
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Full-System Collaboration in Heterogeneous SoCs with a Hardware Network Stack

Permalink
https://escholarship.org/uc/item/31d1f7ns

Author
Li, Brian

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/31d1f7ns
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Full-System Collaboration in Heterogeneous SoCs

with a Hardware Network Stack

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science

in

Electrical and Computer Engineering

by

Brian Li

Committee in charge:

Professor Jonathan Balkind, Chair
Professor Timothy Sherwood
Professor Rich Wolski

September 2024

The Thesis of Brian Li is approved.

Professor Timothy Sherwood

Professor Rich Wolski

Professor Jonathan Balkind, Committee Chair

September 2024

Full-System Collaboration in Heterogeneous SoCs with a Hardware Network Stack

Copyright © 2024

by

Brian Li

iii

Acknowledgements

I would first like to acknowledge Professor Jonathan Balkind for accepting me into his lab

as a naive sophomore almost four years ago. Even though I lacked any prior experience,

he provided me a space to explore the world of computer architecture, mentoring me both

personally and academically being someone I can always trust. I would also like to deeply

thank my fellow researchers Katie, Naz, Guillem, Guy, Joan, and the rest of the ArchLab

who have all helped me countless times throughout the years with our collective research

efforts, from pulling all-nighters together in the lab to helping me better understand their

own research. Additionally, I want to express my gratitude for professors Rich Wolski

and Timothy Sherwood for taking their time to serve on my thesis committee. Last but

not least, I want to sincerely thank my family and friends that supported me and helped

me grow as a person throughout my five years at UCSB. This thesis would not have been

possible without all of you.

iv

Abstract

Full-System Collaboration in Heterogeneous SoCs with a Hardware Network Stack

by

Brian Li

As we approach some of the physical limits of transistor scale and performance, mod-

ern system-on-chips (SoCs) have become increasingly heterogeneous, incorporating more

hardware accelerators in their designs. The general design philosophy has been to treat

these accelerators simply as an off-loading co-processor, each with their own custom soft-

ware drivers. This wastes system performance and kernel developer time and inherently

prohibits the amount of collaboration between all of the SoC components. Our project,

Pengwing, seeks to alter the current standard surrounding accelerator usage to provide

powerful collaboration between hardware and software system services. We implement a

novel blended operating system design that follows the idea of software-oriented acceler-

ation. In this paradigm, robust software-hardware interactions are achieved by providing

a system substrate that enables communication with accelerators using existing software

abstractions like shared-memory queues. My contributions to this project revolve around

incorporating Beehive, a hardware network stack, into our SoC design. By intentionally

decoupling Beehive from the cores during integration, software and hardware alike can

utilize various network functions provided through Beehive using our standard software

queue API. This thesis will detail the versatility present in our blended OS implemen-

tation and showcase robust software-hardware interaction through various setups that

leverage Beehive utilizing the same underlying hardware SoC design.

v

Table of Contents

Abstract v

List of Figures viii

1 Introduction 1

2 Background Research 5
2.1 OpenPiton . 5

2.1.1 Tile . 6
2.1.2 Chipset . 7
2.1.3 Core . 8

2.2 Cohort . 9
2.3 Beehive . 10
2.4 Pengwing . 12

2.4.1 MAPLE . 13
2.4.2 Falafel . 14

3 Integrating Beehive into Pengwing 15
3.1 Initial Exploration . 15

3.1.1 Initial Hiccups . 16
3.1.2 Data Structures within Beehive 17
3.1.3 File Structure of Beehive . 17

3.2 Adapting UDP Echo App . 19
3.3 Improvements to the Design . 21

3.3.1 Variable Width Inputs . 21
3.3.2 Packet Descriptors . 22

3.4 Improved UDP Design . 24
3.4.1 in data . 24
3.4.2 in pointer . 26
3.4.3 out data . 27
3.4.4 out pointer . 29

vi

3.5 Full Pengwing SoC . 30
3.6 Future Improvements . 31

4 Experimental Setups and Analysis 33
4.1 Original Cohort+Beehive . 33
4.2 Pengwing Setups . 34

4.2.1 Beehive+AES . 35
4.2.2 Beehive+METAL . 36
4.2.3 Beehive+Falafel . 37
4.2.4 Data Stream vs Descriptors . 39

4.3 Results and Analysis . 39

5 Related Works 42
5.1 OS Designs . 42
5.2 HW+SW Co-Design . 43
5.3 Other System Services . 44
5.4 Hardware Networking Services . 44

6 Conclusion 46

References 48

vii

List of Figures

2.1 OpenPiton Architecture. 6
2.2 Example Cohort Layout. 8
2.3 Proposed Cohort System Design. 9
2.4 Sample Beehive UDP Echo Design. 12
2.5 Combined Pengwing SoC. 13

3.1 Original UDP Echo Module Hierarchy. 18
3.2 Modified UDP Echo Module Hierarchy. 20
3.3 Sample Request through Cohort. 22
3.4 in data State Machine. 25
3.5 in pointer State Machine. 26
3.6 out data State Machine. 28
3.7 out pointer State Machine. 29

4.1 Beehive+AES Setup. 35
4.2 Beehive+METAL Setup. 37
4.3 Beehive+Falafel Setup. 38
4.4 Beehive+AES Simulation Throughput. 39
4.5 Beehive+METAL Simulation Throughput. 39
4.6 Beehive+Falafel Data Throughput. 40
4.7 Beehive+Falafel Packet Throughput. 40

viii

Chapter 1

Introduction

The deceleration of Dennard scaling and Moore’s law prompted the prominence of ac-

celerators in system-on-chip designs, with their ability to achieve efficient specialized

computations with regards to power and performance. These SoCs utilize a heteroge-

neous architecture incorporating various accelerators as off-load based compute resources

to minimize the effects of dark silicon [1, 2]. This design philosophy is particularly useful

in mobile embedded systems owing to its delicate balance of space and efficiency and is

permeating into desktop [3] and server [4, 5] devices as well. Consequently, research into

more effective ways of utilizing accelerator-rich platforms will only continue to increase.

These increasingly heterogeneous SoC designs leverage various hardware accelerators

ranging from application-class modules like audio/video encoding [6], neural processing

engines [7], and cryptographic engines [8], to, more recently, system service components

such as memory allocation [9], garbage collection [10], and networking [11, 12, 13, 14].

The improvements in computational efficiency brought about by these hardware acceler-

ators can not be understated, but the current usage of accelerators can be improved upon

in two ways: more uniform interfaces and more hardware-software collaboration. Current

accelerator designs focus on maximum computational optimization, leaving software to

burden any mismatch in hardware-software communication. The software abstractions

used to coalesce the differing interfaces leak hardware details, forcing changes to data

1

Introduction Chapter 1

format and memory management. This harms generality and programming efficiency,

as developers must acutely understand each accelerator’s microarchitecture in order to

integrate and program them into their designs. Additionally, this often requires the use

of custom complex device drivers that handle the semantics for interaction and memory

management, which will invariably differ between devices. Ultimately, this limits collab-

oration across the whole SoC as individual hardware accelerators are tied to the calling

software application due to these highly specialized driver stacks and runtimes, making

composition of different services impossible.

Pengwing seeks to fundamentally alter this relationship between the hardware accel-

erators and software running on general-purpose processor cores. We aim to increase

collaboration between hardware and software as well as between accelerators under a

single OS. The Pengwing project explores the idea that either hardware or software can

perform system service functionality interchangeably with the ability to freely invoke

each other. In order to do this, Pengwing realizes a common system substrate leveraging

shared memory queues that provide a standard interface to both software and hardware

[15]. These queues are an implementation of an idea called software-oriented acceleration

(SOA) proposed in Cohort [15] wherein programmers can use existing software abstrac-

tions to communicate with accelerators, replacing the custom device drivers with more

straightforward interfaces. Hardware accelerators can also leverage these queues to com-

municate with other hardware accelerators, which permits a greater level of collaboration

across these accelerator-rich SoCs by chaining various services together, bypassing tradi-

tional OS intervention. We refer to this concept design as a blended OS that reshapes the

system stack to provide peer-to-peer communication between hardware components and

their software counterparts. This design ”blends” the conventional responsibilities held

by software and hardware in a typical top-down application stack, enabling full-system

collaboration in a user-definable manner previously unavailable in traditional operating

2

Introduction Chapter 1

system designs through the SOA approach.

One important system service that we wanted to incorporate into Pengwing was

networking. In accelerator-rich environments with many distributed systems like servers

and databases, the ability to quickly communicate with other devices is essential. While

general-purpose cores are able to service networking functionality for these hardware

accelerators, bypassing the software implementations by using a hardware network stack

can help reduce end-to-end latency and increase throughput. Beehive [16] is a flexible

FPGA network stack initially designed for direct-attached accelerators, but I modified the

design to seamlessly incorporate its core functionality into our design, enabling hardware-

based networking for the SoC as a whole.

My contributions to Pengwing encompass this integration and testing of Beehive into

our system. The network stack is introduced as another accelerator in the design, and

because of the changes enabled by Pengwing’s paradigm, it is able to service invocations

from both software and other accelerators. We currently support UDP packet transmis-

sion and reception, and Beehive can be configured to support the processing of raw data

streams or packet descriptors.

• Chapter 2 explores the background research that enables Pengwing as a project,

from the manycore research processor that we leverage to Beehive’s network stack

design.

• Chapter 3 expands on my process of adapting Beehive from its original usage for

direct-attached accelerators to a version that connects to our system substrate and

can process network functionality for both software and hardware.

• Chapter 4 showcases four distinct experimental setups with Beehive and other

accelerators that highlight the robust hardware-software collaboration enabled by

Pengwing, each evaluated on simulated throughput metrics.

3

Introduction Chapter 1

• Chapter 5 considers related works pertaining to OS designs and hardware-software

co-designs that also address the question of increasing collaboration across hetero-

geneous SoCs. Additionally, we look into other system services and network stack

implementations to determine potential future additions to the Pengwing system.

• Finally, Chapter 6 concludes the thesis and examines potential future improvements

for the current Beehive setup and Pengwing as a whole that could aid with deeper

analysis of the benefits of a blended OS.

4

Chapter 2

Background Research

As a multi-faceted project, Pengwing [17] would not be possible without some criti-

cal pre-existing research. From the underlying SoC design framework to the individual

accelerators, the various components that go into Pengwing enable us to construct the

system substrate and blended OS that we envision to facilitate greater hardware-software

collaboration.

The project begins with our open-source manycore processor framework, OpenPiton

[18], whose robust interconnect structure and cache coherence protocol facilitates in-

corporating heterogeneous tiles and cores into the design. In order to add accelerators

into the design, we leverage the Cohort engine which provides a standardized interface to

shared-memory queues for both software and hardware. I then modify Beehive, the hard-

ware network stack, to attach to a Cohort engine-containing OpenPiton tile, enabling

the rest of the SoC to interface with the network by treating Beehive as a decoupled

accelerator.

2.1 OpenPiton

OpenPiton [18] is a multi-threaded manycore processor with a robust simulation and

synthesis framework that enables quick and scalable research. The general architecture

5

Background Research Chapter 2

Figure 2.1: OpenPiton Architecture. Each manycore chip consists of a 2D mesh of tiles,
connected together via chipset logic and networks (reproduced [18]).

consists of individual manycore chips connected together via chipset logic and networks,

visualized in Figure 2.1. At the inter-chip level, various topologies like crossbar, 2D mesh,

and 3D mesh have been implemented and can be configured through the chipset network

routers. Each manycore chip consists of a configurable 2D mesh of tiles that use 3 sets

of network-on-chips (NoCs) to facilitate communication, also shown in Figure 2.1. For

our research purposes, we configure our design to use an architecture with one chipset

connected to one chip that houses a variable-sized mesh of tiles, focusing on the inter-tile

activity rather than the inter-chip behavior.

2.1.1 Tile

The tile is the basic building block of any OpenPiton design. In our configuration shown

in Figure 2.2, each general purpose tile consists of a private L1.5 cache, a subset of

the shared and distributed L2 cache, three NoC routers, and a modified Ariane (CVA6)

6

Background Research Chapter 2

RISC-V core [19, 20, 21].

The L1.5 data cache is a write-back cache that serves to reduce the bandwidth needed

by Ariane’s L1 write-through cache and to interface with OpenPiton’s P-Mesh cache

coherence system. Each tile contains a portion of the shared L2 cache that accepts

memory requests from the L1.5 through the P-Mesh NoC routers and sends memory

requests to off-chip DRAM and cache fill responses back to the L1.5.

The P-Mesh NoC routers facilitate the inter-tile communication required by Open-

Piton’s two cache levels to maintain cache coherence within the chip. OpenPiton chips use

three 64-bit physical NoCs (no virtual channels) designed to ensure a deadlock-free net-

work. Each NoC enables bi-directional communication through two uni-directional links

that each operate under credit-based flow control. To prevent deadlocks, the routers

leverage dimension-ordered wormhole routing and the NoCs are assigned different prior-

ities, with NoC3 having the highest priority and NoC1 having the lowest priority. This

guarantees no cycles in the resource dependency graph, logically ensuring the absence of

deadlocks.

2.1.2 Chipset

The chipset houses all the off-chip logic, such as the I/O and DRAM controllers and

inter-chip network routers. The chipset pulls in traffic from the chip through a chip

bridge connected to the top left tile in the tile array, and directs requests to the correct

controller using a chipset crossbar or to other chipsets using the network routers. Because

Pengwing uses a one chip+chipset design, the chipset is primarily used for the DRAM

controller since we do not have the need for inter-chip routing.

7

Background Research Chapter 2

Figure 2.2: Example Cohort Layout. The design consists of two OpenPiton+Ariane
[18, 21] tiles and two Cohort tiles integrated with different accelerators (reproduced [15]).

2.1.3 Core

The original OpenPiton architecture uses an OpenSPARC T1 core [22] but further re-

search work [21, 20] provided support for cores with different instruction set architectures

(ISAs) such as Ariane [19], an open source RISC-V core now known as CVA6. Ariane is

a 64-bit, 6-stage, single-issue, in-order processor implementing the RV64GC instruction

set and extensions as well as the M (machine), S (supervisor), and U (user) privilege

levels required for booting Linux. Ariane’s support for these the privilege modes enables

us to quickly test Pengwing functionalities in bare metal or Linux as well as develop our

full blended OS prototype. In order to integrate Ariane into OpenPiton, the P-Mesh was

adapted to support RISC-V atomic operations and Ariane’s cache system was modified

to connect to the P-Mesh NoCs, but otherwise the two systems’ core designs were left

unaltered. With OpenPiton+Ariane, we have the foundational hardware on which we

can iterate upon to prototype our blended OS design.

8

Background Research Chapter 2

Figure 2.3: Proposed Cohort system design enabling hardware-software communication
through shared memory software queues (reproduced [15]).

2.2 Cohort

While OpenPiton+Ariane provides the manycore framework, it does not offer explicit

support for accelerators in the design. Cohort [15] serves to solve this issue by stan-

dardizing a queue-based interface accessible by both hardware and software. This work

introduces the Software-Oriented Acceleration (SOA) approach that emphasizes the use

of existing software paradigms to facilitate accelerator communication, implemented into

an OpenPiton+Ariane setup. Cohort supports single-producer single-consumer (SPSC)

queues as they are widely used in many existing high performance libraries. The end goal

is to provide one system for hardware-to-software, software-to-hardware, and hardware-

to-hardware communication through an abstraction such that different hardware accel-

erators can be more efficiently composed into one system as shown in Figure 2.3.

On the hardware interface side, Cohort implements an engine that attaches to the ac-

celerator, the L1.5, and the NoC routers, as shown in the bottom two tiles of Figure 2.2.

The Cohort engine hides the cache coherence system of OpenPiton from the accelerator

9

Background Research Chapter 2

replacing the Ariane core to serve as the compute unit of the tile. The engine provides

a pair of latency-insensitive valid-ready interfaces as the only connections between the

accelerator and the rest of the system; there is the consumer endpoint used as the source

of inputs into the accelerator, and the producer endpoint is used as a sink for the accel-

erator’s outputs. Once these two endpoints are registered with individual SPSC queues,

they can perform the necessary coherence operations to track the read and write pointers

to properly push to and pop from the queues described in the next section.

In terms of software, Cohort provides a user-mode API to register and interface with

the SPSC queues. Cohort queues are implemented as a ring buffer with a configurable

descriptor struct that supports read and write pointers, base address, element size, and

length. Programmers can initialize queues using their existing queue libraries with these

configurable descriptors, register the queues using the Cohort API to a specific Cohort

engine using a tile ID, and push to or pull from the queue based on if it was registered to

a consumer endpoint or producer endpoint as described previously. The queues are not

limited to purely software-hardware interaction either, as programmers can also register

the queue endpoints between two Cohort engines, chaining two or more hardware acceler-

ators together as shown in Figure 2.3. Because the queues are initialized and configured

at runtime, they can be dynamically re-allocated to different accelerator tiles on the fly,

a very powerful feature useful for adaptive workloads.

2.3 Beehive

Networking functions are one of the system services we were most interested in when

developing Pengwing. Reducing network overhead on the general-purpose cores will

improve overall system efficiency, and with a flexible hardware network stack we can both

adapt the stack for different networking situations as well as enable other components of

10

Background Research Chapter 2

the SoC to directly interface with the network using Cohort.

Beehive [16] was originally designed as a modular NoC-based FPGA network stack

for direct-attached accelerators, enabling application accelerators to interface with a net-

work independent of CPU. The design consisted of an array of different hardware tiles

that each perform a specific networking function such as UDP TX/RX connected by a

NoC. Figure 2.4 highlights the full ingress and egress path of an Ethernet frame through

the design. The annotations in the figure indicate the full ingress path along with the in-

termediate data structures, starting with step 1 where the frame enters Beehive through

the ETH RX tile. This Ethernet frame gets processed into header, metadata, and data

flits and routed to the IP RX tile through the NoC in step 2. Label 3 shows the en route

processed flits, specifically how the data flit lacks an Ethernet header due to the ETH

RX tile consuming this information to determine the routing to the IP RX tile. Step 4

denotes the IP RX tile routing the information in label 5 to the UDP RX tile. The final

step in the ingress path involves routing the flits in label 7 with the final de-encapsulated

UDP data payload to the application tile for processing. The design shown houses a

UDP echo application, where it re-encapsulates the incoming data payload into a UDP

packet and directs it through the egress path where each of the TX tiles will encapsulate

the data with the appropriate headers until the final Ethernet frame is transmitted onto

the network.

While our Pengwing design does not directly use the sample UDP echo application

shown in Figure 4, the modularity provided by Beehive by separating different functions

into discrete engines is immensely useful. Not only does this increase performance because

the receive and transmit paths are decoupled, it provides a clear framework for a new

modular design to be integrated into Pengwing, rivaling the usual complexities when

working with software network driver stacks and enabling network access for previously

isolated accelerators in the SoC.

11

Background Research Chapter 2

Figure 2.4: Sample Beehive UDP Echo Design. This diagram outlines a UDP datagram’s
path through the Beehive topology with a demo application implemented to echo the
payload back out as another UDP datagram (reproduced [16]).

2.4 Pengwing

In order to test the blended OS aspect of Pengwing, we must also construct an appropriate

accelerator-rich hardware platform. While Cohort provides the initial support to attach

accelerators decoupled from the processor, Pengwing develops on this idea by design-

ing a powerful system substrate capable of supporting more features than base Cohort.

This substrate retains the shared memory SPSC queue semantics and memory manage-

ment from Cohort and adds support for multiple-producer multiple-consumer (MPMC)

queues, a load store unit (LSU) with MAPLE [23], a key-value store (KVS) unit with

METAL [24], a hardware memory allocator with Falafel [25], and an in-house hardware

garbage collector, with the flexibility to integrate other Cohort-enabled accelerators as

well. Certain functionalities like the MAPLE LSU and MPMC queue support are inte-

grated directly into the Cohort engine found in each tile, whereas some components like

the KVS unit and the memory allocator are introduced to the system as decoupled accel-

12

Background Research Chapter 2

Figure 2.5: Combined Pengwing SoC showing the tile layout with all the accelerators in
the design.

erators. As part of my research, I designed and implemented our final 3x3 SoC design for

Pengwing consisting of three Ariane tiles and six Cohort tiles with various accelerators

attached as shown in Figure 2.5.

2.4.1 MAPLE

A key component of the substrate that Beehive interacts with is the Memory Access

Parallel-Load Engine (MAPLE) [23] that reduces latency of irregular memory accesses

with prefetching. MAPLE does not require any modifications to the ISA, core, or memory

hierarchy of the SoC and provides a queue interface for memory requests. While MAPLE

supports various operations, we are only concerned with its store capability (to store

data to a pointer address) and its load capability (to load data from a pointer address)

for Beehive’s integration into the SoC. Effectively, MAPLE serves as a robust LSU for

Beehive to access memory that the standard Cohort engine would not normally be able

to access.

13

Background Research Chapter 2

2.4.2 Falafel

As shown in Figure 2.5, our SoC design also contains a memory allocation accelerator,

Falafel [25]. There are many high-performance allocators [26, 27] written in software,

and research efforts into hardware implementations [9, 28, 29, 30] show good promise

with respect to performance. However, these allocators typically use a software-hardware

hybrid design [29, 28], attach into systems using a shared bus [30], or are tightly integrated

into the core [9], all of which clash with Pengwing’s NoC-based decoupling philosophy

for system services. In an effort to bridge this gap, a researcher from our lab designed

Falafel [25], an in-house hardware memory allocator accessible by both software and

hardware through Cohort to facilitate the memory demands of various components in

the processor. Falafel implements the first-fit allocation algorithm based on a singly

linked list. By being developed with Pengwing in mind, this allocator uses separate

queue interfaces for allocating and freeing memory, which aligns well with the Cohort

queues utilized heavily in our system. This enables either software or hardware to request

and free memory independently of each other; specifically, Beehive can directly request

memory for inbound payloads and user applications can free that memory within software

whenever necessary as described later in subsection 3.3.2. This example highlights the

essence of Pengwing, that software and hardware can co-exist within a system as peers

rather than under a strict privilege hierarchy.

14

Chapter 3

Integrating Beehive into Pengwing

Beehive’s modular design with separate tiles for each network layer presents a flexible

framework for adoption into Pengwing, even though its intended usage is for direct-

attached accelerators and not full SoCs. As part of my research, I extended Beehive’s

functionality to properly interact with Cohort queue semantics, inherently enabling any

hardware accelerator or software service in Pengwing to use the hardware network stack.

I built initial prototypes for integrating Beehive into the SoC to enable receiving and

transmitting UDP packets and added configurable support for handling either raw data

streams or packet descriptors allocated through Falafel as enabled by Pengwing.

3.1 Initial Exploration

To begin my research efforts, I first had to understand Beehive’s framework from de-

sign to testing. Beehive leverages cocotb [31], a Python-based testbench environment,

FuseSoC [32], a package manager and build system for hardware description languages,

and Siemen’s QuestaSim for its simulation framework. Using its standard tools, I was

able to replicate Beehive’s sample User Datagram Protocol (UDP) echo application de-

scribed in Section 2.3 within simulation. We chose UDP for our first integration efforts

because of its connectionless nature, but this work is the basis on which we can enable

15

Integrating Beehive into Pengwing Chapter 3

other Beehive-supported connection-based protocols like Transmission Control Protocol

(TCP) within Pengwing. It is important to note that my research was fully conducted

in RTL behavioral simulation due to current limitations which will be discussed later in

the chapter.

3.1.1 Initial Hiccups

As I progressed in my understanding of Beehive’s design with regards to general architec-

ture and codebase structure, I inevitably ran into two major issues: simulation framework

differences and module name aliasing. Beehive dynamically generates certain files using

FuseSoC at build time, which is not easily integrated into OpenPiton’s own simulation

scripts. My workaround was to iterate on the generated files and then add them into

OpenPiton’s filelists statically to maintain a consistent source file structure, bypassing

Beehive’s entire simulation structure to completely use OpenPiton’s framework. This is

highly beneficial as it means future contributors to OpenPiton+Beehive will only need

to rely on one set of software dependencies.

The module name aliasing was a trickier issue in terms of reconciling two different

frameworks. Beehive’s NoC routers are modernized and specialized versions of Open-

Piton’s routers, sharing similar module and macro names. This resulted in odd simula-

tion behavior during initial integration attempts as certain modules and macros would be

instantiated and defined incorrectly across the two codebases, which was hard to debug

due to the lack of errors in the compilation logs. The simulator would instantiate the

general OpenPiton version of certain modules with the wrong NoC sizes within Beehive,

preventing data from being routed and processed properly within the Beehive topology.

After careful examination of the waveforms to diagnose this issue, I patched this bug so

that there were no overlaps in any module or macro naming between the two different

systems and was able to debug the hardware I developed.

16

Integrating Beehive into Pengwing Chapter 3

3.1.2 Data Structures within Beehive

To understand how to convert Cohort queue semantics into UDP packets, I first had

to understand the internal representation of data within the hardware network stack.

Beehive splits UDP packets into three types of flow control units (flits) to be transmitted

on the NoC between the UDP TX/RX tiles and the UDP echo application tile.

The header flit contains information regarding the routing of the full packet within

Beehive’s NoC. Fields within this flit include source and destination tiles in Beehive’s

topology, the message type which is either UDP {TX/RX} SEGMENT, and the message

length in terms of number of non-header flits.

There are two different types of metadata flits, one for receiving and one for trans-

mitting, but they both contain the same fields. This flit includes information regarding

source and destination IP addresses and ports, as well as the data length (not to be

confused with the header’s message length) in terms of number of bytes in the following

data flit(s). This value is crucial for masking the correct subset of the data flit in the

case that the data size is not perfectly aligned to Beehive’s NoC width.

The data flit simply contains the data payload the caller of the network stack wishes

to put in the UDP datagram. If the amount of data is greater than the Beehive NoC

width, the data should be split into consecutive flits that align with the width.

3.1.3 File Structure of Beehive

In order to understand the process of integrating Beehive into OpenPiton using Cohort,

I believe it is important to explain the module hierarchy as shown in Figure 3.1. There

are 7 modules of particular note to my research.

• udp echo top: This module is the top level wrapper for the whole Beehive system,

instantiating the grid layout of Beehive and exposing media access control (MAC)

17

Integrating Beehive into Pengwing Chapter 3

Figure 3.1: Original UDP Echo Module Hierarchy.

level ports that can tie into third-party network interface cards (NICs). All the tiles

of the different network layers (Ethernet, IP, UDP) are not shown in the diagram

but are instantiated at this level.

• udp echo app tile: This is the tile within udp echo top that we are most in-

terested in. It houses all the necessary hardware to perform NoC routing and UDP

packet echoing.

• udp echo app: This module contains the logic for the actual UDP echo applica-

tion, split into two internal modules.

– datap: Within udp echo app, this module houses the datapath logic, from

holding the various inbound flits in internal buffers to generating the param-

eters in the outbound flits.

– ctrl: This is the control module that processes when to accept inbound flits

from the UDP RX tile and when to transmit flits to the UDP TX tile. This

18

Integrating Beehive into Pengwing Chapter 3

logic is actually contained in two different internal modules, one for inbound

data (in ctrl) and one for outbound data (out ctrl).

3.2 Adapting UDP Echo App

As mentioned before, Beehive provides a sample UDP echo test with a design layout

shown in Figure 2.4 in Section 2.3. If we examine the datapath, we can see that the UDP

packet flows from Ethernet Media Access Control (MAC) → ETH RX → IP RX → UDP

RX → udp echo app tile → UDP TX → IP TX → ETH TX → Ethernet MAC, with the

frame being de-encapsulated along the RX path and re-encapsulated along the TX path.

In this arrangement, Beehive’s design only has one path for data to flow. Because I am

trying to link this hardware network stack to other system services in the SoC, it must be

able to handle separate ingress/inbound and egress/outbound data flows independently.

To decouple these two paths for usability in Pengwing, I designed a new module within

udp echo app called cohort to beehive that could interact with the valid-ready Cohort

endpoints (see Figure 3.2). This also required modifications to the existing control and

datapath architecture, as outbound packets now needed to be driven by the incoming

Cohort queue data and inbound packets needed to be fed into the outgoing Cohort queue.

My new module contains two finite state machines (FSMs), one for outbound data and

one for inbound data.

The outbound data FSM did three steps. It was hardcoded to accept 4 Cohort

elements at a time from the consumer endpoint and store them in an internal 32 byte

buffer to match the size of Beehive’s NoC width. It would then raise the correct signals

to notify the control module to generate hard-coded header and metadata flits through

the datapath module. Finally, it would send the 32 bytes within its internal buffer to the

datapath in order to form the data flit that would be passed on to the UDP TX tile.

19

Integrating Beehive into Pengwing Chapter 3

Figure 3.2: Modified UDP Echo Module Hierarchy.

The inbound data FSM essentially reversed this process. The control module would

flag this FSM when it received the header and metadata flits from the UDP RX tile

through Beehive’s NoC. When the data flit arrived, it would be routed into the FSM

and pulled into its internal buffer. Then, it would increment through the buffer 8 bytes

at a time (the size of a Cohort queue element) and push that segment into the producer

endpoint until it sent out all of the data.

This iteration of cohort to beehive was very naive and served only as a prototype

design as certain parameters like message length were hardcoded. However, it was a proof-

of-concept that Beehive could be used within Pengwing. I successfully simulated a test

application on a 2x2 OpenPiton+Cohort design with same layout as seen in Figure 2.2

with this modified Beehive integrated into one of the Cohort tiles. In this test, a pair of

Cohort queues were registered between software and the Cohort producer and consumer

endpoints attached to Beehive, and for simulation purposes, Beehive’s outward facing

MAC layer is directly looped back to itself instead of tapping into an actual network.

20

Integrating Beehive into Pengwing Chapter 3

This way, Beehive accepts data through the consumer endpoint, sends out a UDP packet

through the egress path which gets looped back into its ingress path, and then Beehive

pushes the data payload into the producer endpoint to be consumed by software.

3.3 Improvements to the Design

After verifying the usability of the hardware network stack within the SoC with the test

case just described, I iterated on the design to support other features. The main issue

with the prototype solution was that message lengths were hardcoded to be 32 bytes, so

I expanded the functionality to support variable-sized inputs. Additionally, I modified

cohort to beehive to be more generic in order to enable the processing of both raw data

streams and packet descriptors within Beehive in a configurable manner.

3.3.1 Variable Width Inputs

My solution to processing variable sized inputs for the outbound path was to consider two

situations: sizes up to 32 bytes and sizes greater than 32 bytes. The first modification

was to add a size value into the agreed protocol between the user and the hardware

network stack itself. For example, if a software service wanted to set the payload size of

UDP datagram at 24 bytes, it would first push the byte size value (24) into the queue

registered to Beehive’s consumer endpoint followed by the actual data stream separated

into 8 byte chunks to match the Cohort queue element size. If the size value is not aligned

to 8 bytes, the final queue element should be zero padded to 8 bytes. The FSM handling

outbound data then sets the correct values in the header and metadata flits to reflect the

correct size of the UDP packet and sends the data flit out.

To account for sizes greater than 32 bytes, I further modify this FSM to keep track of

the number of 32 byte data flits needed to contain the requested payload. The FSM still

21

Integrating Beehive into Pengwing Chapter 3

Figure 3.3: A sample outbound UDP datagram request showing how software sends the
requested payload size followed by the data stream into a Cohort FIFO queue.

pulls in 8 bytes at a time from the consumer endpoint, but it also tracks which quartile

of the current data flit this piece of data corresponds to. Once the FSM has pulled in

32 bytes into its internal buffer, it will then send that data flit out onto Beehive’s NoC

and proceed to pulling in data for the next data flit. Once the FSM gets to the last flit,

it functions exactly as described before for sizes up to 32 bytes. Figure 3.3 shows how

software would send data to Beehive using a Cohort queue and highlights how internally

Beehive would discern between the multiple data flits.

As for the inbound path, I made similar modifications to the prototype design. The

FSM first reads the size from the metadata flit and sets the correct values for the number

of data flits to process. It then pulls in a 32 byte data flit from the Beehive NoC and

iterates through 8 bytes at a time sending each chunk out to the producer endpoint. Once

the full flit has been sent out through Cohort, the FSM repeats this cycle by pulling in

the next data flit for processing, continuing until all the data from the UDP payload has

been processed.

3.3.2 Packet Descriptors

The second improvement I implemented was enabling users of the network stack to send

and receive packet descriptors rather than raw data streams. This is useful for reducing

the amount of data transmitted through Cohort queues in the case of much larger data

frames to prevent the queues from filling up too quickly.

For the outbound path, I designed a new FSM that performs the same initialization

22

Integrating Beehive into Pengwing Chapter 3

of header and metadata flits using a size value passed through Cohort but it only accepts

a packet descriptor as the next Cohort queue item rather than raw data. Currently, the

protocol treats the packet descriptor as a pointer to an array of uint64 t data values, but

support for more robust descriptors can eventually be added. The outbound FSM then

requests 8 bytes at a time from the memory location provided by the descriptor using

MAPLE, the LSU of Pengwing’s system substrate. Once it receives the memory response

from MAPLE, the FSM performs the same operations as before to batch the data then

send out the full data flit to the UDP TX tile through Beehive’s NoC. Essentially, the

core logic of the FSM remains the same with certain modifications to generate the data

flits using MAPLE rather than Cohort queues.

Modifying the inbound path to support packet descriptors required more considera-

tion due to the need for memory allocation. The new design grabs the data size value

from the metadata flit normally. Before anything else occurs, though, it requests memory

of that size from Falafel, our hardware memory allocator, using another set of Cohort

queues initialized between Beehive and the allocator. To be clear, the versatility of

Pengwing enables us to call software malloc() through the same queue-based API if

so desired. Rather than servicing the allocation through a software library though, this

chaining of accelerators enabled by Cohort showcases how Pengwing enables system ser-

vices to interact independently of the processor cores. Once the inbound FSM accepts

the pointer to the memory allocated by Falafel, it then processes the data flit from the

NoC. The module then uses MAPLE requests again to store 8 bytes of the data flit at

a time, cycling through as before until all data is stored. The size and pointer are then

pushed into the producer endpoint queue for use by the caller of the network stack.

23

Integrating Beehive into Pengwing Chapter 3

3.4 Improved UDP Design

The central theme of Pengwing is to enable collaboration across different levels, which

is highlighted by the hardware-to-hardware accelerator chaining of Beehive and Falafel

as well as the varying levels of hardware-software interactions by providing the ability

to choose how much data processing is performed on the hardware network stack. De-

signers are able to define the interactions across the SoC rather than being limited to

predetermined conventions. With the additional support for variable sized packets and

descriptors, I refined the integration of Beehive into Pengwing to be more adaptable be-

tween different scenarios. By defining new SystemVerilog parameters and using generate

blocks within cohort to beehive, the user is able to configure between processing data

streams or pointers for each of the inbound and outbound paths, enabling other collab-

orators to more easily design and integrate modules for new processing methods as well.

The available modules to be generated are explained below.

3.4.1 in data

This module performs the necessary logic to process inbound UDP datagrams and push

the data to a Cohort queue interface as a data stream.

24

Integrating Beehive into Pengwing Chapter 3

Figure 3.4: in data State Machine.

Figure 3.4 shows the states and transitions of this FSM with a brief description of

each state below.

• HDR IN: waits for the control architecture to check if a header flit came through

the NoC.

• META IN: waits for the control architecture to check for the metadata flit.

• SEND SIZE: sets the necessary internal counters to process the payload based on

the size from the meta flit and sends the size value to the producer endpoint.

• PULL: pulls in a single data flit from the NoC into its internal buffer.

• COHORT OUT DATA: increments through the buffer 8 bytes at a time, sending it

to the producer endpoint. If there is still data in the buffer to process, it increments

its internal counters and stays in the same state. If the buffer is fully processed but

there are still data flits left in the payload, it transitions to PULL to grab the next

data flit. If the payload has been fully processed, it will transition back to HDR IN

to wait for the next UDP datagram.

25

Integrating Beehive into Pengwing Chapter 3

3.4.2 in pointer

This module performs the necessary logic to process inbound UDP datagrams, allocate

and store the data in memory, and push the packet descriptor to a Cohort queue interface.

Figure 3.5: in pointer State Machine.

Figure 3.5 shows the states and transitions of this FSM with a brief description of

each state below.

• HDR IN: waits for the control architecture to check if a header flit came through

the NoC.

• META IN: waits for the control architecture to check for the metadata flit.

• SEND SIZE: sets the necessary internal counters to process the payload based on

the size from the meta flit and sends the size value to the producer endpoint.

• SEND ALLOC TYPE: sends the request type to Falafel using a second producer

endpoint.

• SEND ALLOC SIZE: sends the request size (of the UDP payload) to Falafel.

26

Integrating Beehive into Pengwing Chapter 3

• RECV ALLOC PTR: receives the requested pointer from Falafel through a dedi-

cated consumer endpoint.

• PULL: pulls in a single data flit from the NoC into its internal buffer.

• SEND MAPLE: sends the memory location and 8 byte data chunk we want to store

to MAPLE through its dedicated queue interface.

• WAIT MAPLE: increments the internal counters to move to the correct location

within the internal buffer. If there is still data left to process in the buffer, it will

transition to SEND MAPLE to send the next data chunk to MAPLE. If the buffer

is fully processed but there are still data flits left in the payload, it will transition

to PULL to pull in the next data flit. If the payload is fully processed, it will

transition to SEND PTR.

• SEND PTR: sends the packet descriptor (pointer) out to the main producer end-

point.

3.4.3 out data

This module performs the necessary logic to process data from a Cohort queue interface

as a data stream and generate the correct Beehive flits to send to the UDP TX tile.

27

Integrating Beehive into Pengwing Chapter 3

Figure 3.6: out data State Machine.

Figure 3.6 shows the states and transitions of this FSM with a brief description of

each state below.

• COHORT IN BYTES: pulls in the requested payload size from the consumer end-

point.

• HDR OUT: signals the control and datapath architecture to generate the header

flit to send out on the NoC.

• META OUT: signals the control and datapath architecture to generate the meta-

data flit containing the payload size information to send out on the NoC.

• COHORT IN DATA: pulls in 8 bytes of data from the consumer endpoint into its

internal buffer. If the buffer is not full, it will increment its interal counters and

stay in this state. If the buffer is full, it will transition to PUSH.

• PUSH: pushes the full buffer onto the NoC as a full data flit. If the full payload

has been sent out, it will transition to COHORT IN BYTES. Otherwise, it will

transition back to COHORT IN DATA.

28

Integrating Beehive into Pengwing Chapter 3

3.4.4 out pointer

This module performs the necessary logic to grab a packet descriptor from a Cohort

queue interface, load the data from memory, and generate the correct Beehive flits to

send to the UDP TX tile.

Figure 3.7: out pointer State Machine.

Figure 3.7 shows the states and transitions of this FSM with a brief description of

each state below.

• COHORT IN BYTES: pulls in the requested payload size from the consumer end-

point.

• HDR OUT: signals the control and datapath architecture to generate the header

flit to send out on the NoC.

• META OUT: signals the control and datapath architecture to generate the meta-

data flit containing the payload size information to send out on the NoC.

• COHORT IN PTR: pulls in the packet descriptor from the consumer endpoint.

• SEND MAPLE SIZE: requests 8 bytes of data at a time from the memory location

given by the packet descriptor using MAPLE’s dedicated queue interface.

29

Integrating Beehive into Pengwing Chapter 3

• LOAD OUTBOUND DATA: receives MAPLE’s response and loads the data into

its internal buffer. If the buffer is not full, it will transition back to

SEND MAPLE SIZE after incrementing the pointer address. If the buffer is full,

it will transition to PUSH.

• PUSH: pushes the full buffer onto the NoC as a single data flit. If the full payload

has been sent out, it will transition to COHORT IN BYTES. Otherwise, it will

transition back to SEND MAPLE SIZE to generate the next data flit.

3.5 Full Pengwing SoC

After I was able to test the functionality of OpenPiton+Beehive with the added features,

I also designed the full SoC on which we would evaluate Pengwing as a whole. The layout

for Cohort-enabled OpenPiton processors outlined in the Cohort paper followed a 2x2

grid design, with two Ariane tiles and two Cohort tiles containing various accelerators.

We use this layout to test individual accelerators like our key-value store unit or our

memory allocator. However, this layout is not big enough to contain everything in the

Pengwing substrate.

To incorporate everything, I used a 3x3 topology for our manycore SoC, with 3 Ariane

tiles and 6 Cohort tiles as shown in Figure 2.5 back in Section 2.4. While OpenPiton

and Cohort are both rather configurable, this process still involved some hardware design

adjustments as well as software library modifications as certain parameters relied on false

assumptions about the layout. The philosophy of the ordering of accelerators within this

design was to minimize NoC traffic for the evaluation setups to be described in the

next chapter. Our hardware network stack was also intentionally placed at an outer

edge to account for layout as both designs use a 2D mesh topology, similar to how in

OpenPiton the top left Ariane tile connects to the chipset. This combined SoC will be the

30

Integrating Beehive into Pengwing Chapter 3

default evaluation platform for Pengwing, enabling our collaborators to simulate various

applications involving any subset of accelerators on a single hardware design.

3.6 Future Improvements

While I was able to improve the utility of Beehive within the platform from the initial

prototype, there are still many advancements that can be made on this design. In terms of

certain configurations, we can increase the NoC widths for both OpenPiton and Beehive.

For OpenPiton, this can minimize the amount of NoC messages required for Cohort queue

operations; for Beehive, this will reduce the number of flits needed to be transmitted as

well. Another major upgrade would be to expand the size of Cohort queue elements to

require less pushes to Beehive for the raw data stream. In theory, this should be easily

done due to the configurable parameters within the platform, but in practice, there is

much left to debug in order for the expanded sizes to work. Also, Beehive only requests

8 bytes at a time from MAPLE, but with more tinkering batching these requests to 64

bytes should be possible, which will increase memory throughput and reduce end-to-end

latency.

Another architectural change would be to expand the packet descriptor to incorporate

more information. The current design only contains the data pointer in the descriptor,

but ideally it should contain all the other metadata information like IP address and ports

that are still hardwired. I would also enable Beehive to use multiple-producer-multiple-

consumer (MPMC) queues, allowing multiple threads or hardware services to call on the

network stack through one interface.

Within Beehive, I would explore more into the software configurability between pro-

cessing data streams and packet descriptors. Currently, I can select which module to gen-

erate for inbound and outbound data, but this parameter can only be set at build time. I

31

Integrating Beehive into Pengwing Chapter 3

believe that changing this to be configurable by software would be much more flexible, as

programmers can choose which processing method to use dynamically based on system

needs. However, this would require a significant rework to the design of cohort to beehive

by implementing an LSU within the module to handle storing this configuration within a

register file and routing the data to the correct processing module. A potential drawback

to this method is that both versions of the inbound and outbound modules would be

instantiated resulting in half of the logic being left dormant. A workaround would be to

design just one FSM for each path with more intricate logic to differentiate the processing

method based on the software configured registers.

Additionally, Beehive contains the necessary hardware tiles to fully support other

protocols like IP, TCP, and remote procedure call (RPC), so integrating support for

them in the Pengwing version of the hardware network stack should also be a priority.

While connectionless protocols like UDP and IP are fairly straightfoward to handle,

connection-based protocols like TCP are more difficult to integrate into Pengwing due

to the need for additional logic to handle establishing, maintaining, and releasing the

connection properly.

Lastly, we are currently debugging issues with an AXI bridge in OpenPiton to be

able to test the system on FPGA rather than just in simulation. This would enable

us to further verify our full Pengwing design by being able to boot Linux as well as

fully test the network hardware stack by leveraging the MAC layer of an FPGA-based

network interface card (NIC) like Corundum [33]. With an FPGA implementation, we

could transmit the UDP packets over a physical network to another machine to validate

the integration of Beehive into Pengwing.

32

Chapter 4

Experimental Setups and Analysis

After designing the full Pengwing SoC, I evaluated the setup across different use cases

that would utilize a hardware network stack. It is important to highlight that all of these

experimental setups leverage the same hardware design just with differing software appli-

cations, showcasing Pengwing’s flexibility with regards to dynamically blending different

system service components together.

4.1 Original Cohort+Beehive

Testing the original prototype integration of Beehive using Cohort served as a baseline

for the more complex Pengwing setups. Although the hardware design slightly differs

with regards to tile layout in OpenPiton (refer to Figure 2.2 for the original tile layout

compared to Figure 2.5 for the Pengwing tile layout), the general structure of the test

application remains the same.

Each application begins with initializing a pair of FIFO queues using existing soft-

ware libraries and then registering them using the Cohort API, which requires designating

which queue is acting as an input to the accelerator and binding to its Cohort engine’s

consumer endpoint and which queue is acting as an output for the accelerator and binding

to the producer endpoint. The original intent of the Cohort API is to be accelerator-

33

Experimental Setups and Analysis Chapter 4

oriented, focusing on registering one pair of queues to a single accelerator’s Cohort engine

and designating software as the other endpoint for the queues; however, with clever ma-

nipulation of the API, it is possible to chain the queues between two accelerators. Ideally

though, we would have native support for chaining between accelerators in Pengwing by

defining a graph of the SoC components and its communication layout rather than this

temporary solution. It is also important to note that the Cohort engine can be configured

to open multiple pairs of consumer/producer endpoints, enabling multiple sets of queues

to be registered to a single Cohort engine.

Once the Cohort queues are properly configured and enabled, programmers can then

push to or pull from these queues. In the standard Cohort+Beehive setup, the test

application generates 4 data elements, each 8 bytes in size, and push them sequentially

into the queue connected to the consumer endpoint of the Cohort tile containing Beehive.

After a push sync which updates the write pointer of the queue, the application then pulls

4 elements from the queue attached to the producer endpoint of Beehive, confirming that

the data matches what was pushed into the network stack. Finally, the software performs

a pull sync to update the read pointer of the queue. This is the general framework for

applications that utilize Cohort-connected accelerators, and the following sections will

detail more involved setups.

4.2 Pengwing Setups

With the robust system substrate, I developed experimental setups that showcase various

capabilities enabled by Pengwing. The following setups include hardware collaboration

with our AES encryption unit, our key-value store unit, and our memory allocator unit.

I also evaluated the difference between the two Beehive processing options of raw data

streams or packet descriptors.

34

Experimental Setups and Analysis Chapter 4

Figure 4.1: Beehive+AES setup showing the logical flow of data.

4.2.1 Beehive+AES

The Beehive+AES setup simulates a situation where a user wants to automatically en-

crypt data to be sent out on UDP packets as well as decrypt encrypted data coming in

from the network. The logical flow is shown in Figure 4.1.

The diagram does not represent the actual layout within Pengwing, but rather the

logical flow of data throughout the system. The inbound arrows represent the consumer

endpoint of that tile, and the outbound arrows represent the producer endpoint of that

tile. Queues are represented by the lines connecting two endpoints, and queues with

the same color are part of the same queue pair explained in Section 4.1. As evident in

this diagram, Pengwing setups do not necessarily need to adhere to traditional vertical

software stacks that tightly bind the accelerator to the core. Pengwing enables dynamic

configuration of the system to facilitate services in different ways based on the needs of

the programmer.

In the Beehive+AES setup, the application generates and pushes data into the first

35

Experimental Setups and Analysis Chapter 4

queue configured between software and the first AES accelerator. Once the unit properly

encrypts the data, it is then piped into the second queue between its producer endpoint

and Beehive’s consumer endpoint. In this experiment, Beehive is configured to process

raw data streams for both ingress and egress packets. Beehive’s second pair of endpoints

is not for Cohort, however; it represents the interfaces that can eventually be wired into

a NIC but are currently wired together in a loopback. This way, Beehive essentially

generates its own UDP packets to process, allowing us to test both data paths within the

network stack within the same application. Once Beehive processes the UDP datagram

consisting of the encrypted value from the first AES unit, it pushes the data into the

queue connected to the second AES engine, which is used to decrypt the encrypted value

to be sent back into software through the last queue.

4.2.2 Beehive+METAL

The Beehive+METAL setup combines the hardware network stack with our key-value

store unit implementing a subset of METAL’s capabilities to emulate a scenario where

another device on the network requests a value from METAL and our system is able to

fulfill these requests without software interaction. The setup is shown in Figure 4.2.

The data flow in this setup is relatively straightforward. Like before, software uses

Beehive to generate UDP datagrams containing METAL requests that are then routed

back into its own inbound path. In an actual use case, this process would not be needed

as the requests would come directly from another module on the network. Once the

network stack de-encapsulates the UDP datagram, the request is then directed into the

queue connected to METAL. After fetching the value associated with the queried key, it is

then sent back to software. Once again, the fetched value would normally be routed back

into the network stack to send back to the device issuing the request, but in simulation

this is how we validate proper functionality throughout the whole system.

36

Experimental Setups and Analysis Chapter 4

Figure 4.2: Beehive+METAL setup showing the logical flow of data.

4.2.3 Beehive+Falafel

The Beehive+Falafel setup utilizes the hardware network stack, memory allocator, and

memory access unit to showcase a fully descriptor-based Beehive configuration, dynam-

ically allocating packet buffers as enabled by Pengwing. The logical flow is shown in

Figure 4.3.

37

Experimental Setups and Analysis Chapter 4

Figure 4.3: Beehive+Falafel setup showing the logical flow of data.

This experimental setup highlights a more complex configuration where each acceler-

ator tile must interact with multiple sets of queues accordingly. The application begins

by configuring Falafel using a single queue attached to a special configuration interface

within the allocator. After allocating and writing to a buffer in memory, it then passes

the size and pointer to Beehive through another Cohort queue. The Beehive tile then

requests the data using the MAPLE interface and generates the UDP packet for loop

back. While processing this echoed datagram, the Beehive tile then sends a memory

allocation request to Falafel, which returns a pointer through a queue attached to the

initial configuration endpoints. Beehive then sends requests to MAPLE once again to

store the inbound data at this memory location, returning the size and new pointer back

to software.

38

Experimental Setups and Analysis Chapter 4

4.2.4 Data Stream vs Descriptors

Lastly, I also evaluated the aforementioned Beehive+Falafel setup against the baseline

Beehive setup that processes data streams with regards to simulated throughput. Because

we are not testing on FPGA yet, latency numbers would not be an accurate comparison

between the two setups. In this benchmark, I also compared the performance between

smaller and larger packet sizes to observe if there would be a difference in throughput

based on the width of UDP datagrams.

4.3 Results and Analysis

All of the Pengwing setups were evaluated in RTL simulation using Synopsys VCS version

Q-2020.03 running on Ubuntu 20.04.6 LTS with a simulated frequency of 2.5GHz and

a Cohort queue size of 1024 elements. I recorded cycle and instruction numbers using

Ariane hardware counters accessed through a CSR read call in software. With these

performance counters, we measure the counts between the first Cohort queue push and

the last pull from a Cohort queue, determining the full path cycle count for each test

application. Combined with the simulated frequency, this data provides the necessary

information to evaluate the throughput performance of each experimental setup.

Figure 4.4: Beehive+AES Throughput. Figure 4.5: Beehive+METAL Throughput.

39

Experimental Setups and Analysis Chapter 4

For the Beehive+AES setup, I set the UDP payload size at 32 bytes, each containing

a single output from the AES encryption engine. As shown in Figure 4.4, the simulated

throughput of the system hovers around 170 MBits/sec, which corresponds to around

660,000 packets per second.

Figure 4.5 shows the throughput metrics for the Beehive+METAL setup, where each

METAL request (get) corresponds to one Beehive UDP datagram. Measured in MGets

per second, the performance of the setup starts at 0.3 MGets/sec with just 1 METAL

request and scales up to 2.5 MGets/sec with 128 requests. The progressive increase and

eventual stabilization of the throughput can be explained by the caching performed by

METAL as it traverses its internal data structure to access stored values. At the start,

METAL’s internal cache is empty, forcing full traversal of its data structure, increasing

the number of cycles required to fulfill a request. However, after many get operations,

the cache fills up, permitting quicker response times from METAL as well as higher

throughput.

Figure 4.6: Data Throughput. Figure 4.7: Packet Throughput.

Lastly, we look into the results of the Beehive setup with regards to both processing

methods and packet sizes. As shown in Figure 4.6, we observe that batching data into

larger packet sizes of 1024 bytes yielded higher data throughput compared to the smaller

packet sizes of 64 bytes. For the raw data streams, we were able to push roughly 2.2x

40

Experimental Setups and Analysis Chapter 4

more data through the system per simulated second with the larger packets compared

to the smaller datagrams, whereas this ratio was approximately 4x when using packet

descriptors. In fact, we are driving over a gigabit per second of throughput with the setup

with full descriptor processing and larger packet sizes from a simple 6-stage in-order core.

When we look at just the number of packets processed per second in Figure 4.7 though, we

observe that using smaller packets actually enabled roughly 7x as many packets handled

using data streams and around 4x as many for descriptors. This makes sense because

while the smaller packets each contain one-eighth of the data of a larger packet, the

overhead introduced by the extra header and metadata flits needed to be processed

results in the 1024 byte packets being more efficient for throughput. Now, if we compare

between the processing methods, data streams perform slightly better for smaller packets

and descriptors process faster for larger packets. This is due to the overhead introduced

by Cohort queues and the MAPLE subsystem, where queue accesses might be more

efficient in small bursts but MAPLE can handle the larger number of memory requests

quicker.

41

Chapter 5

Related Works

There have been related works researching similar aspects of increased collaboration

across the whole system design. The solutions range from specific OS designs to other

hardware-software co-design approaches. There are also other hardware system service

implementations that we could potentially integrate into the Pengwing substrate in the

future. Additionally, there are parallel projects into hardware networking solutions worth

exploring.

5.1 OS Designs

OS designs can adopt a spectrum of data structure sharing models, from the shared-

nothing model of Barrelfish [34] and fos [35] to the shared-most model of K2 [36] to the

shared-everything model of Linux. Pengwing is unique in that system designers are not

bound to a specific model but rather have the freedom to implement system services

under any of these models, but it is still important to understand the utility behind each

model. Barrelfish [34] presents a multikernel implementation where the OS is restruc-

tured into separate hardware-neutral functional units communicating through message

passing. This improves multi-core scalability as new cores can be introduced to the sys-

tem more freely as each node can function independently and only replicate state using

42

Related Works Chapter 5

asynchronous messages when necessary. fos [35], which stands for factored operating

system, utilizes message passing as well by factoring system services into smaller process

servers that communicate to facilitate the full service, and it separates kernel services

and applications into different cores to prevent resource contention. OSes like K2, on

the other hand, utilize the shared-most model, where certain resources can be explicitly

architected to be shared by different parts of the system. K2 [36] specifically deals with

different cache coherency domains in mobile heterogeneous SoCs, where only some OS

services like device drivers can extend state across domains while certain services like page

allocation and interrupt management are run independently on each coherence domain

with no state sharing between them. These seminal works in operating systems design

provided the foundation for understanding how to optimize scalability and performance

across the OS sharedness spectrum.

5.2 HW+SW Co-Design

Other research into better leveraging heterogeneous systems utilize a hardware-software

co-design solution, similar to Pengwing. Works like M³ [37], M³x [38], and M³v [39]

introduce the idea of treating accelerators not as devices but at the same level as general-

purpose cores through techniques like NoC-level isolation using data transfer units and

a microkernel-based system. M³x [38] improves on this by trading some isolation to

allow multiplexing between different applications within a general-purpose or accelerator

tile using a single centralized OS tile, enabling fast-path communication and context

switching. M³v [39] further extends the fast path by providing the framework for general-

purpose cores to multiplex between applications without involvement from the OS tile.

Other research studies like AuRORA [40] propose accelerator interfaces that preserve

existing software semantics similar to Pengwing. However, the difference is AuRORA

43

Related Works Chapter 5

promotes a tight coupling of accelerators and CPUs through their interconnect, whereas

Pengwing encourages collaboration across the SoC using decoupled interfaces that enable

more robust communication.

5.3 Other System Services

While this project focuses on a specific hardware network stack implementation, it is im-

portant to consider other system services that would be suitable in our design. I/O-facing

accelerators for TCP offloading [41, 13, 14] and other network stacks like Limago [42],

Tonic [43], and Microsoft’s Catapult [12] are fairly well-researched, but only few examples

of internal system services are available. Outside of our own Falafel allocator, there is

Mallacc [9] which presents an in-core solution for acceleration of size class computation,

free memory block retrieval, and memory usage sampling to make software malloc()

calls faster. Another work titled NextGen-Malloc [44] restructures metadata for memory

management, decoupling this information from the rest of application data in order to

off-load the allocation and management functions; however, it expects a separate de-

vice/core to be available rather than implementing the off-loading hardware themselves.

Apart from memory allocation, there is an accelerator for garbage collection [10] in a

stop-the-world setting using separate hardware traversal and reclamation units, evalu-

ated on a modified JikesRVM. Additionally, there is a hardware-based demand paging

implementation [45] designed so that the CPU will try to locate missing pages using the

accelerator while stalling its pipelines rather than raising an exception to the OS.

5.4 Hardware Networking Services

Focusing on works in the space of hardware network stacks, other researchers have their

own approach to packet processing compared to Beehive. PANIC [46] is a programmable

44

Related Works Chapter 5

NIC designed to offload computation from various applications running on different end-

points including accelerators and general-purpose cores. However, PANIC utilizes a cen-

tral scheduler that drops packets when buffer space fills up to deal with deadlocks, which

is problematic for connection-based protocols. Conversely, Beehive does not encounter

this issue due to its robust NoC interface that preempts deadlocks, enabling support for

protocols like TCP. ClickNP [47] is another hardware-based packet processing framework

with support for integrating arbitrary networking functions. It is used to accelerate soft-

ware network functions such as packet generation and load balancing, which means there

is no support for higher-level protocols like in Beehive. Additionally, ClickNP necessi-

tates a PCIE connection to a host CPU, which contrasts with the Pengwing’s principle

of configurability and collaboration.

45

Chapter 6

Conclusion

As processor designs begin to rely on more hardware acceleration, building a new OS con-

cept that enables richer collaboration across all system components inherently becomes

a hardware/software co-design problem, where we need to employ the right software

methodology to leverage the accelerator-rich platform that we develop. Pengwing seeks

to reshape the hardware/software stack, shifting the current usage model of accelerators

to enable them to be used in more varied ways throughout modern OSes other than

conventional user applications.

In this thesis, I focus on the networking aspect of our endeavor. We decided the

best approach would be to modify Beehive, a modular NoC-based hardware network

stack originally designed for direct-attached accelerators, to attach to Pengwing’s system

substrate. I began with an initial prototype integration of Beehive into our OpenPiton de-

sign, eventually implementing further features like configurable support for data streams

or packet descriptors. After designing the full Pengwing SoC, I demonstrated the capa-

bilities of flexible collaboration possible in our blended OS through a variety of setups

that incorporate various system services available on our current SoC design like memory

allocation and data encryption with the network stack.

There are still improvements to be made regarding Beehive’s integration into Peng-

wing. Currently, only UDP is supported in the setup but more involved protocols like

46

Conclusion Chapter 6

TCP and RPC can potentially be integrated alongside UDP owing to Beehive’s modular

design. The current setup will also need to be slightly altered to process critical metadata

information regarding each packet like IP address and ports for full functionality once

we are able to test the system on FPGA. Section 3.6 expands on the other improvements

we can make to the current design.

The evaluation setups that we do currently have, though, highlight just a small subset

of the possibilities of efficient full system collaboration enabled by Pengwing. The inte-

gration of a hardware network stack into our processor design represents a crucial system

service that can be utilized by other system services regardless of if they are implemented

in software or hardware, serving as a basis for future works to incorporate more utility

throughout our Pengwing hardware/software co-design.

47

References

[1] D. Giri, P. Mantovani, and L. P. Carloni, Accelerators and Coherence: An SoC
Perspective, IEEE Micro 38 (2018), no. 6 36–45.

[2] C. Maertin, Post-Dennard Scaling and the final Years of Moore’s Law, tech. rep.,
Hochschule Ausburg, University of Applied Sciences, Sept., 2014.

[3] J. Clover, “Apple Silicon: The Complete Guide.”
https://www.macrumors.com/guide/apple-silicon/. [Accessed 01-09-2024].

[4] Synopsys, “Cloud Servers.” https://www.synopsys.com/designware-ip/ip-

market-segments/cloud-computing/servers.html. [Accessed 01-09-2024].

[5] S. Steers, “SoCs are making an appearance in the data centre industry.”
https://datacentremagazine.com/data-centres/socs-are-making-an-

appearance-in-the-data-centre-industry. [Accessed 01-09-2024].

[6] M. Braly, A configurable H.265-compatible motion estimation accelerator
architecture suitable for realtime 4K video encoding, 2016.

[7] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou, and D. A.
Patterson, TPU v4: An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings, in Proceedings of the 50th Annual
International Symposium on Computer Architecture, ISCA ’23, (New York, NY,
USA), Association for Computing Machinery, 2023.

[8] A. Salah, “AES-128 Pipeline Encryption.”
https://github.com/freecores/aes-128_pipelined_encryption/. [Accessed
01-09-2024].

[9] S. Kanev, S. L. Xi, G.-Y. Wei, and D. Brooks, Mallacc: Accelerating Memory
Allocation, Operating systems review 51 (2017), no. 2 33–45.

[10] M. Maas, K. Asanovic, and J. Kubiatowicz, A Hardware Accelerator for Tracing
Garbage Collection, IEEE MICRO 39 (2019), no. 3 38–46.

48

https://www.macrumors.com/guide/apple-silicon/
https://www.synopsys.com/designware-ip/ip-market-segments/cloud-computing/servers.html
https://www.synopsys.com/designware-ip/ip-market-segments/cloud-computing/servers.html
https://datacentremagazine.com/data-centres/socs-are-making-an-appearance-in-the-data-centre-industry
https://datacentremagazine.com/data-centres/socs-are-making-an-appearance-in-the-data-centre-industry
https://github.com/freecores/aes-128_pipelined_encryption/

REFERENCES

[11] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and D. Wentzlaff,
Enabling programmable transport protocols in high-speed NICs, in Proceedings of
the 17th Usenix Conference on Networked Systems Design and Implementation,
NSDI’20, (USA), p. 93–110, USENIX Association, 2020.

[12] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger, A cloud-scale
acceleration architecture, in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 1–13, IEEE, 2016.

[13] easics, “TCP Offload Engine.” https://www.easics.com/tcp-offload-engine/.
[Accessed 01-09-2024].

[14] missing link electronics, “TCP/UDP/IP Network Protocol Accelerator Platform
(NPAP).” https://www.missinglinkelectronics.com/ip-cores/npap-tcp-

udp-ip-stack/. [Accessed 01-09-2024].

[15] T. Wei, N. Turtayeva, M. Orenes-Vera, O. Lonkar, and J. Balkind, Cohort:
Software-Oriented Acceleration for Heterogeneous SoCs, in Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, (New York, NY, USA), pp. 105–117,
ACM, 2023.

[16] K. Lim, M. Giordano, T. Stavrinos, I. Zhang, J. Nelson, B. Kasikci, and
T. Anderson, Beehive: A Flexible Network Stack for Direct-Attached Accelerators,
in 2024 57th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2024.

[17] N. Turtayeva, G. López-Parad́ıs, K. Lim, B. Li, J. Farres Garcia, Z. Ma, M. Bui,
B. Kong, T. Wei, T. Schlunk, and J. Balkind, “Pengwing: A Blended OS to
Reshape the HW-SW System Stack.” 2024.

[18] J. Balkind, X. Liang, M. Matl, D. Wentzlaff, M. McKeown, Y. Fu, T. Nguyen,
Y. Zhou, A. Lavrov, M. Shahrad, A. Fuchs, and S. Payne, OpenPiton: An Open
Source Manycore Research Framework, Operating systems review 50 (2016), no. 2
217–232.

[19] OpenHardwareGroup, “CVA6 RISC-V CPU.”
https://github.com/openhwgroup/cva6. [Accessed 01-09-2024].

[20] J. Balkind, K. Lim, M. Schaffner, F. Gao, G. Chirkov, A. Li, A. Lavrov, T. M.
Nguyen, Y. Fu, F. Zaruba, K. Gulati, L. Benini, and D. Wentzlaff, BYOC: A
”Bring Your Own Core” Framework for Heterogeneous-ISA Research, in
Proceedings of the Twenty-Fifth International Conference on Architectural Support

49

https://www.easics.com/tcp-offload-engine/
https://www.missinglinkelectronics.com/ip-cores/npap-tcp-udp-ip-stack/
https://www.missinglinkelectronics.com/ip-cores/npap-tcp-udp-ip-stack/
https://github.com/openhwgroup/cva6

REFERENCES

for Programming Languages and Operating Systems, (New York, NY, USA),
pp. 699–714, ACM, 2020.

[21] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner, F. Zaruba, and
L. Benini, “OpenPiton+Ariane: The First Open-Source, SMP Linux-booting
RISC-V System Scaling From One to Many Cores.”
https://carrv.github.io/2019/papers/carrv2019_paper_12.pdf, 2019.
Accessed: 2024-09-01.

[22] Oracle, “OpenSPARC T1.”
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-

page-1444609.html. [Accessed 01-09-2024].

[23] M. Orenes-Vera, A. Manocha, J. Balkind, F. Gao, J. L. Aragón, D. Wentzlaff, and
M. Martonosi, Tiny but mighty: designing and realizing scalable latency tolerance
for manycore SoCs, in Proceedings of the 49th Annual International Symposium on
Computer Architecture, (New York, NY, USA), pp. 817–830, ACM, 2022.

[24] A. M. A. Kumar, A. Prasanna, J. Balkind, and A. Shriraman, METAL: Caching
Multi-level Indexes in Domain-Specific Architectures, in Proceedings of the 29th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS ’24, (New York, NY, USA),
p. 715–729, Association for Computing Machinery, 2024.

[25] J. F. Garcia, Exploring hardware memory allocation in heterogeneous systems,
Master’s thesis, Universitat Politechnica de Catalunya, May, 2024.

[26] M. D. Moffitt, MiniMalloc: A Lightweight Memory Allocator for
Hardware-Accelerated Machine Learning, in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 4, (New York, NY, USA), pp. 238–252, ACM, 2023.

[27] Microsoft, “snmalloc.” https://github.com/microsoft/snmalloc. [Accessed
01-09-2024].

[28] M. Kim, B. S. Kim, E. Lee, and S. Lee, A Case Study of a DRAM-NVM Hybrid
Memory Allocator for Key-Value Stores, IEEE computer architecture letters 21
(2022), no. 2 81–84.

[29] W. Li, S. Mohanty, and K. Kavi, A Page-based Hybrid (Software-Hardware)
Dynamic Memory Allocator, IEEE computer architecture letters 5 (2006), no. 2
13–13.

[30] Z. Xue and D. B. Thomas, SysAlloc: A hardware manager for dynamic memory
allocation in heterogeneous systems, in 2015 25th International Conference on
Field Programmable Logic and Applications (FPL), pp. 1–7, 2015.

50

https://carrv.github.io/2019/papers/carrv2019_paper_12.pdf
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
https://github.com/microsoft/snmalloc

REFERENCES

[31] T. F. Foundation, “cocotb.” https://github.com/cocotb/cocotb. [Accessed
01-09-2024].

[32] O. Kindgren, “FuseSoC: Package manager and build abstraction tool for
FPGA/ASIC development.” https://github.com/olofk/fusesoc. [Accessed
01-09-2024].

[33] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen, Corundum: An
Open-Source 100-Gbps NIC, in 28th IEEE International Symposium on
Field-Programmable Custom Computing Machines, 2020.

[34] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania, The multikernel: a new OS architecture for
scalable multicore systems, in Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, (New York, NY, USA), pp. 29–44, ACM, 2009.

[35] D. Wentzlaff and A. Agarwal, Factored operating systems (fos): the case for a
scalable operating system for multicores, SIGOPS Oper. Syst. Rev. 43 (apr, 2009)
76–85.

[36] F. X. Lin, Z. Wang, and L. Zhong, K2: a mobile operating system for
heterogeneous coherence domains, SIGPLAN Not. 49 (feb, 2014) 285–300.

[37] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. Fettweis, M3: A
Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores,
SIGARCH Comput. Archit. News 44 (mar, 2016) 189–203.

[38] N. Asmussen, M. Roitzsch, and H. Härtig, M³x: Autonomous Accelerators via
Context-Enabled Fast-Path Communication, in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), (Renton, WA), pp. 617–632, USENIX Association,
July, 2019.

[39] N. Asmussen, S. Haas, C. Weinhold, T. Miemietz, and M. Roitzsch, Efficient and
scalable core multiplexing with M³v, in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’22, (New York, NY, USA), p. 452–466, Association for
Computing Machinery, 2022.

[40] S. Kim, J. Zhao, K. Asanovic, B. Nikolic, and Y. S. Shao, AuRORA: A Full-Stack
Solution for Scalable and Virtualized Accelerator Integration, IEEE MICRO 44
(2024), no. 4 1–9.

[41] Chelsio, “Terminator 6 asic.” https://www.chelsio.com/terminator-6-asic.
[Accessed 01-09-2024].

51

https://github.com/cocotb/cocotb
https://github.com/olofk/fusesoc
https://www.chelsio.com/terminator-6- asic

REFERENCES

[42] M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and S. Lopez-Buedo, Limago: An
FPGA-Based Open-Source 100 GbE TCP/IP Stack, in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), pp. 286–292,
IEEE, 2019.

[43] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and D. Wentzlaff,
Enabling programmable transport protocols in high-speed NICs, in Proceedings of
the 17th Usenix Conference on Networked Systems Design and Implementation,
NSDI’20, (USA), p. 93–110, USENIX Association, 2020.

[44] R. Li, Q. Wu, K. Kavi, G. Mehta, N. J. Yadwadkar, and L. K. John,
NextGen-Malloc: Giving Memory Allocator Its Own Room in the House, in
Proceedings of the 19th Workshop on Hot Topics in Operating Systems, HOTOS
’23, (New York, NY, USA), p. 135–142, Association for Computing Machinery,
2023.

[45] G. Lee, W. Jin, W. Song, J. Gong, J. Bae, T. J. Ham, J. W. Lee, and J. Jeong, A
Case for Hardware-Based Demand Paging, in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pp. 1103–1116, 2020.

[46] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, PANIC: A
High-Performance programmable NIC for Multi-tenant Networks, in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20),
pp. 243–259, USENIX Association, Nov., 2020.

[47] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and
E. Chen, ClickNP: Highly Flexible and High Performance Network Processing with
Reconfigurable Hardware, in Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, (New York, NY, USA), p. 1–14, Association for Computing
Machinery, 2016.

52

	Abstract
	Table of Contents
	List of Figures
	Introduction
	Background Research
	OpenPiton
	Tile
	Chipset
	Core

	Cohort
	Beehive
	Pengwing
	MAPLE
	Falafel

	Integrating Beehive into Pengwing
	Initial Exploration
	Initial Hiccups
	Data Structures within Beehive
	File Structure of Beehive

	Adapting UDP Echo App
	Improvements to the Design
	Variable Width Inputs
	Packet Descriptors

	Improved UDP Design
	in_data
	in_pointer
	out_data
	out_pointer

	Full Pengwing SoC
	Future Improvements

	Experimental Setups and Analysis
	Original Cohort+Beehive
	Pengwing Setups
	Beehive+AES
	Beehive+METAL
	Beehive+Falafel
	Data Stream vs Descriptors

	Results and Analysis

	Related Works
	OS Designs
	HW+SW Co-Design
	Other System Services
	Hardware Networking Services

	Conclusion
	References

