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Development and calibration of a dynamic HIV transmission 
model for 6 US cities
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Abstract

Background: Heterogeneity in HIV microepidemics across US cities necessitates locally-

oriented, combination implementation strategies to prioritize resources. We calibrated and 
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validated a dynamic, compartmental HIV transmission model to establish a status quo treatment 

scenario, holding constant current levels of care for 6 US cities.

Methods: Built off a comprehensive evidence synthesis, we adapted and extended a previously-

published model to replicate the transmission, progression and clinical care for each 

microepidemics. We identified a common set of 17 calibration targets between 2012 to 2015 and 

used the Morris method to select the most influential parameters for calibration. We then applied 

the Nelder-Mead algorithm to iteratively calibrate the model to generate 2,000 best-fitting 

parameter sets. Finally, model projections were internally validated with a series of robustness 

checks, externally validated against published estimates of HIV incidence, while the face validity 

of 25-year projections were assessed by a Scientific Advisory Committee (SAC).

Results: We documented our process for model development, calibration and validation to 

maximize its transparency and reproducibility. The projected outcomes demonstrated a good fit to 

calibration targets, with a mean goodness-of-fit ranging from 0.0174 (New York City (NYC)) to 

0.0861 (Atlanta). Most of the incidence predictions were within the uncertainty range for 5/6 cities 

(ranging from 21% (Miami) to 100% (NYC)), demonstrating good external validity. The face 

validity of the long-term projections was confirmed by our SAC, showing that incidence would 

decrease or remain stable in Atlanta, Los Angeles, NYC and Seattle while increasing in Baltimore 

and Miami.

Discussion: This exercise provides a basis for assessing the incremental value of further 

investments in HIV combination implementation strategies tailored to urban HIV microepidemics.

Keywords

HIV/AIDS; dynamic transmission model; model calibration; model validation; epidemiological 
projection

In the United States and most other countries featuring concentrated HIV epidemics, the 

majority of people living with HIV/AIDS (PLHIV) reside in large urban centers and 

geographic “hotspot” areas,1–3 each with distinct underlying epidemiological and socio-

structural features.4 There are also dramatic disparities among minorities, with black and 

Hispanic men who have sex with men (MSM) accounting for over half of reported new 

infections.5 Our previous study on six US cities, Atlanta, Baltimore, Los Angeles (LA), 

Miami, New York City (NYC) and Seattle, home to nearly a quarter of US PLHIV, found 

fundamental differences in demographic composition, epidemic characteristics and rates of 

new HIV diagnoses.4 Heterogeneity in microepidemics across cities necessitates locally-

oriented combination implementation strategies to prioritize resources according to the 

greatest public health benefit. This approach, however, requires detailed, context-specific 

information on a range of factors characterizing each HIV microepidemic and the level of 

available health services.

Mathematical models are simplifications of reality, designed to capture the essence of a 

problem with a minimally acceptable level of complexity and synthesis of evidence from 

multiple sources, to extrapolate outcomes that are unavailable, unobservable or unethical to 

collect. They can provide a unified framework to quantify the public health and economic 

impact of multiple health interventions, accounting for the synergistic effects between 
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different interventions. Furthermore, setting-specific models can be adapted to capture 

heterogeneity across settings and are increasingly used to provide objective, localized 

evidence to prioritize resources according to the greatest public health benefit.

Model complexities and uncertainty surrounding key model inputs can diminish the 

confidence of decision makers and raise concerns about the credibility of the model-

generated results. Assessing the validity and representativeness of a model generally entails 

explicitly assessing the quality of input data used for its parameters,6 calibrating uncertain 

inputs to observed epidemiological endpoints (calibration targets),7 and validating the 

accuracy of model projections against empirical data on outcomes of interest.8 

Comprehensive and transparent reporting of these development processes can not only add 

confidence to the process, but also establish a basis to determine data collection targets to 

reduce uncertainty in the decisions a model recommends.

Building on an evidence synthesis we have described separately,9 our objective was to 

calibrate and validate a dynamic, compartmental model of HIV transmission for 6 US cities. 

The 25-year projections of the model are designed to serve as a ‘status quo’ comparator in 

assessing the incremental value of a range of possible combination implementation 

strategies to address the unique HIV microepidemics of each city.

Methods

In this section, we first provide a brief description of the construction of the model, followed 

by a detailed documentation of our calibration and validation process. Model calibration is 

the process by which uncertain model input values or ranges can be estimated so that model 

projections match pre-specified calibration targets.10,11 While there is currently no 

consensus on what constitutes best practice for calibrating a model,10 recently-published 

guidelines offer detailed guidance for model validation, which include the evaluation of a 

model’s accuracy by comparing its outputs to external empirical data.8

Model description

Model construction—We adapted and extended a previously-published HIV dynamic 

transmission model that was used to estimate the health benefits and costs of HIV prevention 

and treatment interventions in the United States12–14, British Columbia, Canada15–17, and 

Guangxi province, China18. We modified the compartmental model both to accommodate 

the distinctive features in HIV microepidemics across US cities4, and to allow for 

assessment of a range of HIV treatment and prevention interventions to be evaluated jointly 

in future applications. For each demonstration city, the adult population aged 15 to 64 was 

partitioned into compartments on the basis of: biological sex; race/ethnicity (black/African 

American [black], Hispanic/Latino [Hispanic], and non-Hispanic white/others [white]); and 

HIV risk behavior type (MSM, people who inject drugs [PWID], MSM-PWID, and 

heterosexual [HET]). To account for within-group heterogeneity, MSM, MSM-PWID and 

HET were further partitioned into subgroups based on HIV sexual risk behavior intensity 

(high- vs. low-risk for each of the 3 risk groups), as defined by the proportion of MSM 

reporting condom-less sex with casual partners19 (conforming to the CDC recommended 

indications for PrEP use20) for MSM and MSM-PWID, and by the proportion of individuals 
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who had 5 or more sexual partners in the past 12 months21 for HET. PWID and MSM-PWID 

were also classified based on engagement in opioid agonist treatment (OAT).

Individuals within each of these 42 groups (MSM: 6, MSM-PWID: 12; PWID: 12; HET: 12) 

progressed through health states outlined in Figure 1. Susceptible (HIV-uninfected) 

individuals could be screened for HIV prior to HIV infection, and high-risk MSM (including 

MSM-PWID) could access pre-exposure prophylaxis (PrEP). Following HIV infection, 

individuals progressed through acute infection (duration=1.7 months, range: 1-6.8)22 and 3 

CD4 cell count strata (CD4≥500, 200-499, and <200 cells/μL), and were classified 

according to diagnosis and treatment status as those infected but undiagnosed, diagnosed but 

antiretroviral therapy (ART) naïve, on ART and off ART. Health state transitions occurred at 

monthly intervals, with mortality a possible transition from each of the health states.

HIV transmission—HIV transmission occurred through 3 modes: heterosexual contact, 

homosexual contact, and needle/syringe sharing. We incorporated a mixture of assortative 

and proportional mixing by race/ethnicity and sexual risk behavior intensity23 through 

Newman’s assortativity coefficient, where a value of 0 indicates random mixing, and a value 

of 1 indicates complete assortative mixing24 (see Appendix Section 1.2 for details). The rate 

of transmission through homo- and heterosexual sex was a function of the probability of 

partnership, the number of sexual partnerships, the probability of condom use, and the 

probability of transmission per sexual partnership at each CD4 stratum. Similarly, 

transmission via needle/syringe sharing was a function of injection frequency, the 

probability of needle/syringe sharing, and transmission per shared needle/syringe at each 

CD4 stratum. These transmission rates were time-dependent, subject to changes in the 

distribution of PLHIV at different stages of disease progression, risk behaviours and scale-

up of interventions. We assumed ART reduced the risk of sexual transmission by 91% 

(range: 79%-96%),25,26 and the risk of transmission via needle/syringe sharing by 50% 

(range: 10%-90%),17 while PrEP reduced transmissibility of HIV per unprotected sexual 

partnership and per needle/syringe sharing both by 60% (range: 56.3%-61.9%).27 We note 

that access to PrEP was only modeled among high-risk MSM and MSM-PWID population 

in this study. Furthermore, we also allowed for changes to people’s risk behaviours, 

including following HIV diagnosis (reduction in the number of sexual partners),28 OAT 

receipt (reduction in the frequency of injection drug use),29 and access to syringe services 

programs (SSP; reduction in the probability of needle/syringe sharing).17

Model parameters—All model input parameters were derived by a comprehensive 

evidence synthesis published separately.9 We synthesized evidence from 59 peer-reviewed 

publications, 24 public health and surveillance reports, and executed primary analyses using 

11 data sets to inform the 1,667 parameters needed to populate our model. Parameters 

ranked as best- to moderate-quality evidence comprised 47% of the 169 common (non-city-

specific) parameters. In contrast, 61% to 63% of all city-specific input parameters were 

populated with at least moderate quality evidence. The parameter grouping, common versus 

city-specific, is based on whether a common prior value and uncertainty range/distribution 

can reasonably be used across cities. For parameters with lower quality of evidence, we 
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allowed greater variability, including wider uncertainty ranges or imposing more dispersed 

distributions (uniform or pert distribution).

Model calibration

A review of calibration methods by Stout et al.30 identified 5 key components, including 

identifying the calibration target variables, goodness-of-fit (GoF) metric, search algorithm, 

acceptance criteria and stopping rule.30 An overview of the specifications for the calibration 

process adopted in this paper is presented in Table 1 and described in more detail below. The 

calibration routine was applied to each of the 6 cities separately by repeatedly adjusting a set 

of ‘free’ parameters until model projections matched empirical calibration targets. For each 

city, the model calibration period was set to 2012 to 2015 to capture at least 2 data points on 

both the calibration and validation variables.

Calibration targets—We selected calibration targets that provided the most concrete 

indicators of the course of each city-level microepidemic. 3 sets of target data were chosen 

as our calibration targets for each city during the model calibration period 2012 to 2015: (1) 

the number of diagnosed PLHIV at each year end, stratified by sex, race/ethnicity, and risk 

group; (2) the annual number of new HIV diagnoses, separately for the overall estimate, 

among the Black population, and among MSM (including MSM-PWID), respectively; and 

(3) the annual number of all-cause deaths among diagnosed PLHIV, separately for the 

overall estimate, among Black individuals, and among MSM (including MSM-PWID). 

These 17 calibration targets were available from city-specific annual surveillance reports 

from each city.

Selection of free parameters—We identified the most influential set of free parameters 

by applying the Morris method,31–33 an empirical parameter selection approach that 

systematically analyzes the impacts of variations of each input on model outputs. This 

method was chosen due to its efficiency, flexibility (e.g. no requirement for monotonicity), 

and capability to examine a parameter’s influence at multiple time points.31–33 All uncertain 

parameters determining model dynamics (thus excluding parameters used to determine 

initial population sizes) were assumed to be candidates for free parameters and were 

explored in this parameter selection process for each city. In the interest of maximizing 

transparency, we present point estimates, prior ranges, and calibrated ranges for these 

parameters in the Supplementary Appendix.

Goodness-of-fit metric—A GoF metric serves as the objective function in an 

optimization procedure, measuring the accuracy of the model’s predictions against the 

targets. While there is no consensus on the most appropriate GoF metric,10 we utilized an 

overall weighted GoF metric (global criterion), that was computed by a weighted sum of the 

individual calibration target fits, a common practice in addressing multi-objective 

optimization. The weighting factors allow the modellers to place preferences on the set of 

targets being evaluated.34

Given the disparate scale and importance of the 17 targets, we used the weighted mean 

percentage deviation as the overall goodness-of-fit metric (shown in the following equation), 
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with the calibration objective to minimize this metric by fitting with different sets of input 

parameters.

GoFoverall =
i

wi ∗
pro ji − obsi

obsi

where wi is the weight assigned to the ith target, proji is the model-projected result for the ith 

target, and obsi is observed point estimate for the ith target. Smaller values of the GoF metric 

indicate a better fit to the observed data.

The weighting factors are usually imposed by assumption on the basis of the relative 

importance as well as the existence of biases of these targets.10 We generated the weights 

using a best-worst method35,36 to elicit the perceived relative importance of each target from 

our Scientific Advisory Committee (SAC), for which we developed a brief questionnaire 

asking them to rank and compare each target in respect of their importance for the model to 

fit against (see further details and weight vectors in the Supplementary Appendix).

Search algorithm—The search algorithm determines the best-fitting sets of parameter 

values, drawn from their plausible ranges, which optimize the GoF metric such that the 

model can reproduce the observed historical trends. We adopted a mixed calibration 

approach with 2 distinct steps. Latin hypercube sampling was first applied to draw 10,000 

parameter sets from predefined distributions as the initial simplexes (starting values), from 

which the Nelder-Mead search algorithm was performed to minimize the overall GoF 

metric. Latin hypercube is a multidimensional grid sampling method enabling the whole 

parameter space to be covered efficiently.37 The Nelder-Mead algorithm is an iterative, 

directed-search method with high computational efficiency and superior performance over 

manual and random calibration.38 We used Latin hypercube sampling to generate 10,000 

simplexes for the Nelder-Mead algorithm to sufficiently explore the parameter space to 

overcome its potential drawback of settling on local, rather than global optima, as well as to 

facilitate uncertainty analysis, as recommended by the ISPOR-SMDM guidelines.7

Acceptance criteria—Choosing an acceptance criterion entails defining acceptable sets 

of input parameter values by defining either the worst acceptable GoF level or the acceptable 

ranges for the targets or the GoF metric.10 With each simplex seeded, the Nelder-Mead 

algorithm seeks to produce one optimal set of input parameter values that locally minimize 

the overall GoF metric, whereas we deemed only the calibrated parameter sets that best 

minimize GoF (i.e. below 20th percentile) as acceptable. The cutoff of 20th percentile was 

determined by the actual GoF distributions to warrant the inclusion the densest proportion to 

the left of the mode providing the best and most similar GoF.

Stopping rule—The stopping rule determines whether the calibration process is complete, 

usually defined by deriving a sufficient number of acceptable input sets.10 In this exercise, 

we seeded the Nelder-Mead optimization algorithm with 10,000 simplexes (that varied only 

by starting seed), by repeating the same process, to generate 10,000 calibrated parameter 
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sets, from which we selected the 2,000 best-fitting sets with the minimal GoF metric as the 

acceptable samples for subsequent analysis.

Model validation

Model validation refers to the process of evaluating a model’s accuracy in making relevant 

projections.8 It entails a comprehensive evaluation of how well the model performs, from the 

problem construct to the credibility of model results, against a variety of internal and 

external inputs, including expert opinions, clinical knowledge, and empirical evidence. In 

accordance with ISPOR-SMDM guidelines,8 based on the 2,000 calibrated parameter sets, 

we formally assessed the internal, external and face validity of our model, as follows (Table 

2).

Internal validity—Internal validation investigates and verifies the accuracy and 

consistency of all mathematical equations and program coding. To secure a high level of 

internal validity, we performed a series of checks:

1. Each mathematical equation and program coding script was cross-checked by at 

least one other analyst other than the developer.

2. Given its complexity, we performed double programming for the force of 

infection module where two programmers independently coded the functions 

until the results were identical.

3. An extensive model walk-through was performed internally wherein detailed 

model structure, underlying assumptions, and corresponding codes were 

presented by the developers and checked by other team members.

4. We ran extreme value analyses on several scenarios and assessed model 

predictions against our anticipated outcomes (Supplementary Appendix,).

External validity

External validation entails comparison of city-specific model projections to external 

estimates of key clinical and epidemiological data not used in the model.39–41 We selected 

HIV incidence over 2012 to 2015 as the external validation target, both for the total 

estimates and among the MSM population (including MSM-PWID). Independent, city-level 

annual incidence estimates between 2012 and 2015 were only reported in NYC and partially 

in LA (2012-2013), while estimates for other cities were otherwise triangulated from annual 

state-level incidence estimated by the CDC39 (triangulation process detailed in the evidence 

synthesis9). We selected these endpoints based on their availability from a common, 

authoritative source, the availability of confidence intervals for each estimate, and their 

importance in decision-making.

Establishing the status quo scenario in each city

The status quo scenario for each city was defined by holding treatment and prevention 

service levels (including the proportion of PLHIV being tested, receiving treatment and 

accessing OAT and PrEP) in the most recent year for which data was available. In addition, 

we held constant the proportion of people in high- and low-risk strata. To account for 
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heterogeneity in the rate of aging, we used surveillance data to derive city-level, PLHIV-

specific maturation rates (i.e. PLHIV who are 64 turning 65). Finally, we modelled a 

dynamic cohort allowing model entry and exit (more details in Supplementary Appendix) to 

match external adult population growth projections throughout the study time horizon for 

each city, accounting for changes in ethnic compositions.

Assessing the face validity of longitudinal status quo projections—Face 

validation refers to the subjective review of the model projections by individuals with 

clinical and epidemiologic expertise in the disease area. Following each of the above steps, 

we prepared a report for each city detailing 25-year (2016-2040) status quo projections on 

population growth, stratified by race/ethnicity; longitudinal projections of the number of 

people in each of the primary HIV stages of the model; rates of incidence and new 

diagnoses, overall and stratified by race/ethnicity and by risk group; and rates of incidence 

and new diagnoses among MSM, overall and stratified by race/ethnicity. At least one 

clinical/epidemiological expert in our SAC from each city was invited to provide qualitative 

responses on the projections for their city and the modeling team followed-up individually 

with respondents to resolve any discrepancies.

Results

Model calibration

We identified 381 independent parameters as candidate free parameters in the calibration 

process, 37 of which were common across cities, 54 capturing sexual risk behaviours, 56 

characterizing health service delivery, and 234 dictating movement between ART states 

(including from/to death and off ART states). Following application of the Morris method, 

we included 52 unique (176 in total) free parameters in the model calibration across all cities 

(Table 3). The set of free parameters selected varied across cities, driven in part by variations 

in race. In cities like Atlanta and NYC, where the HIV epidemic is mainly concentrated in 

the Black population, the behavioural parameters for this population were more likely to be 

selected, as compared with cities like LA and Miami, where parameters determining 

behaviours for the Hispanic population were more often chosen.

Following calibration, we compared the calibrated values (median and 95% credible 

intervals [CI]) of free parameters against their prior values and ranges (Supplementary 

Appendix Figure A2). Post-calibration values differed across cities. For example, the 

probability of MSM transmission (at CD4 ≥ 500) was calibrated to be higher in LA (0.0674, 

95% CI: [0.0250-0.1000]) compared to Atlanta (0.0251, 95% CI: [0.0250, 0.0433]).

The resulting epidemiological estimates from the 2,000 best-fitting calibration runs 

demonstrated a good fit to most targets. Figure 2 shows the model projections for the 

number of new HIV diagnoses (total and among MSM) against their corresponding targets 

(2 targets deemed most important by our SAC) for each city. The overall mean GoF, based 

on the 2,000 best-fitting parameter sets, differed across cities, ranging from 0.0174 in NYC 

(range: 0.0167-0.0176) to 0.0861 in Atlanta (range: 0.0844-0.0868, Supplementary 

Appendix Figure A3). The bimodal distribution for GoF values observed in Atlanta and 

Miami indicate the presence of local optima at poorer levels of GoF. Model calibration 
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results for all 17 targets are presented in Supplementary Appendix Figure A4. While 

calibration yielded close matches to most targets in most cities, we also observed 

mismatches for some of the mortality targets. In particular, our model consistently 

overestimated the number of all-cause deaths in comparison to the 3 death-related targets in 

Atlanta, even with mortality-related free parameters being calibrated to the lower ends of 

their respective ranges, likely due to an underreport of the target mortality estimates.

Model validation

With the 2,000 calibrated parameter sets, most model projections (2012-2015) fell within the 

confidence interval of the external validity targets. Figure 3 shows the model projections for 

the rate of total HIV incidence against the external estimates (after transforming the absolute 

number of infections to rates). The proportion of annual incidence projections, total and for 

MSM, that fit within the confidence interval varied by cities, from 100% in NYC to 21% in 

Miami.

We assessed the face validity of our model projections via survey distributed to our SAC. We 

performed further evidence collection and reanalysis to resolve any discrepancies between 

model projections and experts’ expectations. Further details regarding this process are 

available in the Supplementary Appendix.

Over a 25-year time horizon with all HIV services maintained at their 2015 levels (except 

PrEP, for which we incorporated data up to 2017 to acknowledge its rapid scale-up), our 

model predicted that the overall rate of new infections would drop in Atlanta (from 45 [95% 

CI: 43-51] to 37 [3341] cases per 100,000 population), NYC (from 31 [31-32] to 15 [12-17] 

cases per 100,000 population) and Seattle (from 15 [14-16] to 10 [8-14] cases per 100,000 

population, Figure 3A, E and F), while remain relative constant in LA at 33 to 34 [27-38] 

cases per 100,000 population (Figure 3C). In contrast, the rate of new infections was 

projected to rise slightly in Baltimore (from 27 [26-28] to 33 [27-35] cases per 100,000 

population, Figure 3B). Projections for Miami suggest a slight increase in the rate of new 

infections in the first few years, ultimately stabilizing at 102 [81-120] cases per 100,000 

respectively (Figure 3D). Projections used in the face validation process, displaying overall 

and stratified estimates and credible ranges of incidence and new diagnoses, are presented 

the Supplementary Appendix. Model projections suggest the risk for HIV infection will 

remain highest among MSM and MSM-PWID, and these two risk groups will continue to 

contribute the majority of all new incident cases across cities: 69.8% [62.3%-76.3%] in 

Seattle to 90.9% [87.7%-92.0%] in Baltimore in 2040. Further, while our model estimated 

that black individuals will continue to have the highest rate of HIV incidence across all 

cities, it also suggests Hispanic MSM will contribute most to the increasing rate of HIV 

incidence in Miami and LA (Appendix Figure A6).

Discussion

We have detailed our process for calibrating and validating a dynamic HIV transmission 

model to 6 US cities with disparate HIV microepidemics using a systematic and empirical 

approach to determining the most influential parameters necessitating calibration. The model 

provided an excellent fit to the calibration targets across cities, particularly to those 
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determined to be of the greatest importance. On the basis of the 2,000 best-fitting calibrated 

parameter sets, short-term external validation yielded a majority of incidence projections 

that were within the uncertainty range for 5 of 6 cities, while the face validity of the long-

term status quo epidemiological projections were confirmed with our SAC.

The status quo projections in the selected cities predict the HIV epidemic will stabilize in 

most urban centers at current service levels, although greater efforts will be required if the 

US is to achieve its goal of ending the HIV epidemic by 2025.42 While we predicted that 

incidence would decrease or remain stable in Atlanta, LA, NYC and Seattle, we also 

projected a slight increase in the incidence rate in Baltimore and Miami, driven primarily by 

projected increases in incidence among black MSM (Baltimore) and Hispanic MSM 

(Miami).

Disparities in overall incidence correspond to the current features of the distinct city-level 

microepidemics and the current level of services available for HIV treatment and prevention. 

Most notably, substantial resources have been devoted to the control of HIV in NYC and 

Seattle, which have aggressively combatted incidence in the MSM and PWID populations, 

and have led the nation in the expansion of PrEP, particularly for MSM.4

From a methodological standpoint, we found that some parameters were consistently 

calibrated to the lower/higher end of prior ranges, implying either: (1) the model 

overestimated/underestimated these parameters; (2) the underlying evidence for the input 

parameters was biased; or (3) the model simply captured the dynamics in question too 

coarsely. For example, the number of homosexual partners was consistently calibrated 

towards the lower bound of the empirical estimates for white high-risk MSM across all 

cities, while to the upper bound for black high-risk MSM. This difficulty in closely 

reproducing the racial disparities in HIV incidence among MSM has also been noted in a 

recent modeling study by Goodreau et al.43. Further, sexual risk behaviour parameters (such 

as the number of sexual partners and the probability of condom use) and per-partnership 

transmission probabilities were more likely to be selected for calibration. Collecting 

additional information on these parameters may help reduce the potential opportunity cost 

from a suboptimal decision. Value of information analysis44,45 can estimate a monetary 

value for additional research to reduce uncertainty in these critical domains, and will serve 

as an important subsequent step in furthering this argument.

Despite the importance of validating the accuracy of model projections against empirical 

data on outcomes of interest,46 external validation has yet to become a standard component 

of the model development process.47 Best-practice guidelines have noted that it may not be 

possible to establish absolute criteria to assess the validity of a model, and that one of the 

key impediments to standardizing the validation process is the availability of target data not 

previously used to inform the model. In addition, assessing how close a model’s predictions 

fit the external targets remains mostly subjective,47 particularly when there is a need to 

incorporating uncertainty of the validation targets (as opposed to trying to fit a target to a 

point estimate). Specifically, determining HIV incidence in city-level microepidemics poses 

challenges; these estimates are typically generated at the state-level, and even estimates 

generated at a higher level of aggregation are subject to limitations.48 In each of our cities 
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aside from Miami, most of the incidence predictions used for external validation were within 

the externally estimated uncertainty range. In a growing epidemic such as Miami, and 

particularly given its relatively low HIV service levels, the discrepancy we found between 

model projections and short-term incidence validation targets may reflect the long delay 

between HIV infection and diagnosis. Nonetheless, experts from our SAC confirmed the 

validity of our model projections for the long-term trend of the epidemic in Miami.

We aimed for comprehensive and transparent reporting of our calibration and validation 

process to enhance the credibility and reliability of our results, hoping that this effort can 

help inform the standardization of methods for model calibration and validation and promote 

better integration of locally-oriented modelling in decision-making. Despite existing 

guidelines on model calibration and validation, substantial subjectivity remains in the 

process, particularly in the selection of parameters for calibration10,32 and determination of 

the summary measure of model fit when multiple targets are used.10,11,36 While we adopted 

the Morris method31 to establish an objective criteria for free parameter selection, the 

technique also substantially improved the efficiency of the calibration. Establishing the 

weight metric for summary GoF is another common challenge, and we used the best-worst 

method35,36 to synthesize information on the preferences of our SAC on each target and 

solve the weight metric from these preferences. Finally, we also leveraged the expertise of 

our SAC to assess the face validity of our 25-year status quo scenario projections. The 

approach proved useful not only in refining the model and its estimates but also in 

communicating both the functioning and limitations of our model to a multidisciplinary 

audience. It is possible this approach can be further refined and extended to include a 

broader range of public health practitioners and policymakers.

Our analysis was not without limitations. First, we imposed a relatively simple proportional 

mixing assumption among needle/syringe-sharing contacts, rather than a more complex 

structure that may better approximate PWID networks.49 Also, we modeled HIV infectivity 

indirectly through stages of disease progression based on CD4 cell counts rather than viral 

load, a limitation we have previously outlined.15 However, these approximations were 

consistent with the precision of available evidence and were sufficient in replicating the city-

level HIV epidemics with a high degree of precision. Second, drug resistance is not 

explicitly modeled, but it has been accounted for in disease progression estimates, although 

resistance levels are stably low and likely to decrease with broader access to new medication 

regimens.50 Third, the model is not age-structured. Given the existing complexity of the 

model, adding age strata would increase the number of health states substantially, with 

limited ability to populate these health states with data specific to their description. Instead, 

we restricted the study population to individuals aged 15 to 64 years to reduce the impact of 

age on some risk factors. Fourth, we explicitly modeled PrEP only among high-risk MSM. 

This is in line with current guidelines prioritizing PrEP among individuals at high risk of 

infection and previous evidence that PrEP may not be cost-effective for other populations.
51–53 Our future work with this model will explore the cost-effectiveness of PrEP for other 

risk groups. Fifth, one difficulty associated with the choice of a calibration search algorithm 

such as the Nelder-Mead algorithm is its possibility to converge on local optima. To remedy 

this potential problem, we randomly drew 10,000 sets of starting values for the algorithm, 

ensuring the parameter space was adequately covered by the search strategy and 
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substantially improving the likelihood of capturing the global optima. We aim to append the 

2,000 best-fitting calibrated parameter sets with samples for all other uncalibrated 

parameters (aside from parameters defining initial values in each compartment), drawn from 

their prior distributions to support probabilistic sensitivity analysis of our assessments of 

combination implementation strategies for each city.32 Lastly, cross-validating this model to 

assess its structural uncertainty,8 remains a topic for future research, as comparable city-

level models are developed.

We provided a comprehensive and transparent description for the calibration and validation 

of a dynamic HIV transmission model to 6 US cities with diverse HIV microepidemics. The 

resulting model projections will serve as status quo scenarios in each city to identify optimal 

combination implementation strategies for the HIV treatment and prevention services we 

have considered in this model, including HIV testing, treatment, SSP, OAT and PrEP. We 

believe this standardized framework can be applied to diverse settings and disease areas, 

further underlining the potential value of this approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

We thank Benjamin Enns for his assistance in preparing data for model analysis. We also acknowledge support 
from our scientific advisory committee for providing inputs and expertise in GoF weight determination and face 
validation. This research was enabled in part by support provided by WestGrid (www.westgrid.ca) and Compute 
Canada (www.computecanada.ca).

Funding statement: This work was supported by a grant from the National Institutes of Health/National Institute 
on Drug Abuse (R01-DA-041747). The funder had no direct role in the conduct of the analysis or the decision to 
submit the manuscript for publication.

References

1. Centers for Disease Control and Prevention (CDC). HIV in the Southern United States. 2016.

2. Centers for Disease Control and Prevention (CDC). Enhanced Comprehensive HIV Prevention 
Planning and Implementation for Metropolitan Statistical Areas Most Affected by HIV/AIDS. 
https://www.cdc.gov/hiv/research/demonstration/echpp/index.html [Accessed July 5, 2019]. 
Published 2017 Accessed.

3. Fauci AS, Redfield RR, Sigounas G, Weahkee MD, Giroir BP. Ending the HIV epidemic: a plan for 
the United States. Journal of the American Medical Association. 2019;321(9):844–845. [PubMed: 
30730529] 

4. Panagiotoglou D, Olding M, Enns B, et al. Building the Case for Localized Approaches to HIV: 
Structural Conditions and Health System Capacity to Address the HIV/AIDS Epidemic in Six US 
Cities. AIDS and behavior. 2018;22:1–12.

5. El-Sadr WM, Mayer KH, Rabkin M, Hodder SL. AIDS in America - Back in the Headlines at Long 
Last. N Engl J Med. 2019;380(21):1985–1987. [PubMed: 31042822] 

6. Cooper NJ, Sutton AJ, Ades AE, Paisley S, Jones DR, Working Group on the Use of Evidence in 
Economic Decision M. Use of evidence in economic decision models: practical issues and 
methodological challenges. Health economics. 2007;16(12):1277–1286. [PubMed: 18034447] 

7. Briggs AH, Weinstein MC, Fenwick EA, et al. Model parameter estimation and uncertainty: a report 
of the ISPOR-SMDM Modeling Good Research Practices Task Force--6. Value in health : the 

Zang et al. Page 12

Med Decis Making. Author manuscript; available in PMC 2020 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.westgrid.ca
http://www.computecanada.ca
https://www.cdc.gov/hiv/research/demonstration/echpp/index.html


journal of the International Society for Pharmacoeconomics and Outcomes Research. 2012;15(6):
835–842. [PubMed: 22999133] 

8. Eddy DM, Hollingworth W, Caro JJ, et al. Model transparency and validation: a report of the 
ISPOR-SMDM Modeling Good Research Practices Task Force--7. Value in health : the journal of 
the International Society for Pharmacoeconomics and Outcomes Research. 2012;15(6):843–850. 
[PubMed: 22999134] 

9. Krebs E, Enns B, Wang L, et al. Developing a dynamic HIV transmission model for 6 U.S. cities: 
An evidence synthesis. PLoS One. 2019;14(5):e0217559. [PubMed: 31145752] 

10. Vanni T, Karnon J, Madan J, et al. Calibrating models in economic evaluation: a seven-step 
approach. PharmacoEconomics. 2011;29(1):35–49. [PubMed: 21142277] 

11. Weinstein MC, O’Brien B, Hornberger J, et al. Principles of good practice for decision analytic 
modeling in health-care evaluation: report of the ISPOR Task Force on Good Research Practices--
Modeling Studies. Value in health : the journal of the International Society for 
Pharmacoeconomics and Outcomes Research. 2003;6(1):9–17. [PubMed: 12535234] 

12. Brandeau ML, Lee HL, Owens DK, Sox CH, Wachter RM. A policy model of human 
immunodeficiency virus screening and intervention. Interfaces. 1991;21(3):5–25.

13. Long EF, Brandeau ML, Owens DK. The cost-effectiveness and population outcomes of expanded 
HIV screening and antiretroviral treatment in the United States. Ann Intern Med. 2010 153(12):
778–789. [PubMed: 21173412] 

14. Blythe S, Anderson R. Heterogeneous sexual activity models of HIV transmission in male 
homosexual populations. Mathematical Medicine and Biology: a journal of the IMA. 1988;5(4):
237–260.

15. Nosyk B, Min JE, Lima VD, Hogg RS, Montaner JS. Cost-effectiveness of population-level 
expansion of highly active antiretroviral treatment for HIV in British Columbia, Canada: a 
modelling study. Lancet HIV. 2015;2(9):e393–400. [PubMed: 26423553] 

16. Nosyk B, Min JE, Krebs E, et al. The cost-effectiveness of HIV testing and treatment engagement 
initiatives in British Columbia, Canada: 2011-2013. Clinical infectious diseases : an official 
publication of the Infectious Diseases Society of America. 2017.

17. Nosyk B, Zang X, Min JE, et al. Relative effects of antiretroviral therapy and harm reduction 
initiatives on HIV incidence in British Columbia, Canada, 1996-2013: a modelling study. Lancet 
HIV. 2017;4(7):e303–e310. [PubMed: 28366707] 

18. Zang X, Tang H, Min JE, et al. Cost-Effectiveness of the ‘One4All’ HIV Linkage Intervention in 
Guangxi Zhuang Autonomous Region, China. PLoS One. 2016;11(11):e0167308. [PubMed: 
27893864] 

19. Centers for Disease Control and Prevention. HIV risk, prevention, and testing behaviors - National 
HIV Behavioral Surveillance System: Men who have sex with men, 20 US cities, 2011. Centers 
for Disease Control and Prevention;2014.

20. Centers for Disease Control and Prevention. Preexposure Prophylaxis for the prevention of HIV 
infection in the United States. 2014.

21. Centers for Disease Control and Prevention. Public use data file documentation. 2011-2013. 
National Survey of Family Growth. User’s guide. Hyattsville, Maryland: Centers for Disease 
Control and Prevention, National Center for Health Science; 12, 2014 2014.

22. Bellan SE, Dushoff J, Galvani AP, Meyers LA. Reassessment of HIV-1 acute phase infectivity: 
accounting for heterogeneity and study design with simulated cohorts. PLoS medicine. 
2015;12(3):e1001801. [PubMed: 25781323] 

23. Sutton AJ, House T, Hope VD, Ncube F, Wiessing L, Kretzschmar M. Modelling HIV in the 
injecting drug user population and the male homosexual population in a developed country 
context. Epidemics-Neth. 2012;4(1):48–56.

24. Newman MEJ. Mixing patterns in networks. Phys Rev E. 2003;67(2).

25. Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral 
therapy. N Engl J Med. 2011 ;365(6):493–505. [PubMed: 21767103] 

26. Baggaley RF, White RG, Hollingsworth TD, Boily MC. Heterosexual HIV-1 infectiousness and 
antiretroviral use: systematic review of prospective studies of discordant couples. Epidemiology. 
2013;24(1):110–121. [PubMed: 23222513] 

Zang et al. Page 13

Med Decis Making. Author manuscript; available in PMC 2020 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Choopanya K, Martin M, Suntharasamai P, et al. Antiretroviral prophylaxis for HIV infection in 
injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-
blind, placebo-controlled phase 3 trial. Lancet. 2013;381(9883):2083–2090. [PubMed: 23769234] 

28. Marks G, Crepaz N, Senterfitt JW, Janssen RS. Meta-analysis of high-risk sexual behavior in 
persons aware and unaware they are infected with HIV in the United States: implications for HIV 
prevention programs. Journal of acquired immune deficiency syndromes. 2005;39(4):446–453. 
[PubMed: 16010168] 

29. MacArthur GJ, Minozzi S, Martin N, et al. Opiate substitution treatment and HIV transmission in 
people who inject drugs: systematic review and meta-analysis. Bmj. 2012;345:e5945. [PubMed: 
23038795] 

30. Stout NK, Knudsen AB, Kong CY, McMahon PM, Gazelle GS. Calibration methods used in cancer 
simulation models and suggested reporting guidelines. PharmacoEconomics. 2009;27(7):533–545. 
[PubMed: 19663525] 

31. Morris MD. Factorial sampling plans for preliminary computational experiments. Technometrics. 
1991;33(2):161–174.

32. Tian Y, Hassmiller Lich K, Osgood ND, Eom K, Matchar DB. Linked Sensitivity Analysis, 
Calibration, and Uncertainty Analysis Using a System Dynamics Model for Stroke Comparative 
Effectiveness Research. Medical decision making : an international journal of the Society for 
Medical Decision Making. 2016;36(8):1043–1057. [PubMed: 27091379] 

33. Wu J, Dhingra R, Gambhir M, Remais JV. Sensitivity analysis of infectious disease models: 
methods, advances and their application. Journal of the Royal Society, Interface. 2013;10(86):
20121018.

34. Taylor DC, Pawar V, Kruzikas DT, Gilmore KE, Sanon M, Weinstein MC. Incorporating calibrated 
model parameters into sensitivity analyses: deterministic and probabilistic approaches. 
PharmacoEconomics. 2012;30(2):119–126. [PubMed: 22149631] 

35. Rezaei J Best-worst multi-criteria decision-making method: Some properties and a linear model. 
Omega-Int J Manage S. 2016;64:126–130.

36. Rezaei J Best-worst multi-criteria decision-making method. Omega-Int J Manage S. 2015;53:49–
57.

37. Helton JC, Davis FJ. Latin hypercube sampling and the propagation of uncertainty in analyses of 
complex systems. Reliability Engineering & System Safety. 2003;81(1):23–69.

38. Taylor DC, Pawar V, Kruzikas D, et al. Methods of model calibration: observations from a 
mathematical model of cervical cancer. PharmacoEconomics. 2010;28(11):995–1000. [PubMed: 
20936883] 

39. Centers for Disease Control and Prevention. Enhanced Comprehensive HIV Prevention Planning 
and Implementation for Metropolitan Statistical Areas Most Affected by HIV/AIDS. https://
www.cdc.gov/hiv/research/demonstration/echpp/index.html Published 2017 Accessed 12 October 
2017.

40. NYC Health. HIV/AIDS Surveillance Data. https://a816-healthpsi.nyc.gov/epiquery/HIV/
index.html, [Accessed: September 7, 2018]. Published 2015 Accessed.

41. County of Los Angeles Public Health. LA Health Data Now! https://dqs.ph.lacounty.gov/
queries.aspx, [Accessed: September 7, 2018]. Published 2018 Accessed.

42. AIDS United. Ending the HIV epidemic in the United States: A roadmap for federal action. https://
www.aidsunited.org/data/files/Site_18/Policy/
Ending_the_HIV_Epidemic_U.S._Roadmap_for_Federal_%20Action_FINAL.pdf Published 2018 
Accessed December 20, 2018.

43. Goodreau SM, Rosenberg ES, Jenness SM, et al. Sources of racial disparities in HIV prevalence in 
men who have sex with men in Atlanta, GA, USA: a modelling study. The lancet HIV. 
2017;4(7):e311–e320. [PubMed: 28431923] 

44. Briggs Andrew, Claxton Karl, Sculpher Mark. Decision Modelling for Health Economic 
Evaluation. 1 ed. London: Oxford University Press; 2006.

45. Shepherd K, Hubbard D, Fenton N, Claxton K, Luedeling E, de Leeuw J. Policy: Development 
goals should enable decision-making. Nature. 2015;523(7559):152–154. [PubMed: 26156358] 

Zang et al. Page 14

Med Decis Making. Author manuscript; available in PMC 2020 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cdc.gov/hiv/research/demonstration/echpp/index.html
https://www.cdc.gov/hiv/research/demonstration/echpp/index.html
https://a816-healthpsi.nyc.gov/epiquery/HIV/index.html
https://a816-healthpsi.nyc.gov/epiquery/HIV/index.html
https://dqs.ph.lacounty.gov/queries.aspx
https://dqs.ph.lacounty.gov/queries.aspx
https://www.aidsunited.org/data/files/Site_18/Policy/Ending_the_HIV_Epidemic_U.S._Roadmap_for_Federal_%20Action_FINAL.pdf
https://www.aidsunited.org/data/files/Site_18/Policy/Ending_the_HIV_Epidemic_U.S._Roadmap_for_Federal_%20Action_FINAL.pdf
https://www.aidsunited.org/data/files/Site_18/Policy/Ending_the_HIV_Epidemic_U.S._Roadmap_for_Federal_%20Action_FINAL.pdf


46. Eddy D, Hollingworth W, Caro J, et al. Model transparency and validation: a report of the ISPOR-
SMDM Modeling Good Research Practices Task Force-7. Med Decis Making. 2012;32(5):733–
743. [PubMed: 22990088] 

47. Psst Caro J., have I got a model for you. Medical decision making: an international journal of the 
Society for Medical Decision Making. 2015;35(2):139. [PubMed: 25413367] 

48. Song R, Hall HI, Green TA, Szwarcwald CL, Pantazis N. Using CD4 Data to Estimate HIV 
Incidence, Prevalence, and Percent of Undiagnosed Infections in the United States. J Acquir 
Immune Defic Syndr. 2017;74(1):3–9. [PubMed: 27509244] 

49. Fu R, Gutfraind A, Brandeau ML. Modeling a dynamic bi-layer contact network of injection drug 
users and the spread of blood-borne infections. Mathematical biosciences. 2016;273:102–113. 
[PubMed: 26775738] 

50. Buchacz K, Young B, Palella FJ Jr, Armon C, JT B. Trends in use of genotypic resistance testing 
and frequency of major drug resistance among antiretroviral-naive persons in the HIV Outpatient 
Study, 1999-2011. J Antimicrob Chemother. 2015;70(8):2337–2345. [PubMed: 25979729] 

51. Bernard CL, Owens DK, Goldhaber-Fiebert JD, Brandeau ML. Estimation of the cost-effectiveness 
of HIV prevention portfolios for people who inject drugs in the United States: A model-based 
analysis. PLoS medicine. 2017;14(5):e1002312. [PubMed: 28542184] 

52. Juusola JL, Brandeau ML, Owens DK, Bendavid E. The cost-effectiveness of preexposure 
prophylaxis for HIV prevention in the United States in men who have sex with men. Annals of 
internal medicine. 2012;156(8):541–550. [PubMed: 22508731] 

53. Kessler J, Myers JE, Nucifora KA, et al. Evaluating the impact of prioritization of antiretroviral 
pre-exposure prophylaxis in New York. Aids. 2014;28(18):2683–2691. [PubMed: 25493594] 

Zang et al. Page 15

Med Decis Making. Author manuscript; available in PMC 2020 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Model schematic diagram. The schematic shows the 19 compartments that constitute each of 

the 42 population groups in the model. A key for the symbols denoting transitions within the 

model is available in the Supplementary Appendix.
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Figure 2. 
Model fit of new diagnoses for calibration. (A) ATL: Atlanta; (B) BAL: Baltimore; (C) LA: 

Los Angeles; (D) MIA: Miami; (E) NYC: New York City; (F) SEA: Seattle; 95% CI: 95% 

credible interval. MSM: men who have sex with men (excluding MSM-PWID)
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Figure 3. 
Model external validity and status quo projections for the rate of new incidence. Year 

2012-2015: calibration period; Year 2016-2040: projection period; Year 2021-2040: 

evaluation period. (A) ATL: Atlanta; (B) BAL: Baltimore; (C) LA: Los Angeles; (D) MIA: 

Miami; (E) NYC: New York City; (F) SEA: Seattle.
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Table 1

Specifications for Calibration Process

Key elements10 Calibration specifications

Target Total number of diagnosed PLHIV (2012-2015)
 • MSM: race/ethnicity
 • PWID: total
 • MSM-PWID: total
 • Heterosexual: gender x race/ethnicity
Annual number of new HIV diagnoses (2012-2015)
 • Total
 • Black/African American
 • MSM
Annual number of all-cause deaths among PLHIV (2012-2015)
 • Total
 • Black/African American
 • MSM

Free parameter The set of free parameters for calibration is selected by Morris method: randomized one-factor-at-a-time sensitivity 
analysis to identify parameters leading to the most significant uncertainty in target outcomes

GoF metric Weighted mean percentage deviation: target weights determined by collecting and analyzing SAC’s preferences using 
best-worst method

Search algorithm The Latin hypercube sampling is applied to draw multiple sets of parameter values from their predefined distributions as 
the simplexes, from which the Nelder-Mead search algorithm was performed to optimize the overall GoF metric

Acceptance 
criteria

The set of parameter values that minimize the GoF metric with each simplex seeded

Stopping rule The same calibration routine is repeated 10,000 times with each simplex seeded to derive 2,000 best-fitting parameter 
subsets
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Table 2

Specifications for Validation Process

Key elements8 Validation specifications

Internal Extensive checks and evaluations
 • Cross-check on all codes and equations
 • Double-coding force of infection module
 • Extreme scenario analysis
 • Weekly meeting and updates

External Validation target – new HIV incidence (range)
 • Total
 • MSM and MSM/PWID

Face Continuous consultation with SAC
 • Evidence synthesis
 • Model development
Projection outcomes
 • Population dynamics, by race/ethnicity
 • Rate of new infections, overall, by race/ethnicity and by risk group
 • Rate of new diagnoses, overall, by race/ethnicity and by risk group
 • Rate of new infections among MSM, overall and by race/ethnicity
 • Rate of new diagnoses among MSM, overall and by race/ethnicity
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Table 3

Model parameters selected as free-parameters by Morris Method

Common Parameter ATL BAL LA MIA NYC SEA

1.3 Population Dynamics - Mortality Rate

 PLHIV (CD4 200-499) ✓ ✓ ✓ ✓ ✓ ✓

 PLHIV (CD4 <200) ✓ ✓ ✓ ✓ ✓ ✓

 PLHIV - PWID multiplier (CD4 200-499) ✓ ✓ ✓ ✓ ✓ ✓

 PLHIV - PWID multiplier (CD4 <200) ✓ ✓ ✓ ✓ ✓ ✓

2.1 Sexual Risk Behaviors - Number of Sexual Partner Multipliers

 PWID relative to HET ✓ ✓ ✓

 Decrease in sexual partners post-diagnosis ✓ ✓ ✓ ✓ ✓ ✓

2.2 Injection Risk Behaviors

 Injection frequency ✓ ✓ ✓ ✓

 Decreased probability of injection sharing post-diagnosis ✓ ✓ ✓ ✓

 SSP effect on reducing injection sharing ✓

2.4 Probability of Transmission (per partnership)

 Sex - Female to Male (CD4 ≥500) ✓ ✓ ✓ ✓ ✓

 Sex - Female to Male (CD4 200-499) ✓

 Sex - Female to Male (CD4 <200) ✓ ✓

 Sex - Male to Female (CD4 ≥500) ✓ ✓ ✓ ✓ ✓ ✓

 Sex - Male to Female (CD4 200-499) ✓

 Sex - Male to Female (CD4 <200) ✓

 Sex - Male to Male (CD4 ≥500) ✓ ✓ ✓ ✓ ✓ ✓

 Sex - Male to Male (CD4 200-499) ✓ ✓ ✓ ✓ ✓ ✓

 Sex - Male to Male (CD4 <200) ✓ ✓ ✓ ✓ ✓ ✓

 Shared injection (CD4 ≥500) ✓ ✓ ✓ ✓

 Shared injection (CD4 200-499) ✓

 Shared injection (CD4 ≥200) ✓

 Transmission probability multiplier (Acute HIV) ✓ ✓ ✓ ✓ ✓ ✓

 ART effect on reducing transmission - Sexual ✓ ✓ ✓ ✓ ✓

 ART effect on reducing transmission - Shared Injection ✓

 Condom effect on reducing transmission - Heterosexual Sex ✓ ✓ ✓

 Condom effect on reducing transmission - Homosexual Sex ✓ ✓ ✓ ✓ ✓ ✓

3.1 HIV Testing - Annual Change in HIV Testing Rate ✓ ✓ ✓ ✓ ✓ ✓

3.5 HIV Disease Progression Transition Rate from Acute to Chronic HIV ✓ ✓ ✓ ✓ ✓ ✓

City-Specific Parameter ATL BAL LA MIA NYC SEA

2.1 Sexual Risk Behaviors - Number of Sexual Partners

 Heterosexual partners, White, Low-risk MSM ✓

 Heterosexual partners, White, High-risk MSM ✓ ✓

 Heterosexual partners, Black, High-risk MSM ✓

 Heterosexual partners, Hispanic, High-risk MSM ✓

 Heterosexual partners, Male, White, High-risk HET ✓
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Common Parameter ATL BAL LA MIA NYC SEA

 Heterosexual partners, Male, Black, High-risk HET ✓ ✓

 Heterosexual partners, Female, White, High-risk HET ✓ ✓

 Heterosexual partners, Female, Black, High-risk HET ✓

 Heterosexual partners, Female, Hispanic, High-risk HET ✓ ✓

 Homosexual partners, White, Low-risk MSM ✓ ✓

 Homosexual partners, Black, Low-risk MSM ✓ ✓ ✓

 Homosexual partners, White, High-risk MSM ✓ ✓ ✓ ✓ ✓ ✓

 Homosexual partners, Black, High-risk MSM ✓ ✓ ✓ ✓ ✓ ✓

 Homosexual partners, Hispanic, High-risk MSM ✓ ✓ ✓ ✓ ✓ ✓

2.1 Sexual Risk Behaviors - Condom Use Probability

 Heterosexual, Male, White, High-risk HET ✓

 Homosexual, Male, White, Low-risk MSM ✓

 Homosexual, Male, Black, Low-risk MSM ✓ ✓ ✓ ✓

 Homosexual, Male, Hispanic, Low-risk MSM ✓ ✓ ✓

 Homosexual, Male, White, High-risk MSM ✓ ✓ ✓ ✓ ✓

 Homosexual, Male, Black, High-risk MSM ✓ ✓ ✓ ✓

 Homosexual, Male, Hispanic, High-risk MSM ✓ ✓ ✓ ✓

2.1 Assortativeness of Heterosexual Partnership Paring, High-risk Black ✓

3.2 ART Initiation

 Proportion linked to care post-diagnosis (CD4 ≥500), Male, Black, PWID ✓

 Proportion linked to care post-diagnosis (CD4 ≥500), Female, Black, PWID ✓

ATL: Atlanta; BAL: Baltimore; LA: Los Angeles; MIA: Miami; NYC: New York City; SEA: Seattle; Checked cells represent parameters selected 
for calibration.
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