR(pi,qi) = PPL(pi,qi) + γ
∑
j

dijηij + ζ(pi,qi), (2.1)

where PR(pi,qi) denotes the received signal power (in dB) for the ith measurement,

when the TX and RX are located at pi ∈ R3 and qi ∈ R3 respectively. Furthermore,

PPL(pi,qi) = 10 log10
βPT

(‖pi−qi‖2)α
is the path loss power (in dB), where PT is the transmit

power, β is a constant that depends on the system parameters and α is the path loss

exponent.2 The term γ
∑

j dijηij is the shadowing (shadow fading) term in the dB domain,

2In practice, the two parameters of the path loss component can be estimated by using a few line-
of-sight transmissions between the two UAVs, near the area of interest when there are no objects in
between them.
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which captures the impact of the attenuations of the objects on the line connecting the

TX and RX UAVs. More specifically, dij is the distance traveled by the signal within

the jth object along the line connecting the TX and the RX for the ith measurement,

ηij is the decay rate of the signal in the jth object along this line, and γ = 10 log10 e

is a constant. Finally, ζ(pi,qi) represents the modeling error in this formulation, which

includes the impact of multipath fading and scattering off of objects not directly along the

line connecting the TX and RX, as well as other un-modeled propagation phenomena and

noise. In summary, Eq. 2.1, which we shall refer to as LOS-based modeling, additively

adds the attenuations caused by the objects on the direct line connecting the TX and

the RX.

The shadowing term can then be re-written as

∑
j

dijηij =

∫
Lpi→qi

η(r′) dr′, (2.2)

where
∫
Lpi→qi

denotes the line integral along the line connecting the TX and the RX,

and η(r) denotes the decay rate of the wireless signal at r ∈ D. Furthermore, η(r) < 0

when there is an object at position r and η(r) = 0 otherwise. η then implicitly carries

information about the area we are interested in imaging.

In order to solve for η, we discretize D into N cubic cells of equal volume. Each cell

is denoted by its center rn, where n ∈ {1, . . . , N}. By discretizing Eq. 2.2, we have,

∫
Lpi→qi

η(r′) dr′ u
∑

j∈L(pi,qi)

η(rj)∆d, (2.3)

where L(pi,qi) denotes the set of cells along the line connecting the TX and the RX for

the ith measurement, and ∆d is the dimension of a side of the cubic cell. Therefore, we
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can approximate Eq. 2.1 as

Pi =
PR(pi,qi)− PPL(pi,qi)

γ∆d
u

∑
j∈L(pi,qi)

η(rj), (2.4)

with Pi denoting the normalized received power of the ith measurement. By stacking the

measurements Pi as a column vector, we have,

P u AO, (2.5)

where P = [P1, P2, . . . , PM ]T and M is the number of measurements. A is a matrix

of size M × N such that its entry Ai,j = 1 if the jth cell is along the line connecting

the TX and the RX for the ith measurement, and Ai,j = 0 otherwise. Furthermore,

O = [η(r1), η(r2), . . . , η(rN)]T represents the property of objects in the area of interest

D, which we shall refer to as the object map.

So far, we have described the system model that relates the wireless measurements

to the object map, which contains the material properties of the objects in the area of

interest. In this chapter, we are interested in imaging the geometry and locations of all

the objects in D, as opposed to characterizing their material properties. More specifically,

we are interested in obtaining a binary object map Ob of the domain D, where Ob is a

vector whose ith element is defined as follows:

Obi =


1 if the ith cell contains an object

0 otherwise

. (2.6)

In the next sections, we propose to estimate Ob by first solving for O and then making

a decision about the presence or absence of an object at each cell, based on the estimated

O, using loopy belief propagation.
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2.2 Solving the 3D Imaging Problem

In the previous section, we formulated the problem of reconstructing the object map

as a system of linear equations, with the final goal of imaging a binary object map of

the domain D. In this section, we propose a two-step approach for 3D imaging of Ob. In

the first part, we utilize techniques from the sparse signal processing and regularization

literature to solve Eq. 2.5, and thereby estimate O. In the second part, we use loopy belief

propagation in order to image a binary object map Ob based on the estimated O. We

note that in some of the past literature on 2D imaging [45, 3], either the estimated object

map is directly thresholded to form a binary image, or the grayscale image is considered

as the final image. Since 3D imaging with only WiFi signals becomes a considerably

more challenging problem, such approaches do not suffice anymore. Instead, we propose

to use loopy belief propagation in order to obtain the final 3D image, as we shall see later

in this chapter.

2.2.1 Sparse Signal Processing

In this part, we aim to solve for O in Eq. 2.5. In typical practical cases, however, N �

M , i.e., the number of wireless measurements is typically much smaller than the number

of unknowns, which results in a severely under-determined underlying system. Then, if

no additional condition is imposed, there will be a considerable ambiguity in the solution.

We thus utilize the fact that several common spaces are sparse in their spatial variations,

which allows us to borrow from the literature on sparse signal processing. Sparse signal

processing techniques aim at solving an under-determined system of equations when

there is an inherent sparsity in the signal of interest, and under certain conditions on

how the signal is sampled [46, 47]. They have been heavily utilized in many different

areas and have also proven useful in the area of sensing with radio frequency signals (e.g.,
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2D imaging, tracking) [48, 49, 1]. Thus, we utilize tools from sparse signal processing to

estimate O, the map of the material properties. This estimated map will then be the

base for our 3D imaging approach in the next section.

More specifically, we utilize the fact that most areas are sparse in their spatial varia-

tions and seek a solution that minimizes the Total Variation (TV) of the object map O.

We next briefly summarize our 3D TV minimization problem, following the notation in

[50].

As previously defined, O is a vector representing the map of the objects in the domain

D. Let I be the 3D matrix that corresponds to O. I is of dimensions n1×n2×n3, where

N = n1 × n2 × n3. We seek to minimize the spatial variations of I, i.e., for every

element Ii,j,k in I, the variations across the three dimensions need to be minimized. Let

Dm ∈ R3×N denote a matrix such that DmO is a 3× 1 vector of the spatial variations of

the mth element in O, with m corresponding to the (i, j, k)th element in I. The structure

of Dm is such that DmO = [Ii+1,j,k − Ii,j,k, Ii,j+1,k − Ii,j,k, Ii,j,k+1− Ii,j,k, ]T . Then, the TV

function is given by

TV(O) =
N∑
i=1

‖DiO‖2, (2.7)

where ‖.‖2 denotes the l2 norm of the argument. We then have the following TV mini-

mization problem:

minimize TV(O), subject to P = AO, (2.8)

where P,A and O are as defined in Eq. 2.5.

In order to solve the 3D TV minimization problem of Eq. 2.8, an efficient practical

implementation using Nesterov’s algorithm, TVReg has been proposed in [50]. TVReg

is a MATLAB-based solver that efficiently computes the 3D TV minimization solution.
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We use TVReg for solving the optimization problem of Eq. 2.8 in all the results of the

chapter.

The solution obtained from solving Eq. 2.8 is an approximation to the object map

O. As previously mentioned in Section 2.1, the elements of O are all non-positive real

numbers. We then flip the sign and normalize the values to the range [0, 1], so that they

represent the grayscale intensities at the corresponding cells, which we denote by ys.

However, this solution is not a perfect representation of the object map, due to modeling

errors and the under-determined nature of the linear system model, requiring further

processing. Furthermore, we are only interested in estimating the presence or absence of

an object at any location, as opposed to learning the material properties in this chapter.

Therefore, we next describe our approach for estimating the binary object map Ob of the

domain D, given the observed intensities ys.

2.2.2 3D Imaging Using Loopy Belief Propagation

In this section, we consider the problem of estimating the 3D binary image of the

unknown domain D, based on the solution ys of the previous section. As discussed

earlier, ys can be interpreted as the estimate of the gray-scale intensities at the cells in

the 3D space. We are then interested in estimating the 3D binary image, which boils down

to finding the best labels (occupied/not occupied) for each cell in the area of interest,

while minimizing the impact of modeling errors/noise and preserving the inherent spatial

continuity of the area.

To this end, we model the 3D binary image as a Markov Random Field (MRF) [51]

in order to capture the spatial dependencies among local neighbors. Using the MRF

model, we can then use the Hammersley-Clifford Theorem to express the probability

distribution of the labels in terms of locally-defined dependencies. We then show how
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to estimate the binary occupancy state of each cell in the 3D domain, by using loopy

belief propagation [51] on the defined MRF. Utilizing loopy belief propagation provides

a computationally-efficient way of solving the underlying optimization problem, as we

shall see. We next describe the details of our approach.

Consider a random vector X that corresponds to the binary object map Ob. Each

element Xi ∈ {0, 1} is a random variable that denotes the label of the ith cell. Further,

let Y denote a random vector representing the observed grayscale intensities. In general,

there exists a spatial continuity among neighboring cells of an area. An MRF model

accounts for such spatial contextual information, and is thus widely used in the image

processing and vision literature for image denoising, image segmentation, and texture

labeling [18, 16], as we discussed earlier. We next formally define an MRF.

Definition 1 A random field U on a graph is defined as a Markov Random Field (MRF)

if it satisfies the following condition: P (Ui = ui|Uj = uj,∀j 6= i) = P (Ui = ui|Uj =

uj,∀j ∈ Ni), where Ni is the set of the neighboring nodes of i.

In summary, every node is independent of the rest of the graph in an MRF, when

conditioned on its neighbors. This is a good assumption for the 3D areas of interest to

this dissertation. We thus next model our underlying system as an MRF. Consider the

graph G = (V , E) corresponding to a 3D discrete grid formed from the cells in the domain,

where V = {1, 2, . . . , N} is the set of nodes in the graph. Each node i is associated with

a random variable Xi, that specifies the label assigned to that node. Furthermore, the

edges of the graph E define the neighborhood structure of our MRF. In this work, we

assume that each node in the interior of the graph is connected via an edge to its 6 nearest

neighbors in the 3D graph, as is shown in Fig. 2.1. Additionally, since X is unobserved

and needs to be estimated, all the nodes associated with X are referred to as hidden

nodes [51]. Furthermore, Yi is the observation of the hidden node i. These observations
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Figure 2.1: A depiction of the six-connected neighborhood structure of the underlying
graph that corresponds to the Markov Random Field modeling of our 3D area of
interest – Each node in the interior of the graph has six hidden nodes and one observed
node as neighbors. The shaded circular nodes denote the neighbors that correspond
to the hidden nodes, and the shaded square represents the observed node.

are typically modeled as being independent when conditioned on the hidden variables

[51]. More specifically, the observations are assumed to satisfy the following property:

P (Y = y|X = x) =
∏

i P (Yi = yi|Xi = xi). This is a widely-used assumption in the

image processing and computer vision literature [51], where the observations correspond

to the observed intensities at the pixels. We adopt this model for our scenario by adding

a new set of nodes called the observed nodes to our graph G. Each observed node Yi is

then connected by an edge to the hidden node Xi. Fig. 2.1 shows our described graph

structure, where all the 6 hidden neighbors and an additional observed neighbor are

shown for a node in the interior of the graph. For the nodes at the edge of the graph, the

number of hidden node neighbors will be either 3, 4 or 5, depending on their position.

The advantage of modeling the 3D image as an MRF is that the joint probability

distribution of the labels over the graph can be solely expressed in terms of the neigh-

borhood cost functions. This result follows from the Hammersley-Clifford theorem [52],

which we summarize next.

Theorem 1 Suppose that U is a random field defined over a graph, with a joint prob-

ability distribution P (U = u) > 0. Then, U is a Markov Random Field if and only if
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its joint probability distribution is given by P (U = u) = 1
Z

exp(−E(u)), where E(u) =∑
c∈C Hc(uc) is the energy or cost associated with the label u and Z =

∑
u exp(−E(u))

is a normalization constant. Further, C is the set of all the cliques in the graph, Hc(uc)

is the cost associated with the clique c, and uc is the realization (labels) associated with

the nodes in c.3

Proof: See [52] for details.

We next establish that our defined graph of hidden and observed nodes is an MRF

and thus satisfies the joint distribution of Theorem 1. More specifically, based on our

defined neighborhood system, every hidden node Xi in the interior of the graph has a

neighborhood of six hidden nodes and one observed node. Furthermore, every observed

node Yi has one neighbor, the corresponding hidden node Xi, as we established. Let

Ui denote any node in this graph, which can correspond to a hidden or an observed

node. Such a node Ui is independent of the rest of the graph, when conditioned on

its neighbors. Therefore, the overall graph consisting of hidden and observed nodes is

an MRF. Then, by using the Hammersley-Clifford Theorem (Theorem 1), we get the

following joint probability distribution for the nodes,

P (X = x,Y = y) =
1

Z
exp(−E(x,y)), (2.9)

where Z =
∑

x,y exp(−E(x,y)) is a normalization constant, and E(x,y) is defined over

the cliques of the graph. In our case, the graph has cliques of size 2. Furthermore, there

are two kinds of cliques in the graph: cliques associated with two hidden nodes and

cliques associated with one hidden and one observed node. Therefore, E(x,y) can be

3A clique in a graph is defined as a set of nodes that are completely connected.
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expressed as follows:

E(x,y) =
N∑
i=1

Hi(xi, yi) +
∑

(i,j)∈E

Hij(xi, xj). (2.10)

In the above equation, Hi(xi, yi) is the cost of associating a label xi to a hidden node that

has a corresponding observation yi. Furthermore, Hij(xi, xj) is the cost of associating

label (xi, xj) to a neighboring pair of hidden nodes (i, j).

Given a set of observations ys, we then consider finding the x (labels) that maximizes

the posterior probability (MAP), i.e., P (X = x|Y = ys). From Eq. 2.9, we have,

P (X = x|Y = ys) =
1

Zy
exp(−E(x,ys)), (2.11)

where Zy =
∑

x exp(−E(x,ys)) is a normalization constant. It then follows from Theo-

rem 1 and Eq. 2.11 that X given Y = ys is also an MRF over the graph G of the hidden

variables defined earlier.

However, directly solving for x that maximizes Eq. 2.11 is combinatorial and thus

computationally prohibitive. Several distributed and iterative algorithms have thus been

proposed in the literature to efficiently solve this classical problem of inference over a

graph [53]. Belief propagation is one such algorithm, which has been extensively used

in the vision and channel coding literature [51, 54]. In our work, we then utilize belief

propagation to efficiently solve the problem of estimating the best labels over the graph,

given the observations ys.
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Utilizing Loopy Belief Propagation

Belief propagation based algorithms can find the optimum solution for graphs with-

out loops, but provide an approximation for graphs with loops.4 In our case, the graph

representing our inference problem of interest has loops, which is a common trend for

graphs representing vision and image processing applications. Even though belief prop-

agation is an approximation for graphs with loops, it is shown to provide good results in

the literature [54].

There are two versions of the belief propagation algorithm: the sum-product and the

max-product. The sum-product computes the marginal distribution at each node, and

estimates a label that maximizes the corresponding marginal. Thus, this approach finds

the best possible label for each node individually. On the other hand, the max-product

approach computes the labels that maximize the posterior probability (MAP) over the

entire graph. Thus, if the graph has no loops, the max-product approach converges to

the solution of Eq. 2.11, which is the optimum solution.

Loopy belief propagation refers to applying the belief propagation algorithms to the

graphs with loops. In such cases, there is no guarantee of convergence to the optimum

solution for the max-product or sum-product methods. However, several work in the

literature have used these two methods with graphs with loops and have shown good

results [18, 17, 56]. Here, we thus utilize the sum-product version, which has better

convergence guarantees [54], to estimate the labels of the hidden nodes. We next describe

the sum-product loopy belief propagation algorithm [57].

The sum-product loopy belief propagation is a message passing algorithm that com-

putes the marginal of the nodes in a distributed manner. Let m
(t)
ij (xj) denote the message

that node i passes to node j, where t denotes the iteration number. The update rule for

4In a graph with loops, solving for the optimal set of labels is an NP-hard problem [55].
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the messages is given by

m
(t)
ij (xj) = zm

∑
xi

Σi(xi, yi)Σij(xi, xj)
∏

k∈Ni\j

m
(t−1)
ki (xi), (2.12)

where Σi(xi, yi) = exp(−Hi(xi, yi)) corresponds to the observation dependency, Σij(xi, xj) =

exp(−Hij(xi, xj)) corresponds to the spatial dependency, Ni denotes the set of neighbors

of node i in G and zm is a normalization constant. The belief (marginal) at each node is

then calculated by

b
(t)
i (xi) = zbΣi(xi, yi)

∏
k∈Ni

m
(t)
ki (xi), (2.13)

where zb is a normalization constant. Finally, after the algorithm converges, the final

solution (labels) x̂ is calculated at each node as follows:

x̂i = arg max
xi

bi(xi). (2.14)

The algorithm starts with the messages initialized at one. A stopping criteria is then

imposed by setting a threshold on the average changes in the belief of the nodes, and a

threshold on the maximum number of iterations. The final solution is then the estimated

Ob, i.e., the 3D binary image of the area of interest.

Defining the Cost Functions

We next define the Hi and Hij that we shall utilize as part of our loopy belief prop-

agation algorithm of Eq. 2.10 and 2.12. Based on the cost functions chosen in the image

restoration literature [18], we choose Hij(xi, xj) = (xi − xj)2 and Hi(xi, yi) = (xi − yi)2.

In several cases, the outer edge of the area of interest, e.g., the pixels corresponding to

the outer most layer of the boundary wall, can be sensed with other sensors such as a

camera or a laser scanner. In such cases, we can then modify Hi(xi, yi) as follows to
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enforce this information: Hi(xi, yi) =


(1− xi) if i ∈ ΩB

(xi − yi)2 otherwise

, where ΩB denotes the set

of graph nodes that constitute the outer boundary of the domain.

In summary, the solution x̂ that we obtain from the loopy belief propagation algorithm

is the estimate of Ob, which is our 3D binary image of the area of interest.

2.3 UAV Path Planning

So far, we have described the system model and the proposed approach for solving the

3D through-wall imaging problem, given a set of wireless measurements. The TX/RX

locations where the measurements are collected can play a key role in the 3D imaging

quality. By using unmanned aerial vehicles, we can properly design and control their

paths, i.e., optimize the locations of the TX/RX, in order to autonomously and efficiently

collect the measurements that are the most informative for 3D imaging, something that

would be prohibitive with fixed sensors. In this section, we discuss our approach for

planning efficient and informative paths for 3D imaging with the UAVs. We start by

summarizing the state-of-the-art in path planning for 2D imaging with ground vehicles

[58]. We then see why the 2D approach can not be fully extended to 3D, which is the

main motivation for designing paths that are efficient and informative for 3D imaging

with UAVs.

In [58], the authors have shown the impact of the choice of measurement routes

on the imaging quality for the case of 2D imaging with ground vehicles. Let the spatial

variations along a given direction be defined as the variations of the line integral described

in Eq. 2.2, when the TX and RX move in parallel along that direction outside of the area

of interest [58, 3]. Fig. 2.4, for example, marks the 0◦ and 45◦ directions for a 2D scenario.

We then say that the two vehicles make parallel measurements along the 45◦ route if the
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x

y
z

Figure 2.2: An example scenario with an L-shaped structure located behind the walls.

(a) (b) (c)

Figure 2.3: 2D cross sections corresponding to three x-z planes at different y coordi-
nates for the area of Fig. 2.2. As can be seen, the information about the variations in
the z direction is only observable in (b).

line that connects the positions of the TX and RX stays orthogonal to the 45◦ line that

passes through the origin.5 Then, for every TX/RX position pair along this route, we

evaluate the line integral of Eq. 2.2 and define the spatial variations along this direction

as the variations of the corresponding line integral. Furthermore, let the jump directions

be defined as those directions of measurement routes along which there exist most abrupt

spatial variations.

For the case of 2D imaging using unmanned ground vehicles, the authors in [58] have

shown that one can obtain good imaging results by using parallel measurement routes

5We note that such routes are sometimes referred to as semi-parallel routes in the literature, as
opposed to parallel routes, since the two vehicles do not have to go in parallel. Rather, the line connecting
the two needs to stay orthogonal to the line at the angle of interest. For the sake of simplicity, we refer
to these routes as parallel routes here.
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at diverse enough angles to capture most of the jumps. Since in a horizontal 2D plane,

there are typically only a few major jump directions, then measurements along a few

parallel routes that are diverse enough in their angles can suffice for 2D imaging. For

instance, as a toy example, consider the area of interest of Fig. 2.2. For the 2D imaging of

a horizontal cut of this area, we only need to choose a few diverse angles for the parallel

routes in a constant z plane.

Next, consider the whole 3D area of Fig. 2.2. The measurements that are collected

on parallel routes along the jump directions would still be optimal in terms of imaging

quality. However, collecting such measurements can become prohibitive, as it requires

additional parallel routes in many x-z or y-z planes. This is due to the fact that the

added dimension can result in significant spatial variations along all three directions in

3D. For instance, in order to obtain information about the jumps in the z direction in

Fig. 2.2, one would need to design additional parallel routes in various x-z or y-z planes.

However, there exist many such planes that will not provide any useful information about

the unknown domain. For instance, Fig. 2.3 shows three x-z plane cross-sections for the

area of Fig. 2.2. As can be seen, only the plane corresponding to Fig. 2.3 (b) would

provide valuable information about the jumps in the z direction. Therefore, a large

number of parallel measurements along x-y, x-z, or y-z planes are required to capture

useful information for 3D imaging.

In summary, since the jump directions are now distributed over various planes, it can

become more challenging to collect informative measurements unless prohibitive parallel

measurements in many x-y, x-z, or y-z planes are made. We then propose a path plan-

ning framework that would efficiently sample the unknown domain, so that we obtain

information about the variations in the z direction as well as the variations in x-y planes,

without directly making several parallel routes in x-z or y-z planes. More specifically, in

order to efficiently capture the changes in all the three dimensions, we use two sets of
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Figure 2.4: An illustration showing the projection of the proposed routes onto the x-y
plane. The routes corresponding to 0◦ and 45◦ are shown as examples.

parallel routes, as described below:

1. In order to capture the variations in the x-y directions, we choose a number of

constant z planes and make a diverse set of parallel measurements, as is done in

2D. Fig. 2.4 shows sample such directions at 0◦ and 45◦.

2. In order to capture the variations in the z direction, we then use sloped routes in a

number of planes, two examples of which are shown in Fig. 2.5. More specifically,

for a pair of parallel routes designed in the previous item for 2D, consider a similar

pair of parallel routes with the same x and y coordinates for the TX and RX, but

with the z coordinate defined as z = aδ + b, where δ is the distance traveled along

the route when projected to a 2D x-y plane, and a and b are constants defining

the corresponding line in 3D. We refer to such a route as a sloped route, and the

corresponding plane (that contains two such parallel routes traveled in parallel by

two UAVs) as a sloped plane. Fig. 2.4 can then also represent the projection of the
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x

z

Figure 2.5: Example routes corresponding to two horizontal and two sloped routes
for one UAV. The other UAV is on the other side of the domain at the corresponding
parallel locations.

parallel routes of the sloped planes onto the x-y plane as well.

Fig. 2.5 shows an example of these two types of routes, for one UAV, along two

horizontal and two sloped routes. For each route, the other UAV will traverse the corre-

sponding parallel route on the other side of the structure. When projected to the z = 0

plane, all the depicted routes will correspond to θ = 0◦ route of Fig. 2.4 in this example.

In summary, while designing parallel routes along x-z or y-z planes can directly cap-

ture the changes in the z direction, the sloped routes can also be informative for capturing

the variations in the z direction while reducing the burden of navigation and sampling

considerably.

2.4 Experimental Testbed

In this section, we describe our experimental testbed that enables 3D through-wall

imaging using only WiFi RSSI and UAVs that collect wireless measurements along their

paths. Many challenges arise when designing such an experimental setup for imaging

through-walls with UAVs. Examples include the need for accurate localization, commu-
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nication between UAVs, coordination and autonomous route control. We next describe

our setup and show how we address the underlying challenges.

Component Model/specifications

UAV 3DR X8 octo-copter [59]

WiFi router D-Link WBR 1310

WLAN card TP-LINK TL-WN722N

Localization device Google Tango Tablet [60]

16dBi gain Yagi antenna

Directional antenna 23◦ vertical beamwidth

26◦ horizontal beamwidth

Raspberry Pi Raspberry Pi 2 Model B

Table 2.1: List of the components of our experimental setup and their corresponding
specifications.

Table 2.1 shows the specifications of the components that we use in our experiments.

The details of how each component is used will be described in the following sections.

Fig. 2.6 shows the overall block diagram of all the components and their interactions.

We next describe the details of the experimental components.

2.4.1 Basic UAV Setup

We use two 3DR X8 octo-copters [59] in our experiments. Fig. 2.7 shows one of our

octo-copters. Each UAV has an on-board Pixhawk module, which controls the flight of

the UAV. The Pixhawk board receives information about the flight from a controller

(e.g., manual controller, auto-pilot or other connected devices), and regulates the motors

to control the flight based on the received information. We have further added various

components to this basic setup, as described next.
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Remote PC

TX - Tango RX - Tango

TX - UAV RX - UAV

WiFi Router
Raspberry Pi

WLAN card

WiFi RSSI Measurement

Wireless communication link

Wired communication link

Physical mount/support

Figure 2.6: A high-level block diagram of the experimental components and their
interactions.

Figure 2.7: A 3DR X8 octo-copter used in our experiments.
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(a) (b)

Figure 2.8: The two areas of interest for 3D through-wall imaging. (a) shows the
two-cube scenario and (b) shows the L-shape scenario. For better clarity, two views
are shown for each area.

2.4.2 Localization

Localization is a crucial aspect of our experimental testbed. In order to image the

unknown region, the UAVs need to put a position stamp on the TX/RX locations where

each wireless measurement is collected. Furthermore, the UAVs need to have a good

estimate of their position for the purpose of path planning. However, UAVs typically

use GPS for localization, the accuracy of which is not adequate for high quality imaging.

Therefore, we utilize Google Tango Tablets [60] to obtain localization information along

the routes. The Tangos use various on-board cameras and sensors to localize themselves

with a high precision in 3D, and hence have been utilized for robotic navigation purposes

[61]. In our setup, one Tango is mounted on each UAV. It then streams its localization

information to the Pixhawk through a USB port that connects to the serial link of the

Pixhawk. The Tango sends information to the Pixhawk using an android application

that we modified based on open source C++ and Java code repositories [62, 63]. The

Pixhawk then controls the flight of the UAVs based on the location estimates. Based

on several tests, we have measured the MSE of the localization error (in meters) of the

Tango tablets to be 0.0045.
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2.4.3 Route Control and Coordination

The UAVs are completely autonomous in their flight along a route. Each Tango

initially receives the route information and way-points (short-term position goals) from

the remote PC at the beginning of the route. These way-points are equally-spaced

position goals located along the route. In our experiments, the projections of these way-

points onto the x-y plane are spaced 5 cm apart. During the flight, each Tango uses its

localization information to check if it has reached the current way-point along its route

(within a desired margin of accuracy). If it has reached its own way-point, it then checks

if the other Tango has reached the corresponding way-point along its route. If the other

Tango indicates that it has not reached its current way-point, then the first Tango waits

until the other Tango reaches its desired way-point. Once the Tangos are coordinated,

each Tango sends information about the next way-point to its corresponding Pixhawk.

The Pixhawk then controls the flight of the UAV so that it moves towards the next way-

point. As a result, both the UAVs are coordinated with each other while moving along

their respective routes.

2.4.4 WiFi RSSI Measurements

We next describe our setup for collecting WiFi RSSI measurements. A WiFi router

is mounted on the TX UAV, and a WLAN card is connected to a Raspberry Pi, which

is mounted on the RX UAV. The WLAN card enables WiFi RSSI measurements, and

the Raspberry Pi stores this information during the route, which is then sent to the RX

Tango upon the completion of the route. In our experiments, the RX UAV measures the

RSSI every 2 cm. More specifically, the RX Tango periodically checks if it has traveled 2

cm along the route from the previous measurement location, when projected onto the x-y

plane. If the RX Tango indicates that it has traveled 2 cm, then it records the current
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localization information of both the Tangos, and communicates with the Raspberry Pi

to record an RSSI measurement. At the end of the route, we then have the desired RSSI

measurements along with the corresponding positions of the TX and RX UAVs. Finally,

in order to mitigate the effect of multipath, directional antennas are mounted on both

the TX and RX UAVs for WiFi signal transmission and reception. The specifications of

the directional antennas are described in Table 2.1.

2.5 Experimental Results

In this section, we first show the results of our proposed framework for 3D through-

wall imaging, and then compare our proposed approach with the state-of-the-art in

robotic 2D through-wall imaging using WiFi. We use our experimental testbed of Section

2.4 in order to collect WiFi RSSI measurements outside an unknown area. The area is

then reconstructed in 3D based on the approach described in Section 2.2. In this section,

we consider the two areas shown in Fig. 2.8. We refer to the areas of Fig. 2.8 (a) and

Fig. 2.8 (b) as the two-cube and L-shape respectively, in reference to the shapes of the

structures behind the walls. For both areas, the unknown domain that we image consists

of both the outer walls and the enclosed region.

Implementation Details

We first discuss the specific details of our experiments. The dimensions of the unknown

areas to be imaged are 2.96 m × 2.96 m × 0.4 m for the two-cube scenario, and 2.96 m

× 2.96 m × 0.5 m for the L-shape scenario.6 Each WiFi RSSI measurement recorded by

6The area to be imaged does not start at the ground, but at a height of 0.65 m above the ground.
This is because the Tangos need to be at least 0.35 m above the ground for a proper operation and the
antenna mounted on the UAV is at a height of 0.3 m above the Tango. Also, note that the UAVs fly
well below the top edge of the walls, and therefore do not have any visual information about the area
inside.
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the RX-UAV is an average of 10 samples collected at the same position. A median filter

is used on the RSSI measurements to remove spurious impulse noises in the measured

data. The routes are chosen according to the design described in Section 2.3. For

capturing the variations in the x-y directions, two horizontal planes are chosen. The

first horizontal plane is at a height of 5 cm above the lower boundary of the area to

be imaged, while the second horizontal plane is at a height of 5 cm below the upper

boundary of the area to be imaged. In each of these planes, parallel routes are taken

with their directions corresponding to {0◦, 45◦, 90◦, 135◦} (see Fig. 2.4 for examples of 0◦

and 45◦). Additionally, for every pair of such parallel routes, there are two corresponding

pairs of sloped routes as defined in Section 2.3 (z coordinate varying as z = aδ+ b), with

0.2/D representing the slope of each sloped route, where D is the total distance of the

route when projected to the x-y plane, 0.2 corresponds to the total change in height along

one sloped route, and the offset b is such that the intersection of the sloped routes shown

in Fig. 2.5 corresponds to the height of the mid-point of the area to be imaged. This

amounts to the total of eight sloped routes and eight horizontal routes, four of which are

shown in Fig. 2.5.

We initially discretize the domain into small cells of dimensions 2 cm × 2 cm × 2 cm.

The image obtained from TV minimization is then resized to cells of dimensions 4 cm

× 4 cm × 4 cm in order to reduce the computation time of the loopy belief propagation

algorithm. The intensity values of the image obtained from TV are normalized to lie

in the range from 0 to 1. Furthermore, those values in the top 1% and bottom 1% are

directly mapped to 1 and 0 respectively, since they are inferred so close to 1/0, with a

very high confidence. The stopping criteria for the belief propagation algorithm is 10−4

for the mean change in beliefs, with a maximum of 100 iterations. The information about

the outer boundary of the area may be known using cameras or laser scanners. However,

only the cells on the boundary (i.e., the last layer of cells on the outer edge) would be
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Area of Interest - Top View

3D binary ground-truth image 

of the unknown area to be imaged

(2.96 m x 2.96m x 0.4 m)

Our 3D image of the area, 

based on 3.84 % measurements

1.48 m 1.50 m

Figure 2.9: (left) The area of interest for the two-cube scenario, (middle) 3D binary
ground-truth image of the unknown area to be imaged, which has the dimensions of
2.96 m × 2.96 m × 0.4 m, and (right) the reconstructed 3D binary image using our
proposed framework.

Area of Interest - Top View

1.08 m 1.12 m

3D binary ground-truth image 

of the unknown area to be imaged

(2.96 m x 2.96m x 0.5 m)

Our 3D image of the area, 

based on 3.6 % measurements

Figure 2.10: (left) The area of interest for the L-shape scenario, (middle) 3D binary
ground-truth image of the unknown area to be imaged, which has the dimensions of
2.96 m × 2.96 m × 0.5 m, and (right) the reconstructed 3D binary image using our
proposed framework.

known to be occupied by a wall in such a case, and the rest of the outer walls need to be

imaged, as we shall show next. We next discuss the imaging results for the two scenarios.

3D Imaging Results

Here, we show the experimental 3D imaging results for the two areas shown in Fig. 2.8.

Fig. 2.9 (left) shows the region of interest for the two-cube scenario and Fig. 2.9 (middle)

shows the 3D binary ground-truth image of the area. Fig. 2.9 (right) then shows the

3D reconstructed image from our proposed approach, using only 3.84% measurements.

The percentage measurements refers to the ratio of the total number of measurements
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to the total number of unknowns in the discretized space (corresponding to the cells of

dimensions 4 cm × 4 cm × 4 cm), expressed as a percentage. As can be seen, the inner

structure and the outer walls are imaged well, and the variations in the structure along

the z direction are clearly visible. For instance, as the figure shows, the distance to the

wall from the center of the top part is imaged at 1.50 m, which is very close to the real

value of 1.48 m.

We next consider imaging the L-shape area. Note that we are imaging a larger area

as compared to the two-cube scenario in this case. Fig. 2.10 (left) shows the region of

interest for the L-shape area while Fig. 2.10 (middle) shows the 3D binary ground-truth

image of the area. Fig. 2.10 (right) then shows the 3D image obtained from our proposed

approach using only 3.6% measurements. As can be seen, the area is imaged well and the

L shape of the structure is observable in the reconstruction. Furthermore, the distance

to the wall from the center of the top part is imaged at 1.12 m, which is very close to

the real value of 1.08 m. It is noteworthy that the inner two-cube structure is imaged

at the center, while the inner L-shape structure is imaged towards the left, capturing

the true trends of the original structures. Overall, the results confirm that our proposed

framework can achieve 3D through-wall imaging with a good accuracy.

We next show a few sample 2D cross sections of the binary 3D images of Fig. 2.9 and

2.10. Fig. 2.11 (a) and (d) show two horizontal cross sections of the 3D binary ground-

truth image of the two-cube area of Fig. 2.8 (a), while Fig. 2.11 (b) and (e) show the

corresponding cross-sections in our reconstructed 3D image. Similarly, Fig. 2.12 (a) and

(d) show two horizontal cross sections for the L-shape area of Fig. 2.8 (b), while Fig. 2.12

(b) and (e) show the corresponding images reconstructed from our proposed framework.

In both cases, the different shapes and sizes of the inner structures at the two imaged

cross sections are clearly observable.
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Comparison with the State-of-the-art

In this section, we compare the proposed 3D imaging approach with the state-of-the-art

for through-wall imaging with WiFi RSSI. More specifically, in the current literature

[3, 1], robotic through-wall imaging with WiFi power measurements is shown in 2D,

with an approach that comprises of the measurement model described in Section 2.1,

and sparse signal processing based on Total Variation minimization. However, directly

extending the 2D approach for 3D imaging results in a poor performance. This is due to

the fact that 3D imaging is a considerably more challenging problem, due to the severely

under-determined nature of the linear model described in Section 2.1. Furthermore, by

utilizing four measurement routes in the 2D case, every cell in the unknown domain

(i.e., a plane in the case of 2D) appears multiple times in the linear system formulation.

However, in the case of 3D imaging, there are many cells in the unknown domain that

do not lie along the line connecting the TX and RX for any of the measurement routes,

thereby never appearing in the linear system formulation. Thus, there is a higher de-

gree of ambiguity about the unknown area in 3D, as compared to the 2D counterpart,

which could have only been avoided by collecting a prohibitive number of measurements.

Therefore, the contributions of this dissertation along the lines of MRF modeling, loopy

belief propagation, and 3D efficient path planning are crucial to enable 3D imaging.

In order to see the performance when directly extending the prior approach to 3D, we

next compare the two approaches for the imaging scenarios considered in this chapter.

Consider the two-cube area of Fig. 2.8 (a). Fig. 2.11 (c) and (f) show the corresponding

2D cross sections of the 3D image obtained by utilizing the prior imaging approach [1]

for our 3D problem. Similarly, for the L-shape area of Fig. 2.8 (b), Fig. 2.12 (c) and (f)

show the corresponding 2D cross sections of the 3D image obtained by utilizing the prior

imaging approach [1] for our 3D problem.

40



3D Through-Wall Imaging With UAVs Using WiFi Chapter 2

Proposed 3D imaging

approach

Prior 2D imaging approach

directly extended to 3D

(a) (b) (c)

(d) (e) (f)

Ground-truth image

Figure 2.11: Sample 2D cross-sections of the 3D imaging results for the two-cube
scenario. (a) and (d) show two 2D cross sections of the ground-truth image, (b) and
(e) show the corresponding cross sections of the imaging results obtained from the 3D
imaging approach proposed in this chapter, and (c) and (f) show the corresponding
2D cross sections of the 3D image obtained by directly extending the state-of-the-art
imaging approach [1] to 3D.

As can be seen, it is challenging to obtain a good 3D reconstruction when directly

utilizing the prior approach that was successful for imaging in 2D. There exists significant

noise in the image due to the under-determined nature of the system and modeling errors.

On the other hand, by incorporating Markov Random Field modeling and solving for

the occupancy of each cell via utilizing loopy belief propagation, as we have done in

this chapter, we can see that the shapes and locations of the objects are reconstructed

considerably more clearly.
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Proposed 3D imaging

approach

Prior 2D imaging approach

directly extended to 3D

(a) (b) (c)

(d) (e) (f)

Ground-truth image

Figure 2.12: Sample 2D cross-sections of the 3D imaging results for the L-shape
scenario. (a) and (d) show two 2D cross sections of the ground-truth image, (b) and
(e) show the corresponding cross sections of the imaging results obtained from the 3D
imaging approach proposed in this chapter, and (c) and (f) show the corresponding
2D cross sections of the 3D image obtained by directly extending the state-of-the-art
imaging approach [1] to 3D.
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Chapter 3

Magnitude-Based AoA Estimation

and Channel Prediction

In this chapter, we are interested in the problem of angle-of-arrival (AoA) estimation, by

using only the signal magnitude at an antenna array, without the need for signal phase

measurements. Such a framework then opens up new possibilities for implementing RF

sensing applications on commercially available off-the-shelf devices, where only the signal

magnitude/power can be reliably measured. Thus, in this chapter, we first propose a

new framework for AoA estimation using only the signal magnitude measurements at an

antenna array. We discuss the ambiguities that can arise in such a magnitude-only AoA

estimation problem and show how we can resolve these ambiguities. We then show how

to use this magnitude-based AoA estimation framework to predict the ray makeup at

unvisited locations in the workspace and subsequently predict the channel quality.

The rest of this chapter is organized as follows. In Sec. 3.1, we show our problem

formulation for a general setting of signal paths arriving at an array. In Sec. 3.2, we

propose a framework for AoA estimation of signals arriving from fixed sources, and the

corresponding angular localization of objects, and show its performance through extensive
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experiments. In Sec. 3.3, we show how we can extend our magnitude-based framework in

order to fundamentally understand and predict the makeup of the rays and subsequently

the channel quality at unvisited locations.

3.1 Our AoA Estimation Foundation

Consider N signal paths arriving at a linear receiver array at various angles, as shown

in Fig. 3.1. These signal paths can be caused by active transmitting sources or by passive

objects that got illuminated through a transmission in the area. We are then interested

in estimating the AoA of these paths, corresponding to all the N sources/objects, using

only the magnitude of the received signal at each antenna of the receiver array.1 Note

that for the case of passive objects, AoA estimation results in the angular localization

of the objects. In this section, we show that the magnitude of the received signal at the

array contains information about the AoA of all the signal paths. This foundation will

then be the base for our proposed framework of Sec. 3.2 to estimate the AoA of all the

sources.

Consider the receiver array of Fig. 3.1. Let d denote the distance from the first

antenna, as denoted on the figure. The baseband received signal, due to the N arriving

paths, can be written as a function of distance d as follows [43],

c(d) =
N∑
n=1

αne
j(µn− 2π

λ
d cos(φn)) + η(d), (3.1)

where αn is the amplitude of the nth signal path, λ is the wavelength of the signal, φn is

the AoA of the nth path (measured with respect to the x-axis), µn is the phase of the nth

signal at the first antenna of the array, and η(d) is the receiver noise. Let Acorr(ξ) denote

1We use the term ”source” for both active transmitters and passive objects in this chapter.
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Figure 3.1: N Signal paths arriving at a receiver array.

the auto-correlation function of the baseband received signal magnitude, |c(d)|, at lag ξ.

Lemma 2 Acorr(ξ) can be written as follows [43],

Acorr(ξ) = CA + Cσηδ(ξ)

+
N−1∑
n=1

N∑
m=n+1

Cm,n cos

(
2π
ξ

λ
(ψn − ψm)

)
,

(3.2)

where CA is a constant that depends on the total signal power, Cση is a constant that

depends on the noise variance σ2
η and the signal power, Cm,n = πα2

mα
2
n

16P
, ψn = cos(φn),

P =
∑N

n=1 α
2
n is the total power of the received signal, and δ(.) is the Dirac Delta function.

Proof: See Appendix A.1.

Then, by taking the Fourier transform of Acorr(ξ), we get,

A(f) = CAδ(f) + Cση

+
N−1∑
n=1

N∑
m=n+1

Cm,n
2

(
δ[f − ψn − ψm

λ
] + δ[f +

ψn − ψm
λ

]

)
.

(3.3)

Eq. 3.3 shows that |A(f)| has peaks at the frequencies ±(|ψn − ψm|)/λ, for 1 ≤ n <
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m ≤ N .2 For the sake of simplicity, we normalize the frequency with respect to 1
λ
, so

that the peaks in the spectrum occur at ±|ψn − ψm|, 1 ≤ n < m ≤ N . It can be seen

from Eq. 3.3 that the locations of the peaks of |A(f)| contain information about the

AoA of the N signal paths. In the next section, we then propose a framework to use this

information and estimate all the AoAs.

3.2 AoA Estimation for Fixed Sources/Objects

In this section, we consider the scenario where there are unknown fixed active or pas-

sive signal sources located in an area. We are then interested in estimating the AoAs of

the signals from these sources at the receiver array, thus localizing the direction of these

sources/objects, using only the magnitude of the corresponding received signal measure-

ments. The signal measurements can be obtained by using an array of fixed antennas,

or by using an unmanned vehicle that utilizes its motion to collect measurements along

a route, thus synthesizing an antenna array. We next propose a framework to estimate

the AoAs of signals from fixed sources. We present extensive experimental results for

estimating the AoAs for both active and passive cases.

3.2.1 AoA Estimation Methodology

Consider N signal sources present on one side of a receiver array, i.e., sources whose

AoAs {φn, 1 ≤ n ≤ N} satisfy 0◦ ≤ φn < 180◦ (see Fig. 3.1). Let Ψ = {ψ1, ψ2, . . . , ψN},

where ψn = cos(φn). Define the function D(U) on a set of real numbers U as the set

of all the unique pairwise distances between the elements of U , i.e. D(U) = {|ui − uj| :

ui, uj ∈ U, i 6= j}. Let Q be the set of the absolute values of the pairwise differences of

2Note that the Fourier transform of |c(d)|2 also has a similar frequency content. However, the
spectrum of |c(d)|2 is considerably more noisy, as compared to A(f), since the effect of noise is minimized
in the auto-correlation, due to the uncorrelated nature of the noise.

46



Magnitude-Based AoA Estimation and Channel Prediction Chapter 3

the cosines of AoAs, i.e. Q = D(Ψ). Without loss of generality, we assume that Q is

ordered: Q = {q1, q2, . . . , qM}, q1 > q2 > · · · > qM . We are then interested in estimating

Ψ, and hence the AoAs, using the set of pairwise distances Q, obtained using Eq. 3.3.

The problem of estimating a set of N real numbers, B, given the multiset of absolute

differences (distances) between every pair of numbers, ∆B, is called the Turnpike problem

[64]. This problem has been explored extensively in the literature and solvers have been

proposed for finding its solution [64]. However, it is not possible to obtain a unique

solution set using just the set ∆B. For instance, for a solution B, the sets obtained

through translation B + {e} = {b + e : b ∈ B}, mirroring −B = {−b : b ∈ B}, or a

combination of both −B+{e}, would also result in the same set of distances ∆B, for any

constant e. Furthermore, when the number of points N ≥ 6, there exist other possible

solutions that do not arise from the above construction [64].

The existing solvers for the Turnpike problem require that the set of distances should

contain all the
(
N
2

)
pairwise distances (or that we know the multiplicity of the non-distinct

distances, if any), and they suffer from the translation and mirroring ambiguities as well

as other ambiguities. In our AoA estimation problem though, we will not know the

multiplicity of the possible non-distinct distances. Furthermore, we also have to resolve

the aforementioned translation and mirroring ambiguity. Thus, we cannot utilize the

solvers proposed for the Turnpike problem in our setting. Therefore, in this section we

propose our approach to estimate the AoAs from the pairwise cosine distances.

In order to overcome the ambiguity arising due to the translation and mirroring of

Ψ, we can place a reference signal source (i.e., a transmitter) at one extreme of the span

of angles, say φref = 0◦, so that ψref = 1. This also implies that any valid solution set

would only contain ψs that are less than or equal to ψref, a condition we then utilize in

our proposed methodology. However, there still exist multiple solutions for a set Q.

We next describe our proposed algorithm to first find all the valid sets of solutions
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Figure 3.2: Illustration of the reference point, the positioning of the first point cor-
responding to q1, and the two possible valid position choices for ψ2, in our proposed
approach.

{ψn : 1 ≤ n ≤ N}, for a given distance set Q. Then, we show how we can reduce the num-

ber of valid solutions (and possibly obtain a unique solution) by utilizing measurements

from two arrays in different configurations.

Proposed Approach for Finding All Possible Angle Solutions

We next describe how we can obtain all the valid solution sets corresponding to Ψ,

given the ordered set of distances Q, the AoA corresponding to the reference source

at φref = 0◦, and the estimated number of sources (denoted by N̂). We show how to

estimate the number of sources in Sec. 3.2.1. Without loss of generality, we take the

sets Ψ and Q to include the impact of the new added reference source at φref, i.e.,

Ψ = {ψref, ψ1, . . . , ψN−1}. Then, we are interested in estimating the angles of the rest

N − 1 unknown sources.

The rightmost and leftmost extreme points of the set Ψ are defined by ψref = 1 and

ψ1 = ψref − q1, respectively, as shown in Fig. 3.2. Consider the positioning of the next

point ψ2, corresponding to q2. Fig. 3.2 shows the two possible valid position choices for

it. Both these will result in a valid solution set. Similarly, for each of the remaining

distances qi, 3 ≤ i ≤ M , there exist a pair of positions on the line in Fig. 3.2, whose

distance to the two extreme points correspond to that qi. It is easy to confirm that these
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two positions are the only possible positions given the monotonicity of the set Q. This

observation is the base of our proposed approach, which we detail next. Let the set Ŝ

denote the set of all the sets of valid solutions. We start with a valid partial solution,

where a Valid Partial Solution (VPS) is a set S such that D(S) ⊆ Q. We then find all

the valid solutions, as follows:

Initialization: We initialize the set of VPSs with S(1) = {{ψref − q1, ψref}}, which is

the smallest VPS, containing only the two extreme points of Ψ.

Iteration Update: In iteration i, we place a point at a distance qi from either of the

extremes in the existing VPSs. More specifically, for each set S ∈ S(i−1), we generate one

test set by adding a point at a distance qi from the rightmost extreme, and another test

set by adding a point at a distance qi from the leftmost extreme. If the pairwise distances

of the new sets are a subset of Q, we then add these test sets to S(i−1) to generate S(i).

Algorithm Termination: The algorithm is terminated after M − 1 iterations, which

corresponds to exhausting all the elements of Q. A set S ∈ S(M) is a possible solution

for Ψ if the cardinality of S is N̂ and D(S) = Q. We then use all such sets S to generate

Ŝ, the final set of all the possible solutions. Algorithm 1 shows the pseudo-code for this

algorithm.

Remark 1 It can be easily confirmed that the aforementioned algorithm captures all the

possible valid solution sets, even when there are distance multiplicities.

Remark 2 Note that φref does not have to be necessarily 0◦. As long as it is the smallest

possible angle (i.e., all the other angles are greater than it), then the previous algorithm

works.

While we have removed the ambiguity due to translation and mirroring, the previous

algorithm can still result in a number of valid solutions. If there is no distance multiplicity,
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then we can prove that there will only be two solutions by using ψref, when the number

of unknown sources is less than 5 (see the Turnpike literature [64]). In general, however,

there may be more than two possible solution sets. Next, we show how we can further

reduce the number of possible solutions.

Algorithm 1 Finding all possible angle solutions

function findAllPossibleAngles(Q, ψref, N̂)

1: Initialize S(1) ← {ψref − q1, ψref}
2: for all 2 ≤ i ≤M do
3: S(i) ← S(i−1)

4: for all sets S ∈ S(i−1) do
5: Stest

1 ← S ∪ {ψref − qi}, and Stest
2 ← S ∪ {ψref − q1 + qi}

6: for all k ∈ {1, 2} do
7: if D(Stest

k ) ⊆ Q then
8: S(i) ← S(i) ∪ Stest

k

9: end if
10: end for
11: end for
12: end for
13: Ŝ ← {S : S ∈ S(M), cardinality(S) = N̂ ,D(S) = Q}

return Φ̂all = cos−1 Ŝ

AoA Estimation with Multiple Routes

In order to reduce the ambiguity due to multiple possible solutions obtained using

Algorithm 1, we propose to use another set of measurements collected by a receiver array

with a different orientation. This new magnitude measurement can be obtained either

by another fixed receiver array or by an unmanned vehicle that moves along a route

with a different orientation. This solution is thus particularly suitable for the case of

an unmanned vehicle emulating a receiver array, since traversing two straight routes is a

trivial task for an unmanned vehicle. Fig. 3.3 shows an example of this scenario. Suppose
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that the AoAs of the signal sources for the first array configuration are {φn : 1 ≤ n ≤ N}.

For the second array that is tilted by an angle Ω in the clockwise direction, the AoAs

are now {φn + Ω : 1 ≤ n ≤ N} and the reference source has an angle of arrival Ω or

equivalently, ψref = cos(Ω).

Since cosine is not a linear function of its argument, utilizing two sets of array mea-

surements results in different sets of pairwise distances Q and Q′. Therefore, we can

obtain the set of all possible angle solutions individually for Q and Q′ (using Algorithm

1), and then take the intersection of the two sets to find the common valid solution(s).

More specifically, let Φall,1 and Φall,2 indicate the AoA solution sets for Q and Q′ respec-

tively. The intersection of the two sets Φall,1 and Φall,2 − {Ω} is then our final estimated

AoAs.3 Intuitively, the chance that the two routes have more than one possible common

set is considerably small. However, it is challenging to theoretically prove the uniqueness,

or derive the conditions for the uniqueness of the final solution set. Thus, we leave any

such proof to future work. However, we have observed through extensive simulations

for up to 8 signal sources that our algorithm results in a unique solution for the AoA

estimation problem. Furthermore, if there is more than one solution set in the common

set, we can collect measurements along another array route to obtain a unique solution.

This online strategy is in particular suitable for the case of an unmanned vehicle emu-

lating an array. We note that our proposed strategy is computationally very efficient.

We report on sample times in the next section. We next discuss some aspects of the

proposed approach.

Criteria for Choosing Ω: The orientation of the second array, Ω, determines the extent

of dissimilarity between the sets Q and Q′, where a larger Ω is likely to result in a higher

dissimilarity. Therefore, it is preferable to use as large an Ω as possible. However, we

3Note that in practice, the angles from the two sets Φall,1 and Φall,2 (after subtracting Ω from Φall,2)
may never be equal, owing to noise or rounding errors. Therefore, we need to compare the sets within
a tolerance level.
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require all the sources in the area to lie on one side of the receiver array (i.e., upper half

plane) in the second configuration as well. Therefore, we can use the first set of distances

Q, to estimate the largest AoA at the first receiver array as φmax = cos−1(1 − q1). This

implies that the possible range of values for Ω is 0 < Ω < 180◦−φmax. Note that if φref for

the first route was φmin > 0 instead of 0, where φmin is smaller than all source angles, then

the condition for Ω becomes−φmin < Ω < 180◦−φmax, where φmax = cos−1(cos(φmin)−q1).

Choice of Number of Sources: Given a set of unique distances Q and Q′, we are

interested in estimating the AoAs corresponding to the smallest number of sources that

can result in the two sets of distances. For N sources, the maximum number of possible

pairwise distances is
(
N
2

)
. Suppose that the cardinality of sets Q and Q′ are M and M ′.

Therefore, the estimated number of sources N̂ should satisfy M ≤
(
N̂
2

)
and M ′ ≤

(
N̂
2

)
,

which translate to the conditions: N̂ ≥ 1+
√

1+8M
2

and N̂ ≥ 1+
√

1+8M ′

2
. Hence, we set N̂min

as the smallest integer satisfying the previous two inequalities.

We start by assuming that we have N̂ = N̂min sources. We then solve for the AoAs

for the sets Q and Q′ separately, using the approach of Sec. 3.2.1 (Algorithm 1). If the

intersection of Φall,1 and Φall,2 − {Ω} is an empty set, we then need to increase N̂ by 1,

until we get a non-empty intersection set of solutions.

Remark 3 It is highly unlikely that adding an element ψnew to the true set Ψ or taking

out one element of it will produce the same Q and Q′ respectively for both the routes.

Hence, it is highly unlikely that using any N̂ other than the true N will produce non-

empty intersection set of solutions.

Remark 4 For the case where we are interested in finding all the valid solutions with

only one measurement array, N̂ can be chosen as N̂min =
⌈

1+
√

1+8M
2

⌉
, which corresponds

to the smallest number of sources that could have resulted in a cardinality of M for Q.

If the current N̂ does not result in a valid solution, we then keep increasing N̂ by 1 until
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Figure 3.3: Framework for AoA estimation using two routes. Received signal magni-
tude measurements are collected along two arrays in order to reduce the ambiguity
due to multiple sets of possible solutions to the AoA estimation problem.

we get a non-empty solution set.

3.2.2 Static Scene AoA Estimation with Dominant Tx Path

Consider the case that the signals from the unknown signal sources are of lower

transmission power as compared to the reference source at φref. This case is in particular

relevant when we are interested in estimating the direction of passive objects. Then, the

transmitted reference signal will bounce off of these objects and reach the receiver array

with a considerably smaller power than that of the path from our reference transmitting

source. In such a case, the AoA estimation problem is slightly different, as we show next.

Consider N unknown sources where the paths arriving from them at the receiver

array have a lower power as compared to the reference source. This can happen for both

the cases of active and passive sources. In the active case, this can happen when the

active transmitters have a lower power as compared to our reference source. On the other

hand, the passive case results in a dominant reference source almost all the time. Then,

from Eq. 3.3, we can see that the pairwise coefficients Cm,n that correspond to the pair

of the reference source and an unknown source would be the only significant peaks in the

spectrum. More specifically, if the dominant reference source with a higher power is at
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0◦, and the unknown sources are at angles {φ1, . . . , φN}, then the estimated differences

from the spectrum are Q = {1 − cos(φ1), . . . , 1 − cos(φN)} since the rest of differences

will have negligible peaks. Therefore, we can directly estimate the AoAs corresponding

to the unknown sources as {cos−1(1− q) : q ∈ Q}.

However, if the dominant reference source is not located at any one extreme of the

angular workspace (i.e., if there are sources on either side of the reference source), then we

can no longer directly estimate the unknown AoAs from a single array. More specifically,

any measurement q that we obtain from the spectrum can now correspond to ±(ψref−ψn).

As a result, there now exists an ambiguity regarding the location of the unknown source,

where the AoA corresponding to the unknown source can be less than or greater than

φref. More specifically, this ambiguity results in two possible solutions for the AoA of

the unknown source, with one solution corresponding to the unknown source being on

one side of the line connecting the Tx to the receiver array, and the other solution corre-

sponding to the other side of the aforementioned line. In addition to this ambiguity, the

general phased-array AoA estimation problem contains an inherent ambiguity regarding

the array halfspace in which the objects are located. More specifically, one antenna array

of measurements cannot distinguish between paths arriving from angles φ and −φ, since

both result in the same measurement of cosφ. Since in the most general scenario, the

objects and the reference Tx can be located anywhere in the workspace, then there is a

need for a magnitude-based framework that can resolve all such ambiguities and estimate

the AoA of all the paths arriving at the array.

Similar to the problem framework in Sec. 3.2.1, we can resolve these ambiguities by

using robotic route diversity. More specifically, since the cosine function is not linear in

its argument, we can obtain a different set of pairwise difference measurements in every

robotic route, and can use the same algorithm to resolve the ambiguity and estimate the

unknown AoAs. However, as the number of sources in the area increases, we would need
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more diverse routes in order to resolve the different kinds of ambiguities and subsequently

estimate all the AoAs.

In scenarios where it is not possible to use robotic route diversity to resolve these

ambiguities, there is a need to estimate the unambiguous AoAs from one antenna array

or one robotic route of measurements. We next discuss our proposed magnitude-based

approaches to resolve the aforementioned ambiguities and estimate AoAs in general sce-

narios.

Tx Side Ambiguity Resolution

In this section, we first discuss our proposed approach to resolve the ambiguity re-

garding which side of the Tx any path is arriving from. Consider Eq. 3.1 again, where

we now explicitly describe what constitutes the phase term, as follows:

c(d) =
N∑
n=1

αne
j( 2π

λ
ln− 2π

λ
d cos(φn)) + η(d), (3.4)

where ln is the total length of the nth path arriving at the first antenna in the array.

Then, |c(d)|2, for the case of a dominant reference source (or equivalently, a Tx that

illuminates the passive objects in the area) can be written as,

|c(d)|2 ≈ α2
ref+

N∑
n=1

α2
n+

N∑
n=1

αrefαn

{
ej

2π
λ

(lref−ln)e−j
2π
λ
d(ψref−ψn) + e−j

2π
λ

(lref−ln)ej
2π
λ
d(ψref−ψn)

}
.

(3.5)

The Fourier transform of |c(d)|2 can then be written as,

C(fd) = (α2
ref +

N∑
n=1

α2
n)δ(fd)+

N∑
n=1

αrefαn

{
ej

2π
λ

(lref−ln)δ(fd −
(ψref − ψn)

λ
)

+e−j
2π
λ

(lref−ln)δ(fd +
(ψref − ψn)

λ
)

}
. (3.6)
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This is similar to the power spectral density that we considered in Sec. 3.1, where there

exist two peaks in the spectrum, corresponding to ±|ψref − ψn|. In order to resolve the

Tx halfspace ambiguity, we then need to estimate the value of (ψref − ψn) without any

ambiguity regarding its sign.

In order to estimate (ψref−ψn), we propose to utilize signal magnitude measurements

along a second dimension of frequency. More specifically, we measure the two-dimensional

signal magnitude, where we collect WiFi signal magnitude measurements as a function of

distance d along the array, and as a function of different subcarrier frequencies at every

antenna location on the array. Such a 2D signal measurement framework is easy and

practical in real scenarios, since typical WiFi cards already measure WiFi signal mag-

nitude reliably on various subcarrier frequencies. Hence, suppose that the frequency of

the measured signal is fc + ρ, where fc is the center frequency, ρ ∈ [−B
2
, B

2
] corresponds

to the subcarrier offset frequency that we measure the data on, and B is the total band-

width of the signal. Rewriting Eq. 3.5 in terms of the measurements along the frequency

dimension, we get,

|c(d, ρ)|2 ≈ α2
ref +

N∑
n=1

α2
n +

N∑
n=1

αrefαn

{
ej

2π
c

(fc+ρ)(lref−ln)e−j
2π
c

(fc+ρ)d(ψref−ψn)

+e−j
2π
c

(fc+ρ)(lref−ln)ej
2π
c

(fc+ρ)d(ψref−ψn)
}
. (3.7)

Since 2πρd(ψref−ψn)
c

is typically a small quantity compared to the other phase terms, we

can neglect it in the expansion. Then, by taking the Fourier transform of |c(d, ρ)|2 along

the d dimension and inverse Fourier transform along the ρ dimension, we get,

Cs(fd, τ) ≈ Aδ(fd, τ) +
N∑
n=1

αrefαn

{
ej

2π
c
fcLnδ

(
fd −

ψref − ψn
λc

, τ − Ln
c

)
+e−j

2π
c
fcLnδ

(
fd +

ψref − ψn
λc

, τ +
Ln
c

)}
, (3.8)
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where Ln = lref − ln, and A = α2
ref +

∑N
n=1 α

2
n. Since the path length of the ray from

the reference Tx to the receiver array is always less than the path length of the ray

from the reference Tx that reflects off of an object and then arrives at the receiver,

then Ln < 0. Hence, we then propose to utilize this property in the 2D spectrum

in Eq. 3.8, in order to eliminate the Tx halfspace ambiguity. More specifically, since

Ln < 0, by restricting our search space in the 2D spectrum to only negative τ , we

would then be able to unambiguously estimate the desired value (ψref − ψn). However,

in practice, the total bandwidth of the signal determines the resolution of the peak in

the τ dimension. For instance, in typical WiFi card measurements, we can only obtain

subcarriers corresponding to typical WiFi bandwidth of 20 MHz. While this bandwidth

significantly blurs the peak in the τ dimension, it is still informative and can be used to

make a binary decision to determine the sign of ψref − ψn, as we show next. Consider a

peak in the 2D spectrum located at q = |ψref − ψn| along the fd dimension. Then, we

can determine the sign of (ψref − ψn) as follows:

∫ 0

−∞ |Cs(
q
λc
, τ)|2dτ∫∞

0
|Cs( q

λc
, τ)|2dτ

ψref−ψn=− q
λc

≶
ψref−ψn= q

λc

1. (3.9)

Thus, we can then accurately estimate the AoA of the signal path, and resolve the

Tx halfspace ambiguity. Next, we discuss our proposed approach to resolve the array

halfspace ambiguity.

Array Halfspace Ambiguity Resolution

As discussed in the previous section, the array halfspace ambiguity is inherent to

all linear phased-array AoA estimation problems. A few approaches based on two-

dimensional array geometries have been proposed to resolve this ambiguity. For instance,

[65] proposes to resolve AoA in 2D by using a circular antenna array. Such a solution
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Figure 3.4: Proposed array configuration in order to resolve the halfspace ambiguity
of the AoA of paths arriving at an antenna array.

might not always be feasible, especially when a robot needs to measure AoA as it moves

along its path and measure AoA at various locations on its path. Forming circular routes

at each such location of interest requires significant additional motion energy for the

robot. In this section, we then propose an approach that uses the resources already

available on a typical WiFi card in order to resolve the array halfspace ambiguity along

a linear array or a linear route of the robot.

Consider the scenario shown in Fig. 3.4. We propose to collect signal magnitude

measurements in this setting, using a second antenna along the array, which is mounted

on the same robot (e.g., placed λ
4

away from the first antenna). The second dimension,

∆, of the array, is considered to be small as compared to the first dimension. We thus

measure the two-dimensional signal magnitude on such an antenna array along the two

physical dimensions d and ∆. Note that most off-the-shelf WiFi cards already have the

capability to measure the signal magnitude on at least two antennas. We thus propose

to utilize this available resource and create a very small antenna array in an orthogonal

dimension to resolve the array halfspace ambiguity, as we show next. We can derive the
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signal magnitude squared as a function of these two dimensions as follows:

|c(d,∆)|2 ≈ α2
ref+

N∑
n=1

α2
n +

N∑
n=1

αrefαn

{
ej

2π
λ

(lref−ln)e−j
2π
λ
d(cosφref−cosφn)ej

2π
λ

∆(sinφref−sinφn)

+e−j
2π
λ

(lref−ln)ej
2π
λ
d(cosφref−cosφn)e−j

2π
λ

∆(sinφref−sinφn)
}
. (3.10)

As can be seen from Eq. 3.10, we can theoretically estimate AoAs in two dimensions.

We then derive the corresponding spectrum Ca(fd, f∆) by taking a 2D Fourier transform

along the two dimensions d and ∆, as follows:

Ca(fd, f∆) =Aδ(fd, f∆)+

N∑
n=1

αrefαn

{
ej

2π
λ

(lref−ln)δ

(
fd −

cosφref − cosφn
λ

, f∆ +
sinφref − sinφn

λ

)
+e−j

2π
λ

(lref−ln)δ

(
fd +

cosφref − cosφn
λ

, f∆ −
sinφref − sinφn

λ

)}
. (3.11)

As a result, there exist two peaks in the 2D spectrum. Utilizing a similar idea as

discussed in the previous section to resolve the Tx halfspace ambiguity, we can restrict

our current 2D spectrum and estimate the AoA in the full [0, 2π) range. More specifically,

in the previous section, we already estimated the value of cosφref − cosφn without any

ambiguity in its sign. Thus, we can restrict our current 2D spectrum and consider the

spectrum values at fd = cosφref−cosφn
λ

. As a result, denote the location of the peak in the

f∆ dimension as q, where q = −(sinφref − sinφn), as can be seen from Eq. 3.11. Since

we know the location of the reference Tx, we can rewrite this expression as q+ sinφref =

sinφn. Thus, we can now estimate the sign of φn by estimating the sign of q + sinφref.

Note that since the ∆ dimension of the 2D array is very small, we would not be able to

accurately localize the peak in that dimension due to poor resolution in that dimension.

However, we can still make a binary decision regarding the sign of φn by calculating the
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ratio of energies in the spectrum at fd = (cosφref − cosφn)/λ. More specifically, we can

estimate the sign of φn as,

∫ (− sinφref+1)/λ

(− sinφref)/λ
|Ca(ψref−ψn

λ
, f∆)|2df∆∫ (− sinφref)/λ

(− sinφref−1)/λ
|Ca(ψref−ψn

λ
, f∆))|2df∆

φn<0

≶
φn≥0

1. (3.12)

In summary, using our proposed magnitude-based framework, we can estimate the

AoA of unknown sources arriving at an antenna array, for the general scenario of objects

located anywhere in the 2D area, on either side of the reference Tx or array halfspace.

We next experimentally validate our proposed framework with several experiments for

estimating the AoAs of both the active and passive signal sources.

3.2.3 Experimental Results for AoA Estimation

In this section, we present our experimental results and show the performance of our

proposed framework for estimating the AoA in three scenarios: (a) fixed active (trans-

mitting) sources, (b) fixed active sources with a dominant reference source, and (c) fixed

passive objects. In the experiments, we use a TP-Link AC1750 WiFi router as a trans-

mitter. The router operates in the 5 GHz band. The output signal of the router is split

into N branches using a power divider, in order to create N signal sources for the fixed

active source scenario. We use a laptop with Intel 5300 NIC WLAN card as the receiver.

The laptop measures the magnitude of the WiFi Channel State Information (CSI) using

Csitool [66].4 The laptop is mounted on a Pioneer 3-AT mobile robot [67], and the robot

moves along a linear route. The motion of the robot enables signal measurements at

several locations along the route, thus emulating an antenna array. We utilize a spatial

sampling frequency of 10 samples/cm, which is well above the Nyquist sampling rate. It

4Note that the CSI magnitude captures the channel gain, which can be used as an alternative to the
received signal magnitude, without affecting our framework.
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(a)

(c)(b)

Unknown sources

Robot

Ref. source

Unknown sources Unknown sources

Ref. source Ref. source

Robot

Robot

Figure 3.5: Experimental setup for the problem of AoA estimation of active sources
in various areas on campus: (a) a closed area in a parking structure, and (b) and (c)
open areas.

should be noted that while the Intel 5300 card is capable of reporting a measurement for

the phase of the signal, the phase measurement at different robot positions can not be

properly related to each other due to frequency drift and other sources of random errors

[23].

AoA Estimation of Active Sources

In this section, we present our experimental results for the AoA estimation of sig-

nals arriving from multiple active sources (transmitters) in both closed and open areas.
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Figure 3.6: The normalized spectra of the auto-correlation of the magnitude measure-
ments obtained for both routes of the robot, for the active-source AoA estimation
experiment of the closed area of Fig. 3.5 (a). Dashed lines represent the true theoret-
ical peak locations.

Consider the closed area shown in Fig. 3.5 (a). One reference source is located at an

angle φref = 0◦ and 2 unknown sources are located such that their true AoAs are 90◦

and 120◦. The robot then collects measurements along two routes of length 1 m each,

with the orientations of the routes corresponding to Ω = 0◦ and Ω = 25◦. Fig. 3.6 then

shows the normalized spectra of the auto-correlation functions |A(f)| across the arrays,

for both routes of the robot. It can be seen that the second array configuration results

in a different set of distances. We identify the peaks as those points with a minimum

prominence value of 10% of the maximum peak (a point is a peak if it is higher than

its neighbors by 10% of the max peak value). Then, using our proposed framework of

Sec. 3.2.1, we obtain a unique final solution as {0, 90.43, 117.57}, resulting in a Mean

Absolute Error (MAE) of 1.43◦.

Additionally, we performed several other experiments in the open and closed areas of

Fig. 3.5 (a-c) . Table 3.1 (top) summarizes the results of 4 different experiments carried

out in these locations. We can see that our proposed framework can estimate the AoAs
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True AoAs Estimated AoAs
{66.42, 120} {67.74, 120.22}

(Top) Two arrays
{66.42, 120} {66.14, 120.29}

{66.42, 120, 143.13} {65.99, 117.4, 140.72}
{90, 120} {90.43, 117.57}

MAE 1.3◦

{66.42, 120} {68.18, 121.27}


(Bottom)
Dominant reference
source & one array

{66.42, 120} {64.88, 117.7}
{66.42, 120, 143.13} {64.59, 117.3, 140.9}
{66.42, 120, 143.13} {68.15, 121.1, 146.2}
{66.42, 120, 143.13} {61.52, 117.7, 146.2}

MAE 2.79◦

Table 3.1: Summary of the experimental results for AoA estimation of active sources
– (top) solved with proposed approach of Sec. 3.2.1 with two robotic arrays, and
(bottom) solved with the proposed approach of Sec. 3.2.2, with a dominant reference
source and one robotic array.

of multiple sources accurately, with an overall MAE of 1.3◦.

AoA Estimation of Active Sources with a Dominant Reference Source

In the previous results, no assumptions were made regarding the power level of the

active sources as compared to the reference source. Instead, two robotic routes were

used to uniquely find the AoAs. As we proposed in Sec. 3.2.2, if the reference source

is non-negligibly stronger than the unknown active sources, we can then solve for the

unknown sources with only one robotic route and with a simpler approach. We next

experimentally validate this case. A dominant reference source with a high power is

located at an angle φref = 0◦. For the dominant reference source, we use an antenna with

a 12 dB higher gain than the antennas of the other unknown sources. Table 3.1 (bottom)

then summarizes our results using our proposed approach of Sec. 3.2.2, for experiments

in the three areas shown in Fig. 3.5. We can see that our proposed framework accurately

estimates the AoA in this case as well, with an MAE of 2.79◦.
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AoA Estimation of Passive Objects

We next present our experimental results for the AoA estimation of passive objects.

AoA estimation then refers to estimating the direction of these objects with respect to the

antenna array. Consider the scenario shown in Fig. 3.7 (c), for instance. Our reference

source is located at an angle of φref = 0◦ and two humans are standing at angles φ1 = 90◦

and φ2 = 110◦. Since the reference source will be dominant in the passive case, we can

use the framework of Sec. 3.2.2, and directly estimate the AoA, using one robotic array,

and from the spectrum shown in Fig. 3.8. As can be seen, the peaks in the spectrum are

located at angles 89.14◦ and 111.4◦, which are very close to the true angles, resulting in

an MAE of 1.13◦. Table 3.2 summarizes the results of 6 different experiments for passive

objects, carried out in the four locations shown in Fig. 3.7. This also includes one

scenario in the most general setting (the last row of the table), with objects located on

all sides of the array and transmitter. In order to estimate the AoAs in this scenario, we

utilized the CSI magnitude measurements on the 30 subcarriers logged by the Intel 5300

WiFi card. Additionally, in order to resolve the array halfspace ambiguity, we utilized

the CSI magnitude measurements on a second antenna that we placed λ
4

away from the

first antenna, in a direction perpendicular to the robot route (both antennas mounted

on one robot). As can be seen from Table 3.2, we are thus able to resolve the ambiguity

and estimate the AoAs from all the directions in the 2D area. The overall MAE is 3.2◦

over all the passive experiments, indicating a very good accuracy.

Performance with Additional Phase Information

We next compare the performance of our magnitude-only approach with the case

where phase can be additionally measured in the receiver. More specifically, we per-

formed a set of 5 active-source experiments in the dominant reference source setting,
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(a)

(b) (c)

Passive objects

Robot
Ref. source

Passive objects

Robot Ref. source Ref. sourceRobot

Humans

Passive objects

Robot

Ref. source

(d)

Figure 3.7: Experimental setup for the AoA estimation (estimation of the direction)
of passive sources in various areas on our campus: (a)–(b) passive objects, (c) humans,
and (d) general case with objects on both sides of the transmitter/reference source as
well as array halfspace.
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Figure 3.8: A sample normalized spectrum of the auto-correlation of magnitude mea-
surements for the passive case of two humans in the area of Fig. 3.7 (c), using only
one robotic array. Dashed lines represent the true AoAs.

True AoAs Estimated AoAs
{90, 120} {92.38, 124.2}

2 objects{90, 110} {89.14, 111.4}
{45, 90} {42.18, 80.14}
{45, 69, 90} {46.68, 64.88, 86.66}

}
3 objects

{90, 110} {89.14, 111.4}
}

2 humans
{29, 117, -150} {31.8, 119.34, -156.9}

}
3 objects on all sides

MAE 3.2◦

Table 3.2: Summary of the AoA experimental results (angular localization) for the
case of passive objects/humans, using one robotic array.
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using USRP N210 Software Defined Radio (SDR) platforms [68], thus measuring both

the received signal magnitude and phase. We then estimated the AoAs of signals ar-

riving from the active sources by using the additional phase information and traditional

beamforming. The resulting MAE of AoA estimation when additional phase information

was available was 0.93◦. On the other hand, the corresponding MAE, using our proposed

AoA estimation framework and with only magnitude measurements, was 1.76◦. This

shows that our proposed approach that uses only signal magnitude has a performance

comparable to the case where additional phase information is available.

Overall, our proposed framework can accurately estimate the AoA of fixed active

sources as well as passive objects, using only magnitude of the received signal measure-

ments. Our approach is also computationally efficient. For instance, it took an average

of 0.45 seconds (averaged over all the presented results) to find the final solution in

MATLAB.

3.3 Robotic Channel Prediction

In this section, we consider the problem of channel prediction, where we are inter-

ested in predicting the channel quality at unvisited locations by using a few prior wireless

channel measurements collected in the area. We propose a new framework where we me-

thodically design robotic routes such that we optimally collect the required prior channel

measurements. We discuss the fundamental parameters that constitute the makeup of the

rays in an area and propose a framework to predict these parameters, and subsequently

the wireless channel at any unvisited location.

More specifically, we propose to use our magnitude-based AoA estimation framework,

to first estimate the fundamental parameters of the rays at optimally designed routes.

We then show how we can use those prior measurements to estimate the parameters
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of the rays (and the resulting channel quality) at unvisited locations in the space. It

is noteworthy that our approach does not depend on localizing the objects in the area.

Such an approach is particularly attractive for any general prediction scenario, since the

prediction focuses on the rays itself and not on the objects in the area. We next discuss

the fundamental parameters constituting the makeup of signal rays propagating in an

area.

3.3.1 Estimating the Fundamental Parameters of the Rays

In Sec. 3.2.1, we showed how to use the signal magnitude at an antenna array in

order to estimate the angles of arrival of various paths reaching the array. Here, we

consider the setup described in Sec. 3.2.2, where we have our own dominant transmitter

that illuminates the area, and the rays reflect off of various objects before reaching the

receiver antenna array. Consider Eq. 3.5 that characterizes the signal power across the

antenna array for this case. In this section, we show how to explicitly estimate the key

parameters that constitute the makeup of the rays, from power measurements across the

array. In the next section, we then show how to utilize this estimation to predict the ray

makeup at unvisited locations using optimally defined routes.

Following are the key parameters that constitute the makeup of the rays:

• ψref − ψn: We estimate this parameter and the corresponding path AoA φn based on

the location of the peaks in the spectrum, as discussed in Sec. 3.2.2. Note that while

we can estimate ψn at the array, it is not straightforward to predict it at an unvisited

location over the space, since we do not have the corresponding object location and

reflection coefficient information. In the next section, we shall see how our proposed

path planning problem addresses this challenge.

• αref: This parameter depends solely on the transmitter and the location of the receiver
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antenna. More specifically, αref = GtGr
4πdtx→array

, where Gt and Gr are the gains of the Tx

and Rx respectively, and da→b denotes the distance from a to b. In order to estimate

the value of αref at any unvisited location, we need to estimate the value of the product

GtGr, since dtx→array is known. Note that the term α2
ref is the dominant term in the

mean of the signal magnitude squared expression discussed in Eq. 3.5. Thus, we

can estimate GtGr by finding the gain value that minimizes the mean squared error

between α2
ref = (GtGr)2

(4πdtx→array)2
and the spatial mean of all the prior signal magnitude

squared measurements collected in the area (in the dB domain). In this manner, we

then have an estimate of αref at any unvisited location in the workspace.

• αn: We can estimate this parameter from the amplitude of the peaks in the spectrum

shown in Eq. 3.6. More specifically, the absolute amplitude of the peaks in Eq. 3.6

corresponds to the quantity αrefαn. Using our proposed method from the previous item,

we can estimate αref directly from the channel mean. Hence, we can easily estimate

αn from the amplitude we obtain in the spectrum.

Note that, αn = RnGtGr
(4πdtx→obj-n)(4πdobj-n→array)

, where Rn is the reflection coefficient of the nth

object and da→b denotes the distance from a to b. Thus, while we can estimate it from

the spectrum at the array, predicting it at unvisited locations is not straightforward

since we do not have the exact object locations and the reflection coefficient of the

object in different angles (i.e., Rn). In the next section, we show how our proposed

robot paths enable this prediction.

• ej
2π
λ

(lref−ln): We propose to estimate this parameter similar to the previous one, from the

corresponding peak in the spectrum. More specifically, as shown in Eq. 3.6, we estimate

this complex phase as the phase of the complex amplitude of the corresponding peak

in the spectrum. Similar to the previous item, predicting this parameter at unvisited

locations requires a new strategy, as we shall see in the next section.
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Figure 3.9: Our proposed framework for predicting the channel and its variations at
unvisited locations. The robot moves on the boundary of the region of interest to
collect measurements and estimate the parameters of the rays in the area.

In summary, predicting the aforementioned parameters at an unvisited location of in-

terest is sufficient to reconstruct and predict the channel strength |c(d)|2 at that location,

as can be seen from Eq. 3.5. However, as explained, it is not straightforward to predict

these due to lack of object location and full reflectivity information. Thus, we propose a

new framework that allows us to address this challenging problem and extend the rays

from prior measurement points, to the unvisited locations where we want to predict these

parameters. We next describe our proposed framework to predict the parameters and

subsequently the channel quality at the desired locations.

3.3.2 Proposed Enclosure-Based Prediction Framework

Consider the scenario shown in Fig. 3.9. We are interested in predicting the ray

parameters and the corresponding signal strength in the unvisited shaded region. We
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propose an enclosure-based robotic route design such that the robot moves along the

boundary of the prediction region and collects signal magnitude measurements. Given

these measurements along the boundary, we first form antenna arrays along the route

by selecting a spatial moving window of measurements, and subsequently estimating the

aforementioned signal parameters at that array (note that we would need all the measure-

ments to estimate the product GtGr). Hence, at any array formed on the boundary, we

can thus estimate the fundamental parameters of all the rays that intersect the boundary

at that point. We henceforth refer to the routes on the boundary as measurement routes.

Next, we discuss how this design addresses all our previous challenging concerns.

Consider a sample prediction point p in the prediction region, as shown in Fig. 3.9.

Using our proposed method, we first estimate α2
p, ref at the location of interest (we add

p to the subscript to indicate the corresponding ray parameters at p). Next, we need

to predict the aforementioned reflected ray parameters of all the rays arriving at this

point. The key here is that we consider this prediction problem from the perspective

of the point where we want to predict the parameters. More specifically, we draw rays

passing through the point of interest, at angles ranging from 0 to 2π, in order to scan

the angular space and check for valid rays that arrive at this point. As a result, every

such ray then intersects the boundary measurement routes at two arrays (see Fig. 3.9).

Consider one such sample candidate ray that passes through the prediction point, at

angle φcand, as shown in the figure. This ray intersects the boundary at two points. We

then form antenna arrays at the two intersections, as shown in the figure. In order to

estimate the ray parameters at the point p, we first estimate the ray parameters at the

two arrays, i.e., we first estimate the angles φn, amplitudes αn, and complex phase of the

rays arriving at these two arrays. Next, we check if there exists any ray at the two arrays

that corresponds to the angle φcand of the ray that we drew through the prediction point.

If this ray indeed originated due to a reflection from an object, we would then observe
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the same ray at both the arrays at the corresponding angles. In such a case, we then

estimate the corresponding α of this ray at both the arrays, using our proposed approach

from the previous section.

Remark 5 Recall that at any antenna array, there exists an ambiguity regarding the

halfspace from which the rays are arriving at the array. We can resolve this ambiguity

by using two antennas spaced λ
4

apart and orthogonal to the robot route, as discussed in

Sec. 3.2.2. Alternatively, the robot can collect measurements on a single antenna as it

moves along the boundary, and we implicitly resolve the halfspace ambiguity by checking

that a particular ray at angle φcand exists at both the intersection arrays on the boundary.

By geometrically exploring the problem, one can easily see that checking both intersecting

arrays would not resolve the ambiguity only in very low probable cases.

Remark 6 Note that we resolve the Tx halfspace ambiguity (i.e., ambiguity regarding

which side of the Tx the ray is arriving from) by using signal magnitude measurements

along the frequency dimension, as discussed in our proposed framework in Sec. 3.2.2.

We next show how to estimate the value of the parameter αp,cand at the prediction

point p. Recall that αp,cand = GtGr

(
Rcand

4πdtx→obj-cand

)
×
(

1
4πdobj-cand→p

)
, where “obj-cand”

refers to the location of the last reflecting object that results in the considered candidate

ray. In the expression for αp,cand, note that we have already estimated the quantity GtGr

in order to predict αref at any unvisited location. Then, αp,cand has two main unknowns:(
Rcand

4πdtx→obj-cand

)
and dobj-cand→p. The first term is constant along the candidate ray, since it

only depends on the object reflection coefficient along that ray, and the distance between

the object and the Tx. The second unknown is the distance between the object and the

prediction point p. Suppose that the two α values that we estimate on the boundary

arrays for this ray are α1,cand and α2,cand at points 1 and 2 respectively, where the ray

intersects point 1 first. We can then solve for the two aforementioned unknowns at points
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1 and 2 using the estimated α1,cand and α2,cand. We can then easily derive the value of

αp,cand at the prediction point p as follows:

αp,cand =
α1,candα2,candd1→2

α1,candd1→p + α2,candd2→p
, (3.13)

where we have already estimated the quantity (GtGr) previously, d1→p denotes the dis-

tance between the first intersection point on the boundary and the prediction point p,

and d2→p similarly denotes the distance between the second point on the boundary and

the prediction point p.

Next, we can similarly predict the phase term at the prediction point. We first

estimate the complex phase of this ray at the first array that it intersects on the boundary.

Suppose we denote this complex phase by ejµ1,cand . Recall that µ1,cand = 2π
λ

(dTx→1 −

l1,cand), where l1,cand corresponds to the total length of the reflected ray from the Tx to

point 1. We can then extend this phase to the prediction point by adjusting for the

extra distance traveled by the ray from point 1 on the boundary to the prediction point,

and compensating for the difference in path lengths to the Tx. More specifically, we

calculate the new phase term to be µp,cand = µ1,cand − 2π
λ
d1→p − 2π

λ
dTx→1 + 2π

λ
dTx→p. In

this manner, we have predicted all the ray parameters for this valid candidate ray. By

drawing candidate rays through p, at different angles, and repeating this procedure, we

can then get the full makeup of the rays arriving at the prediction point p.

We next utilize this prediction framework to predict the value of the channel at this

point by combining the contributions of all the rays, as follows:

|c(p)|2 = α2
p,ref +

∑
all cand. rays

|ccand(p)|2, (3.14)

where |c(p)|2 is the predicted total channel power at the prediction point p, and
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|ccand(p)|2 = α2
p,cand + αp, ref αp,cand {ejµp,cand + e−jµp,cand}, denoting the contribution of a

candidate ray to the total power. Note that ccand(p) = 0 for invalid candidate rays. We

can thus estimate the channel at any point within the prediction region.

It is noteworthy that our proposed approach to channel prediction does not rely on

the precise localization of the objects in the area. Furthermore, it also does not rely

on any assumption regarding the reflectivity pattern/coefficient and radar cross sections

of the objects in the area. Our framework can be applied to any generic scenario since

it only depends on the rays that pass through the area, irrespective of how those rays

were generated from the objects, i.e., these rays can be formed by reflection, secondary

reflections, or other propagation phenomena such as diffraction and transmission through

objects. Our proposed framework handles all these scenarios, since we only extend the

rays that are already passing through the workspace.

Note that in our framework, the region where the robot intends to predict the channel

needs to be empty, without any objects within the prediction region. Since most robots

have on-board vision systems for obstacle avoidance, this assumption is easily satisfied

by having the robot explore the desired area so that it does not contain any objects.

Alternatively, the robot can also draw boundary regions in order to navigate around any

potential objects in the area and exclude them from the prediction region. We note that

the prediction area does not have to be convex. For a non-convex prediction region, a ray

can intersect the boundary at more than 2 points. In such cases, we only consider the

two points that are closest to the prediction point on either side of it, along the candidate

ray. In this manner, there is a guarantee that there won’t be any objects between these

two points, for an empty prediction area.

Remark 7 Note that the ground reflection can reach the receiver, depending on the re-

ceiver antenna height. In such cases, one can model the contributions using established
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models, such as the two-ray model [69], since the enclosure approach cannot properly

capture the ground input.

3.3.3 Experimental Results for Channel Prediction

So far, we have discussed our proposed framework for estimating the ray parameters

and subsequently predicting the channel variations at any point in the prediction region.

In this section, we first describe our experimental setup and the routes along which we

collect our measurements. We then show the performance of our proposed approach

through experiments conducted on our campus.

Our experimental setup consists of a Pioneer 3-AT ground robot, that moves around

the workspace to collect wireless signal measurements. We use two USRP N210 software

defined radios as transceivers to transmit and receive wireless signals. We operate the

radios at 2.4 GHz and mount one of them on the ground robot, thus enabling the robot

to collect wireless signal measurements as it moves. Fig 3.10 (left) shows the experiment

area where we collect the measurements. As can be seen, all the objects in this area are

on one side of the robot. We then consider two cases for the measurement routes, as

shown in Fig. 3.10 (middle) and Fig. 3.10 (right), in order to estimate the parameters

of the rays. Each route is 8m long. We collect measurements at locations 1 cm apart on

the measurement routes. We then form 1 m long arrays on each route for ray parameter

estimation. Note that both route options of Fig. 3.10 (middle) and (right) work similar

to the enclosure case since all objects are on one side.

We next show our experimental results. Consider the scenario in Fig. 3.10 (mid-

dle). The robot first collects data on the measurement routes, and we use our proposed

framework to estimate the parameters of the rays that pass through that area. We then

predict the channel variations along a route in the prediction region shown in the figure.
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Figure 3.10: (left) Experiment area with the Pioneer 3-AT robot for measuring the
signal magnitude and subsequently predicting it at unvisited locations. (middle) An
illustration of the setup with the measurement routes around the prediction region
where the robot aims to predict the channel and its variations. (right) An illustration
of the setup with the measurement routes located on one side of the prediction region.

0.5 1 1.5 2 2.5 3 3.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

S
ig

n
al

 v
ar

ia
ti

o
n

s 
in

 d
B

x coordinate (m)

Signal variations along a sample prediction route

Real variations
Predicted variations

Figure 3.11: Predicted signal variations along a sample route in the prediction region of
Fig. 3.10 (middle). As can be seen, the predicted variations match the true variations
closely, thereby accurately predicted the fine multipath variations in the area.
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Figure 3.12: Predicted signal variations along a sample route in the prediction region
of Fig. 3.10 (right). As can be seen, the predicted variations match the true variations
closely, thereby accurately predicted the fine multipath variations in the area.

Note that, we are specifically showing the variations in the channel around the mean, in

order to focus on the prediction of multipath and reflections in the area on the channel,

which is typically challenging. In order to compare the prediction to the ground truth,

the robot collects ground truth channel measurements on the prediction route. Fig. 3.11

shows the comparison between the ground truth channel variations and the predicted

variations using our proposed framework. As can be seen, the prediction matches the

ground-truth well, and we are successfully able to predict the small-scale variations that

arise due to multipath.

We next consider the scenario in Fig. 3.10 (right), with both the measurement routes

on one side of the prediction region. Fig. 3.12 shows the comparison between the ground

truth channel variations and the predicted variations using our proposed framework, on

one route in the prediction region. As can be seen, the prediction matches the ground-

truth in this case as well.

In summary, in this section, we have proposed a new channel prediction framework
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that predicts the fundamental parameters of the rays at unvisited locations in the area,

and subsequently predicts the channel and all its variations at unvisited locations with

good accuracy.
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Chapter 4

Multi-Person Passive Tracking

In the previous chapter, we showed how we can estimate the angles-of-arrival (AoA)

of various paths arriving at a receiver antenna array using only the signal magnitude,

without the need for signal phase measurements. This then opens up new possibilities

for other AoA-based problems, including localization and tracking. Using the magnitude

of the signal in order to passively track a moving person is a problem of considerable

interest. In this chapter, we describe our proposed framework for achieving passive

tracking of multiple people walking simultaneously in an area, using only the magnitude

of WiFi signals measured on devices located on one side of the area.

The rest of this chapter is organized as follows. In Sec. 4.1, we describe our proposed

magnitude-based two-dimensional framework for the estimation of AoA parameters. In

Sec. 4.2, we show how to track multiple moving targets using a particle filter with a

JPDAF. We experimentally validate our proposed framework for tracking multiple targets

in Sec. 4.3.
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Rx laptops

Tracking area

Tx antenna

Figure 4.1: An illustration of our passive multi-person tracking setup. N people are
walking in an area. A WiFi link consisting of one Tx antenna and one small Rx array
(for instance, from a couple of laptops) is located on one side of this area. We are then
interested in estimating the tracks of the N people walking in the area using only the
magnitude of the received WiFi signal measurements.

4.1 Proposed 2D Framework for Multi-Person Track-

ing

Consider N people walking in an area, as shown in Fig. 4.1. A WiFi transmitter (Tx)

and a small WiFi receiver (Rx) array (for instance, from a couple of laptops) are located

on one side of the area. The WiFi signals in the area are scattered and reflected off of the

people and the objects present in the area. When these signals reach the receiver, they

implicitly contain information about the people and objects that they interact with, on

their path from the transmitter to the receiver. More specifically, as we shall see, these

signals can be used to infer the location and the track of the people walking in the area.

In this section, we show how to model this interaction of WiFi signals with the people

and the environment, in order to obtain valuable information on their whereabouts. We

next describe the information that can be extracted from the magnitude of WiFi signals

in such a scenario. As mentioned earlier, the advantage of using such a magnitude-

based approach is that any number of antennas from different receivers can be added
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to the array to extend its length if the scenario warrants it, without any need for phase

synchronization or phase correction.

4.1.1 Review of 1D Signal Analysis

In this section, we provide a brief primer on the various target parameters that can be

extracted from a one-dimensional signal measured using the framework shown in Fig. 4.1.

More specifically, we first discuss the AoA information that can be extracted using only

the magnitude of the signal measured at a receiver antenna array. Then, we discuss the

virtual array parameters created by a person’s motion, which can be extracted from the

magnitude measurements at a single receiver antenna over time. We henceforth refer to

these two dimensions of measurements as the Rx array angle-of-arrival parameters and

Motion-induced array parameters.

Rx Array Angle-of-Arrival Parameters

Consider the receiver array shown in Fig. 4.2. The baseband received signal (or

equivalently, the baseband channel gain) at the Rx array at one time instant due to the

WiFi signal transmissions in the area can be written as a function of the distance d along

the array as follows [43]:

c(d) = α0e
jµ0e−j

2π
λ
d cosφ0 +

N∑
n=1

αne
jµne−j

2π
λ
d cosφn + η(d), (4.1)

where αn is the amplitude (or equivalently the gain) of the received signal path from the

nth target at the first antenna, µn is the phase at the first antenna, φn is the angle-of-

arrival corresponding to the nth path, α0 and φ0 are the amplitude and angle-of-arrival

corresponding to the direct signal path from the transmitter to the receiver array, N is

the number of targets in the area, λ is the signal wavelength, and η(d) is the receiver
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noise. The Fourier transform of |c(d)|2 for the case of passive targets (α0 >> αn) can be

derived as,

C(fd) = Aδ(fd) +
N∑
n=1

α0αne
j(µ0−µn)δ

(
fd −

ψAn
λ

)

+
N∑
n=1

α0αne
−j(µ0−µn)δ

(
fd +

ψAn
λ

)
+ ζd(fd),

(4.2)

where fd is the spatial frequency, δ(.) is the Dirac delta function, A =
∑N

n=0 α
2
n, ψAn =

cosφ0− cosφn, and ζd(fd) is the frequency domain modeling error term. As can be seen,

there are peaks in the spectrum C(fd) at frequencies (normalized with respect to 1/λ)

corresponding to ±ψAn . Therefore, given a path with angle-of-arrival φn, we see two peaks

in the spectrum corresponding to the two frequencies ±(cosφ0 − cosφn). We then have

an ambiguity in the AoA of that path, due to the ambiguity in the sign of ψAn .

In the context of tracking multiple targets, the estimation of the AoAs of the targets

from Eq. 4.2 localizes the targets to a small extent. However, the previously-mentioned

ambiguity in the sign of ψAn hinders our ability to accurately estimate these angles for

each target. Furthermore, the resolution and the number of angles that can be estimated

is limited by the length of the receiver antenna array, which we assume to be small. This

is a crucial aspect that we address in this chapter, since there could be a relatively large

number of signal paths arriving at the receiver due to reflections off of multiple targets

as well as static objects in the area.

Motion-Induced Array Parameters

Next consider the scenario of measuring the time series of the received signal at a

single antenna of the array shown in Fig. 4.2. As the targets move in the area, they
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Figure 4.2: Signal model for the multi-target tracking problem. One temporal snap-
shot of the measurements at the small receiver array can estimate the array-based
angles-of-arrival of the targets, and measurements over time at one antenna of the
array can estimate the motion-induced array parameters of a moving target, using
only the magnitude of the received signals.

create equivalent virtual antenna arrays when the signal receptions at the antenna are

considered over time. The temporal received signal in such a case can be written as,

c(t) = α0e
jµ0 +

N∑
n=1

αne
jµne−j

2π
λ
ψMn t + η(t), (4.3)

where αn is the amplitude of the path and µn is the phase of the path arriving from

the nth moving target at time t = 0, ψMn = vn(cosφRn + cosφTn ) is the motion-induced

array parameter that arises from the virtual antenna array created by the motion of

the nth target, φRn and φTn are angles with respect to the direction of motion as shown in

Fig. 4.2, vn is the speed of the nth target, and η(t) is the receiver noise. Consequently, the

magnitude of the signal can be used to estimate the motion-induced array parameter ψMn ,

which contains information about the location of the corresponding target. The spectrum
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of |c(t)|2 generated with respect to the variable t can then be written as follows:

C(ft) = Aδ(ft) +
N∑
n=1

α0αne
j(µ0−µn)δ(ft −

ψMn
λ

) +
N∑
n=1

α0αne
−j(µ0−µn)δ(ft +

ψMn
λ

) + ζt(ft),

(4.4)

where ft is the frequency variable, and ζt(ft) is the modeling error term in the spectrum.

In the spectrum in Eq. 4.4, we see peaks at locations ±ψMn , thereby exhibiting ambiguity

regarding the sign of ψMn for the nth target. Furthermore, the value ψMn itself does

not localize the nth target, since different locations, headings and speeds of the target

can result in the same value of ψMn . However, it is a function of the targets’ motion

parameters, which is still informative and can be utilized to track the moving targets

over time [70].

In summary, both the Rx array angle-of-arrival parameters (ψA) and motion-induced

array parameters (ψM) measure different quantities related to the targets’ locations and

headings, but are ambiguous in the sign of the respective measurements as well as the

locations they correspond to, in the area of interest. We next propose a framework

to jointly estimate both quantities, and show that this joint estimation additionally

eliminates the ambiguity in the signs of the individual measurements. Sec. 4.2 then

shows how to resolve the residual location ambiguity and fully track the targets.

4.1.2 Multi-Dimensional Signal Analysis for Target Tracking

So far, we have seen that the Rx array angle-of-arrival (ψA) and motion-induced array

parameters (ψM) contain different kinds of information about the targets in the area. In

this section, we propose to estimate these parameters jointly, by using the magnitude-

based framework to generate a joint spectrum. Consider the multi-dimensional received

signal c(t, d), which is a function of time t and distance d along the array, written as
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follows:

c(t, d) = α0e
jµ0e−j

2π
λ
d cosφ0 +

N∑
n=1

αne
jµne−j

2π
λ
ψMn te−j

2π
λ
d cosφn + η(t, d), (4.5)

where η(t, d) is the receiver noise. The two parameters ψA and ψM then appear jointly

in the two-dimensional spectrum generated from |c(t, d)|2. More specifically, the 2D

spectrum of |c(t, d)|2 can be written as

C(ft, fd) =Aδ(ft) +
N∑
n=1

α0αne
j(µ0−µn)δ(ft −

ψMn
λ
, fd −

ψAn
λ

)

+
N∑
n=1

α0αne
−j(µ0−µn)δ(ft +

ψMn
λ
, fd +

ψAn
λ

) + ζt,d(ft, fd),

(4.6)

where δ(., .) is the 2D Dirac delta function, and ζt,d(ft, fd) represents the modeling error

term in the 2D spectrum. The locations of the peaks in this 2D spectrum then give the

corresponding pairs of ψA and ψM values for each of the moving targets. By using a joint

estimation framework, the chance of two targets resulting in the same peak considerably

decreases. For instance, two targets could have the same ψA values, but they could be

different in their ψM values, or vice versa. Such scenarios are now well separated in the

2D spectrum.

Note that in the joint spectrum in Eq. 4.6, we still obtain two peaks corresponding

to each target in the area. For instance, the nth target generates peaks in the spectrum

at (ψMn , ψ
A
n ) and (−ψMn ,−ψAn ). However, by choosing the location of the transmitter

appropriately, we can eliminate this ambiguity. To this end, we propose to place the

transmitter at one extreme of the angle-of-arrival space of the receiver array (φ0 = 0◦ or

φ0 = 180◦). Without loss of generality, suppose that we place the transmitter such that

φ0 = 0◦, as shown in Fig. 4.2. Then, ψAn = 1− cosφn, which is a quantity that lies in the
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interval [0, 2]. This implies that −ψAn lies in [−2, 0]. Since these two intervals are disjoint,

we can restrict the search space of ψA in the spectrum to the [0, 2] interval. Then, the nth

target generates only one peak in the limited spectrum at (ψMn , ψ
A
n ), thereby eliminating

the ambiguity in the sign of both the ψ parameters. We henceforth use this configuration

in all the discussions in this chapter. A similar analysis can be derived for the case when

the transmitter is located such that φ0 = 180◦. Thus, our proposed joint framework

eliminates the ambiguity in the peaks and provides a larger search space for multiple

targets in the spectrum. Fig. 4.3 shows an example of a 2D spectrum with 3 peaks

corresponding to 3 targets in the region −2 ≤ ψM ≤ 2, and 0 ≤ ψA ≤ 2. The locations

of the peaks in the (ψM , ψA) space are (1.2, 1.4), (1.2, 0.6), and (−1.2, 0.6). In the 1D

analysis for ψM , all the peaks would not be resolvable since they have the same absolute

value of 1.2. On the other hand, in the 1D analysis for the ψA dimension, two of the

peaks would not be resolvable due to having the same value of 0.6. However, as can be

seen in Fig. 4.3, all three peaks are resolvable in the joint 2D spectrum.

So far, we have shown how the peaks in the joint spectrum in Eq. 4.6 contain infor-

mation about the targets in the area. While this joint spectrum can easily be obtained

by using a 2D Fourier Transform on |c(t, d)|2, in practice, we would need a long antenna

array to get a reasonable resolution in the fd dimension in the 2D spectrum. Thus, we

next discuss how we can efficiently estimate the required 2D spectrum, using MUSIC,

even with a small Rx antenna array, and subsequently use that information to track

moving targets in the area.

Remark 8 Note that in equations 4.5 and 4.6, the static multipath does not affect the

locations of the peaks of the moving targets in the spectrum. All the signal paths corre-

sponding to the static multipath get lumped at ψM = 0 in the spectrum. Thus, by removing

the temporal mean of |c(t, d)|2, we can eliminate the effect of the static multipath.
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Figure 4.3: A sample 2D spectrum with 3 peaks corresponding to 3 targets in an
area. The locations of the peaks in the (ψM , ψA) space are (1.2, 1.4), (1.2, 0.6), and
(−1.2, 0.6). The peaks are resolvable only in the joint 2D spectrum, but not in the
individual dimensions.

4.1.3 Multi-Dimensional Parameter Estimation - 2D MUSIC

In this section, we describe our framework to estimate the 2D spectrum from the

raw spatio-temporal magnitude-squared measurements |c(t, d)|2. We can then estimate

the positions of the spectrum peaks, which constitute a set of (ψM , ψA) pairs that carry

information about the locations and tracks of the N moving targets. Then, in Sec. 4.2,

we show how this set of pairs can subsequently be used to track the N moving targets

in the area.

Spectral content estimation of time or space signals is a well-explored problem in the

literature, and several methods have been proposed to this end. Examples of these meth-

ods include, but are not limited to, Fourier Transform [20], MUltiple SIgnal Classification

(MUSIC) [21], and Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT) [22]. In this chapter, we propose to use 2D MUSIC spectral estimation for
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the problem of Sec. 4.1.2, due to its simplicity and high-resolution capability. Another

advantage of using MUSIC for the joint estimation of parameters is that the resolvability

of paths in each dimension depends on the length of the arrays in both dimensions [71].

For instance, while a longer time window better resolves paths in the dimension of time,

it can also help resolve paths in the dimension of space, i.e. paths that have the same ψM

but different ψA. This is particularly crucial in the context of multi-target tracking, since

we need to clearly distinguish the peaks in the spectrum, whereas for the case of single

target tracking, one would only be concerned with the location of the single-largest peak.

In our framework of multi-person tracking, we are then interested in the joint estimation

of parameters (ψM , ψA) from the multi-dimensional signal model shown in equations 4.5

and 4.6. We next show how we can utilize 2D MUSIC for a magnitude-based signal

model in order to estimate the spectrum and the corresponding peaks.

Consider the scenario where a receiver array contains MA antennas with inter-antenna

spacing of dant. The antennas of the array sample the received signal at a rate of 1/Ts

samples/sec for a duration Twin. The number of samples in space and time are thus MA

and MT = bTwin/Tsc, respectively. Denote by C the MA ×MT matrix of magnitude-

squared measurements in the spatio-temporal window:

C =



|c1,1|2 |c1,2|2 . . . |c1,MT
|2

|c2,1|2
. . .

...

...
. . .

...

|cMA,1|2 . . . . . . |cMA,MT
|2


, (4.7)

where ci,j = c ((i− 1)dant, (j − 1)Ts) is the measured 2D received signal described in

Eq. 4.5.

In order to estimate the 2D spectral content of the measurements in C, we define
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the steering vector s(ψM , ψA) as shown in Eq. 4.8. Then, it is straightforward to show

that the vectorized form of C can be written in terms of the steering vectors of the paths

arriving at the Rx array as follows:

~C = SA + ~η, (4.9)

where ~(.) denotes the vectorized form of a matrix, S is an MAMT ×N matrix whose nth

column is s(ψMn , ψ
A
n ), and A = [α1, α2, . . . , αN ]>. The MUSIC algorithm calculates the

eigen-decomposition of the correlation matrix Rc of the measurement vector ~C [21],

Rc = E{~C~CH} = SRASH +Rη, (4.10)

where RA = E{AAH}, Rη = E{η̃η̃H}, and E{.} is the expectation operator. It can

be shown that the eigenvectors of Rc are divided into bases of a signal subspace, whose

dimension is equal to the rank of RA, and bases of a noise subspace, which is orthogonal

to all the steering vectors corresponding to the N signal paths arriving at the receiver

array. Therefore, we can define a pseudospectrum P (ψM , ψA) as

P (ψM , ψA) =
1

sH(ψM , ψA)ENEH
N s(ψ

M , ψA)
, (4.11)

s
(
ψM , ψA

)
=
[ array measurements at t=0︷ ︸︸ ︷

1, e−
j2π
λ
ψAdant , . . . , e−

j2π
λ
ψA(MA−1)dant ,

array measurements at t=Ts︷ ︸︸ ︷
e−

j2π
λ
ψMTs , e−

j2π
λ

(ψMTs+ψAdant), . . . , e−
j2π
λ

(ψMTs+ψA(MA−1)dant), . . . ,

e−
j2π
λ
ψM (MT−1)Ts , e−

j2π
λ

(ψM (MT−1)Ts+ψAdant), . . . , e−
j2π
λ

(ψM (MT−1)Ts+ψA(MA−1)dant)︸ ︷︷ ︸
array measurements at t=(MT−1)Ts

]>
(4.8)
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where EN is a matrix whose columns constitute the bases for the noise subspace. P (ψM , ψA)

peaks at the locations of (ψMn , ψ
A
n ), n = 1, . . . , N , since the steering vectors corresponding

to these locations are orthogonal to the noise subspace EN . Hence, extracting the loca-

tions of the peaks of P (ψM , ψA) provides the required (ψMn , ψ
A
n ) pairs needed for tracking

the N targets.

A critical assumption in the MUSIC algorithm is that the matrix RA is full rank, i.e.,

all the different N signals are uncorrelated. Such an assumption is not valid in many

practical scenarios where scattering and multipath propagation are involved. Then, in

order to uncorrelate the signals, spatial smoothing is a technique commonly used in the

literature [72]. In spatial smoothing, the correlation matrix Rc is calculated by averaging

the correlation matrices of different subsets of the antenna array, given that each of the

subsets is a set of contiguous antennas. Then, to address the correlation of signals in

our 2D framework, we extend spatial smoothing to spatio-temporal smoothing MUSIC

for our scenario. We divide the matrix C into overlapping sub-matrices Csub of size

M sub
A ×M sub

T each. The correlation matrix Rc is then calculated as the average of the

correlation matrices Rsub
c of the sub-matrices Csub. Similar spatio-frequential smoothing

techniques have been proposed for the JADE MUSIC problem in the literature [73].

After computing the pseudospectrum P (ψM , ψA), we next find the locations of the

peaks of the pseudospectrum as

Ψ =
{
ψj = (ψMj , ψ

A
j ), j = 1, . . . , J

}
,

where J is the number of detected peaks in the pseudospectrum. As we shall see next,

this information is then used to estimate the tracks of the N targets.
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4.2 Multiple Target Tracking

In this section, we show how we can use the extracted information from the 2D

spectrum to track multiple targets. In order to extract the information about the tar-

gets’ locations and headings at time t, we apply the aforementioned 2D spatio-temporal

smoothing MUSIC algorithm on the data |c(t, d)|2 in a time window of duration Twin

starting at time t, to extract the set of peaks Ψt at time t. We first list the problems

that arise when relying directly on Ψt (with cardinality Jt) for tracking the N targets.

Then, we present our solutions to overcome these problems and reconstruct the targets’

tracks using Ψt.

Two main problems arise when using Ψt for tracking:

• Ambiguity: As previously mentioned, while the 2D joint parameter estimation re-

solves a few ambiguities that exist when estimating each parameter individually, the

pair of (ψM , ψA) does not give sufficient information about the location of the target

that resulted in a particular measurement. For instance, Fig. 4.4 shows an example of

two different valid solutions to a target’s location and heading for a measurement of

ψM = 0.187 and ψA = 0.707, thus showing the ambiguity prevalent in each (ψM , ψA)

measurement.

• Association: At each time instant, we extract a set of Jt measurements from the 2D

spectrum. However, we lack the knowledge of the subset of these Jt measurements that

are actual detections from the moving targets, and the complimentary subset of false

alarms. Furthermore, for the subset of actual detections, we would need an association

profile of which detections correspond to which targets. Such an issue does not arise

and is thus not addressed in a single target tracking framework. Thus, the methods

proposed for single-target tracking cannot be directly utilized for multi-target tracking

in this chapter.
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Rx array Tx antenna
(-3,0) (3,0)

(-1,2)

(1.5,4.5)

x

y

Figure 4.4: Example of ambiguity resulting from the measurement of
ψ = (0.187, 0.707). Two targets result in the same measurement: one at location
(-1,2) with heading of 0◦, the other at location (1.5,4.5) with heading of 173◦. Both
targets have a speed of 1 m/s.

In order to overcome these problems, we exploit the fact that the targets are moving and

model the measurements associated with the targets’ motion as a nonlinear dynamical

system [70]. We further utilize a Particle Filter (PF) with a Joint Probabilistic Data

Association Filter (JPDAF) to solve this dynamical system and obtain an estimate for

the track of each target, as we shall see next.

Consider the scenario where a Tx is located at (xT , yT ) and a Rx array is centered at

(xR, yR) such that its array axis is parallel to the x-axis, as shown in Fig. 4.2. We define

the state of the nth target at time t as a 4-dimensional vector xnt that carries information

about the target’s location, heading, and speed. More specifically, xnt =
[
xn(t), yn(t),

θn(t), vn(t)
]>

, where xn(t), yn(t) define the location of the nth target at time t, θn(t)

is its direction of motion, measured with respect to the x-axis, and vn(t) is its speed.

Furthermore, we define a measurement process ψn(t) as the pair (ψMn (t), ψAn (t)), which
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can be related to the target’s state as follows:

ψMn (t) = vn(t)

(
(xR − xn(t)) cos(θn(t)) + (yR − yn(t)) sin(θn(t))√

(xR − xn(t))2 + (yR − yn(t))2

)

+ vn(t)

(
(xT − xn(t)) cos(θn(t)) + (yT − yn(t)) sin(θn(t))√

(xT − xn(t))2 + (yT − yn(t))2

)

+ ηM(t),

(4.12)

and

ψAn (t) = 1−

(
xn(t)− xR√

(xR − xn(t))2 + (yR − yn(t))2

)
+ ηA(t), (4.13)

where ηM and ηA are measurement noise processes with variances σ2
ηM

and σ2
ηA

, respec-

tively. On the other hand, we assume a simple motion dynamics model for the targets,

in which a target maintains the same direction of motion with probability Pc, and occa-

sionally changes that direction with probability 1−Pc. More specifically, we assume the

state of the nth target evolves with time according to the model xnt+1 = gn(xnt ) as follows:

xn(t+ 1) = xn(t) + vn(t) cos(θn(t)) + ηxn(t+ 1),

yn(t+ 1) = yn(t) + vn(t) sin(θn(t)) + ηyn(t+ 1),

θn(t+ 1) = ηθn(t+ 1) +


θn(t) w.p. Pc

∼ U(0, 2π) w.p. 1− Pc
,

vn(t+ 1) = vn(t) + ηvn(t+ 1), (4.14)

where ηxn , ηyn , ηθn , and ηvn are all dynamics noise processes with variances σ2
ηxn
, σ2

ηyn
, σ2

ηθn
,

and σ2
ηvn

, respectively, and U(0, 2π) is the uniform distribution in the interval [0, 2π).

For the estimation of the state of the nth target xnt at time t, we propose to compute

the filtering Probability Density Function (PDF) p(xnt |Ψ1:t) of the nth target’s state at
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time t given all the measurements up to time t. Then, we use the mean of this PDF as

the estimate of the target’s state x̂nt = E {xnt |Ψ1:t}. To this end, we propose to use a

Particle Filter (PF) for the computation of the filtering PDF of the nth target [74]. The

underlying principle of PFs is that they approximate any probability distribution using

samples (or particles) drawn from that distribution. Such a representation is favorable in

many scenarios, especially when nonlinear random variable transformations are involved.

The steps of the PFs used in our problem are summarized in Algorithm 2. The PF

for the nth target starts by drawing a total of I samples/particles x
[i,n]
1 , i = 1, . . . , I

from an initial distribution χn1 (xn1 ), which can depend on any prior information we have

about the initial state of the nth target. Then, these particles are given importance

weights w
[i,n]
1 which represent how well they fit the current set of measurements Ψ1

(step 4 in Algorithm 2). However, the aforementioned association problem hinders the

completion of this step, since the PF lacks the knowledge of which of the measurements

in Ψ1 was generated by the nth target. To overcome this, we propose to utilize a Joint

Probabilistic Data Association Filter (JPDAF) to calculate the importance weights [75].

We will discuss the details of the JPDAF later in this section. After the importance

weights are calculated, a resampling step (step 9) is performed in order to neglect the

low-weight particles and retain particles that have a high probability of producing the

current measurement set. The resampled particles then evolve according to the motion

model in Eq. 4.14 and the whole process is repeated for consecutive time instants. More

details on PFs can be found in [74].

The JPDAF, on the other hand, deals with the problem of associating measurements

to targets. Consider the set of measurements Ψt = {ψj, j = 1, . . . , Jt} measured at

time t. Some of these measurements can be false alarms that are not associated with

any target, arising due to the modeling errors. We denote the probability of such false

alarms as PFA. Furthermore, some target measurements can be missing from the set Ψt,
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for instance, due to blockage by other targets. We denote the probability of a target

miss as 1 − PD, where PD is the detection probability. The underlying principle of the

JPDAF is then to calculate the probabilities of all possible association profiles given the

current set of measurements and particles [75]. An association profile ω matches each

target to one of the Jt measurements. In other words, an association profile ω is a set

of N pairs (k, l) where l = 1, 2, . . . , N , k ∈ {0, 1, . . . , Jt}, and a pair (k, l) represents

assigning the measurement ψk to the lth target.1 Afterwards, the probability of the nth

target generating the measurement ψj can be computed by summing the probabilities of

all the association profiles which assign the measurement ψj to the nth target. We denote

the set of all such association profiles by Ωjn, i.e., Ωjn = {ω; (j, n) ∈ ω}. The details of

the JPDAF calculation of the importance weights are shown in Algorithm 3.

Remark 9 Note that in the case of tracking one person, we still utilize the JPDAF

in the calculation of the particle weights in the PF. In such a case, the main function

of the JPDAF is to distinguish false alarm measurements from the actual measurement

corresponding to the target’s motion.

4.3 Experimental Results

In this section, we present the experimental results of our proposed magnitude-based

framework for multi-person tracking, using WiFi CSI magnitude measurements from one

side of the area. We first discuss our experimental setup and the practical considerations

that arise in these experiments. We then show the performance of our tracking framework

through extensive experiments (40 in total) carried out in six different environments, with

1Note that the pair (k = 0, l) represents the case of no measurement associated to the lth target,
which can happen with probability (1− PD), where PD is the detection probability.
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Algorithm 2 Particle Filter for Motion Tracking

Input: Total tracking time T , Number of particles I, Number of moving people N ,
Measurements Ψ1:T

Output: Estimate of the target states x̂n1:T , n = 1, 2, . . . , N

1: Initialize t = 1
2: for 1 ≤ n ≤ N do
3: Sample x

[i,n]
1 ∼ χn1 (xn1 ) for i = 1, 2, . . . , I

4: end for
5: Compute the importance weights w̃

[i,n]
1 using the JPDAF in Algorithm 3, and nor-

malize w
[i,n]
1 =

w̃
[i,n]
1∑I

i=1 w̃
[i,n]
1

6: Estimate the initial state of the nth target as x̂n1 = E{xn1 |Ψ1} =
∑I

i=1w
[i,n]
1 x

[i,n]
1

7: for 2 ≤ t ≤ T do
8: for 1 ≤ n ≤ N do
9: Sample x̃

[i,n]
t−1 , for i = 1, . . . , I, from the distribution defined by p(x̃nt−1 = x

[i,n]
t−1 ) =

w
[i,n]
t−1

10: Sample x
[i,n]
t ∼ gn(x̃

[i,n]
t−1 )

11: end for
12: Compute the importance weights w̃

[i,n]
t using the JPDAF in Algorithm 3, and

normalize w
[i,n]
t =

w̃
[i,n]
t∑I

i=1 w̃
[i,n]
t

13: Estimate the state of the nth target as x̂nt =
∑I

i=1w
[i,n]
t x

[i,n]
t

14: end for
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Algorithm 3 Joint Probabilistic Data Association Filter for Particle Weight Calculation

Input: All current particles x[i,n], current measurement set Ψ, PD, PFA
Output: The particles’ importance weights w̃[i,n]

1: Calculate the number of current measurements J = |Ψ|
2: Calculate γ

[i,n]
j = p(ψj|x[i,n]), which denotes the probability of the measurement ψj

being generated by the nth target having a state x[i,n], according to Eq. 4.12 and Eq.
4.13

3: Generate all possible association profiles ω, where ω = {(k, l); k ∈ {0, 1, . . . , J}, l =
{1, . . . , N}}, and (k, l) is a pair assigning the measurement ψk to the lth target

4: Calculate the probability of each association profile as

p(ω|Ψ) = P
J−|ω|
FA P

|ω|−|ωo|
D (1− PD)|ωo|

∏
(k,l)∈ω
k 6=0

1

I

I∑
i=1

p(ψk|x[i,l]) (4.15)

where ωo is a subset of ω with targets not being assigned to any of the measurements,
i.e., ωo = {(k, l); (k, l) ∈ ω, k = 0}

5: Calculate the probability that a measurement ψj is caused by the nth target βjn by
summing over all association profiles making such an assignment,

βjn =
∑
ω∈Ωjn

p(ω|Ψ) (4.16)

6: Calculate the importance weights

w̃[i,n] =
1∑J

j=0 βjn

(
β0n +

J∑
j=1

βjnp(ψj|x[i,n])

)
(4.17)
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various levels of clutter. Finally, we discuss the impact of several experimental parameters

on the results, and compare with the state-of-the-art tracking algorithms.

4.3.1 Experimental Setup

For the data collection process, we use laptops with Intel 5300 WiFi NICs for both

transmission and reception. For the Tx, a tripod-mounted antenna is connected to one

port of an Intel card that broadcasts WiFi packets on channel 36 in the 5 GHz band.

We then use the WiFi cards of three laptops as receivers, with each WiFi card providing

two antenna ports. In other words, we use WiFi NICs of three laptops and connect two

WiFi ports of each laptop to two antennas mounted on a tripod, as shown in Fig. 4.5.2

The 3 Rx WiFi NICs log the packets transmitted on the WiFi channel. We then process

the measured data offline using Csitool [66] to extract the CSI measurements and track

the moving subjects. As previously mentioned, since we rely only on the magnitude

of the CSI measurements, the Rx NICs do not need any phase synchronization. Thus,

our proposed framework is also flexible to facilitate further addition of antennas to the

array as needed, without any additional calibrations. We next discuss some practical

considerations that arise in our experiments.

• Spatio-temporal sampling rates: As shown in Sec. 4.1, the reflected signal from the

nth person results in a peak in the 2D spectrum at (ψMn , ψ
A
n ) =

(
vn(cosφRn + cosφTn ), 1− cosφn

)
.

Hence, the maximum frequency content for ft and fd are 2vmax

λ
and 2/λ respectively,

where vmax is the maximum possible human walking speed. Then, according to the

Nyquist sampling theorem, the sampling rates for the 2D received signal in time and

2Note that while each Intel 5300 NIC has 3 antenna ports available, we observed that the signal on
port 3, which is located between port 1 and 2 on the NIC, is sometimes corrupted due to crosstalk (as is
reported by other users [76]). Hence, we use only ports 1 and 2 on each WiFi Rx. In the future, if one
could obtain clean measurements on all the three ports, then one would only need 2 Rx laptops with
Intel 5300 NICs to achieve the results of this chapter.
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Figure 4.5: Receiver setup: WiFi cards of 3 laptops are used, resulting in 6 total
antennas that we space λ/2 apart on a tripod as shown.

space should be greater than 4vmax

λ
and 4/λ respectively.

In the temporal dimension, we set the sampling rate to 1000 packets/sec, which is

much higher than the required sampling rate of 139 packets/sec (assuming a vmax of

2 m/s). However, for the spatial dimension, fixing the antennas λ/4 meters (1.45 cm)

apart is difficult due to the relatively large physical dimensions of the antennas. Hence,

we place the antennas λ/2 apart, which leads to aliasing in the fd dimension of the

spectrum. In order to overcome such aliasing effect, we propose to place the Rx array

in a corner of the tracking area, so that the φns for all the targets are less than 90◦.

Hence, the maximum possible value of fd in this case is 1/λ, and such a λ/2-spaced

array configuration does not suffer from aliasing problems.

• Data clean-up process: Raw CSI measurements on commodity WiFi cards can suffer

from noise due to the internal state transitions in the Tx and Rx WiFi NICs [77]. To

reduce the noise in the raw CSI measurements, we utilize two denoising schemes.

1. Principal Component Analysis (PCA): The Intel 5300 NIC reports CSI measure-

ments on 30 different subcarriers. It has been shown in [77] that the changes in
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CSI due to human movements on different subcarriers are correlated. Hence, the

reflected signal can be separated from noise by performing PCA on the data from

the 30 subcarriers.

2. Wavelet denoising: Discrete Wavelet Transform (DWT)-based noise suppression

techniques have been shown to outperform traditional denoising schemes such as

band-pass filters [78]. Hence, we apply wavelet denoising on the PCA-denoised

signal in order to suppress residual noise.

• 2D MUSIC parameters: We choose the array parameters of the 2D MUSIC al-

gorithm described in Sec. 4.1 as follows: Twin = 0.5s, T sub
win = 0.25s, MA = 6, and

M sub
A = 5. Note that a small Twin implies that people can take any track in our

framework and are not limited to walk on straight lines. In order to detect peaks in

the pseudospectrum, we define a peak as a point in the pseudospectrum whose value

is greater than its neighbors, and greater than an empirically predefined threshold

pth = 0.6×Pmin, dB, where Pmin, dB is the minimum value in the normalized pseudospec-

trum in dB (with the maximum value being 0 dB in the normalized pseudospectrum).

• Particle filter parameters: In order to set the parameters of the PF, we collect a few

prior measurements (not in the same area of the experiment) and estimate the values for

the noise variances and probabilities of detection and false alarms. These parameters

are then used in all the different experiments in different areas. The parameters are

then set as follows: σηM = 0.1, σηA = 0.07, σηxn = σηyn = 1 cm, σηθn = 1◦, σηvn =

2.5× 10−3, Pc = 0.9, PD = 0.85 , PFA = 0.25 for outdoor areas, PFA = 0.35 for indoor

areas, and I = 5000. Note that the probability of false alarm is higher in indoor

environments due to the stronger multipath.
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(a) (b)

Rx Tx

Rx Tx

Figure 4.6: Tracking experimental setup in outdoor areas in (a) an open area and (b)
a closed parking lot. The boundaries of the workspace are marked with a solid black
line.
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Figure 4.7: Sample multi-person tracking results in the outdoor areas shown in Fig. 4.6
– (a) One person walking along a diamond-shaped route in the area of Fig. 4.6b, (b)
two persons walking back and forth on perpendicular straight lines in the area of Fig.
4.6a, and (c) three persons walking on different parts of an M-shaped route in the
area of Fig. 4.6b. The light background patches represent the actual tracks, while the
� symbols represent their starting points.
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4.3.2 Tracking Results

In this section, we show how our proposed framework can track multiple moving

people in an area, based on only the WiFi CSI magnitude measurements of 3 laptops

that are located on one side of the area. We carry out tracking experiments in six different

environments, with up to three people walking simultaneously in the area. We categorize

the areas into outdoor and indoor scenarios. Fig. 4.6 shows the outdoor areas, where

Fig. 4.6 (a) is an open area with minimal clutter, and Fig. 4.6 (b) is a parking lot which

has considerable multipath due to the walls and the low ceiling beams. The top row

of Fig. 4.8 then shows some of the indoor areas, which are more challenging than the

outdoor areas due to higher extent of clutter (e.g. furniture, walls) and the resulting

multipath. In all experiments, we ask the subjects to walk on predefined tracks defined

by floor markers in a 7 m × 7 m area, and time-stamp their motion at the markers in

order to obtain the ground-truth locations of the subjects. Furthermore, since we cannot

know the exact point of reflection on the person’s body at which the signal bounces

off at each time instant, we approximate a person as a cylindrical object of radius 25

cm. We then calculate the tracking error, at any time instant, as the minimum distance

between the estimated location and the surface of that cylinder. Such a method of error

calculation has previously been adopted in similar contexts in the literature [70, 39].

Outdoor Tracking: In this section, we show our tracking results for the outdoor

areas shown in Fig. 4.6. The first location, shown in Fig. 4.6 (a), is a relatively open area

with little to no clutter, resulting in minimal multipath. On the other hand, the second

location, shown in Fig. 4.6 (b), is a parking structure where the walls and ceiling beams

generate considerable multipath. In both cases, the Tx antenna and the 3 Rx laptops are

fixed to the corners on one side of the 7 m × 7 m area of interest, as shown in Fig. 4.6.

Overall, we ran 17 experiments in these 2 areas of Fig. 4.6, with 1, 2, and 3 people on
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several different days, walking in different paths. In all the experiments, we initialize

the PF with particles that are uniformly distributed in a 3 m × 3 m square around the

locations where the targets start their motion. Fig. 4.7 then shows a few sample results of

our tracking framework for these two areas. It can be seen that our proposed framework

estimates the track of the people with a high accuracy in all the cases. Overall, we

achieve a mean tracking error of 38 cm (median of 29 cm) when considering all the 17

experiments.

Indoor Tracking: In this section, we show our tracking results for the indoor areas

of conference rooms, a classroom, and a lounge area, shown in the top row of Fig. 4.8. In

all the locations, the walls, ceiling, and furniture constitute clutter which makes the effect

of multipath more significant. While we can remove the effect of the static multipath by

subtracting the temporal mean of the received signal as described in Remark 8, higher

order reflections involving both a moving target and a static object, although weaker,

still affect the received signal, and consequently the 2D spectrum. This results in a higher

number of false alarms as mentioned in Sec. 4.3.1.

Similar to the outdoor areas, we fix the Tx antenna and the 3 Rx laptops to the

corners on one side of the area of interest. We also initialize the PF with particles that

are uniformly distributed in a 3 m × 3 m square around the locations where the targets

start their path. Overall, we ran 23 experiments in 4 different areas (the three areas shown

in Fig. 4.8 and one additional conference room) with 1, 2, and 3 people on several different

days, walking in different paths. The bottom row of Fig. 4.8 then shows a few sample

tracking results for these locations. It can be seen that our proposed magnitude-based

framework achieves a good accuracy of tracking multiple people in indoor environments

as well, with an overall mean tracking error of 55 cm (median of 39 cm) across all the 23

different experiments. It should be noted that we do not utilize any information about

the clutter (e.g., the furniture) in the track estimation framework. If the information
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Figure 4.8: (Bottom) Sample multi-person tracking results in (top) corresponding in-
door areas with various degrees of clutter – (a) One person walking along a U-shaped
route in an area including tables, chairs, and futons, (b) two persons walking along
two V-shaped routes in the same area, (c) two persons walking along two check-
mark-shaped routes in a classroom, and (d) three persons walking on different lines in
an area containing multiple chairs, sofas, and light fixtures, where the targets 1 and
3 walk in a back-and-forth fashion along the marked route. The yellow lines in the
area pictures represent the tracking area boundary. The light background patches on
the figures represent the actual tracks, while the � symbols represent their starting
points.

about the locations of the furniture was known apriori, it can be used, for example, to

prohibit any particles in the PF from appearing on their locations, thereby improving

the track estimation accuracy.

4.3.3 Discussion

In this section, we investigate the impact of some of the experimental parameters on

the performance of our proposed tracking framework, and compare the performance of

our proposed framework with the state-of-the-art.

Effect of environment: As previously mentioned, indoor environments are more

challenging than outdoor ones because of the stronger multipath resulting from the clut-
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Paper
Num. of
targets

Magnitude
only

Number of
devices used

One side
of area

Tracking
error

Widar2.0 [79] 1 7 2 WiFi NICs X 75 cm
IndoTrack [39] 1 7 3 WiFi NICs 7 35 cm
DynMusic [40] 1 7 4 WiFi NICs 7 36–62 cm

[70] 1 X 4 WiFi NICs 7 31 cm
WiTrack2.0 [38] 4 7 1 FMCW radar X 10–17 cm

[37] 2 7 1 UWB radar X 0.6 cm*
[36] 4 X 32 ZigBee nodes 7 26–45 cm
[80] 3 X 24 ZigBee nodes 7 31–91 cm

SCPL [81] 4 X 22 CC1100 nodes† 7 108 cm
Our approach 3 X 4 WiFi NICs X 47 cm

* when compared to a colocated LiDAR system

† radio transcievers operating in the 909.1 MHz unlicensed band

Table 4.1: Comparison with the state-of-the-art in target tracking using RF signals.
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Figure 4.9: Tracking error analysis over 40 different experiments in 6 different areas
(five area pictures shown in this chapter and one additional indoor area not shown)
and various tracking routes. (a) CDF of tracking errors in outdoor vs indoor environ-
ments from tracking 1, 2, and 3 people walking on different tracks, on different days.
Performance is better in outdoor environments due to less multipath, as expected.
(b) CDF of tracking errors for different number of people. Comparable performance
is seen for all cases of 1, 2, or 3 people.

105



Multi-Person Passive Tracking Chapter 4

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

log(distance to Tx/distance to Rx)

0

0.5

1

1.5

2

2.5

3
T

ra
ck

in
g
 E

rr
o
r 

(m
)

1 2 3 4 5

Distance between targets (m)

0

0.5

1

1.5

2

T
ra

ck
in

g
 E

rr
o
r 

(m
)

(a) (b)

Figure 4.10: Tracking error analysis over 40 different experiments in 6 different areas
(five area pictures shown in this chapter and one additional indoor area not shown)
and various tracking routes. (a) Box plot of the distribution of point-wise tracking
error over all the experiments as a function of the logarithm of the ratio between the
distance of the target to the Tx and its distance to Rx. Targets closer to Rx tend to
have lower errors. (b) Box plot of the distribution of point-wise tracking error as a
function of the inter-target distance showing little to no effect.

ter. The noisier spectrum and higher false alarm probability affect the performance of

the tracking framework and increase the tracking error. To quantify this effect, Fig. 4.9

(a) shows the Cumulative Distribution Function (CDF) of the tracking error for both

indoor and outdoor environments. As can be seen, the performance in indoor environ-

ments is slightly worse compared to outdoor ones, as expected. More specifically, the

indoor environments have an overall mean tracking error of 55 cm, in comparison to 38

cm for outdoor areas.

Effect of the number of people: We also test the performance of our tracking

framework by varying the number of people being tracked. Fig. 4.9 (b) shows the CDF

curves of the tracking error for different number of people. It can be seen that the

performance is comparable in all the cases of tracking 1 to 3 people. While tracking

multiple people, there is a higher chance that a measurement corresponding to one of the

persons disappears momentarily, if that person is blocked by other people. However, the

106



Multi-Person Passive Tracking Chapter 4

JPDAF (with an appropriate PD setting) accounts for that missing detection and keeps

track of the blocked target, thereby preserving the accuracy of the framework even in the

presence of blocking effects.

Effect of the closeness to Tx or Rx: Fig. 4.10 (a) shows the box-plot distri-

bution of the point-wise tracking error of our framework over all the tracks in all the

40 experiments, as a function of the logarithm of the ratio between the distance of the

target to the Tx and its distance to the Rx. Negative values to the left side of the figure

correspond to targets that are closer to the Tx than the Rx, while positive values to the

right correspond to targets that are closer to the Rx. It can be seen that the error tends

to be lower when the target is closer to the Rx, since the reflections off of the target’s

body are more likely to reach the Rx array. On the other hand, targets farther away

from the Rx would be scattering in different directions and the reflections are less likely

to reach the Rx array. Hence, if the antenna dimensions of the Rx permit placing them

λ/4 apart, it is recommended to place the Rx array in the midpoint of the link side of

the tracking area (see Sec. 4.3.1).

Effect of the distance between targets: Fig. 4.10 (b) shows the box-plot dis-

tribution of the point-wise tracking error of our framework as a function the distance

between the targets in all the multi-target tracking experiments. It can be seen that

such a distance has little to no effect on the tracking performance of our framework.

This is primarily because a small distance between two targets does not imply that they

are indistinguishable in the measurement domain (ψM , ψA), since two close targets with

different moving directions have different ψMs.

Comparison to the state-of-the-art: Table 4.1 shows the tracking accuracy of

the state-of-the-art as well as our framework. It can be seen that our framework achieves

a decimeter-level tracking accuracy that is comparable to the state-of-the-art, for both

single and multiple target tracking, but without requiring any extra bandwidth or sev-
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eral transceivers that were previously required for multiple target tracking, or phase

measurements that were previously required for single target tracking.
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Conclusions

In this dissertation, we showed how we can use off-the-shelf devices and their correspond-

ing received signal magnitude measurements to achieve various RF sensing tasks. We

also showed the possibilities created at the intersection of RF sensing and robotics, and

how we can utilize the mobitiy of unmanned vehicles to sense various attributes of our

environment. More specifically, we first showed how we can achieve 3D through-wall

imaging of completely unknown areas using UAVs and WiFi RSSI measurements. In

the second part, we proposed and validated our new approach to the angle-of-arrival

estimation problem using only signal magnitude measurements at an antenna array. We

discussed the various ambiguities that arise in such a formulation and showed ways to

address them. We then extended the magnitude-based AoA framework to achieve chan-

nel prediction at unvisited locations by predicting the makeup of the corresponding rays.

Finally, we discussed our proposed approach to enable multi-target tracking using WiFi

magnitude measurements, without the need for the targets to carry any device.

We next summarize our results in each of these areas.
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5.1 3D Through-Wall Imaging

In Chapter 2, we have considered the problem of 3D through-wall imaging with UAVs,

using only WiFi RSSI measurements, and proposed a new framework for reconstructing

the 3D image of an unknown area. We have utilized an LOS-based measurement model

for the received signal power, and proposed an approach based on sparse signal pro-

cessing, loopy belief propagation, and Markov random field modeling for solving the 3D

imaging problem. Furthermore, we have shown an efficient aerial route design approach

for autonomous antenna positioning and wireless measurement collection with UAVs.

We then described our developed extensive experimental testbed for 3D imaging with

UAVs and WiFi RSSI. Finally, we showed our experimental results for high-quality 3D

through-wall imaging of two unknown areas, based on only a small number of WiFi RSSI

measurements (3.84% and 3.6%).

5.2 Magnitude-Based AoA Estimation and Channel

Prediction

In Chapter 3, we have considered the problem of estimating the angle of arrival (AoA)

of all signal paths arriving at a receiver array using only the received signal magnitude

measurements. We have proposed a computationally-efficient framework, based on the

auto-correlation of the magnitude measurements, to solve the AoA estimation problem.

We then discussed the ambiguities arising in a magnitude-only AoA estimation problem

and proposed a method to eliminate the ambiguity. We have experimentally validated

our AoA estimation framework in closed and open areas, and showed a mean absolute

error of 2.56◦ for angular localization of active and passive objects.

We then extended the magnitude-based AoA estimation framework to the problem
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of channel prediction. Here, we proposed a new robotic framework that estimates the

fundamental parameters of the rays in an area, in order to predict the makeup of the

rays and subsequently predict the channel quality and channel variations at unvisited

locations. We then experimentally validated our proposed approach through experiments

conducted using ground robots.

5.3 Multi-Person Passive Tracking

In Chapter 4, we have considered the problem of passively tracking multiple persons

using only WiFi magnitude measurements on a small number of WiFi receivers, located

on one side of the tracking area. We have proposed a framework based on the joint

estimation of multi-dimensional parameters of the received WiFi signal. More specifically,

our framework jointly estimates the angles-of-arrival from the targets to the receiver array,

as well as the parameters of the arrays induced by the targets’ motion. Furthermore, we

have utilized Particle Filters and Joint Probabilistic Data Association Filter (JPDAF) in

order to associate the estimated parameters to the targets in the area, and consequently

reconstruct the tracks of these targets. We have experimentally validated our framework

through extensive experiments (total of 40) in six different environments (indoor and

outdoor). Our experimental results show high tracking accuracy with a mean tracking

error of only 38 cm in outdoor areas/closed parking lots, and 55 cm in indoor areas.
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A.1 Magnitude Auto-correlation

Let cI(d) and cQ(d) be the real and imaginary parts of c(d). The auto-correlation

function of cI(d) can be written as

AI(ξ) = E{cI(d)cI(d+ ξ)} =
N∑
n=1

α2
n

2
cos

(
2π
ξ

λ
ψn

)
+

1

2
σ2
ηδ(ξ),

where ψn = cos(φn), σ2
η is the variance of noise, and δ(.) is the Dirac delta function. In

a similar fashion, the cross-correlation between cI(d) and cQ(d) can be written as

AI,Q(ξ) = E{cI(d)cQ(d+ ξ)} =
N∑
n=1

α2
n

2
sin

(
2π
ξ

λ
ψn

)
.
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Define κ2(ξ) = 1
P 2

(
A2
I(ξ) + A2

I,Q(ξ)
)
, where P is the total received power, then [43]

Acorr(ξ) =
πP

2

(
1 +

κ2(ξ)

4
+
κ4(ξ)

64
+ . . .

)
≈ πP

2

(
1 +

κ2(ξ)

4

)
=
π

2
P +

π

8P
(AI(ξ) + jAI,Q(ξ)) (AI(ξ)− jAI,Q(ξ))
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+
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• Chitra R. Karanam and Yasamin Mostofi. 2017. 3D through-wall imaging with

unmanned aerial vehicles using wifi. In Proceedings of the 16th ACM/IEEE

International Conference on Information Processing in Sensor Networks (IPSN

’17). Association for Computing Machinery, New York, NY, USA, 131–142. [82]

DOI: https://doi.org/10.1145/3055031.3055084

• ©IEEE. Reprinted, with permission, from Chitra R. Karanam, Belal Korany, and

Yasamin Mostofi. 2018. Magnitude-based angle-of-arrival estimation, localization,

and target tracking. In Proceedings of the 17th ACM/IEEE International

Conference on Information Processing in Sensor Networks (IPSN ’18). IEEE

Press, 254–265. [70] DOI: https://doi.org/10.1109/IPSN.2018.00053

• Chitra R. Karanam, Belal Korany, and Yasamin Mostofi. 2019. Tracking from

one side: multi-person passive tracking with WiFi magnitude measurements. In

Proceedings of the 18th International Conference on Information Processing in

Sensor Networks (IPSN ’19). Association for Computing Machinery, New York,

NY, USA, 181–192. [83] DOI: https://doi.org/10.1145/3302506.3310399
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