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ORIGINAL RESEARCH • NEURORADIOLOGY

Acute ischemic stroke is a medical emergency that 
 imposes a substantial burden on society. Reperfusion 

therapies, such as intravenous thrombolysis and endovas-
cular thrombectomy, are the only validated treatments 
and have maximum benefit when administered early 
to properly selected patients (1–4). MRI- or CT-based 
 perfusion-diffusion mismatch has shown efficacy for se-
lecting patients up to 9 hours after onset of clinical symp-
toms for thrombolysis and up to 24 hours after symptom 
onset for  thrombectomy (4–7). However, MRI-based 
perfusion-diffusion mismatch identification requires rela-
tively long scanning and postprocessing times, with at 
least 10 minutes for preparation, sequence acquisition, 
and postprocessing. CT-based hypoperfusion core mis-
match exposes patients to ionizing radiation and is still 

limited for accurately identifying irreversibly dead tissue 
(8,9) or differentiating stroke mimics (10,11). In addi-
tion, perfusion imaging requires intravenous injection of 
contrast agents, which may be contraindicated in patients 
with renal failure and allergy. Mismatch between clinical 
presentation, based on the National Institutes of Health 
Stroke Scale (NIHSS) score, and the volume of the lesion 
as determined with diffusion-weighted imaging (DWI) 
has been used in the Clinical Mismatch in the Triage of 
Wake Up and Late Presenting Strokes Undergoing Neu-
rointervention With Trevo (DAWN) trial to avoid these 
negative aspects, demonstrating high specificity com-
pared with perfusion-diffusion mismatch (12). However, 
clinical-DWI mismatch sensitivity is low (previously re-
ported to be 53%–62% [12,13]), meaning that patients 

Background: Perfusion imaging is important to identify a target mismatch in stroke but requires contrast agents and postprocessing 
software.

Purpose: To use a deep learning model to predict the hypoperfusion lesion in stroke and identify patients with a target mismatch 
profile from diffusion-weighted imaging (DWI) and clinical information alone, using perfusion MRI as the reference standard.

Materials and Methods: Imaging data sets of patients with acute ischemic stroke with baseline perfusion MRI and DWI were 
 retrospectively reviewed from multicenter data available from 2008 to 2019 (Imaging Collaterals in Acute Stroke, Diffusion and 
Perfusion Imaging Evaluation for Understanding Stroke Evolution 2, and University of California, Los Angeles stroke registry). 
For perfusion MRI, rapid processing of perfusion and diffusion software automatically segmented the hypoperfusion lesion (time 
to maximum, ≥6 seconds) and ischemic core (apparent diffusion coefficient [ADC], ≤620 × 10–6 mm2/sec). A three-dimensional 
U-Net deep learning model was trained using baseline DWI, ADC, National Institutes of Health Stroke Scale score, and stroke 
symptom sidedness as inputs, with the union of hypoperfusion and ischemic core segmentation serving as the ground truth. 
Model performance was evaluated using the Dice score coefficient (DSC). Target mismatch classification based on the model was 
 compared with that of the clinical-DWI mismatch approach defined by the DAWN trial by using the McNemar test.

Results: Overall, 413 patients (mean age, 67 years ± 15 [SD]; 207 men) were included for model development and primary  analysis 
using fivefold cross-validation (247, 83, and 83 patients in the training, validation, and test sets, respectively, for each fold). The 
model predicted the hypoperfusion lesion with a median DSC of 0.61 (IQR, 0.45–0.71). The model identified patients with target 
mismatch with a sensitivity of 90% (254 of 283; 95% CI: 86, 93) and specificity of 77% (100 of 130; 95% CI: 69, 83)  compared 
with the clinical-DWI mismatch sensitivity of 50% (140 of 281; 95% CI: 44, 56) and specificity of 89% (116 of 130; 95% CI: 83, 
94) (P < .001 for all).

Conclusion: A three-dimensional U-Net deep learning model predicted the hypoperfusion lesion from diffusion-weighted imaging 
(DWI) and clinical information and identified patients with a target mismatch profile with higher sensitivity than the clinical-DWI 
mismatch approach.

ClinicalTrials.gov registration nos. NCT02225730, NCT01349946, NCT02586415
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multicenter observational study enrolling participants with acute 
 ischemic stroke symptoms attributable to anterior circulation, 
with  NIHSS scores greater than or equal to 5 and onset-to-imag-
ing times less than or equal to 24 hours. The DEFUSE 2 protocol 
enrolled similar participants within a shorter onset-to-imaging 
time frame (≤12 hours) and has been previously reported (3,24). 
The iCAS, DEFUSE 2, and DEFUSE 3 studies (ClinicalTri-
als.gov registration numbers NCT02225730, NCT01349946, 
and NCT02586415, respectively) and UCLA registry data were  
approved by the participating site’s institutional review boards 
and written consent was obtained from each participant. The 
current study was approved for retrospective analysis by the in-
stitutional review boards. Data used in this study were compliant 
with the Health Insurance Portability and Accountability Act.

We excluded patients who did not have acute ischemic 
stroke located in the internal carotid artery or middle cerebral 
artery territories, those without adequate quality bolus perfu-
sion MRI or DWI at arrival, those who had perfusion MRI 
with poor-quality reconstruction, or those with poor quality of 
time-to-maximum segmentation. We developed the model us-
ing subsets of patients from the iCAS and DEFUSE 2 studies 
and UCLA stroke registry using a fivefold split for the purposes 
of training, validating, and testing. The testing data set was the 
largest and most representative sample and was considered the 
primary analysis of model performance. We further evaluated 
the model using an external generalization cohort comprised of 
patients from the DEFUSE 3 study (25). Of note, all patients 
in the generalization cohort had a target mismatch profile be-
cause this was an inclusion criterion for the DEFUSE 3 trial. 
This had two consequences: (a) only sensitivity could be tested 
for classification and (b) all patients had large size differences 
between hypoperfusion and core lesions, making prediction 
more challenging.

Imaging Protocol
All images were acquired at 1.5 T or 3 T. Patients underwent 
MRI according to each site’s standard protocol, including DWI  
(b = 1000 sec/mm2) and dynamic susceptibility contrast-en-
hanced perfusion MRI using gadolinium-based contrast agents. 
Rapid processing of perfusion and diffusion software (Rapid; 
RapidAI [https://www.rapidai.com]) was used for postprocessing 
to reconstruct  perfusion parameter maps and generate the isch-
emic core  lesion (apparent diffusion coefficient [ADC] threshold 
≤620 × 10−6 mm2/sec) and hypoperfusion lesion (time-to-max-
imum threshold ≥6 seconds). The union of the hypoperfusion 
lesion and ischemic core was used as ground truth, as it is the 
relevant  region for defining the perfusion-diffusion mismatch. 
For  readability we use the term “hypoperfusion lesion,” while 
recognizing that it could potentially include tissue that has sub-
sequently reperfused but already suffered infarction.

Data Preprocessing
An experienced neuroradiology researcher (Y.Y., with 8 years of 
experience) reviewed the ground truth segmentation from Rapid 
software. For segmentations with suboptimal quality, the same 
researcher manually removed the artifacts in the segmentation 
with ITK-SNAP (www.itksnap.org) (26) (Fig S1).

who could benefit from reperfusion may be underdiagnosed 
(12,13).

Previous studies have explored whether subtle signal changes 
(14–16) or lesion patterns (17) at initial DWI could predict in-
farct growth and identify stroke etiologies. Although those ini-
tial DWI features demonstrated some  association with hypoper-
fused tissue when using traditional statistical analysis, prediction 
accuracy was far from ideal (15,18), thus limiting the clinical 
application. Convolutional neural networks, a machine learn-
ing technique, automatically extract features from images by 
using multiple convolutional layers to make predictions. Deep 
convolutional neural networks, such as U-Nets, have shown ad-
vantages in stroke lesion prediction compared with traditional 
threshold-based methods (19–21). In this study, we aimed to 
use a deep learning model to predict the hypoperfusion lesion in 
stroke and identify patients with a target mismatch profile from 
DWI and clinical information alone, using perfusion MRI as the 
reference standard.

Materials and Methods

Patients
Patients with acute ischemic stroke were reviewed from two  
prospective multicenter trials and one single-center registry; these 
are the imaging Collaterals in Acute Stroke (iCAS) trial (April 
2014 to June 2019; n = 188), Diffusion and Perfusion Imag-
ing Evaluation for Understanding Stroke Evolution (DEFUSE) 
2 trial (July 2008 to October 2012; n = 140), and University of 
California, Los Angeles (UCLA) stroke registry (2012–2016; n = 
196). Patients from the multicenter randomized controlled trial 
DEFUSE 3 (May 2016 to May 2017; n = 182) were reviewed sep-
arately as an external generalization cohort. The iCAS (22,23) is a 

Abbreviations
ADC = apparent diffusion coefficient, AUC = area under the  receiver 
operating characteristic curve, DAWN = Clinical Mismatch in the 
Triage of Wake Up and Late Presenting Strokes Undergoing Neuroin-
tervention With Trevo, DEFUSE =  Diffusion and Perfusion Imaging 
Evaluation for Understanding Stroke Evolution, DSC = Dice score coef-
ficient, DWI = diffusion-weighted imaging, LVO = large vessel occlu-
sion, NIHSS = National Institutes of Health Stroke Scale

Summary
A three-dimensional deep learning model trained from a multicenter 
data set predicted the hypoperfusion lesion and target mismatch from 
diffusion-weighted MRI and clinical information in acute ischemic 
stroke.

Key Results
 ■ In this retrospective multicenter study of 413 patients with 

acute ischemic stroke, a deep learning model predicted the 
 hypoperfusion lesion, as defined by perfusion MRI, using only 
clinical information and diffusion-weighted MRI, with a median 
Dice score coefficient of 0.61.

 ■ The model achieved a sensitivity of 90% and specificity of 77% for 
identifying target mismatch based on the DEFUSE 3 trial criteria.

 ■ The model had higher sensitivity and accuracy for identifying 
 target mismatch compared with clinical-DWI mismatch using the 
DAWN trial criteria.
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All images were coregistered and normalized to the Mon-
treal Neurological Institute template with SPM12 (www.fil.
ion.ucl.ac.uk/spm) software implemented in Matlab version 
2016b (MathWorks). Each brain volume was formatted to 
a size of 128 × 128 × 60 pixels. Of note, the spatial cover-
age of perfusion imaging was usually smaller than diffusion 
imaging; only voxels with both diffusion and perfusion in-
formation were included in the model and analysis.

DWI (b = 1000 sec/mm2 images) and ADC data were nor-
malized by the mean of their parenchymal tissue value. To 
preserve important information about absolute ADC values, 
a mask was created at an ADC less than 620 × 10−6 mm2/sec 
by using simple thresholding. An image volume was created 
to indicate the side of stroke. If the stroke was unilateral, half 
of the image was labeled as 1 and the other half as 0; if the 
stroke was bilateral, all pixels were labeled as 1. Baseline NIHSS 
scores were normalized into a range from 0 to 2 by dividing the 
 NIHSS score by 21.

Model Structure, Training, and Testing
We used an attention-gated three-dimensional U-Net model 
with imaging and clinical data fusion. A three-dimensional  
U-Net (27) is identical to a two-dimensional U-Net (28,29) ex-
cept that the sample and ground truth size and kernel size for 
convolution and max pooling layers have a third dimension. The 
normalized clinical information was linked with image features 
at the bottleneck layer before the decoders (Fig 1) (30,31). The 
U-Net takes a slab (16 sections with a dimension of 128 × 128 × 
16 pixels) of DWI, the ADC, and the thresholded ADC mask, 
with the mask indicating the side of the stroke, as imaging input 
and the baseline NIHSS score as numeric input. A slab of hypo-
perfusion lesion served as the ground truth. The model outputs a 
probability map with voxel values ranging from 0 to 1, whereby 

a value closer to 1 indicates that the voxel is more likely to be in 
the hypoperfusion lesion.  During testing, image slabs were ex-
tracted using the sliding window method. The slabs from model 
outputs were then combined and averaged to generate the final 
probability map.

The loss function used was a combination of binary cross 
entropy, volume error, and Dice score coefficient (DSC) loss. 
Other hyperparameters, based on previous experience of simi-
lar tasks, included a learning rate of 0.0005, total epochs of 
80, batch size of 32, and use of the Adam optimizer algorithm 
with exponential decay. Fivefold cross-validation was per-
formed. We randomly divided the patients into five data sets; 
three sets were used for training, one set for validation, and 
one set for testing for each fold. The best model was  selected 
based on the lowest validation loss function among all train-
ing epochs. The generalization cohort was tested using each 
of the five models trained during fivefold cross-validation of 
the primary analysis cohort. The predictions from these five 
models were averaged to calculate the overall performance. 
The code used for data processing, model training and testing, 
and data analysis can be found at https://github.com/yannanyu/
dwi_hypoperufsion_paper.

Performance Evaluation
The area under the receiver operating characteristic curve 
(AUC), DSC, and volume difference were calculated for each 
patient to evaluate hypoperfusion segmentation performance. 
AUC values were calculated within the ipsilateral stroke hemi-
sphere, except when there were bilateral strokes. The DSC  
reflects the overlap between the prediction and the ground 
truth. It ranges from 0 to 1 with higher numbers  representing 
more overlap, so that a DSC greater than 0.5 was considered 
good agreement. To calculate the DSC and lesion volume 

Figure 1: Block diagram shows the attention-gated three-dimensional U-Net model with clinical data fusion and a schematic of the attention gate. Input images include 
four three-dimensional image slabs sized at 128 × 128 × 16 pixels: diffusion-weighted imaging (b = 1000 sec/mm2), apparent diffusion coefficient (ADC), ADC mask 
thresholded at 620 × 10−6 mm2/sec, and a mask indicating the side of stroke. Normalized National Institutes of Health Stroke Scale (NIHSS) scores are broadcast to the 
shape of the bottleneck layer and linked with the image features. The number of channels is denoted above each box and each block represents a four-dimensional vector. 
In an attention gate, the output of the previous layer (g) and the symmetric encoding layer (xl) undergo convolution (with a 1 × 1–pixel kernel), summation, and rectified lin-
ear unit (ReLU) activation. Then another convolution with sigmoid activation is applied to extract the attention coefficient (a), which is then multiplied with the skip connection.
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difference between prediction and ground truth, a threshold 
probability of 0.5 was chosen. If the patient has no hypoper-
fusion lesion (meaning that ground truth is 0), the DSC will 
always be 0 and the AUC cannot be calculated. Therefore, 
patients with no hypoperfusion lesion were excluded when 
reporting DSC and AUC values but included when reporting 
volume differences.

To evaluate triage, we tested whether each patient met the 
target mismatch criteria by using the DEFUSE 3 trial criteria (5) 
as follows: (a) ratio of hypoperfusion and core volume greater 
than or equal to 1.8, (b) hypoperfusion minus core volume 
greater than or equal to 15 mL, and (c) core volume less than 
or equal to 70 mL. To compare the model with existing clinical-
DWI mismatch criteria, DAWN trial (ClinicalTrials.gov no. 
NCT02142283) criteria (4) were used as follows: (a) age greater 
than or equal to 80 years, NIHSS score greater than or equal 
to 10, core volume less than 21 mL; (b) age less than 80 years, 
NIHSS score greater than or equal to 10, core volume less than 
31 mL; and (c) age less than 80 years, NIHSS score greater than 
or equal to 20, core volume 31–51 mL. Sensitivity, specificity, 
positive predictive value, negative predictive value, and accuracy 
were calculated for target mismatch for the model prediction 
and clinical-DWI mismatch defined using DAWN trial criteria, 
with the DEFUSE 3 target mismatch criteria as reference.

Two subgroups were separately analyzed to determine 
different application scenarios for the model. These were 
(a) patients with and without a baseline core lesion as 
 defined by Rapid software and (b) patients with large vessel 
 occlusion (LVO), defined as occlusion of the internal  carotid 
artery or the M1 segment of the middle cerebral artery, 
and those without. A scatterplot of baseline core volumes 
against DSCs was plotted to explore the model behavior. 

The proportion of good hypoperfusion prediction (defined 
as a DSC >0.5) was compared between different levels of 
baseline core volume.

Additional comparisons were performed between images 
scanned at 1.5 T and 3 T (see Appendix S1).

Statistical Analysis
We maximized our sample size for statistical analysis by in-
corporating all available data sets and implementing fivefold  
cross-validation. Statistical analysis was performed using Stata 
version 15.0 (StataCorp). Values were expressed as means ± SDs 
if the variable was normally distributed and medians with IQRs 
if the variable was not normally distributed. The exact McNemar 
test was performed to compare the accuracy of classifying target 
mismatch from model prediction with that of the clinical-DWI 
mismatch approach. The Mann-Whitney U test was used to 
compare DSC values of model performance between subgroups. 
The one-sample t test was used to compare the proportions of 
good hypoperfusion prediction (DSC >0.5) at different baseline 
core volume levels. The concordance correlation coefficient (ρc) 
was used to analyze lesion volume predictions. Correlation was 
considered either excellent (ρc >0.70), moderate (ρc 0.50–0.70), 
or low (ρc <0.50) (32). All tests were two sided and P ≤ .007 was 
considered indicative of a statistically significant difference based 
on Bonferroni correction.

Results

Patient Characteristics
Of 524 patients available from three studies, 413 patients met 
the inclusion and exclusion criteria and were included in the 

Figure 2: Flowcharts of patient inclusion and exclusion. For each of the five folds in the primary analysis cohort, there were 247 patients in the 
training set, 83 patients in the validation set, and 83 patients in the test set. There was no overlap in patients between training, validation, or test sets. 
DEFUSE = Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution, DWI = diffusion-weighted imaging, ICA = internal carotid 
artery, ICAS = Imaging Collaterals in Acute Stroke, MCA = middle cerebral artery, PWI = perfusion-weighted imaging, UCLA = University of Califor-
nia, Los Angeles.
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analysis (Fig 2). Hypoperfusion lesion segmentation quality was 
good in 328 patients and suboptimal in 85 patients, whereby 
suboptimal segmentations were then manually edited (Fig S1). 
Therefore, for each of the five folds, there were 247 patients in 
the training set, 83 patients in the validation set, and 83 pa-
tients in the test set. The generalization cohort comprised 46 
of the 49 DEFUSE 3 study participants with MRI (two were 
excluded due to poor perfusion MRI quality and one due to  
absent perfusion MRI). The generalization cohort had more 
LVOs, smaller baseline core volumes, and higher mismatch  
ratios than the primary analysis cohort (Table 1).

Primary Analysis Performance
The model achieved a median AUC of 0.91 (IQR, 0.89–0.94), 
median DSC of 0.61 (IQR, 0.45–0.71), median volume differ-
ence of 4 mL (IQR, −37 to 41 mL), and median absolute vol-
ume difference of 40 mL (IQR, 17–70 mL) (see Table S1 for 
95% CIs of the model segmentation performance). For each 
patient in the test set, it took approximately 8 seconds for the 
model to generate the test result and 24 seconds in total for the 

algorithm to load and convert model predictions to a three-
dimensional volume. In patients with no hypoperfusion lesion, 
although there was never intersection between prediction and 
truth, the median absolute volume difference was small (1 mL 
[IQR, 0–14 mL]). Predicted hypoperfusion volume had excel-
lent correlation with true volume (ρc = 0.78, 95% CI: 0.75, 
0.82; Fig S2). Example test cases are shown in Figure 3. The 
model also achieved more accurate classification for target mis-
match (Table 2) at an accuracy of 86% (354 of 413 patients; 
95% CI: 82, 89), which was higher than the clinical-DWI mis-
match approach accuracy of 62% (95% CI: 57, 67) (P < .001). 
Sensitivity and specificity of the model were 90% (254 of 283 
patients; 95% CI: 86, 93) and 77% (100 of 130 patients; 95% 
CI: 69, 83), compared with 50% (140 of 281 patients; 95% 
CI: 44, 56) and 89% (116 of 130 patients; 95% CI: 83, 94) 
for the clinical-DWI mismatch approach. If the two methods 
were combined and a case was considered positive if either the 
proposed model or the clinical-DWI method yielded a posi-
tive classification, the accuracy would be 88% (361 of 411 pa-
tients; 95% CI: 84, 90), sensitivity 94% (264 of 281 patients; 
95% CI: 90, 96), and specificity 75% (97 of 130 patients; 95% 
CI: 66, 81). In 157 patients in which the model prediction 
of target mismatch was not consistent with the clinical-DWI 
criteria, 135 (86%) had a target mismatch. The model showed 
comparable or more accurate classification of target mismatch 
in all subgroups (Table 2).

In patients with a baseline core lesion greater than 0 mL as 
determined with Rapid software, the model better predicted 
the hypoperfusion lesion and target mismatch than in patients 
with a baseline Rapid software–determined core lesion equal to 
0 mL (median DSC, 0.65 vs 0.25 [P < .001]; accuracy, 90% vs 
68%) (Table 3). In patients with Rapid software–determined 
core lesions greater than 0, 81% (95% CI: 76, 85) of test cases 
had a DSC greater than 0.5, which further improved to 89% 
(95% CI: 82, 91) and 95% (95% CI: 91, 97; P < .001) when 
the baseline core volume was greater than or equal to 10 mL 
and greater than or equal to 20 mL, respectively (Fig S3). Fig-
ure S4 shows examples of test cases with baseline core lesions 
equal to 0 as  determined with Rapid software. In patients with 
LVO, the model was more robust than in patients without 
LVO (DSC, 0.63 vs 0.51 [P < .001]; accuracy, 93% vs 66%). 
Figure S5 shows examples of test cases without LVO.

Generalization Cohort Performance
In the external generalization cohort, the model achieved 
similar performance as that in the primary analysis data set, 
with a median AUC of 0.93 (IQR, 0.90–0.94; P = .52), me-
dian DSC of 0.62 (IQR, 0.53–0.72; P = .26), median volume 
difference of 7 mL (IQR, −24 to 32 mL; P = .99), and median 
absolute volume difference of 30 mL (IQR, 15–65 mL; P 
= .79). In patients with a baseline core volume greater than 
or equal to 1 mL, 80% (95% CI: 64, 90) of test cases had a 
DSC greater than 0.5, which further improved to 90% (95% 
CI: 71, 97) and 95% (95% CI: 66, 99; P < .001) when the 
baseline core volume was greater than or equal to 10 mL and 
greater than or equal to 20 mL, respectively (Figs S2, S3). 
Sensitivity for the model to classify target mismatch was 96% 

Table 1: Baseline Characteristics of the Primary Analysis 
and Generalization Cohorts

Characteristic

Primary 
Analysis  
Cohort  
(n = 413)

Generalization 
Cohort  
(n = 46) P Value

Age (y)* 67 ± 15 69 ± 15 .40
Sex .17
 M 207 (50) 18 (39)
 F 206 (50) 28 (61)
Occluded territory <.001
 ICA or M1 segment 299 (72) 45 (98)
 M2 or M3 segments 90 (22) 1 (2)
 M4 segment or no 

occlusion
24 (6) …

Side of stroke .99
 Left 217 (53) 24 (52)
 Right 186 (45) 21 (46)
 Bilateral 10 (2) 1 (2)
NIHSS score† 14 (9–19) 12 (6–18) .21
Core volume (mL)† 19 (6–49) 17 (6–27) .02
Hypoperfusion 

volume (mL)†
82 (43–132) 94 (70–134) .52

Mismatch ratio†‡ 3.9 (2.2–14.3) 6.4 (4.1–16.7) .002
Mismatched cases 283 (69) 46 (100) <.001
Modified Rankin Scale 

score at 3 months†
3 (1–4) 3 (2–5) .60

Note.—Except where indicated, data are numbers of patients, 
with percentages in parentheses. M1–M4 are segments of the 
middle cerebral artery. ICA = internal carotid artery, NIHSS = 
National Institutes of Health Stroke Scale.
* Data are means ± SDs.
† Data are medians, with IQRs in parentheses.
‡ Maximum was set as 20 in cases with a baseline core volume of  
0 or mismatch ratio greater than 20.
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(44 of 46 patients; 95% CI: 83, 99) compared with 41% 
(19 of 46 patients; 95% CI: 28, 56) for the clinical-DWI 
mismatch approach.

Discussion
Perfusion-diffusion imaging mismatch is crucial for acute 
 ischemic stroke triage; however, it requires contrast agent 
 injection and costly postprocessing software. Previous literature 
reported the potential value of using subtle diffusion-weighted  
imaging (DWI) signal changes to predict infarct growth in 
stroke patients with limited accuracy. In this study, we trained 
and evaluated a convolutional neural network to predict 
 hypoperfusion and target mismatch using DWI and clinical 
information alone as input data, compared with clinical-DWI 
mismatch using DAWN trial criteria. The results demonstrated 
that the proposed model prediction was more sensitive (90% 
vs 50%) and accurate (86% vs 62%) for identification of 
 patients with a target mismatch profile than the clinical-DWI 

mismatch approach (P < .001 for both). In subgroup analy-
ses, we showed that the best use case for the proposed model 
is in large vessel occlusion (LVO) with baseline DWI signal 
changes. In cases with no LVO and/or no baseline DWI lesion, 
the model accuracy decreased but was overall equivalent to the 
clinical-DWI mismatch approach (66% and 68% vs 60% and 
61%, respectively) and the model was more sensitive than the 
clinical-DWI approach (69% and 66% vs 35% and 46%, re-
spectively) (Table 2). Performance in the generalization cohort 
achieved 96% sensitivity in identifying patients selected with 
the target mismatch profile, despite greater technical challenges 
due to smaller core lesions and higher mismatch ratios.

As reperfusion therapy is the most powerful treatment in 
stroke, triaging more patients who can benefit from the treat-
ment is crucial. Leslie-Mazwi et  al (13) showed that patients 
who did not meet DAWN trial clinical-DWI criteria but met 
DEFUSE 3 criteria still benefitted from thrombectomy treat-
ment, indicating that clinical-DWI criteria are very specific but 

Figure 3: (A) Images in a 60-year-old woman with a National Institutes of Health Stroke Scale (NIHSS) score of 2 and right M1 segment occlusion ex-
emplify a large vessel occlusion case. Rapid software identified a hypoperfusion lesion of 146 mL and a core of 32 mL. The model predicted 201 mL for the 
hypoperfusion lesion (as shown in the bottom row), with accurate spatial location and a Dice score coefficient (DSC) of 0.71. (B) Images in a 40-year-old 
man with an NIHSS score of 7 and left M2 segment occlusion exemplify a case without large vessel occlusion. Rapid software identified a hypoperfusion le-
sion of 62 mL and a core of 30 mL. The model predicted 103 mL for the hypoperfusion lesion, with accurate spatial location and a DSC of 0.64. Ax = axial, 
Cor = coronal, DWI = diffusion-weighted imaging, Sag = sagittal.
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insufficiently sensitive to identify all patients who might benefit 
from reperfusion. Therefore, although the model prediction had 
lower specificity than the clinical-DWI criteria, it may be advan-
tageous to avoid underdiagnosis for this application.

A possible clinical application for the proposed model is to 
accelerate MRI-based stroke protocols. Although CT is more 
commonly used in suspected acute ischemic stroke due to avail-
ability and center preferences, MRI better enables detection of 
infarcted tissue and possible stroke mimics (33) and plays a sub-
stantial role in acute stroke triage in many comprehensive stroke 
centers worldwide. Higher cost and longer scan times are two 
concerns with MRI. Shorter scan times can be achieved by ad-
justing MRI protocols (34) and by using synthetic MRI (35,36) 
and machine learning (37). If DWI shows a nonzero core lesion 
and MR angiography demonstrates LVO, the perfusion MRI se-
quence may be omitted based on the model’s high performance 
to predict target mismatch in these subgroups. The performance 
of the model drops significantly if there is no core DWI lesion; 
this performance is not surprising as one could argue there is no 
way for the algorithm to identify where the hypoperfusion, if 
present, is located. Therefore, if DWI is negative and/or there is 
no evidence of LVO at MR angiography, perfusion MRI could 
still be performed.

The proposed model does not provide interpretable reasoning 
as to why a voxel is classified as part of the hypoperfused lesion. 
The prediction may result from the subtle signal changes not 
severe enough to be classified as ischemic core or from using the 
probability of common hypoperfusion lesions for each type of 
DWI lesion pattern. Previous literature suggests that a higher 
ADC threshold, such as 740–780 × 10−6 mm2/sec, correlates 
with infarct growth and likely represents at-risk tissue (15,16). 
Therefore, hypoperfused tissue may present with subtle DWI 

or ADC abnormalities (14–16,38). It could be argued that the 
model just learns the shape of the middle cerebral artery dis-
tribution, which is possible if the data set only contains proxi-
mal middle cerebral artery occlusion and internal carotid artery 
occlusion. However, we found relatively accurate predictions 
even in non-LVO subgroups with DSC values greater than 0.5  
(Table 3), indicating there were features in baseline DWI that 
implied the size of occluded arteries.

Our study had several limitations. First, as the proposed 
model was trained only using internal carotid artery and middle 
cerebral artery territory strokes, it cannot be applied to detect 
hypoperfusion in other stroke territories. Second, we did not test 
the model in patients without stroke with DWI hyperintensities; 
therefore, the proposed model cannot be used to diagnose stroke 
or assess the perfusion status of nonacute pathologic findings. 
Third, other sequences routinely performed in addition to DWI, 
such as gradient echo and MR angiography, were not included 
in the model, although they may help predict hypoperfusion le-
sion. Fourth, as sequence selection may vary at different sites, 
we did not include every possible sequence. Fifth, there is po-
tential overfitting of the model to the primary analysis data set 
because we used fivefold cross-validation; however, this data set 
is already relatively diverse due to varying scanners from different 
institutions and varying field strengths. Additionally, the similar 
performance in the separate, held-out DEFUSE 3 test data set is 
further evidence of the model’s robustness. Finally, we have not 
exhaustively experimented with all recent deep learning model 
structures or all hyperparameter combinations, although we 
 recognize that this could improve performance.

In conclusion, by using a three-dimensional U-Net con-
volutional neural network, we have shown the feasibility of 
 predicting hypoperfusion lesions and triaging patients with 

Table 2: Patient-wise Performance of Deep Learning Model and Clinical-DWI Criteria to Identify Target Mismatch

Variable Sensitivity Specificity PPV NPV Accuracy P Value
Primary analysis (n = 413)
 U-Net model 254/283 (90) 100/130 (77) 254/284 (89) 100/129 (78) 354/413 (86) <.001
 Clinical-DWI method 140/281 (50) 116/130 (89) 140/154 (91) 116/257 (45) 256/411 (62)
Baseline core >0 mL (n = 326)
 U-Net model 217/227 (96) 78/99 (79) 217/238 (91) 78/88 (89) 295/326 (90) <.001
 Clinical-DWI method 114/225 (51) 89/99 (90) 114/124 (92) 89/200 (45) 203/324 (63)
Baseline core equal to 0 mL (n = 87)
 U-Net model 37/56 (66) 22/31 (71) 37/46 (80) 22/41 (54) 59/87 (68) .38
 Clinical-DWI method 26/56 (46) 27/31 (87) 26/30 (87) 27/57 (47) 53/87 (61)
Large vessel occlusion (n = 299)
 U-Net model 210/222 (95) 62/70 (89) 210/218 (96) 62/74 (84) 272/292 (93) <.001
 Clinical-DWI method 117/222 (53) 66/70 (94) 117/121 (97) 66/171 (39) 183/292 (63)
No large vessel occlusion (n = 114)
 U-Net model 37/54 (69) 38/59 (64) 37/58 (64) 38/55 (69) 75/113 (66) .29
 Clinical-DWI method 18/52 (35) 49/59 (83) 18/28 (64) 49/83 (59) 67/111 (60)

Note.—Except where indicated, data are numbers of patients, with percentages in parentheses. U-Net is the three-dimensional convolutional 
neural network. The clinical-DWI method is based on DAWN trial criteria. Two patients had no age data; therefore, the total number of 
patients for the clinical-DWI method is 411. P values were calculated using the exact McNemar test between the accuracy of the U-Net model 
and clinical-DWI mismatch criteria in identifying patients with a target mismatch profile. DAWN = Clinical Mismatch in the Triage 
of Wake Up and Late Presenting Strokes Undergoing Neurointervention With Trevo trial, DWI = diffusion-weighted imaging, NPV = 
negative predictive value, PPV = positive predictive value.
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stroke using only diffusion-weighted imaging (DWI), the Na-
tional Institutes of Health Stroke Scale score, and knowledge 
of stroke sidedness. The proposed model is proof of concept 
that information from sequences that require contrast agents 
(eg, hypoperfusion lesion) may be predicted from noncontrast-
enhanced images. Compared with the clinical presentation and 
DWI mismatch approach, the model prediction was more ac-
curate and much more sensitive for identifying patients with a 
target mismatch profile. Such a tool may be useful to reduce 
MRI scan times and costs in acute stroke protocols. Further 
finetuning and careful design of a data set to balance differ-
ent stroke subtypes is needed for stroke cases in less common 
vascular territories and in patients without large vessel occlu-
sion (LVO). Finetuning the model with more balanced catego-
rization of LVO and non-LVO may help the model to avoid 
potential bias.
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