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SUMMARY

We previously established the contribution of de novo damaging sequence variants to Tourette 

disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 

TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo 
damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk 

gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated 

in TD patients are enriched for those related to cell polarity, suggesting a common pathway 

underlying pathobiology; and we confirm a statistically significant excess of de novo copy number 

variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD 

and obsessive-compulsive disorder and de novo copy number variants between TD and autism 

spectrum disorder, consistent with shared genetic risk.

In Brief

Wang et al. expand their earlier exome-sequencing work in TD, adding 291 trios and conducting 

combined analyses suggesting de novo variants carry more risk in individuals with unaffected 

parents, establishing de novo structural variants as risk factors, identifying CELSR3 as a risk gene, 

and implicating cell polarity in pathogenesis.

Graphical Abstract
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INTRODUCTION

Tourette disorder (TD), an early onset neurodevelopmental disorder characterized by chronic 

motor and vocal tics, has a worldwide prevalence of approximately 0.3%–1% (CDC, 2009; 

Robertson, 2008; Scharf et al., 2015) and a pronounced sex bias with males much more 

likely to be affected (Freeman et al., 2000; Scharf etal.,2013). TD is highly comorbid with 

other psychiatric disorders, such as obsessive-compulsive disorder (OCD) and attention-

deficit and hyperactivity disorder (ADHD) (Ghanizadeh and Mosallaei, 2009). Behavioral 

interventions have comparable effectiveness to medication for tic disorders, though both, 

unfortunately, have limited efficacy. Moreover, the most effective medications to suppress 

unwanted movements and vocalizations may lead Variants in cases versus controls(or versus 

expectation; Willsey et al., 2018).

Recently, our group reported the association of de novo damaging sequence variants (single-

nucleotide variants [SNVs] and insertion or deletion variants [indels]) with TD risk (Willsey 

et al., 2017). We identified four TD risk genes, including one high-confidence TD (hcTD) 

risk gene (false discovery rate [FDR] < 0.1) and three probable TD (pTD) risk genes (FDR < 

0.3). We also demonstrated that, similar to other early-onset neurodevelopmental disorders, 

the identification of recurrent de novo variants is a powerful strategy to long-term side 

effects, including chronic movement disorders (Quezada and Coffman, 2018). Development 

of a broader and more effective therapeutic armamentarium is currently profoundly limited 

by a lack of understanding of pathophysiology. However, given the significant role of 

genetic factors in TD (Huang et al., 2017; Pauls et al., 1981; Price et al., 1985; Willsey et al., 

2017), the elucidation of genes and loci carrying large TD risks represents a promising path 

forward for clarifying the underlying biology. Indeed, in the past five years, advances in 

genomics technology, including microarray genotyping and whole-exome sequencing 

(WES), have resulted in an explosion of genetic data for neurodevelopmental disorders, 

including autism spectrum disorder (ASD), intellectual disability, epileptic 
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encephalopathies, OCD, ADHD, and schizophrenia. With regard to early onset disorders in 

particular, it has become clear that the identification of recurrent de novo variants is a highly 

reliable and productive path forward for gene discovery, in the context of a demonstrated 

excess of these for gene discovery in TD. Our group and others have also demonstrated that 

rare copy number variants (CNVs) are associated with TD risk (Fernandez et al., 2012; 

Huang et al., 2017; McGrath et al., 2014; Nag et al., 2013; Sundaram et al., 2010). However, 

although suggestive evidence existed (Fernandez et al., 2012), de novo CNVs had not yet 

been firmly established as a risk factor.

In this study (Figure 1), we expand our earlier (phase 1) WES study by 291 additional trios 

(873 samples), increasing the total number of TD trios to 802 (2,406 samples). In the 

combined dataset, we identify a new high-confidence TD risk gene, CELSR3, as well as two 

probable risk genes (OPA1 and FBN2). Analyses of the genes with de novo damaging 

variants implicate cell polarity in the pathogenesis of TD. We also conduct pilot analyses 

that suggest the yield of de novo sequence variants is increased in “apparently” simplex 

(neither of the parents had any reported history of a tic disorder) versus multiplex (at least 

one of the parents had a reported history of a tic disorder) TD families and in female versus 

male probands. Additionally, we identify de novo CNVs in WES and complementary 

microarray data, and conclusively associate de novo CNVs with TD risk. We also revise our 

estimates on the contribution of de novo sequence and structural variants to TD risk: 9.7% of 

cases from TD simplex families carry a de novo damaging sequence variant and 1.5% carry 

a de novo structural variant likely mediating risk. Overall, this suggests that, in simplex 

families, approximately 10% of individuals meeting clinical diagnostic criteria for TD will 

carry a contributing de novo variant. Finally, we estimate that 483 genes contribute risk 

through disruption by de novo sequence variation.

RESULTS

De novo Sequence Variants

To follow up our phase 1 study (Willsey et al., 2017), we conducted WES on 291 new 

“phase 2” TD trios (802 total trios across phase 1 and 2; Figure 1). We also analyzed 582 

new phase 2 control trios from the Simons Simplex Collection (SSC) (1,184 total control 

trios across phase 1 and 2). After quality control, we trimmed to 777 TD trios and 1,153 

SSC trios for de novo sequence variant calling (STAR Methods; Tables 1 and S1; Figure 

S1).

We leveraged GATK to conduct alignment, quality control, and variant calling (DePristo et 

al., 2011; McKenna et al., 2010; Van der Auwera et al., 2013). We conducted joint 

genotyping across the entire set of phase 1 and phase 2 TD trios, as well as the entire set of 

control trios, in order to reduce batch effects. We further modified our previous de novo 
calling pipeline (Willsey et al., 2017) to utilize the GATK genotype refinement workflow 

(STAR Methods; Table S2). We defined likely gene disrupting (LGD) variants as insertion of 

a premature stop codon, disruption of a canonical splice site, or a frameshift insertion or 

deletion, and probably damaging missense 3 (Mis 3) variants include missense variants with 

a PolyPhen2 (HDIV) score ≥ 0.957 (Adzhubei et al., 2010, 2013). We refer to the set of 

LGD and Mis3 variants as “damaging”.
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We detected 309 de novo coding variants from phase 2 samples (1.09 variants per sample). 

Applying the new pipeline to the phase 1 samples, we detected a total of 466 de novo coding 

variants (0.94 variants per sample). The number of de novo variants per individual followed 

a Poisson distribution (Figure S2), and our new pipeline achieved a 95.9% validation rate 

across phase 1 and 2 TD samples. See STAR Methods for more details. We did not validate 

the de novo variants in control samples, and therefore, we conducted all burden analyses 

using all de novo variants identified in TD and control trios. However, for gene discovery, 

we considered validated de novo variants only. WES coverage varied across cohorts and 

phases because of the different capture arrays and sequencing protocols used (Table 1) and 

was positively correlated with the number of de novo variants observed per individual 

(STAR Methods). To account for these differences, we compared mutation rates, instead of 

the number of de novo variants observed per individual, to normalize for the number of 

bases with sufficient joint coverage for de novo calling (Willsey et al., 2017). To further 

reduce biases, we estimated mutation rates within a high-confidence region with high joint 

coverage across all cohorts (consensus region; Table 1; STAR Methods). We then compared 

the rate between TD probands and SSC siblings with a one-sided rate ratio test, as 

previously described (Willsey et al., 2017). We also confirmed that the overall rate of coding 

de novo sequence variants does not differ between phase 1 and phase 2 TD trios (rate ratio 

[RR] 1.03; p = 0.81; two-sided rate ratio test). See Table 2 for de novo rates by variant type 

and Table S3 for a detailed summary of all de novo variants called.

De novo Sequence Variants Contribute Strong Risk to Simplex TD

Our combined dataset consists of apparently simplex trios (the proband is the only 

individual with confirmed TD; 577 trios), multiplex trios (the proband and one or more 

parents have TD; 103 trios), and trios with insufficient phenotype data to make a 

determination (unknown; 97 trios). We did not consider affected status of other relatives, as 

this information was not consistently available across families. We first assessed whether de 
novo mutation rates vary by simplex versus multiplex trios. We observed a significant 

increase in simplex, but not multiplex, TD trios, particularly for LGD variants (simplex: RR 

1.93, p = 0.0028; multiplex: RR 1.11, p = 0.50; Figure 2A; Table 2). Narrowing to mutation-

intolerant genes (Kosmicki et al., 2017; Lek et al., 2016) further strengthens the statistical 

findings and increases the effect size in simplex families (e.g., for LGD variants; RR 3.61; p 

= 0.0023; Figure 2B; Table 2). For multiplex families, the effect size of LGD variants also 

increases, but the result remains non-significant (multiplex: RR 1.36; p = 0.55). Directly 

comparing the rate of de novo variants in simplex versus multiplex TD trios reveals 

significant differences for nonsynonymous variants in mutation-intolerant genes overall (RR 

3.91; p = 0.023), as well as for missense variants in mutation-intolerant genes alone (RR 

5.15; p = 0.047) and potentially for LGD variants too (RR 2.66; p = 0.28; Figure 2B). 

Together, these results suggest that de novo variants likely carry risk in multiplex TD but of 

lesser effect, although this remains to be confirmed with larger sample sizes. The de novo 
rate in unknown trios is similar to simplex trios, suggesting the unknown trios are largely 

composed of true simplex trios (Table 2; Figure S5). Therefore, although we excluded 

multiplex trios from de novo burden analyses, estimation of the total number of TD risk 

genes, and gene discovery, we included unknown trios in the estimation of the total number 

of TD risk genes and in gene discovery.
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Female Probands May Have More De novo Sequence Variants

Given the strong male:female sex bias in TD, we next assessed whether sex of the proband 

influences de novo mutation rate in 577 simplex TD trios. We did not conduct analogous 

analyses in multiplex or unknown trios because of the small sample sizes available in this 

study. We first compared the rate of de novo variants in sex-matched TD probands and SSC 

controls. We observed an elevation in the rate of de novo LGD variants in female TD 

probands (RR 2.39; p = 0.018; female TD probands versus female SSC controls) as well as 

in male TD probands (RR 2.06; p = 0.015; male TD probands versus male SSC controls). A 

direct comparison of female and male TD probands does not reveal a statistically significant 

difference, though the result shows a trend toward enrichment in female probands (RR 1.57; 

p = 0.14; Figure S4A). Further narrowing to variants within mutation-intolerant genes 

increases the observed effect sizes (e.g., de novo LGD: female TD probands, RR 5.21, p = 

0.027; male TD probands, RR 3.04, p = 0.04; Figure S4B). Again, however, a direct 

comparison of female versus male TD probands does not result in a statistically significant 

difference (e.g., de novo LGD: RR 1.45; p = 0.35; female versus male TD probands). We did 

not observe any difference between male and female SSC controls when comparing the 

overall rate of de novo coding variants (Figure S4A).

De novo Structural Variants

We detected de novo CNVs from the WES data from phase 1 and phase 2 TD samples with 

CoNIFER (Krumm et al., 2012; STAR Methods). This resulted in the identification of 27 de 
novo CNVs in the 789 TD trios passing CNV-specific quality control (0.034 per proband; 

95% confidence interval [CI] 0.021–0.047; Figure S1; Table S5). In addition, we analyzed 

1,136 SSC control quartets (mother, father, proband, and unaffected sibling). This provided 

the opportunity to compare the de novo CNV rate in TD probands versus SSC siblings as a 

negative control, as well as in SSC probands versus SSC siblings as a positive control. This 

also facilitated a comparison of the de novo CNV burden in ASD versus TD. Using identical 

methods, a total of 37 de novo CNVs were identified in 1,136 SSC probands (0.033 per 

proband; 95% CI 0.022–0.043) and 19 in the 1,136 SSC siblings (0.017 per sibling; 95% CI 

0.0081–0.025). See Table S5 for details. We attempted qPCR-based confirmation of all de 
novo CNVs identified in TD probands (88.2% confirmation rate; STAR Methods; Table S3). 

We did not directly confirm de novo CNVs in the SSC quartets, but based on confirmations 

previously performed on a subset of these variants as reported in Sanders et al. (2015), we 

estimate a 97.7% confirmation rate. Therefore, as with de novo sequence variants, we based 

all burden analyses on all detected de novo CNVs, though we observed similar results when 

narrowing to confirmed de novo CNVs only (STAR Methods).

De novo CNVs Are Increased in TD

We normalized de novo CNV rate per individual per cohort based on the number of non-

contiguous intervals captured on each array type to reduce potential bias arising from 

different capture arrays (STAR Methods; Figure S3A). We observed an increased rate of de 
novo CNVs in phase 1 TD samples (RR = 2.2; one-sided Wilcoxon rank-sum test; p = 0.004; 

Figure 3A), phase 2 TD samples (RR = 2.2; p = 0.024), and the combined dataset (RR = 2.2; 

p = 0.0025). De novo deletions (RR 2.13; p = 0.04) and duplications (RR 2.25; p = 0.015) 
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are independently overrepresented in the combined TD dataset, suggesting both are risk 

factors (Table S5). As expected, we also observed an increased rate of de novo CNVs in SSC 

probands (RR = 1.9; p = 0.0026). We do not observe a significant difference between the 

ASD and TD samples (RR = 1.1; two-sided Wilcoxon rank-sum test; p = 0.83), suggesting 

that de novo CNVs occur at a similar rate in TD and ASD, although larger sample sizes will 

be needed to confirm this observation. We did not assess the de novo CNV rate in simplex 

versus multiplex families or in male versus female probands due to the limited number of de 
novo CNVs identified here and the corresponding lack of power.

Association of De Novo CNVs Is Replicated in Microarray Genotyping Data

We used microarray genotyping data in an effort to replicate the association observed in the 

WES data. We obtained genotyping data generated from the Illumina 

HumanOmniExpressExome chip for 412 TD trios. We trimmed this number to 399 trios 

after quality control (Figure S3C and S3D). These 399 trios overlap with 279 of the 789 TD 

trios in the WES CNV analyses and with 35 of the 148 trios in Fernandez et al. (2012). We 

utilized 765 SSC quartets, previously genotyped with the Illumina HumanOmni chip, as 

controls (763 after quality control). To account for the different microarray platforms, we 

narrowed to high-quality SNPs present on both arrays (Figure S3B). We detected CNVs with 

PennCNV using an exome-specific Hidden Markov Model (HMM) file (Szatkiewicz et al., 

2013). We identified 13 de novo CNVs in 399 TD samples (0.033 per proband; 95% CI 

0.012–0.053; 81.8% validation rate), 28 in 763 SSC probands (0.037 per individual; 95% CI 

0.021–0.052; 100% validation rate), and 9 in 763 SSC unaffected siblings (0.012 per 

individual; 95% CI 0.0041–0.020; 100% validation rate). Again, we observed an increased 

burden of de novo CNVs in TD samples versus SSC unaffected control siblings (Figure 3B; 

RR = 2.8; p = 0.024). De novo deletions are independently overrepresented in TD (RR 3.8; p 

= 0.02), but de novo duplications do not reach significance (RR 1.9; p = 0.15; Table S5). We 

also confirmed an increased rate of de novo CNVs in SSC probands (RR = 3.1; p = 0.0027). 

Direct comparison between TD probands and SSC probands again shows no difference (RR 

= 0.89; p = 0.63). We did not observe any recurrent de novo CNVs, even when combining 

across the WES and array data.

Approximately 10% of Cases Have a De novo Damaging Variant or CNV

We next explored the genomic architecture of simplex TD (Table 3). We restricted these 

analyses to the simplex trios with WES data that passed quality control for both de novo 
sequence variant and CNV analyses (577 TD trios; 1,134 SSC control trios). We predicted 

that 22.3% of de novo damaging sequence variants contribute TD risk (95% CI 4.7%–

41.5%) and 46.3% of de novo CNVs carry risk (95% CI −8.5%–101.1%) in simplex 

families. Additionally, we estimated that 9.7% of TD cases in simplex families carry one or 

more de novo damaging sequence variants mediating risk (95% CI 5.2%–14.3%) and that 

1.5% carry a de novo CNV mediating risk (95% CI 0.0%–3.0%). Overall, we estimated that 

approximately 10.5% of cases have a de novo damaging sequence variant and/or CNV 

mediating risk (95% CI 6.0%–15.2%).
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De novo Variants in TD Probands Overlap with Those Identified in Other Disorders

We compared the list of genes with confirmed de novo damaging variants in TD probands 

with genes mutated in other disorders with established de novo contributions, including ASD 

(Sanders et al., 2015), epileptic encephalopathies (EuroEPINOMICS-RES Consortium et al., 

2014), intellectual disability (Gilissen et al., 2014; Hamdan et al., 2014; de Ligt et al., 2012; 

Rauch et al., 2012), OCD (Cappi et al., 2017), schizophrenia (Fromer et al., 2014), 

developmental disorders in general (Deciphering Developmental Disorders Study, 2017), 

and congenital heart disease (Jin et al., 2017). There is a high degree of overlap between TD 

and OCD (44 of 315 genes with de novo damaging variants in TD overlap with 90 genes 

with de novo damaging variants in OCD; p < 1 3 10−4 by permutation test accounting for per 

gene mutability). However, a substantial proportion of TD probands in our sample have 

comorbid OCD (361 of 777 overall). Nonetheless, narrowing to probands with TD only still 

results in significant enrichment (22 of 179 genes with de novo damaging variants in TD 

overlap with 90 genes with de novo damaging variants in OCD; p < 1 3 10−4), suggesting 

this is not driven by comorbid diagnoses. We do not observe significant overlap with other 

disorders, even before correction for multiple comparisons: intellectual disability (p = 1.00); 

schizophrenia (p = 0.95); epileptic encephalopathies (p = 0.81); congenital heart disease (p = 

0.47); ASD (p = 0.14); and developmental disorders in general (p = 0.092), although the 

latter two show a trend toward enrichment and these analyses are likely underpowered.

We conducted a similar analysis for de novo CNVs identified in our TD cohort and de novo 
CNVs previously identified in the SSC. We restricted to the unique set of de novo CNVs 

called in TD probands across the WES and microarray data and compared them to 

published, validated CNVs from 2,591 SSC probands (Sanders et al., 2015). 9 of the 34 de 
novo CNVs detected in TD probands were also detected in SSC probands (p = 0.024 by 

permutation test), whereas only 1 was detected in SSC unaffected siblings (p = 0.27). Due to 

the relatively small samples sizes of studies investigating de novo CNVs in other disorders, 

we did not test the significance of overlap between de novo CNVs in TD and other 

conditions. However, we did observe de novo CNVs in TD cases that have also been 

detected in other disorders (Table S3), for example, CNVs in 15q13.2–13.3 have been 

observed in ASD (Sanders et al., 2015), schizophrenia (Georgieva et al., 2014; Malhotra et 

al., 2011), and epilepsy (Epilepsy Phenome/Genome Project Epi4K Consortium, 2015).

Approximately 483 Genes Contribute Risk to TD

We next estimated the number of genes likely to contribute to TD risk when disrupted by a 

de novo damaging variant. We used a previously established maximum-likelihood estimation 

procedure (Homsy et al., 2015; Willsey et al., 2017) and excluded multiplex families in 

which de novo damaging variants might contribute low TD risk (Figures 2 and S5A). Our 

data fit best with a model of 483 TD risk genes (Figure S6), consistent with our previous 

estimate of 420 risk genes (Willsey et al., 2017). We are unable to estimate the number of 

loci vulnerable to de novo CNVs due to the absence of recurrent variants.
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Integrated Analysis Identifies Additional TD Risk Genes, Including a High-Confidence 
Gene CELSR3

We leveraged de novo damaging variants and the Transmission and De novo Association 

(TADA) algorithm to estimate pergene association with TD (De Rubeis et al., 2014; He et 

al., 2013; Sanders et al., 2015; Willsey et al., 2017). We did not observe overlap between 

genes with de novo sequence variants and genes affected by de novo CNVs, as has been 

observed in ASD (Sanders et al., 2015), and therefore, we did not include de novo CNVs in 

this analysis. We also did not include inherited variants, as we did not observe 

overrepresentation in our combined TD cohort (Figure S5B). We utilized a Poisson 

regression model to control for paternal age, sex, affected status (TD or unaffected), and 

number of callable bases within the consensus region (STAR Methods) when estimating the 

relative risk for de novo LGD and for de novo Mis3 variants. We included confirmed de 
novo damaging variants identified in all 674 non-multiplex trios (577 simplex trios and 97 

unknown trios) passing quality control. We also integrated de novo damaging variants called 

and confirmed in Willsey et al. (2017), but not called under the new pipeline, which added 8 

de novo damaging variants (Table S3). TADA identified 2 hcTD genes (FDR q value ≤ 0.1; 

≥2 de novo variants) and 4 pTD genes (q ≤ 0.3; ≥2 de novo variants), including one new 

hcTD gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3) and two new pTD 

genes (OPA1 and FBN2; Table 4). Four of these six TD risk genes, including CELSR3, are 

intolerant to variation based on pLI and/or missense Z score. We identified three additional 

genes with q ≤ 0.3 but only one de novo damaging variant; we omitted these genes from 

Table 4, but they are included in Table S7.

Interestingly, we observed an additional de novo damaging variant in CELSR3 within the 

103 multiplex families. We also identified two additional inherited compound heterozygous 

damaging variants in CELSR3 in two independent probands (each with one rare and one 

common inherited variant), which is highly unlikely by chance (p = 0.0069 by permutation 

test; STAR Methods; Table S6). We did not observe any compound heterozygous variants in 

the other 5 TD risk genes.

The Top TD Risk Genes Highlight Cell Polarity

Both of the hcTD risk genes identified here (WWC1 and CELSR3) encode proteins involved 

in cell polarity. Therefore, we assessed whether de novo damaging variants in TD affect 

other genes encoding cell polarity proteins. We obtained a list of genes related to cell 

polarity from the Gene Ontology database (Ashburner et al., 2000; The Gene Ontology 

Consortium, 2017) and annotated the de novo variant list (Table S3). 15 of the 292 de novo 
damaging variants in non-multiplex families impact genes related to cell polarity, 

representing a significant enrichment over the variants identified in the SSC control trios (7 

of 350 de novo damaging variants; one-sided Fisher’s exact test odds ratio [OR] 2.56; p = 

0.030). We confirmed this result with permutation testing (13 of 315 unique genes with 

confirmed de novo damaging variants are related to cell polarity; p = 0.032). We observed 

additional variants in cell polarity genes in multiplex families (2 of 45 de novo damaging 

variants), and the combined set of variants from all 777 TD trios are also significantly 

enriched for variants affecting cell polarity genes (17 of 337 unique genes; one-sided 

Fisher’s exact test OR 2.60, p = 0.024; permutation test, p = 0.014).
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DISCUSSION

We previously established the contribution of de novo damaging sequence variants to TD 

risk and identified one hcTD risk gene, WWC1, based on de novo LGD variants observed in 

two unrelated probands. Furthermore, we demonstrated that sequencing of larger cohorts 

coupled with the identification of recurrent de novo variants would be a productive and 

reliable method for gene discovery in TD (Willsey et al., 2017). In this study, we sequenced 

an additional 291 trios, bringing the total sample size to 802 trios. After quality control, we 

used 674 non-multiplex trios for gene discovery (577 simplex families and 97 unknown 

families). Given this sample size and our previously estimated trajectory of gene discovery 

(Willsey et al., 2017), we expected to identify 1.4 hcTD genes and 5.4 pTD genes. In 

actuality, this study implicated 2 hcTD genes and 7 pTD genes, which fits well with our 

previous prediction. Note that we did not present three of the pTD genes in the main text, as 

they only carried one de novo damaging variant (Table S7).

We observed a strong effect of plexity on de novo mutation rate, particularly with respect to 

de novo variants in mutation-intolerant genes (Figure 2B). Therefore, this suggests that the 

recruitment and sequencing of simplex families should be the highest priority, at least in 

studies examining de novo variants. Of course, it still remains to be determined whether de 
novo variants (particularly de novo LGD variants) carry risk in multiplex families, as the 

effects observed here trend toward significance (e.g., RR 1.16; p = 0.26 for de novo LGD 

variants) in an under-powered analysis (103 multiplex trios) and de novo variants appear to 

carry risk in multiplex families for other neurodevelopmental disorders (Leppa et al., 2016; 

Martin et al., 2017).

We also observed preliminary evidence for an increased rate of de novo damaging sequence 

variants in female TD probands compared to male TD probands, as has been observed in 

ASD (De Rubeis et al., 2014; Iossifov et al., 2014; Sanders et al., 2015). Given the TD sex 

bias for affected males (male:female = 3:1–4:1), this suggests a potential female protective 

effect similar to that which has been postulated in ASD (De Rubeis et al., 2014; Dong et al., 

2014; Gockley et al., 2015; Iossifov et al., 2014; Jacquemont et al., 2014; Levy et al., 2011; 

Sanders et al., 2011, 2015). Larger sample sizes are, of course, required to confirm this 

preliminary observation, and it should be noted that we observe a significant excess of de 
novo variants in both male and female TD probands independently when compared to sex-

matched controls, indicating these variants carry risk for both sexes. We do not observe any 

differences in the overall rate of coding de novo variants by sex in the TD cohort (RR 1.02; 

two-sided rate ratio test p = 0.90) or the SSC cohort (RR 1.03; p = 0.72), suggesting no 

systematic differences in the rate or detection of de novo variants overall.

We observed a significant increase in the rate of rare de novo CNVs in TD. We confirmed 

this association using both WES and microarray genotyping data. Of note, many of the 

samples assessed are represented only in the WES data (511 trios) or only in the array data 

only (120 trios), and de novo CNV calling was conducted with independent methods. Taken 

together, then, these results strongly support the conclusion that de novo CNVs carry risk for 

TD. Although rare CNVs have already been definitively associated with TD risk (Huang et 

al., 2017; McGrath et al., 2014; Nag et al., 2013), de novo CNVs had not been definitively 
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implicated, though previous results suggested association (Fernandez et al., 2012). The 

number of WES samples in this current study is more than five-fold larger than that in 

Fernandez et al. (2012; 789 versus 148 trios), and the array data are more than two-fold 

larger (399 versus 148 trios), suggesting the main difference in these studies was the greater 

power to identify this association, especially given the similar effect sizes across the studies 

(RR 2.2 in our WES data and RR 2.8 in our array data versus RR 2.4 in Fernandez et al., 

2012). Our observation of an increased rate of de novo sequence variants in simplex TD 

suggests that a similar phenomenon may also occur with respect to de novo CNVs. However, 

we did not assess this question here due to a very small number of de novo CNVs identified 

in multiplex families (3 de novo CNVs in 103 multiplex trios).

We estimated that 4.4% of TD probands have a de novo LGD variant mediating risk and 

5.9% have a de novo missense 3 variant mediating risk (Table 3). Although de novo 
missense variants in general are not yet significantly associated, we can similarly estimate 

that 5.0% of TD probands carry a de novo missense variant mediating risk. At first glance, 

these estimates appear much lower than estimates in ASD (e.g., 9% and 12% for de novo 
LGD and de novo missense, respectively; Iossifov et al., 2014). However, the ASD estimates 

are based on different methods. Indeed, by applying our methods to their data, we achieved 

highly similar estimates (5.4% of ASD probands have a de novo LGD variant contributing 

risk and 3.1% have a de novo missense variant contributing risk). We believe the higher 

estimates in Iossifov et al. (2014) are due to two major factors. First, they use a much larger 

set of regions for analysis (~83 mb compared to ~30 mb here), and we expect the 

ascertainment differential to increase proportionally to target size if the mutation rate per 

base pair is constant. Second, their method counts multiple de novos per individual (rate in 

probands minus rate in controls), whereas here, we are counting a maximum of one de novo 
per individual (percentage with ≥1 de novo). We previously observed similar rate ratios 

between TD probands versus SSC controls and ASD probands versus SSC controls (Willsey 

et al., 2017), further suggesting similar architecture.

Likewise, we did not observe a difference in the rate of de novo CNVs in TD probands 

compared to ASD probands (Figure 3). This suggests that the rate of de novo CNVs is not 

different in TD and ASD and that published data showing a higher proportion of de novo 
CNVs in ASD (e.g., 4.1% of individuals have a de novo CNV mediating ASD risk in 

Sanders et al., 2015 versus 1.5% reported here in TD) is likely due to the genome-wide 

coverage in those studies versus exome-wide coverage only here (i.e., whole-exome 

sequencing data and HumanOmniExpressExome-8-v1 genotyping data).

We observed significant overlap between TD and OCD for de novo damaging sequence 

variants, even when restricting to TD probands without comorbid OCD. We also observed 

significant overlap across de novo CNVs identified in TD and in ASD, consistent with 

previous results (Fernandez et al., 2012), and a suggestion of overlap of de novo sequence 

variants between TD and ASD (uncorrected p = 0.14). This suggests that TD and OCD as 

well as TD and ASD may share a subset of genetic risk loci, but this hypothesis warrants 

follow-up with larger sample sizes. By the same token, the lack of overlap between TD and 

other psychiatric disorders is inconclusive and may simply reflect underpowered analyses, 

and therefore, it will be important to revisit these analyses as data accumulate in these and 
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other disorders not yet characterized. For example, enrichment of ultra-rare variants in 

ADHD (Satterstrom et al., 2018) suggests that de novo variants will carry risk in this 

condition. Coupled with the high degree of TD and ADHD comorbidity, this indicates that 

there may be strong overlap at the level of de novo variants as observed with OCD here.

We identified a total of six likely TD risk genes, including two hcTD genes, CELSR3 (new; 

promoted from pTD status in phase 1) and WWC1, and four pTD genes, OPA1 (new), 

NIPBL, FN1, and FBN2 (new). Notably, both of the two hcTD genes encode proteins that 

are related to cell polarity, defined broadly in the Gene Ontology database as anisotropic 

intracellular organization or cell growth patterns (Ashburner et al., 2000; The Gene 

Ontology Consortium, 2017). Additionally, we observed general enrichment for cell polarity 

annotation among the genes carrying de novo damaging variants, including four mutation-

intolerant genes (SPRY2, MARK2, PSMC1, and UBC; Table S3). Furthermore, recent rare 

CNV analyses have definitively implicated NRXN1 deletions and CNTN6 duplications with 

TD risk (Fernandez et al., 2012; Huang et al., 2017; Sundaram et al., 2010), and other 

studies have highlighted CNTN4 and CNTNAP2 (Fernandez et al., 2012; Verkerk et al., 

2003). All of the proteins encoded by these genes have putative roles in cell polarity or axon 

pathfinding and/or organization (Bel et al., 2009; Fernandez et al., 2004; Kamei et al., 1998; 

Ushkaryov et al., 1992), suggesting that perturbation of cell polarity may contribute to TD. 

We do not observe convergence in other pathways, including histaminergic 

neurotransmission, as has been previously identified (Fernandez et al., 2012). Given clear 

evidence that we are in the early phases of gene discovery in TD, it is very likely that further 

studies will clarify these results and generate additinonal testable hypotheses regarding the 

underlying neurobiology of TD. Generating more TD genomic risk data should also better 

address the extent to which TD-associated de novo variants overlap with CNVs and genes 

implicated in other neurodevelopmental disorders. As these data accumulate, functional 

genetics will be critical to translate findings into an actionable understanding of 

pathobiological mechanisms.

STAR⋆METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for data should be directed to and will be fulfilled by the 

Lead Contact, Jeremy Willsey (jeremy.willsey@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection

TD Trios: We utilized 511 TD trios (affected child and both parents) characterized in our 

previous “Phase 1” study (Willsey et al., 2017). Ascertainment of these samples has also 

been described previously (Dietrich et al., 2015). In this study (“Phase 2”), we sequenced 

291 additional TD trio samples from three independent collaborative groups: the Tourette 

International Collaborative Genetics group (TIC Genetics; 92 new trios), the European 

Multicenter Tics in Children Studies (TSGENESEE; 181 new trios) and the Uppsala 

Tourette Cohort (UTC, 18 new trios). We ascertained the TIC Genetics trios as previously 

described (Dietrich et al., 2015). We also ascertained the TSGENESEE trios as previously 
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described (Karagiannidis et al., 2012). All adult participants and parents of children 

provided written informed consent along with written or oral assent of their participating 

child. The Institutional Review Board (IRB) of each participating site approved the study.

The UTC was collected under a study in Sweden called, “Mapping of Hereditary Factors in 

Neuropsychiatric Conditions, Focusing on Tourette Syndrome.” Individuals with a TD 

diagnosis were asked to participate and signed informed consent documents that described 

the nature of the study. Inclusion criteria for patients were individuals meeting the DSM-IV 

criteria for TD. All patients were ascertained by a specialist in child psychiatry or child 

neurology. After a 60–90 minute assessment, blood samples were processed and DNA stored 

in biobank of the Academic Hospital. All adult participants and parents of children provided 

written informed consent along with written or oral assent of their participating child. The 

regional ethical committee of Uppsala approved the study (equivalent to IRB).

Phenotypic data available for each cohort is described in Table 1, including sex, parental age 

(where available, we were not able to obtain parental age for TSGENESEE and UTC 

samples), comorbid OCD and/or ADHD in probands, and the history of tic disorders in the 

first degree relatives for most data. Among the 789 TD trios that passed quality control (see 

‘Quality control’), we defined 582 trios (73.8%) as ‘apparently simplex’, which means 

neither of the parents had any reported history of a tic disorder; 103 trios (13.1%) as 

‘multiplex’, which means at least one of the parents had a reported history of a tic disorder, 

and 104 trios (13.2%) as ‘unknown’, which means that we were not able to assign status 

based on incomplete parental phenotypic data.

Control Samples: We obtained a total of 1,184 quartets from the Simons Simplex 

Collection (SSC) (Fischbach and Lord, 2010). These quartets consist of an ASD proband, an 

unaffected sibling, and both unaffected parents. 602 of these quartets were used as controls 

in our Phase 1 study (Willsey et al., 2017) and 582 are new. 1,174 quartets passed quality 

control (see ‘Quality control’).

METHOD DETAILS

Whole exome sequencing

Exome capture and sequencing: We derived DNA samples for the Phase 2 trios (873 total 

samples from 291 trios) from a combination of whole blood (858 samples), lymphoblastoid 

cell lines (13 samples, 8 parental samples and 5 child samples), and saliva (2 samples, 1 

parental sample and 1 child sample). We did not observe an excess of de novo variants in 

any of the non-blood samples (excess defined as ≥ 10 de novos). We utilized the IDT xGen 

kit (https://www.idtdna.com/pages/products/next-generation-sequencing/hybridization-

capture/lockdown-panels/xgen-exome-research-panel) to capture the exome and then 

performed whole exome sequencing (WES) with the Illumina Hiseq 4000 platform to 100 

base pair long paired end reads. For the 511 trios previously characterized, DNA was derived 

from whole blood, exome capture was performed with three different capture arrays–

Nimblegen EZ v2, Agilent v1.1, and Nimblegen EZ v3–and the exome was sequenced with 

the Illumina Hiseq 2500 platform (Willsey et al., 2017).
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Control data for whole exome sequencing: We obtained a total of 1,184 quartets from the 

SSC, which were previously captured on the Nimblegen EZ v2 array and sequenced with the 

Illumina Hiseq 2000 platform (Iossifov et al., 2012, 2014; Krumm et al., 2015; O’Roak et 

al., 2012; Sanders et al., 2012, 2015). All the WES control data were generated from blood-

derived DNA. We summarized metadata and sequencing metrics from all TD trios and SSC 

control trios in Tables 1 and S1.

Variant calling pipeline summary: We used GATK best practices to process all raw whole 

exome sequencing data across both Phase 1 and 2 (DePristo et al., 2011; McKenna et al., 

2010; Van der Auwera et al., 2013). We aligned sequencing reads in FASTQ format to the 

GRCh37 build of the human reference genome with BWA-mem (Li and Durbin, 2009). For 

consistency, we reverted sequencing alignment data (BAM files) from SSC control families 

to FASTQ format and then processed identically. We sorted, indexed, and marked duplicate 

reads in the alignment files (BAM format) with Picard Tools, and then locally realigned 

reads containing indels with GATK’s Indel-Realigner tool. Next, we used GATK to perform 

Base Quality Score Recalibration using the training data recommended by GATK. We used 

the recalibrated alignment data produced by this step in all downstream analyses, including 

quality control. We produced variant calls in gVCF format for all samples with GATK 

HaplotypeCaller. Finally, we produced a list of joint recalibrated variant calls for the entire 

sample collection by running GATK GenotypeGVCFs followed by GATK’s SNP and indel 

Variant Quality Score Recalibration steps.

Variant calling pipeline details: Below are descriptions of specific software tools used to 

perform data processing, along with the runtime options that can be used to reproduce our 

work. Any arguments or options not specified either retain their default values or are system-

specific. For example, file paths, memory allocation, and multithreading options are not 

included.

0) Sequencing data was acquired from SSC in BAM format. To transform this data into a 

fastq format so that alignments could be re-generated, and variants called, using the same 

methods as with the TD cohorts, we took the following steps:

• Randomly re-order alignments in BAM files with the Samtools bamshuf function

• Using Picard’s RevertSam function, remove alignment information and restore 

original quality scores to reads. Options used: SORT_ORDER = unsorted, 

RESTORE_ORIGINAL_QUALITIES = true, VALIDATION_STRINGENCY = 

LENIENT

• Using Picard’s SamToFastq function, convert BAM files to paired-end fastq 

format. Option used: VALIDATION_ STRINGENCY = LENIENT

1. BWA

Tool: BWA 0.7.12

Runtime options:

mem –R [sample-specific header] [GRCh37 reference fasta file]
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2. SAM sorting

Tool: Picard 2.1.1

Runtime options:

SortSam SO = coordinate

Note: In this version of Picard, specifying an output filename ending in “.bam” 

automatically compresses alignments into BAM format, which we did.

3. Duplicate marking and BAM index creation

Tool: Picard 2.1.1

Runtime options:

CREATE_INDEX = TRUE

4. Indel realignment

Tool: GATK 3.5

Training file, available online in the GATK Resource Bundle:

Mills_and_1000G_gold_standard.indels.b37.vcf. (aka “Golden Indels”)

Runtime options (RealignerTargetCreator step):

• T RealignerTargetCreator

• –intervals [exome-capture-array-specific interval file]

• –interval_padding 100

• R [GRCh37 fasta reference]

• known [Golden Indels file]

• –filter_mismatching_base_and_quals

Runtime options (IndelRealigner step):

• T IndelRealigner

• R [GRCh37 fasta reference]

• –target-intervals [interval list created by RealignerTargetCreater)

• –filter_mismatching_base_and_quals

5. Base Quality Score Recalibration

Tool: GATK 3.5

Training files, available online in the GATK Resource Bundle:

• Mills_and_1000G_gold_standard.indels.b37.vcf. (aka “Golden Indels”)

• dbsnp_138.b37.vcf.

Runtime options (BaseRecalibrator step):
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• T BaseRecalibrator

• –intervals [exome-capture-array-specific interval file]

• –interval_padding 100

• R [GRCh37 fasta reference]

• knownSites Mills_and_1000G_gold_standard.indels.b37.vcf.

• knownSites dbsnp_138.b37.vcf.

Runtime options (PrintReads step):

• T PrintReads

• R [GRCh37 fasta reference]

• BQSR [recal data table from BaseRecalibrator step]

6. Variant calling

Tool: GATK 3.5

Runtime options:

• T HaplotypeCaller

• R [GRCh37 fasta reference]

• ERC GVCF

• variant_index_type LINEAR

• variant_index_parameter 128000

• –read_filter BadCigar

• an StrandOddsRatio -an AlleleBalanceBySample

• an DepthPerSampleHC -an MappingQualityZeroBySample

• an StrandBiasBySample -an GenotypeSummaries

7. Joint genotyping

First, gVCFs were combined into batches of around 50 samples each using 

GATK’s CombineGVCFs tool. In order to speed up data processing, we created 

13 separate combined GVCFs for each batch of samples for the following 

subsets of chromosomes: 1, 2, 3/21, 4/22, 5/19, 6/Y, 7/20/MT, 18/X, 8/17, 9/16, 

10/15, 11/14, 12/13. (These subsets were chosen to have similar combined sizes 

to increase the efficiency of parallel processing.) For each of the 13 chromosome 

subsets, GATK’s GenotypeGVCFs was run using all associated combined gVCF 

files as inputs. Then, GATK’s CatVariants was used to combine the 13 separate 

joint VCF output files into one comprehensive joint VCF file before continuing 

to the final variant quality score recalibration steps.

Tool: GATK 3.5
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Runtime options, CombineGVCFs step:

• T CombineGVCFs

• R [GRCh37 fasta reference]

• I [~50 gVCF samples]

• –intervals [run-specific chromosome subset (see above) ]

Runtime options, GenotypeGVCFs step:

• T GenotypeGVCFs

• R [GRCh37 fasta reference]

• I [all combined gVCF files corresponding to the current run’s 

chromosome subset]

• –pedigree [Plink-style pedigree file including all samples/families]

• an InbreedingCoeff -an StrandOddsRatio -an BaseQualityRankSumTest

• an ChromosomeCounts -an Coverage -an FisherStrand

• an MappingQualityRankSumTest -an MappingQualityZero -an 

QualByDepth

• an RMSMappingQuality -an ReadPosRankSumTest -an VariantType

• an DepthPerAlleleBySample -an AlleleBalanceBySample

• an MappingQualityZeroBySample -an StrandBiasBySample

• an DepthPerSampleHC -an GenotypeSummaries

CatVariants invokation:

java -cp [GenomeAnalysisTK.jar] 

org.broadinstitute.gatk.tools.CatVariants

• R [GRCh37 fasta reference]

• V [.vcf.gz file] ×13 (chromosome-specific joint VCFs)

• assumeSorted

• o [output file]

8. SNP variant quality score recalibration

Tool: GATK 3.5

Recalibration training files, available online in the GATK Resource Bundle:

1. hapmap_3.3.b37.vcf.

2. 1000G_omni2.5.b37.vcf.

3. 1000G_phase1.snps.high_confidence.b37.vcf.

4. dbsnp_138.b37.vcf.
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Runtime options (VariantRecalibrator step):

• T VariantRecalibrator

• mode SNP

• R [GRCh37 reference fasta]

• resource:hapmap,known = false,training = true,truth = 

true,prior = 15.0 [recal training file 1]

• resource:omni,known = false,training = true,truth = true,prior 

= 12.0 [recal training file 2]

• resource:1000G,known = false,training = true,truth = 

false,prior = 10.0 [recal training file 3]

• resource:dbsnp,known = true,training = false,truth = false,prior 

= 2.0 [recal training file 4]

• an QD -an MQ -an MQRankSum -an ReadPosRankSum -an 

FS -an SOR

Runtime options (ApplyRecalibration step):

• T ApplyRecalibration

• mode SNP

• R [GRCh37 reference fasta]

• tranchesFile [tranches output file from VariantRecalibrator]

• recalFile [recal output file from VariantRecalibrator]

• –ts_filter_level 99.5

9. Indel Variant Quality Score Recalibration

Tool used: GATK, version 3.5

Recalibration training files, available online in the GATK Resource Bundle:

• Mills_and_1000G_gold_standard.indels.b37.vcf. (aka “Golden Indels”)

• dbsnp_138.b37.vcf.

Runtime options (VariantRecalibrator step):

• T VariantRecalibrator

• R [GRCh37 reference fasta]

• mode INDEL

• –maxGaussians 4

• resource:mills,known = false,training = true,truth = true,prior = 12.0 

[golden indels file]
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• resource:dbsnp,known = true,training = false,truth = false,prior = 2.0 

[dbSNP 138 file]

• an QD -an FS -an SOR -an ReadPosRankSum -an MQRankSum

Runtime options (ApplyRecalibration step):

• T ApplyRecalibration

• mode INDEL

• R [GRCh37 reference fasta]

• tranchesFile [tranches output file from VariantRecalibrator]

• recalFile [recal output file from VariantRecalibrator]

• –ts_filter_level 90.0

Quality Control

Pedigree Check: We verified sample pedigree information by running PLINK (Purcell et 

al., 2007) on SNP-site genotype calls derived from our WES data. More specifically, we 

confirmed familial relationships and sex with an in-house ‘family check’ script (see “Quality 

control”). This script also checks for higher than expected relatedness across independent 

trios.

Among the TD data, 789 of the 802 trios remained after we removed 11 trios with 

unexpected familial relationships (e.g., proband not related to parents) and 2 trios that were 

sequenced in both Phase 1 and Phase 2 project (We only used the Phase 2 data for these two 

samples). We manually fixed annotation errors where possible (e.g., wrong sex indicated). 

We considered these 789 trios only in downstream analyses. We removed 10 of the 1,184 

SSC control quartets due to unexpected familial relationships, leaving 1,174 quartets for 

downstream analysis.

Whole Exome Sequence Data Quality: We used Picard Tools to obtain quality metrics 

related to target capture, sequencing, and alignment, and we ran GATK’s DepthOfCoverage 

tool to measure coverage across the exome at base-pair resolution. We then identified the 

sites within each trio that had at least 20X coverage across all trio members (≥20X joint 

coverage). We performed principal components analysis (PCA) on these metrics to identify 

outliers. We treated any samples more than 3 standard deviations (SD) from the mean in any 

of the first four principal components as outliers and removed them from subsequent 

analyses.

When considering de novo sequence variants, the above QC removed 0 TD trios and 18 SSC 

sibling trios, leaving 789 TD trios and 1,156 SSC sibling trios. We further removed any 

samples with > 10 de novo sequence variants, leaving 777 TD trios (12 trios removed) and 

1,153 SSC sibling trios (3 trios removed) for de novo sequence variant analysis.

Our methods differed slightly for de novo CNV analysis: we used SSC probands as positive 

controls to assess our pipeline. Therefore, we did quality control on complete quartets, 
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which removed additional families due to probands failing quality control resulting in 

removal of the entire quartet. In total we removed 38 such quartets, leaving 1,136 SSC 

quartets for downstream analysis. We did not remove any samples with excess de novo 
sequence variants. Therefore, we included 789 TD trios and 1,136 SSC quartets in de novo 
CNV analyses (Table S1).

Variant detection

De novo sequence variant detection: We optimized our de novo variant calling pipeline by 

integrating the GATK genotype refinement workflow (GRW) (https://

software.broadinstitute.org/gatk/documentation/article.php?id=4727). We re-estimated the 

genotype likelihood for each individual at each position by utilizing SNP information from 

1000 Genomes project as well as pedigree information. We then marked variants with 

genotype quality (GQ) ≥ 20 and allele count (AC) < max(4, 0.1% samples) (i.e., variant is 

present in a max of 4 or 0.1% of samples) as putative de novo variants. After these standard 

GRW steps, we further applied several empirical error filters to remove false positives: (1) 

homozygous in father and mother with allele balance (AB) < 0.05; (2) heterozygous in child 

with AB between 0.3–0.7; (3) depth in all trio samples DP ≥ 20; (4) mapping quality: MQ ≥ 

30; (5) allele frequency in cohort AF < 0.1%; (6) GQ ≥ 90 in child sample; (7) de novo 
mutation count ≤ 10 (See “Determine cutoff for de novo mutation per child”). Finally, we 

visualized all the de novo indels by IGV (Thorvaldsdóttir et al., 2013) to remove false 

positives. We considered the resulting set of de novo variants as ‘high confidence’ de novo 
variants.

To validate the new de novo calling pipeline, we compared the new de novo calls to those 

from the old pipeline (published in Willsey et al., (2017). For comparability, we ran both 

pipelines on the VCF file from the Phase 1 study, which did not undergo joint-genotyping 

with Phase 2 samples. We only used these de novo calls for pipeline optimization (the de 
novos presented in the main text were derived from the VCF generated by joint genotyping 

across Phase 1 and 2 samples, and the SSC samples). The Phase 2 pipeline has increased 

sensitivity for de novo calling (520 total variants in the Phase 1 data, including 83 new de 
novo coding variants, and missing 17 previously called de novo coding variants; Table S2).

All results presented in the main text are derived from the VCF generated from joint 

genotyping across all the TD and SSC samples. This decreases the number of detected de 
novo coding variants (from 520 to the 466 total reported in the main text for Phase 1 

samples), likely because rare variant detection may be penalized by joint calling across a 

large number of samples. Because of this, we included the confirmed de novo damaging 

variants from the Phase 1 study (Willsey et al., 2017), that were missed here, into gene 

discovery with TADA in order to increase yield. We did not use these variants for burden 

analyses.

Determining cutoff for de novo mutation per child: The distribution of de novo mutations 

across individuals should theoretically follow a Poisson distribution. To determine the the 

cutoff for the de novo calling, we determined how well our observations fit a Poisson 

distribution under different cutoffs (Figure S2). To normalize the different capture regions in 
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different sample sets, we only used mutations in consensus regions (See “Estimation of 

mutation rate per base pair” for definition). First, we called all the mutations with the error 

filters 1–6 in “De novo variant detection” and summarized the de novo counts for each 

individual. Then we fixed the cutoff from 1 to 20 mutations (filter #7). With each cutoff, we 

generated a de novo mutation list. We then summarized the de novo mutation counts in 

consensus regions and used the mutation rate per individual (# of de novo mutations / # of 

passed individuals) as the lambda of theoretical Poisson distribution. We then utilized 

lambda to generate a list of values based on Poisson distribution by npos function in R. The 

goodness-of-fit was performed by chisq.test in R to obtain the p value. We used the 

maximum cutoff that is not significantly different with theoretical distribution (p > 0.05) to 

increase the sensitivity of de novo calling.

Inherited sequence variants detection: We annotated GRW-processed VCF files with 

ANNOVAR and then detected inherited variants in coding regions with an in-house script. 

As in the original TADA study (He et al., 2013), we considered three categories of inherited 

variants based on the genotypes of the trios: alternative homozygous (0/1 × 0/1 - > 1/1), 

transmitted heterozygous (0/1 × 0/1(0/0) - > 0/1), and non-transmitted (non-transmitted: 0/1 
× 0/1(0/0) - > 0/0). We then utilized informative genotypes to identify “paternal” and 

“maternal” transmitted mutations. We defined rare mutations as population allele frequency 

less than 0.1% in Exome Aggregation Consortium (ExAC) version 0.3 which contains 

65,000 whole exome allele frequency data (Lek et al., 2016). Relevant filters from de novo 
variant calling were applied in the inherited variant calling including:

1. heterozygous AB: 0.3–0.7; homozygous AB: < 0.05;

2. depth in all the trio samples: DP ≥ 20.

3. genotype quality (GQ) ≥ 20

De novo CNV detection from WES data: We identified de novo CNVs from whole exome 

sequencing data using CoNIFER and the standard workflow (Krumm et al., 2012). Briefly, 

we defined each continuous capture region as a ‘probe’, then calculated the RPKM (reads 

per thousand bases per million reads sequenced) for all the samples and transformed to 

standardized z-score (ZRPKM). We then implemented singular value decomposition (SVD) 

and made final calls based on SVD-ZRPKM values to help correct for biases arising from 

data generation. Post-CoNIFER, we merged neighbor CNVs if the distance between two 

adjacent CNVs was less than half of the larger one. Finally, we generated a list of high 

confidence de novo CNVs by implementing additional filtering criteria on raw de novo 
CNVs, including:

1. not detected in both parents (i.e., without any overlap).

2. less than 50% overlap with common CNVs (MacDonald et al., 2014).

3. less than 50% overlap with telomeric, centromeric and immunoglobulin regions.

4. covering more than 12 probes.

5. Manual visualization blinded to affected status.
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Microarray genotyping

TD data: We genotyped 412 trio samples with the HumanOmniExpressExome-8-v1 

platform. We utilized GenomeStudio to generate high quality final reports according to a 

previously published protocol (Guo et al., 2014). Specifically, after loading and automatic 

clustering of the raw intensity data in GenomeStudio, we excluded all samples with less than 

98% call rate. We then re-clustered the remaining samples and manually checked and 

adjusted the following terms:

1. excluded the abnormal SNPs in chrX, chrY, chrXY and chrMT;

2. adjusted clusters with low GenTrain scores (which means less than 0.7).

As a result, 3 samples with less than 98% call rate and all the SNPs with less than 95% call 

frequency were excluded. After these steps, we exported final reports as one file per sample.

Control data—We obtained final report level data (i.e., post Genome-Studio data) for 765 

previously genotyped quartets from the SSC (Sanders et al., 2011, 2015) as control data. In 

each family, there are two unaffected parents, one affected proband and one unaffected 

sibling. Because the microarray platforms used in TD samples and SSC controls were 

different (Table S4), we further trimmed the SNPs that only existed in the dataset we used in 

TD samples to make the results comparable. Then we calculated the standard deviation (SD) 

of the LRR ratio for each remained SNP in all the passed samples. All the SNPs with SD of 

LRR > 0.5 were removed. This process resulted in 686,180 SNPs, which we used for quality 

control and CNV detection (Figure S3B).

Quality control for genotyping data: The quality controls of genotyping data consisted of 

three steps (Figures S3C and S3D): (1) We calculated the mean of LRR in chromosome X 

and Y for each individual and removed any individuals with abnormal sex karyotype; (2) we 

estimated the contamination of these samples by calculation of heterozygous ratio 

(heterozygous to total SNPs) and duplicate sites ratio (SNPs with BAF of 0.25–0.4 or 0.6–

0.75 to total SNPs) in each individual and excluded any outliers defined by 2 standard 

deviations from the mean; and (3) we checked the pedigrees in each cohort with an in-house 

script based on PLINK and removed any failing families. We excluded 11 families from the 

TD dataset and 2 families from the SSC dataset, leaving 399 TD trios and 763 SSC quartets 

for de novo CNV calling. Among the 399 TD trios, 279 trios overlap with the WES data. 

Additionally, 35 of these 399 TD trios were studied previously on a different microarray 

platform (Fernandez et al., 2012).

De novo CNV detection from genotyping data: We detected de novo CNVs based in the 

families passing QC using PennCNV with an exome-specific Hidden Markov Model file 

(Szatkiewicz et al., 2013). After merging neighbor CNVs with PennCNV default settings, 

the output was further filtered by a series of criteria:

1. not detected in both parents (i.e., without any overlap);

2. less than 50% overlap with common CNVs (MacDonald et al., 2014);

3. less than 50% overlap with telomeric, centromeric and immunoglobulin regions;
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4. covered more than 10 SNPs.

5. remove the samples with a) waviness factor > 0.055; b) SD of LRRs > 0.3; c) 

detected CNVs number > 10.

All the outputs were checked by visualization blind to affected status to obtain 

the final de novo CNV list.

De novo variant validation

De novo sequence variants validation: We attempted to validate all 309 Phase 2 de novo 
coding variants (including those that disrupt canonical splicing sites) through PCR and 

Sanger sequencing. We designed the PCR primers for these sites with a primer3-based web 

tool developed by our lab (https://primerdesign.willseylab.com). We generated an amplicon 

for each variant site using PCR from blood-derived DNA, if available (13 samples from 

lymphoblastoid cell line DNA, and 2 samples from saliva DNA). Due to failure in primer 

design, PCR reaction, and/or Sanger sequencing, we were unable to validate of 55 of 309 

sites. For the remaining 254 sites, we validated 243 of them as true de novo mutations 

(95.7%), including 95% for SNVs (232/243) and 100% for indels (11/11).

For the 511 Phase 1 TD trios, our new methods captured the majority of de novo coding 

variants identified in our Phase 1 analysis (379 of 419, 40 variants missed). Within these 

variants, 286 of the 293 with validation data from Willsey et al., 2017 confirmed as true de 
novo variants (97.6%). We also identified 87 additional de novo variants. These differences 

are likely due to joint calling across a larger number of samples as well as the GRW 

workflow described above. Within these 87 new de novo variants in Phase 1 samples, we 

confirmed 31/37 (83.8%; 50 variants were not validated because of sample accessibility or 

difficulty in primer design). Hence, we estimate our Phase 1 confirmation rate as 96.1% (317 

of 330 de novo variants). Overall, we therefore achieved a confirmation rate of 95.9% (560 

of 584) across Phases 1 and 2.

De novo CNV validation: We attempted to validate all detected de novo CNVs with qPCR. 

We aimed to design three primers for each candidate and to ensure primers did not overlap 

common SNPs and were not within repeat regions (https://genome.ucsc.edu/cgi-bin/

hgTables). We checked fidelity for each pair of primers in silico. We used TERT and 

ZNF423 as controls to calculate the copy number (Sanders et al., 2011). We were able to 

generate primers for 17 de novo CNV candidates in WES data (17/27) and 15 of them were 

validated as true de novo CNVs (15/17, 88.2%). With respect to the microarray data, we 

conducted validation in 11 of 13 de novo CNV candidates and 9 were confirmed (9/11, 

81.8%). We did not explicitly validate de novo CNVs identified in SSC controls. However, 

based on published confirmation results for de novo CNVs identified in the SSC quartets 

(Sanders et al., 2012, 2015), we were able to assess the expected confirmation rate of 44 of 

the 56 de novo CNVs identified in this study. Overall, 43 of these 44 de novo CNVs (97.7%) 

were previously confirmed in SSC samples in WES data, including 31/32 de novo CNVs in 

SSC probands and 12/12 de novo CNVs in SSC siblings. We conducted a similar analysis 

for de novo CNVs detected from the SSC microarray genotyping data. Aside from 1 de novo 
CNV not attempted previously, all were confirmed as true de novos (27/27 de novo CNVs in 
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SSC probands and 9/9 de novo CNVs in SSC siblings). Together, these comparisons suggest 

high specificity in de novo CNV calling. Given the good performance of our de novo CNV 

calling pipeline on SSC WES data (97.7% confirmed) or microarray data (100% confirmed), 

it is unclear why we have a lower confirmation rate in the TD samples (WES data, 88.2%; 

microarray data, 81.8%), though this is perhaps due to different validation methods, different 

sequencing and genotyping platforms, and/or criteria used in our study and in Sanders et al., 

2015.

Burden analysis

Estimation of mutation rate per base pair: Since the capture platforms varied across 

different cohorts, we defined high confidence “consensus regions” to minimize bias when 

comparing the mutation rate in cases versus controls. We obtained the consensus callable 

regions by conducting the following steps:

1. By Family: within RefSeq hg19 coding regions, we produced a list of regions 

that have ≥ 20X coverage in all members of the trio (to match the minimum joint 

coverage required in de novo variant calling).

2. By Cohort: we filtered to regions from (1) covered in at least 50% of the trios

3. Across all cohorts (TD and SSC): we intersected the lists from (2) to generate the 

consensus regions.

These steps resulted in a set of consensus regions spanning 19,343,430 bp. We restricted 

comparisons of de novo and transmitted mutation rates to these regions. More specifically, to 

estimate the mutation rate rate per base pair, we considered de novo mutations occurring in 

consensus regions only. We then calculated mutation rates per individual as number of de 
novo mutations in consensus region/number of base pairs with≥20X joint coverage within 
the consensus regions. We then further divided the mutation rate by two to account for the 

diploid genome. We obtained the mean as well as the 95% confidence interval (CI) of the de 
novo mutation rate for each sample set by using t.test in R. Finally, we estimated the 

theoretical de novo mutation number by multiplying the rate per base pair by the total size of 

the RefSeq hg19 coding region (33,828,798 bp).

De novo sequence variant burden analysis: We compared the de novo mutation rate in 

cases versus controls by one-sided Poisson test in R (Willsey et al., 2017):

poisson . test x, T , alternative = “greater” ,

where x is a vector of length two, containing the de novo mutation counts in cases and de 
novo mutation counts in controls (number of events). T is also a vector of length two, 

containing the sum of the number of base pairs with ≥ 20X joint coverage in the consensus 

regions across all TD trios and SSC control trios, respectively (number of opportunities). We 

also obtained the estimated rate ratio and also 95% CI from this function. We truncated the 

lower bound of the 95% CI to 0 if negative.
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De novo sequence variants burden analysis on mutation-intolerant genes: We also 

narrowed to mutation-intolerant genes and conducted burden analyses. We identified 

missense intolerant genes based on missense Z ≥ 3.891 and LGD intolerant genes based on 

pLI ≥ 0.9 (Lek et al., 2016). Again, we restricted these analyses to de novo variants in the 

consensus regions only. For each class of variants, we narrowed to the corresponding filtered 

list of intolerant genes to calculate the mutation rate (e.g., missense variants in missense 

intolerant genes, LGD variants in LGD intolerant genes). We then combined these two lists 

of genes (missense plus LGD variants) to calculate the nonsynonymous mutation rate in 

mutation-intolerant genes. As in the overall analyses, the t.test function in R estimated mean 

and 95% CI for mutation rates, and we compared sample sets with a one-sided rate ratio test.

De novo CNV burden analysis: Within the WES data, we observed that the number of de 
novo CNVs is positively associated with the number of probes (i.e., discontinuous capture 

regions) on the respective capture arrays (Figure S3A). To address this issue, we normalized 

our de novo CNVs rate per individual by dividing by the number of probes on each capture 

platform. We estimated the mean and 95% CI of the normalized de novo CNV rate by t.test 

in R. Comparison was carried out by Wilcoxon rank-sum test (WRST) in R: wilcoxon.test(x, 

y, alternative = “greater”), where x, y are vectors containing normalized de novo CNV rates 

for cases and controls respectively. We did not use a one-sided rate ratio test as in the de 
novo sequence variant burden analyses because we could not determine if de novo CNV 

occurence follows a Poisson distribution. We then calculated the rate ratio (RR) of de novo 
CNVs in cases versus controls as:

RR = total number o f de novo CNVs in cases * total number o f callable probes in controls
total number o f de novo CNVs in controls * total number o f callable probes in cases

For the microarray genotyping data, we used the de novo CNV rate directly for the burden 

analysis because we had already trimmed to a common set of high quality SNP sites prior to 

de novo CNV calling. We also estimated the mean and 95% CI of the normalized de novo 
CNV rate by t.test in R. We used the WRST for comparison: wilcoxon.test(x, y, alternative = 

“greater”), where x, y are vectors containing de novo CNV rates per individual for cases and 

controls respectively. We calculated the RR of de novo CNVs in probands versus siblings as:

RR = total number o f de novo CNVs in cases * total number o f controls
total number o f de novo CNVs in controls * total number o f cases

Given that we have partial confirmation results and the confirmation rate is lower in TD 

cases, we conducted the same analysis only using confirmed de novo CNVs for the burden 

analysis. In the WES data we confirmed 15 de novo CNVs from TD trios and 12 de novo 
CNVs from SSC sibling trios. As a result, we estimated RR 1.93, p = 0.040 in TD probands 

versus SSC controls. Within the small sample size of confirmed de novo CNVs in the 

microarray data, we obtained RR 1.91, p = 0.13 using the same method.

De novo CNV burden analysis using exact binomial test: In addition to the WRST 

method, we utilized the binomial exact test to to confirm the increased rate of de novo CNVs 

in TD probands. Specifically, we detected de novo CNVs from 789 TD trios and 26 of them 
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carry de novo CNVs. In comparison, 16 of 1,136 SSC siblings carry de novo CNVs. Thus, 

we carried out the binomial exact test as below:

binom . test 26, 789, p = 16/1136, alternative = “greater” ,

This generated the p value as 8.37×10−5 which is consistent with the result from WRST that 

de novo CNVs are significantly increased in TD versus SSC siblings in WES data. Using the 

same method, we estimated the p value equals to 0.0087 for microarray data, which further 

indicated the increased de novo CNV rate in TD versus SSC siblings.

We also checked with the exact binomial test in R if the increased rate of de novo CNVs 

could be still observed based on the validated de novo CNVs only. We estimated the p value 

as 0.016 for WES data and 0.15 for microarray data. Therefore, even restricted to confirmed 

de novo CNVs, our results generally suggested the de novo CNV rate is increased in TD 

probands compared with SSC siblings.

Genomic architecture of TD risk factors: We estimated the percentage of TD probands 

with de novo events (sequence variants and/or CNVs) mediating risk, as well as the 

percentage of de novo events carrying TD risk based on the passing simplex trios with WES 

data (i.e., 577 trios TD trios, 1,134 SSC control trios). This allowed us to assess both types 

of variation in these individuals, in the same dataset.

To estimate the the percentage of TD probands with de novo events we counted individuals 

with one or more de novo events as one and marked the remaining individuals as 0. We thus 

calculated the percentage of individuals with de novo events in cases and controls as pCases 

and pControls respectively. The percentage of cases with de novo events mediating risk was 

calculated as: pCases − pControls, the 95% confidence interval were estimated by 

bootstrapping for 1000 replicates. We calculated these values for sequence variants alone, 

CNVs alone, and for any de novo event.

We determined the percentage of de novo events carrying TD risk for sequence variants and 

CNVs separately. For sequence variants, we calculated the theoretical rate per base pair as 

before for each individual in the consensus regions. And then the theoretical rate per child 

was obtained by multiplying the entire refseq coding size (33,828,798 bp). The difference 

and 95% CI between cases and controls was estimated by two samples t.test in R. We 

divided difference by the theoretical rate in cases to obtained the percentage of de novo 
events carrying TD risk. We generated the 95% CI for this using the upper and lower of the 

difference in the same formula. For de novo CNVs, we cannot obtain the theoretical rate per 

person as did for sequence mutations. Thus we treated the normalized mutation rate as 

theoretical rate per child and used the same strategy as before to generate the percentage of 

de novo CNVs carrying TD risk as well as the 95% CI.

Gene discovery

Estimation of Total TD risk Genes by MLE: The detection of recurrent damaging 

mutations enabled us to estimate the number of TD risk genes with a previously established 

maximum likelihood estimation (MLE) procedure (Homsy et al., 2015; Willsey et al., 2017). 
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We assessed the percentage of damaging mutations carrying TD risk (E) and did 50,000 

permutations for every possible number of risk genes from 1 to 2500. For each permutation, 

we randomly generated 292 de de novo variants (the total number of damaging mutations 

identified in all the TD samples; see below). We also selected a certain number of risk genes 

according weighted by their respective mutation probability, which accounts for gene size 

and GC content (He et al., 2013). We then randomly assigned a percentage of the 292 

variants to risk genes, based on (E), and the remaining percent as non-risk. In each iteration, 

we combined the risk genes and non-risk genes and checked whether the recurrent mutation 

count was consistent with what we observed in our study. We estimated E using all de novo 
damaging mutations identified in TD non-multiplex probands (probands from simplex [577 

samples] and unknown [97 samples] trios, 674 total probands) and SSC controls (1,153 

samples) in consensus regions to reduce the bias that plexity and different capture platform 

introduced. We did not use use the mutations from multiplex families due to their unclear 

risk (Figures 2 and S5). We calculated E as:

E = M1 − M2
M1 = (199/674) − (258/1153)

(199/674) = 0.2421256.

Among the 292 de novo damaging mutations detected in non-multiplex families (we 

removed the 10 variants failing confirmation, thus remained 282 variants), we observed 6 

genes with two recurrent variants and 2 genes with three recurrent variants. With these 

observations, we determined the MLE of TD risk genes to be 483 genes based on the 

frequency of occurrences versus possible TD risk gene number (Figure S6).

Identification of TD risk genes with TADA-denovo model: We did not observe an 

increase in rare transmitted mutations in simplex TD trios compared with SSC control trios 

(Figure S5B). Therefore, we used the TADA de novo only model and all de novo damaging 

variants identified in the non-multiplex families to identify TD risk genes. We updated the 

following parameters from Phase 1:

1. Fraction of causal genes (π)

we used the new estimated risk gene number (483),

π = 483 risk genes
17726 re f seq hg19 genes = 0.02724811

2. Fold-enrichment (l) for Mis3 and LGD

Instead of using synonymous mutations as controls, we used poisson regression 

to control the effects of paternal age, sex bias, and consensus callable size. To 

reduce bias from different exome capture kits, we only used the results from 

Phase 1 Yale non-multiplex samples (281 trios) and Phase 1 and 2 SSC controls 

(1,153 trios) to estimate the fold-enrichment values since they were captured by 

the same exome capture platform. Additionally, as in our other analyses we 

restricted the regression to the consensus regions to further reduce batch effects. 

The formula for the regressions were:
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Number o f Mis3 mutations paternalAge + sex + a f f ect status + o f f set log 10(consensus callable
size )

and

Number o f LGD mutations paternalAge + sex + a f f ect status + o f f set log 10(consensus callable
size )

We estimated the λ for Mis3 and LGD as 1.383366 and 2.492502 respectively.

3. Relative risk (γ) for Mis3 and LGD

For Mis3: γ = 1 + λ − 1
π = 1 + 1.383366 − 1

0.04129527 = 10.28354

For LGD: γ = 1 + λ − 1
π = 1 + 2.492502 − 1

0.04129527 = 37.1422

With these parameters, we ran TADA-Denovo to estimate the p value and q value 

(false discovery rate, FDR) for each gene (1000 per-mutations). We considered 

genes with recurrent variants (> 1 de novo variant) and q ≤ 0.3 as true TD risk 

genes (Table 4), but see Table S7 for an exome-wide summary of p and q values 

(3 genes have q ≤ 0.3 but only one de novo variant).

Prediction of the Number of Risk Genes Identified by Cohort Size: We took advantage 

of the estimated TD risk gene number above to predict the gene discovery yield while 

additional TD trios are whole-exome sequenced. As done previously (Willsey et al., 2017), 

we fixed the gene number at 483 and varied the cohort size. As in the MLE above, we 

randomly selected the risk genes, and then assigned a fraction of them to TD risk gene and 

the remaining as non-TD risk genes. We permuted 10,000 iterations for each cohort size and 

generated LGD and Mis3 variants separately based on their mutation rate (He et al., 2013; 

Sanders et al., 2012). We then combined the permuted variants and ran the TADA de novo 
only algorithm using the same sample parameters as above to assess the per gene q value. 

Then we counted the number of probable genes (q < 0.3) and high confidence genes (q < 

0.1) for each cohort size and plotted the smoothed trend line using ggplot in R (“loess” 

function). We predicted the number of genes identified in a particular cohort size by 

regression model.

We estimated the fractions of LGD and Mis3 variants carrying TD risk (ELGD and EMis3). 

We did not exclude the variants that failed in confirmation due to the lack of confirmation 

data in SSC controls. We only used de novo damaging mutations in non-multiplex families 

and restricted the mutations to the consensus regions as in the MLE section. Specifically, the 

observed rate of de novo LGD variants, M1 = 44/674 for TD probands while M2 = 39/1153 

for controls. Therefore, ELGD = (M1-M2)/M1 = 0.482. For Mis3 mutations, M1 = 155/674 

and M2 = 219/1153, and therefore EMis3 = (M1-M2)/M1 = 0.174.
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Permutation test for the occurrence of compound heterozygous mutations in hcTD 
genes: We first detected compound heterozygous mutations within any of the genes with one 

or more de novo damaging variants in TD probands. We only considered compound 

heterozygous where at least one allele is rare in the population (AF < 0.1% based on ExAC 

v0.3) and both are Mis3 or LGD mutations. In total, we identified 189 mutations. Since the q 

value of OPA1 is very close to the cutoff of hcTD genes (q ≤ 0.1) while only concerning 

non-multiplex families in TADA, we treated OPA1 as a potential hcTD genes in this 

permutation test. To estimate the probability of observing recurrent compound heterozygous 

mutations in any of the three genes (CELSR3, WWC1 or OPA1), we thus sampled exactly 

189 genes genome-wide with replacement and weighted by the probability of a damaging 

mutation (He et al., 2013; Sanders et al., 2012). We defined a “success” as CELSR3, WWC1 
or OPA1 appears more than twice in the generated gene list. We permuted the process 

10,000 times and calculated the p value as the total number of success in permutations.

Systems biological analyses

Comparison of de novo damaging variants in TD and other disorders: To assess the 

overlap of genes affected by de novo mutations between TD and other disorders, we used a 

one-sided permutation test to estimate the significance of overlap. We focused on the de 
novo damaging mutations from OCD (Cappi et al., 2017), ASD (Sanders et al., 2015), 

congenital heart disease (Jin et al., 2017), intellectual disability (Gilissen et al., 2014; 

Hamdan et al., 2014; de Ligt et al., 2012; Rauch et al., 2012), schizophrenia (Fromer et al., 

2014), epileptic encephalopathies (EuroEPINOMICS-RES Consortium et al., 2014), and 

developmental disorders in general (Deciphering Developmental Disorders Study, 2017). For 

each disorder, we randomly selected the number of unique genes with one or more detected 

de novo damaging variants, weighted by damaging mutation probability (He et al., 2013; 

Sanders et al., 2012) and compared, at the gene level, the permuted list with our observations 

in TD. We defined a success as the amount of overlap derived from permutation greater than 

or equal to our observation. We permuted 10,000 iterations to estimate the p value for each 

disorder. Then we iterated the permutation test for each disorder and obtained the p values 

respectively. We removed de novo damaging mutations that failed in confirmation and 

treated genes with more than one mutations as one. Since a proportion of TD probands in 

our sample set comorbid with OCD, we therefore also did the same permutation test using 

the genes detected from TD probands without comorbid with OCD only.

Comparison of de novo CNVs in TD and ASD: To assess the overlap of de novo CNVs 

detected from TD probands and ASD probands, we utilized the results from a previously 

published study characterizing the Simons Simplex Collection (Sanders et al., 2015). We 

removed de novo CNVs with more than 50% overlap between ASD probands and siblings 

which likely carry lower risk. We further removed the telomeric, centromeric and 

immunoglobulin regions as did in our de novo CNV calling workflow. These filters resulted 

in 290 and 57 de novo CNVs in ASD probands and siblings respectively. Then we 

intersected either de novo CNV list from ASD study with the de novo CNVs detected from 

either WES data or microarray data under the cutoff as 50% using bedtools. We combined 

CNVs detected in the same TD probands from either WES data or microarray data prior to 

the intersection. We observed 9 de novo CNVs overlapping between ASD probands and TD 
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probands. In comparison, we observed only 1 de novo CNV shared across ASD siblings and 

TD probands.

We then estimated the significance of this observation by permutation test. We randomly 

picked a region list according to the length of the given CNVs and the chromosome location. 

We avoided the telomeric, centromeric and immunoglobulin regions in the permutation. We 

permuted 10,000 times for ASD probands and siblings. We defined a “success” as the 

intersection between the permuted list with de novo CNVs in TD was greater than or equal 

to the observations (i.e., 9 for TD versus ASD probands and 1 for TD versus ASD siblings). 

We estimated the final p value as the rate of success in 10,000 permutations.

Enrichment of de novo mutations in cell polarity: To check whether the de novo 
mutations are enriched in cell polarity, we extracted all the genes related to cell polarity from 

Gene Ontology (http://www.geneontology.org/) and annotated the de novo variants in TD 

and SSC controls. We utilized three methods to assess the enrichment.

First, we compared de novo damaging variants affecting cell polarity genes in cases and 

controls. In total, we observed 337 de novo damaging mutations in TD probands and 350 de 
novo damaging mutations in SSC controls. Among these, 17/337 and 7/350 affected cell 

polarity genes, respectively. We did not consider confirmation status here as variants in the 

SSC samples did not undergo validation.

TD probands SSC controls

# of de novo damaging mutations 337 350

# of hits in cell polarity 17 17

We then compared using fisher’s exact test in R as:

f isher . test matrix(c((17, 337 − 17, 7, 350 − 7), ncol = 2)), alternative = “greater” ,

The results in an estimated odds ratio (OR) = 2.60 and p value = 0.024.

Second, we used a permutation test at the gene-level to assess the enrichment. We removed 

all the de novos that failed confirmation. In total, we observed 327 genes with one or more 

de novo damaging mutations, across Phase 1 and 2. 15 of these are cell polarity genes. For 

each of 10,000 permutations, we randomly selected 327 genes without replacement 

according to the damaging mutation probability of each gene (He et al., 2013; Sanders et al., 

2012). We tabulated how many of these were cell polarity genes. We defined success as ≥ 15 

cell polarity genes. We calculated the p value as the total number of successes in the 10,000 

iterations. We estimated the p value as 0.014.

QUANTIFICATION AND STATISTICAL ANALYSIS

We conducted all statistical analyses in Python (v ≥ 3.6) and R (v ≥ 3.31). We have made the 

scripts used in these analyses available on bitbucket at https://bitbucket.org/willseylab/
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tourette_phase2/src/master/. Where appropriate, we present data as mean ± the 95% 

confidence interval (CI). We estimate mean and 95% CI with the t.test function. We describe 

the value of n in the main text and/or in Tables 2 and 3, and n stands for number of samples 

(trios), number of base pairs, or number of variants as indicated. We conducted the primary 

burden analyses for sequence variants with a rate ratio test, using the poisson.test function in 

R, and comparing, across two cohorts, the number of de novo variants per the number of 

callable base pairs assessed. We did burden analyses for copy number variants using 

Wilcoxon rank-sum test using wilcox.test function in R. When comparing TD probands 

versus SSC controls, we utilized a one-sided test (alternative = “greater”), given the prior 

evidence for the role of de novo sequence/copy number variants in TD and other 

neurodevelopmental disorders. However, we compared rates between TD cohorts with a 

two-sided test because we did not expect these rates to differ. In secondary burden analyses, 

one-sided binomial exact tests (binom.test in R) and Fisher’s exact tests (fisher.test in R), as 

well as a Poisson regression in R (glm with family = poisson, link = “log”) (see 

“Determining cutoff for de novo mutation per child”) also assessed significance.

We did not correct p values for multiple comparisons because our primary hypotheses 

focused on de novo damaging variants followed by secondary characterization of individual 

variant classes, and because we previously implicated de novo variants in TD (Willsey et al., 

2017). We considered a p value < 0.05 statistically significant and we list individual p values 

in the main text, Figures 2 and 3, and Tables 3 and 4.

As described above in the STAR Methods, we estimated p- and q-values for individual 

association with TD risk with the algorithm, TADA, which is described in detail in (He et 

al., 2013).

DATA AND SOFTWARE AVAILABILITY

Data—We have deposited aligned whole exome sequencing data (.bam files) in the 

Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra/) under BioProject: 

PRJNA384374 (https://www.ncbi.nlm.nih.gov/bioproject/384374) (TIC Genetics data) and 

BioProject: PRJNA384389 (https://www.ncbi.nlm.nih.gov/bioproject/384389) (TAAICG 

data). We have also deposited the microarray genotyping data (final report files) from the 

TIC Genetics cohort under BioProject: PRJNA384374.

Software—Perl, Python, and R code used to process these data and complete statistical 

analyses are available on bitbucket at https://bitbucket.org/willseylab/tourette_phase2/src/

master/. Our in-house primer design software that generated primer sets for variant 

confirmations is located at https://primerdesign.willseylab.com/.
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Highlights

• Recurrent de novo variants identify a new high-confidence TD risk gene: 

CELSR3

• Genes involved in cell polarity are more likely to be disrupted by de novo 
variants

• De novo sequence variants may carry more risk in simplex families, female 

probands

• De novo CNVs occur 2 to 3 times more often in TD probands than in matched 

controls
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Figure 1. Study Overview
Our group previously generated and analyzed WES data from 511 TD trios, generated by the 

TIC Genetics (325 trios) and TAAICG (186 trios) consortia (Willsey et al., 2017). In this 

study, we expand the number of trios with WES data by 291 (92 from TIC Genetics, 18 from 

UTC, and 181 from TSGENESEE). We leverage recurrent de novo variants occurring within 

the same gene in unrelated individuals to identify a high-confidence gene, CELSR3. Next, 

we identify de novo CNVs from the WES data and significantly associate these variants with 

TD. Third, we replicate the association of de novo CNVs by analysis of microarray data 

from 399 partially overlapping TIC Genetics trios. Finally, based on the rate of de novo 
variants, we assess the genomic architecture of TD. CNVs, copy number variants; SSC, 

Simons Simplex Collection; TAAICG, Tourette Association of America International 

Consortium for Genetics; TD, Tourette disorder; TIC Genetics, Tourette International 

Collaborative Genetics consortium; TSGENESEE, Tourette Syndrome Genetics Southern 

and Eastern Europe Initiative; UTC, Uppsala Tourette Cohort.
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See Figure S1 for an overview of quality control and sample filtering and Table S1 for 

sample metrics.
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Figure 2. Combined Burden Analysis Identifies Differences in De Novo Rate in Simplex versus 
Multiplex Families
We defined a consensus region, consisting of a set of intervals with high-quality coverage 

across all samples. We then estimated the de novo mutation rates per base pair in this 

consensus region (STAR Methods). We converted the mutation rate per base pair to an 

expected rate per child (proband or control) by multiplying the mutation rate per base pair 

by the size of the total RefSeq hg19 “coding” region (33,828,798 bp).

(A) De novo variants are overrepresented in simplex TD trios only. LGD variants are 

significantly increased in simplex TD probands compared to SSC controls (RR 1.93; p = 

0.0028; one-sided rate ratio test). Mis3 variants also trend toward enrichment (RR 1.18; p = 

0.08). Therefore, de novo damaging variants as a group are overrepresented in simplex TD 

(RR 1.29; p = 0.0061). In contrast, de novo variants in any category are not significantly 

increased in multiplex TD families, though de novo damaging variants trend in that direction 

(RR 1.16; p = 0.26). Additionally, the rate of de novo LGD variants may be higher in 

simplex versus multiplex trios though the difference does not reach statistical significance 

(RR 1.73; p = 0.20).

(B) Restricting the analysis to de novo variants in mutation-intolerant genes (missense Z 

score ≥ 3.891 or pLI ≥ 0.9; Lek et al., 2016) reveals much larger effect sizes, particularly in 

simplex families. Comparing simplex to multiplex trios reveals significant differences for de 
novo nonsynonymous variants (RR 3.91; p = 0.023) and for de novo missense variants (RR 

5.15; p = 0.047), but not for de novo LGD variants only (RR 2.66; p = 0.28; STAR 

Methods).

Damaging, LGD + Mis3; LGD, likely gene disrupting (insertion of premature stop codon, 

disruption of canonical splice site, and frameshift insertion-deletion variant); Mis, missense; 

Mis3, probably damaging missense variants (PolyPhen2 [HDIV] score ≥ 0.957; Adzhubei et 

al., 2010, 2013); Nonsyn, nonsynonymous; RR, rate ratio; Syn, synonymous. Error bars in 

(A) and (B) represent the 95% confidence interval (CI). When necessary, we truncated the 

lower bound of the CI to 0.

See Figures S2, S4, and S5 and Table S3.
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Figure 3. De Novo CNV Burden Analysis
We called de novo CNVs from WES data and array data with CoNIFER (Krumm et al., 

2012) and PennCNV (Wang et al., 2007), respectively. We utilized different methods for 

normalization to make the results comparable across different samples sets.

For the WES data (A), we normalized the de novo CNV rate by the number of discontinuous 

capture array intervals in each cohort (Figure S3A).

For the microarray data (B), we restricted de novo CNV calling to a set of SNPs shared 

across all arrays and further removed any outlier SNPs based on the LRR (Figure S3B; see 

STAR Methods for details). We compared each group with SSC sibling controls using a 

Wilcoxon rank-sum test in R. We also used the SSC probands as positive controls to validate 

our de novo calling pipelines. We used all de novo calls (confirmed and unconfirmed) in the 

burden analysis.

Both the WES data (A) and array data (B) demonstrate that de novo CNVs are significantly 

increased in TD compared to SSC controls and that de novo CNVs occur at approximately 

the same rate in TD and in ASD. Error bars in (A) and (B) represent the 95% confidence 

interval (CI). When necessary, we truncated the lower bound of the CI to 0.

See also Tables S3, S4, and S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

TIC Genetics trios (n = 417) Tourette International 
Collaborative Genetics 
Study

https://tic-genetics.org/

TAAICG trios (n = 186) Tourette Association of 
America International 
Consortium for 
Genetics

https://www.findtsgene.org/tique

TSGENESEE trios (n = 181) Tourette Syndrome 
Genetics Southern and 
Eastern Europe 
Initiative

http://tsgenesee.mbg.duth.gr/index.html

UTC trios (n = 18) Upsala Tourette Cohort N/A

Deposited Data

Whole exome sequencing 
data from TIC Genetics trios 
in Phase 1 project (n = 325)

Willsey et al., 2017 BioProject: PRJNA384374

Whole exome sequencing 
data from TSAICG trios in 
Phase 1 project (n = 186)

Willsey et al., 2017 BioProject: PRJNA384389

Whole exome sequencing 
data from TIC Genetics trios 
in Phase 2 project (n = 92)

This paper BioProject: PRJNA384374

Genotyping data from TIC 
Genetics trios (n = 412)

This paper BioProject: PRJNA384374

Whole exome sequencing 
data from SSC control 
quartets (n = 1,184)

Iossifov et al., 2014 NDAR: DOI:10.15154/1149697

Genotyping data from SSC 
control quartets (n = 765)

Sanders et al., 2011, 
2015

http://www.sfari.org/resources/sfari-base

Software and Algorithms

Genome Analysis Toolkit 
(GATK)

DePristo et al., 2011; 
McKenna et al., 2010; 
Van der Auwera et al., 
2013

https://software.broadinstitute.org/gatk/best-practices/

BWA-mem Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Picard Tools Broad Institute. https://broadinstitute.github.io/picard/

Annovar Wang et al., 2010 http://annovar.openbioinformatics.org/en/latest/

PLINK/SEQ Fromer et al., 2014 https://atgu.mgh.harvard.edu/plinkseq/

Primer Design This paper. https://primerdesign.willseylab.com/

Python script code for data 
processing & analysis

This paper. https://bitbucket.org/willseylab/tourette_phase2/src/master/

R code for data analysis This paper. https://bitbucket.org/willseylab/tourette_phase2/src/master/

TADA He etal., 2013 http://www.compgen.pitt.edu/TADA/TADA_homepage.htm

GenomeStudio 2.0 Illumina https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html

Other

1000 Genomes GRCh37 
hg19 genome build

N/A http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz
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REAGENT or RESOURCE SOURCE IDENTIFIER

RefSeq hg19 gene annotation N/A http://genome.ucsc.edu/cgi-bin/hgTables?command=start

Intervals file for NimbleGen 
SeqCap EZ Exome v2

Roche NimbleGen, 
Madison, WI, USA

http://genome.ucsc.edu/cgi-bin/hgTables?command=start

Intervals file for NimbleGen 
SeqCap EZ Exome v3

Agilent Technologies, 
Santa Clara, USA

https://bitbucket.org/willseylab/tourette_phase2/src/master/

Intervals file for Agilent 
SureSelect v1.1

Roche NimbleGen, 
Madison, WI, USA

https://bitbucket.org/willseylab/tourette_phase2/src/master/

Intervals file for IDT xGen Integrated DNA 
Technologies, Inc., 
Skokie, Illinois, USA

https://bitbucket.org/willseylab/tourette_phase2/src/master/

Coding regions only from 
RefSeq hg19 gene annotation

This paper. https://bitbucket.org/willseylab/tourette_phase2/src/master/
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